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Spatial reasoning via recurrent neural 
dynamics in mouse retrosplenial cortex
 

Jakob Voigts    1,2,3  , Ingmar Kanitscheider4, Nicholas J. Miller1,2, 
Enrique H. S. Toloza1,2,5, Jonathan P. Newman1,6,7, Ila R. Fiete    1,2   & 
Mark T. Harnett    1,2 

From visual perception to language, sensory stimuli change their meaning 
depending on previous experience. Recurrent neural dynamics can interpret 
stimuli based on externally cued context, but it is unknown whether they can 
compute and employ internal hypotheses to resolve ambiguities. Here we 
show that mouse retrosplenial cortex (RSC) can form several hypotheses over 
time and perform spatial reasoning through recurrent dynamics. In our task, 
mice navigated using ambiguous landmarks that are identified through their 
mutual spatial relationship, requiring sequential refinement of hypotheses. 
Neurons in RSC and in artificial neural networks encoded mixtures of 
hypotheses, location and sensory information, and were constrained by 
robust low-dimensional dynamics. RSC encoded hypotheses as locations 
in activity space with divergent trajectories for identical sensory inputs, 
enabling their correct interpretation. Our results indicate that interactions 
between internal hypotheses and external sensory data in recurrent circuits 
can provide a substrate for complex sequential cognitive reasoning.

External context can change the processing of stimuli through recur-
rent neural dynamics1. In this process, the evolution of neural popula-
tion activity depends on its own history as well as external inputs2, 
giving context-specific meaning to otherwise ambiguous stimuli3. To 
study how hypotheses can be held in memory and serve as internal 
signals to compute new information, we developed a task that requires 
sequential integration of spatially separated ambiguous landmarks4. 
In this task, the information needed to disambiguate the stimuli is not 
provided externally but must be computed, maintained over time and 
applied to the stimuli by the brain.

Results
We trained freely moving mice to distinguish between two perceptually 
identical landmarks, formed by identical dots on a computer-display 
arena floor, by sequentially visiting them and reasoning about their 
relative locations. The landmarks were separated by <180 degrees in 
an otherwise featureless circular arena (50-cm diameter), to create 

a clockwise (CW) (‘a’) and a counterclockwise (CCW) (‘b’) landmark. 
Across trials, the relative angle between landmarks was fixed and 
the same relative port was always the rewarded one; within trials, 
the locations of landmarks was fixed. The mouse’s task was to find 
and nose-poke at the CCW ‘b’ landmark for water reward (‘b’ was near 
one of 16 identical reward ports spaced uniformly around the arena; 
other ports caused a time out). At most, one landmark was visible at a 
time (enforced by tracking mouse position and modulating landmark  
visibility based on relative distance (Extended Data Fig. 1; Methods). 
Each trial began with the mouse in the center of the arena in the dark 
(‘LM0’ phase; Fig. 1b), without knowledge of its initial pose. In the inter-
val after first encountering a landmark (‘LM1’ phase), an ideal agent’s 
location uncertainty is reduced to two possibilities, but there is no way 
to disambiguate whether it saw ‘a’ or ‘b.’ After seeing the second land-
mark, an ideal agent could infer landmark identity (‘a’ or ‘b’; this is the 
‘LM2’ phase; Fig. 1b) by estimating the distance and direction traveled 
since the first landmark and comparing those with the learned relative 
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hypotheses (Fig. 1d,e). This hypothesis encoding was not restricted to a 
separate population: most cells encoded both hypothesis state as well 
as the animal’s location (Fig. 1g).

This encoding was distinct from the encoding of landmark encoun-
ters in the interleaved dot-hunting task and was correlated per session 
with behavioral performance (Extended Data Fig. 4). The encoding of 
mouse location changed significantly across task phases (Fig. 1d,f), 
similar to the conjunctive coding for other spatial and task variables 
in RSC6. This mixed co-encoding of hypothesis, location and other 
variables suggests that RSC can transform new ambiguous sensory 
information into unambiguous spatial information through the mainte-
nance and task-specific use of internally generated spatial hypotheses.

Hypothesis-dependent spatial computation using recurrent 
dynamics
To test whether recurrent neural networks can solve sequential spa-
tial reasoning tasks that require hypothesis formation, and to pro-
vide insight into how this might be achieved in the brain, we trained 
a recurrent ANN on a simplified one-dimensional (1D) version of the 
task, since the relevant position variable for the landmarks was their 
angular position (inputs were random noisy velocity trajectories and 
landmark positions, but not their identity; Fig. 2b). The ANN performed 
as well as a near Bayes-optimal particle filter (Fig. 2b), outperforming 
path integration with correction (corresponding to continuous path 
integration13,14 with boundary/landmark resetting15,16) and represented 
multimodal hypotheses, transitioning from a no-information state (in 
LM0) to a bimodal two-hypothesis coding state (LM1) and finally to 
a full information, one-hypothesis coding state (LM2) (Fig. 2c,d and 
Extended Data Fig. 5). Bimodal hypothesis states did not emerge when 
the ANN was given the landmark identity (Extended Data Fig. 5h–k). 

layout of the two landmarks; thus, an ideal agent can use sequential 
spatial reasoning to localize itself unambiguously. For most analyses, 
we ignored cases where mice might have gained information from not 
encountering a landmark, for example, as the artificial neural network 
(ANN) does in Fig. 2e (and Extended Data Fig. 2e). To randomize the 
absolute angle of the arena at the start of each new trial (and thus avoid 
use of any olfactory or other allocentric cues), mice had to complete 
a separate instructed visually guided dot-hunting task, after which 
the landmarks and rewarded port were rotated randomly together 
(Extended Data Fig. 1b).

Mice learned the task (P < 0.0001 on all mice, Binomial test versus 
random guessing; Fig. 1c), showing that they learn to form hypotheses 
about their position during the LM1 phase, retain and update these 
hypotheses with self-motion information until they encounter the 
second (perceptually identical) landmark, and use them to disambigu-
ate location and determine the rewarded port. We hypothesized that 
RSC, which integrates self-motion5, position6–8, reward value9 and 
sensory10 inputs, could perform this computation. RSC is causally 
required to process landmark information11, and we verified that RSC 
is required for integrating spatial hypotheses with visual information 
but not for direct visual search with no memory component (Extended 
Data Fig. 1i–l).

Spatial hypotheses are encoded conjunctively with other 
navigation variables in RSC
We recorded 50–90 simultaneous neurons in layer 5 of RSC in four mice 
during navigational task performance using tetrode array drives12 and 
behavioral tracking (Fig. 1a and Extended Data Figs. 1 and 3; Methods). 
RSC neurons encoded information about both the mouse’s location 
(Fig. 1d) and about the task phase, corresponding to possible location 
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Fig. 1 | RSC represents spatial information conjunctively with hypothesis 
states during navigation with locally ambiguous landmarks. a, Two 
perceptually identical landmarks are visible only from close up, and their identity 
is defined only by their relative location. One of 16 ports, at landmark ‘b,’ delivers 
reward in response to a nose-poke. The animal must infer which of the two 
landmarks is ‘b’ to receive reward; wrong pokes result in timeout. Tetrode array 
recordings in RSC yield 50–90 simultaneous neurons. b, Top, schematic example 
trial; bottom, best possible guesses of the mouse position. LM0, LM1 and LM2 
denote task phases when the mouse has seen zero, one or two landmarks and 
could infer their position with decreasing uncertainty. c, Left, example training 
curve showing Phit/Pfalse-positive; random chance level is 1/16 for 16 ports. Mice 
learned the task at values >1, showing they could disambiguate between the two 
sequentially visible landmarks. This requires the formation, maintenance and 

use of spatial hypotheses. Asterisks denote per-session binomial 95% significance 
for the correct rate. Right, summary statistics show binomial CIs on last half of 
sessions for all four mice. d, Mouse location heatmap from one session (red)  
with corresponding spatial firing rate profiles for five example cells; color 
maps are normalized per cell. e, Task phase (corresponding to hypothesis 
states in b can be decoded from RSC firing rates. Horizontal line, mean; gray 
shaded box, 95% CI. f, Spatial coding changes between LM1 and LM2 phases 
(Euclidean distances between spatial firing rate maps, control within versus 
across condition; see Extended Data Fig. 2a for test by decoding, median and CIs 
(bootstrap)). g, Spatial versus task phase information content of all neurons and 
position and state encoding for example cells. Gray, sum-normalized histograms 
(color scale as in d).
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Together, this shows that recurrent neural dynamics are sufficient to 
internally generate, retain and apply hypotheses to reason across time 
based on ambiguous sensory and motor information, with no external 
disambiguating inputs.

Both ANN and RSC neurons encoded several navigation variables 
conjunctively (Extended Data Fig. 2b) and transitioned from encoding 
egocentric landmark-relative position during LM1 to a more allocentric 
encoding during LM2 (Extended Data Fig. 6). Instantaneous position 
uncertainty (variance derived from particle filter) could be decoded 
from ANN activity (Extended Data Fig. 5l), analogous to RSC (Fig. 1e). 
ANN neurons preferentially represented landmark locations (Extended 
Data Fig. 2c; consistent with overrepresentation of reward sites in 
hippocampus17,18), but we did not observe this effect in RSC. Average 
spatial tuning curves of ANN neurons were shallower in the LM1 state 
relative to LM2, corresponding to trial-by-trial ‘disagreements’ between 
neurons, evident as bimodal rates per location. RSC rates similarly 
became less variable across trials per location in LM2 (Extended Data 
Fig. 7), indicating that, in addition to the explicit encoding of hypoth-
eses/uncertainty (Fig. 1e,g), there is a higher degree of trial-to-trial 
variability in RSC as a function of spatial uncertainty.

The ANN computed, retained and used multimodal hypotheses 
to interpret otherwise ambiguous inputs: after encountering the first 
landmark, the travel direction and distance to the second is sufficient 
to identify it as ‘a’ or ‘b’ (Figs. 1b and 2a). There are four possible sce-
narios for the sequence of landmark encounters: ‘a’ then ‘b’, or ‘b’ then 
‘a’, for CW or CCW travel directions, respectively. To understand the 
mechanism by which hypothesis encoding enabled disambiguation, 
we examined the moment when the second landmark becomes vis-
ible and can be identified (Fig. 2a). We designate LM1 states in which 
the following second landmark is ‘a’ as ‘LM1a’ and those that lead to 
‘b’ as ‘LM1b.’ Despite trial-to-trial variance resulting from random 

exploration trajectories and initial poses, ANN hidden unit activity 
fell on a low-dimensional manifold (correlation dimension d ≈ 3; Fig. 3d) 
and could be well captured in a three-dimensional (3D) embedding 
using principal component analysis (PCA) (Fig. 2d). Activity states 
during the LM0,1,2 phases (green, blue and gray/red, respectively) 
were distinct, and transitions between phases (mediated by identi-
cal landmark encounters; black arrows) clustered into discrete loca-
tions. Examining representative trajectories (for the CCW case; Fig. 2e) 
reveals that LM1a and LM1b states are well-separated in activity space.  
If the second landmark appears at the shorter CCW displacement  
(corresponding to the ‘a’ to ‘b’ interval), the state jumps to the ‘b’ coding 
point on the LM2 attractor (Fig. 2e). On the other hand, the absence of 
a landmark at the shorter displacement causes the activity to traverse 
LM1a, until the second landmark causes a jump onto the ‘a’ coding loca-
tion on the LM2 attractor. In both cases, an identical transient landmark 
input pushes the activity from distinct hypothesis-encoding regions 
of activity space onto different appropriate locations in the LM2 state, 
constituting successful localization.

We next consider the nature of the dynamics and representa-
tion that allows the circuit to encode the same angular position vari-
ables across LM1 and LM2 regimes while also encoding the different 
hypotheses required to disambiguate identical landmarks. Does the 
latter drive the network to functionally reorganize throughout the 
computation? Or, does the former, together with the need to main-
tain and use the internal hypotheses across time, require the network 
to exhibit stable low-dimensional recurrent attractor dynamics? To 
test this, we computed the pairwise correlations of the ANN activity 
states (Fig. 3a) and found them to be well conserved across LM1 and 
LM2 states. As these correlation matrices are the basis for projections 
into low-dimensional space, this shows that the same low-dimensional 
dynamics were maintained, despite spanning different computational 
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neurons ordered by preferred location shows transition between LM0, LM1 
and LM2 phases. Red, true location. During LM1 (when the agent has only seen 
one landmark), two hypotheses are maintained, with convergence to a stable 
unimodal location estimate in LM2 after encountering the second landmark.  
d, 3D projection from PCA of ANN hidden neuron activities. During LM2, angular 
position in neural state space reflects position estimate encoding. e, Example 
ANN trajectories for two trials show how identical visual input (black arrowheads) 
leads the activity to travel to different locations on the LM2 attractor because of 
different preceding LM1a/b states.
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and hypothesis-encoding regimes (metastable two-state encoding 
with path integration in LM1 versus stable single-state path integration 
unchanged by further landmark inputs in LM2; Extended Data Fig. 5). 
Low-dimensional pairwise structure was also conserved across differ-
ent landmark configurations and varied ANN architectures, and the 
low-dimensionality of ANN states was robust to large perturbations 
(Extended Data Fig. 5w). In sum, these computations were determined 
by one stable set of underlying recurrent network dynamics, which, 
together with appropriate self-motion and landmark inputs, can main-
tain and update hypotheses to disambiguate identical landmarks over 
time, with no need for external inputs.

RSC fulfills requirements for hypothesis-dependent spatial 
computation using recurrent dynamics
We hypothesized that RSC and its reciprocally connected brain regions 
may, similarly to the ANN, use internal hypotheses to resolve landmark 
ambiguities using recurrent dynamics. Using the ANN as a template for 
a minimal dynamical system that can solve the task (Fig. 2), we asked 
whether neural activity in RSC is consistent with a system that could 
solve the task with the same mechanisms. To be described as a dynamical 
system, neural activity must first be sufficiently constrained by a stable 
set of dynamics, that is, the activity of neurons must be sufficiently influ-
enced by that of other neurons, and these relationships must be main-
tained over time1. To test this property, we first computed pairwise rate 
correlations and found a preserved structure between LM1 and LM2, as 
in the ANN (median R (across sessions) of Rs (across cells) = 0.74 in RSC, 
versus 0.73 in ANN; Fig. 3c). Firing rates could be predicted from rates of 
other neurons, using pairwise rate relationships across task phases; this 
maintained structure also extended to the visual dot-hunting behavior 
(Extended Data Fig. 8). Because pairwise correlations form the basis of 
dimensionality reduction, this shows that low-dimensional RSC activity 

is coordinated by the constraints of stable recurrent neural dynamics 
and not a feature of a specific behavioral task or behavior.

To employ neural firing rates as states of a dynamical system that 
act as memory and computational substrates in the same manner as 
in the ANN, they should also be low-dimensional. Consistent with the 
stable relationships between neurons, most RSC population activity 
was low-dimensional (around six significant principal components, 
and correlation dimension of around 5.4; Fig. 3d and Extended Data 
Fig. 8), similar to findings in hippocampus19. Together, we find that 
despite significant changes in neural encoding as different hypotheses 
are entertained across task phases (Fig. 1d–f and Extended Data Figs. 3f 
and 2a) and across different tasks (Extended Data Fig. 4a–d), the evolu-
tion of firing rates in RSC is constrained by stable dynamics that could 
implement qualitatively similar states as the ANN.

To compute with a dynamical system, states that act as memory 
need to affect how the system reacts to further input. The ANN solves the 
task using distinct hypothesis states that are updated with visual inputs 
and locomotion, by placing them in the state space so that visual input 
arriving at different hypothesis states within LM1 (LM1a versus LM1b) 
pushes activity onto the correct states in LM2 (Fig. 2). We examined this 
process in RSC by first looking at the evolution of neural states during 
the spatial reasoning process. States evolved at speeds correlated with 
animal locomotion, consistent with the observation that hypotheses 
are updated by self-motion in between landmark encounters and were 
driven by landmark encounters consistent with findings in head-fixed 
tasks11 (Extended Data Fig. 9a). Neural states were also driven by fail-
ures to encounter landmarks at expected positions, which can also be 
informative (Fig. 2e, right), albeit with a different neural encoding than 
we observed for encountering the landmarks (Extended Data Fig. 2e).

We next tested whether sufficiently separated neural states, LM1a 
and LM1b, together with stable low-dimensional attractor dynamics 
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could resolve the identity of the second landmark. If so, this would 
suggest that, as in the ANN, the ensemble activity state in RSC can serve 
both as memory and affect future computations. We identified subsets 
of trials in which mouse motion around the LM1 to LM2 transition was 
matched closely and aligned them in time to the point when the second 
landmark became visible (Fig. 4a). In these trials, locomotion and visual 
inputs are matched, and only the preceding hypothesis state (LM1a or b)  
differs. RSC firing rates differed between LM1a and LM1b states, as did 
subsequent rates in LM2 (comparing within- to across-group distances 
in neural state space across matched trials, and by decoding state from 
firing rates: Fig. 4b and Extended Data Fig. 9i,j).

To compute with the same mechanism as the ANN, neural states 
must be governed by stable dynamics consistently enough for current 
states to reliably influence future states, which requires that nearby 
states do not diffuse or mix too quickly1. We found that RSC firing rates 
were predictable across trials such that neighboring trials in activity 
space remained neighbors (Fig. 4c), which further confirms stable 
recurrent dynamics, that these states can be used as computational 
substrate, and indicates a topological organization of abstract task 
variables19. This indicates that stably maintained hypothesis-encoding 

differences in firing over LM1 could interact with ambiguous visual 
landmark inputs to push neural activity from distinct starting points 
in neural state space to points that correspond to correct landmark 
interpretations, as in the ANN.

The ANN achieved high correct rates, but mice make mistakes. 
If the dynamical systems interpretation holds, such mistakes would 
be explainable by LM1a or b states that are not in the right location, 
and lead to the wrong LM2 interpretation. Indeed, we observed that 
neural trajectories from LM1a that were close in activity space to LM1b 
were dragged along LM1b trajectories and vice-versa (they had simi-
lar movement directions; Extended Data Fig. 9g,h), suggesting that 
behavioral landmark identification outcomes might be affected by how 
hypotheses were encoded in RSC during LM1. We tested this hypothesis 
and found that RSC activity in LM1 (last 5 s preceding the transition to 
LM2) was predictive of the animal’s behavioral choice of the correct 
versus incorrect port (Fig. 4d). Notably, this behaviorally predictive 
hypothesis encoding was absent during training in sessions with low 
task performance (Extended Data Fig. 4), indicating that the dynamical 
structures and hypothesis states observed in RSC were task-specific 
and acquired during learning.
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Fig. 4 | RSC exhibits stable attractor dynamics sufficient for computing 
hypothesis-dependent landmark identity. a, Top, to study hypothesis  
encoding and its impact without sensory or motor confounds, we used trials  
with matched egocentric paths just before and after the second landmark  
(‘a’ or ‘b’) encounter. One example session is shown. Bottom, 3D neural state 
space trajectories (isomap); RSC latent states do not correspond directly to those 
of the ANN. b, RSC encodes the difference between LM1a and LM1b, and between 
subsequent LM2 states, as in the ANN (Fig. 2e and Extended Data Fig. 5). Blue, 
within-group and grey, across-group distances in neural state space. Horizontal 
lines, mean; boxes, 95% CIs (bootstrap). State can also be decoded from raw spike 
rates (Extended Data Fig. 9j). c, Neural dynamics in RSC are smooth across trials: 
pairwise distances between per trial spike counts in a 750 ms window before 
LM2 onset remain correlated with later windows; line, median; shading, CIs 
(bootstrap). d, RSC activity preceding the second landmark encounter predicts 

correct/incorrect port choice (horizontal line, mean; gray shaded box, 95% CI 
from bootstrap, cross-validated regression trees). e, Decoding of hypothesis 
states and position from RSC using ANNs to illustrate the evolution of neural 
activity in the task-relevant space (see b, c and d and Fig. 1e,f, Extended Data 
Fig. 9 statistics). f, Schematic of potential computational mechanisms. Left, if 
RSC encodes only current spatial and sensorimotor states and no hypotheses 
beyond landmark count (LM1a or LM2b, derived from seeing the first landmark 
and self-motion integration that lead to identifying the second landmark as ‘a’ 
or ‘b’), an external disambiguating input is needed. Right, because task-specific 
hypotheses arising from the learned relative position of the landmarks are 
encoded (this figure), and activity follows stable attractor dynamics (Fig. 3), 
ambiguous visual inputs can drive the neural activity to different positions, 
disambiguating landmark identity in RSC analogously to the ANN.
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Our unrestrained nonstereotyped behavior is not amenable to 
direct comparison of activity trajectories between ANNs and the brain 
as others have done in highly stereotyped trials of macaque behavior1. 
Instead, we found that the dynamics of firing rates in mouse RSC are 
consistent with, and sufficient for, implementing hypothesis-based 
disambiguation of identical landmarks using a similar computational 
mechanism as observed in the ANN.

Discussion
We report that RSC represents internal spatial hypotheses, sensory 
inputs and their interpretation and fulfills the requirements for com-
puting and using hypotheses to disambiguate landmark identity using 
stable recurrent dynamics. Specifically, we found that low-dimensional 
recurrent dynamics were sufficient to perform spatial reasoning (that 
is to form, maintain and use hypotheses to disambiguate landmarks 
over time) in an ANN (Fig. 2 and also see Extended Data Fig. 10 for 
non-negative ANNs and when no map input was given). We then found 
that RSC fulfills the requirements for such dynamics, that is, encoding 
of the required variables (Figs. 1 and 4) with stable low-dimensional 
(Fig. 3) and smooth dynamics that predicted behavioral outcomes 
(Fig. 4). Due to the higher trial-to-trial variability and lower number 
of recorded cells, we do not draw direct connections between specific 
latent states of the ANN and neural data, as was done in previous studies 
in primates2,3,20 or simpler mouse tasks19,21.

We observed that local dynamics in RSC can disambiguate sensory 
inputs based on internally generated and maintained hypotheses 
without relying on external context inputs at the time of disambigua-
tion (Fig. 4), indicating that RSC can derive hypotheses over time and 
combine these hypotheses with accumulating evidence from the inte-
gration of self-motion (for example, paths after the first landmark 
encounter) and sensory stimuli to solve a spatiotemporally extended 
spatial reasoning task. These results do not argue for RSC as an exclu-
sive locus of such computations. There is evidence for parallel com-
putations, likely at different levels of abstraction, across subcortical22 
and cortical regions such as PFC3,23,24, PPC25, LIP26 and visual27,28 areas. 
Further, hippocampal circuits contribute to spatial computations 
beyond representing space by learning environmental topology29 and 
constraining spatial coding using attractor dynamics19,30,31 shaped by 
previous experience32. Finally, the landmark disambiguation that we 
observed probably interacts with lower sensory areas33, reward value9,34 
and action selection computations21,35.

The emergence of conjunctive encoding, explicit hypothesis 
codes and similar roles for dynamics across RSC and the ANN suggests 
that spatial computations and, by extension, cognitive processing 
in neocortex may be constrained by simple cost functions36, simi-
lar to sensory37 or motor38 computations. The ANN does not employ 
sampling-based representations, which have been proposed as possible 
mechanisms for probabilistic computation39,40, showing that explicit 
representation of hypotheses and uncertainty as separate regions in 
rate space could serve as alternative or supplementary mechanism 
to sampling.

A key open question is how learning a specific environment, task 
or behavioral context occurs. We observed that hypothesis coding 
emerges with task learning (Extended Data Fig. 4). Possible, and not 
mutually exclusive, mechanisms include: (1) changes of the stable 
recurrent dynamics in RSC, as is suggested in hippocampal CA1 (ref. 29); 
(2) modification of dynamics by context-specific tonic inputs3,20; or (3) 
changes in how hypotheses and sensory information are encoded and 
read out while maintaining attractor dynamics that generalize across 
environments or tasks, as indicated by the maintenance of recurrent 
structure across tasks in our data (Extended Data Fig. 8) and as has been 
shown in entorhinal30 and motor cortex38 and ANNs41,42, possibly helped 
by the high-dimensional mixed nature of RSC representations43,44. Fur-
ther, how such processes are driven by factors such as reward expecta-
tion34 is an active area of research.

Our findings show that recurrent dynamics in neocortex can simul-
taneously represent and compute with task and environment-specific 
multimodal hypotheses in a way that gives appropriate meaning  
to ambiguous data, possibly serving as a general mechanism for cogni-
tive processes.
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Methods
Mouse navigation behavior and RSC recordings
Drive implants. Lightweight drive implants with 16 movable tetrodes 
were built as described previously12. The tetrodes were arranged in an 
elongated array of approximately 1,250 × 750 µm, with an average dis-
tance between electrodes of 250 µm. Tetrodes were constructed from 
12.7-µm nichrome wire (Sandvik–Kanthal, QH PAC polyimide coated) 
with an automated tetrode twisting machine45 and gold-electroplated 
to an impedance of approximately 300 kΩ.

Surgery. Mice (male, C57BL/6 RRID: IMSR_JAX:000664) were aged 
8–15 weeks at the time of surgery. Animals were housed in pairs or 
triples when possible and maintained on a 12-h cycle, at 65–70 °F with 
~60% humidity. All experiments were conducted in accordance with 
the National Institutes of Health guidelines and with the approval of 
the Committee on Animal Care at the Massachusetts Institute of Tech-
nology (MIT). All surgeries were performed under aseptic conditions 
under stereotaxic guidance. Mice were anesthetized with isofluorane 
(2% induction, 0.75–1.25% maintenance in 1 l min−1 oxygen) and secured 
in a stereotaxic apparatus. A heating pad was used to maintain body 
temperature; additional heating was provided until fully recovered. 
The scalp was shaved, wiped with hair-removal cream and cleaned with 
iodine solution and alcohol. After intraperitoneal (IP) injection of dexa-
methasone (4 mg kg−1), carprofen (5 mg kg−1), subcutaneous injection of 
slow-release buprenorphine (0.5 mg kg−1) and local application of lido-
caine, the skull was exposed. The skull was cleaned with ethanol, and 
a thin base of adhesive cement (C&B Metabond and Ivoclar Vivadent 
Tetric EvoFlow) was applied. A stainless steel screw was implanted 
superficially anterior of bregma to serve as electrical ground.

A 3-mm craniotomy was drilled over central midline cortex, a 
durotomy was performed on one side of the central sinus and tetrode 
drives12 were implanted above RSC, at around anterior–posterior (AP) 
−1.25 to −2.5 mm and medio–lateral (ML) 0.5 mm, with the long axis of 
the tetrode array oriented AP and the tetrode array tilted inwards at an 
angle of ~15–20° and fixed with dental cement. The ground connection 
on the drive was connected to the ground screw, and the skin around 
the drive implant was brought over the base layer of adhesive as much 
as possible to minimize the resulting open wound, sutured and secured 
with surgical adhesive.

At the time of implant surgery, only two of the tetrodes were 
extended from the drive to serve as guides during the procedure. All 
other tetrodes were lowered into superficial layers of cortex within 
3 days postsurgery. Mice were given 1 week to recover before the start 
of recordings.

Chronic electrophysiology. After implant surgery, individual tetrodes 
were lowered over the course of several days until a depth correspond-
ing to layer 5 was reached and spiking activity was evident. Data were 
acquired with an Open Ephys46 ONIX47 prototype system at 30 kHz 
using the Bonsai software48 (v.2.2; https://bonsai-rx.org/). The tether 
connecting the mouse headstage to the acquisition system was routed 
through a commutator above the arena and was counterbalanced using 
a segment of flexible rubber tread. Tetrodes were occasionally lowered 
by small increments of ~50 µm to restore good recording conditions 
or to ensure sampling of new cells across sessions.

Spike sorting. Voltage data from the 16 tetrodes, sampled at 30 kHz 
were bandpass filtered at 300–6,000 Hz, and a median of the voltage 
across all channels that were well connected to tetrode contacts was 
subtracted from each channel to reduce common-mode noise such 
as licking artifacts.

Spike sorting was then performed per tetrode using the Moun-
tainsort software49 (https://github.com/flatironinstitute/mountain-
sort_examples), and neurons were included for further analysis if they 
had a noise overlap score <0.05, an isolation score >0.75 (provided by 

Mountainsort49), a clear refractory period (to ensure spikes originated 
from single neurons), a spike waveform with one peak and a clear 
asymmetry (to exclude recordings from passing axon segments) and 
a smooth voltage waveform and ISI (inter spike interval) histogram (to 
exclude occasional spike candidates driven by electrical noise). Units 
were not excluded based on firing rates, tuning or any higher order fir-
ing properties. The number of simultaneously recorded cells per mouse 
for the main analyses was as follows. Blackdot, 52,53,54,49; Gothmog, 
55,59,52,51,51,85; Nodot, 65,86,72,69; Unnamed1, 67,64; Total, 984. For 
the entire dataset analyzed in the analysis over learning (Extended Data 
Fig. 4), a larger number of cells, and of simultaneously recorded cells, 
were collected, and sessions with <50 cells were included.

Histology. To verify the localization of the recording sites (Extended 
Data Fig. 3), electrolytic lesions were created by passing currents of 
20 µA through a subset of tetrodes (roughly four tetrodes per ani-
mal) for 30 s each under isoflurane anesthesia, and animals were 
perfused and brain processed 1 h later. Brains were mounted with 
4′,6-diamidino-2-phenylindole and imaged.

Behavioral experiment hardware. Behavior was carried out in a cir-
cular arena of 50-cm diameter. The floor of the arena was formed by 
a clear acrylic sheet, under which a diffusion screen and a flat-screen 
TV was positioned on which visual stimuli were displayed. The circular 
arena wall was formed by 32 flat black acrylic segments, every other one 
of which contained an opening for a recessed reward ports, 16 in total. 
Each reward port contained an optical beam break (880-nm infrared 
(IR), invisible to mouse) that detected if a mouse was holding its nose 
in the port, a computer-controlled syringe pump for water reward 
delivery and a dedicated beeper as a secondary reward indicator. The 
behavior arena was housed in a soundproof and light-insulated box 
with no indicators that could allow the mice to establish their heading. 
Video was acquired by a central overhead camera at 30 Hz using a low 
level of infrared light at 850 nm and the mouse position was tracked 
using the oat software50 (https://github.com/jonnew/Oat). A custom 
behavioral control state machine written in Python was triggered 
every time a new camera frame was acquired, and the position of the 
animal, time passed and port visits were used to transition the logic 
of the state machine (Extended Data Fig. 1). For analysis purposes, 
all behavioral data was resampled to 100 Hz and synchronized to the 
electrophysiological data.

Inactivation of RSC and causal necessity for hypothesis-based 
computations. For pharmacological inactivation of RSC (Extended 
Data Fig. 1i–l), four mice were trained on a simplified parametric task 
that permitted us to causally test the role of RSC in individual record-
ing and inactivation sessions. The task required integration of an allo-
centric position hypothesis with visual landmarks (Extended Data 
Fig. 1i,j). After mice learned the task—quantified as reaching a hit rate 
of above 30% in the simple conditions (high eccentricity; Extended Data 
Fig. 1j)—they were given access to unrestricted water and implanted fol-
lowing the procedure described for the main experiment but, instead 
of a chronic drive implant, a removable cap was implanted and two 
burr holes were prepared above RSC and covered with dental cement 
(Extended Data Fig. 1k). After recovery from surgery, mice were put 
back on water restriction over the course of 1 week and reintroduced 
to the task. Before each experiment, mice were anesthetized briefly 
with isoflurane, the cap was opened temporarily and the exposed skull 
was wiped with lidocaine and an injection of either 50 nl of 1 μg ml−1 
muscimol solution in cortex buffer per side, or the same volume of 
cortex solution was performed through the existing burr holes. Mice 
were left to recover from anesthesia for 15 min and tested on the task. 
Performance was assessed as the hit rate on the first port visit per 
trial, and confidence level were computed using the Clopper–Pearson 
method for binomial confidence intervals (CIs) at the 95% level.
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Behavioral training. After mice had undergone surgery, they were 
given at least 1 week to recover before water scheduling began. Initially, 
mice received 3 ml of water per day in the form of 3 g of HydroGel 
(ClearH2O), which was reduced gradually to 1.0–1.5 g per day. During 
this period, mice were handled by experimenters and habituated to 
the arena. Throughout the entire experiment mice were given water 
rewards for completion of the task and were given additional water to 
maintain their total water intake at 1.25–1.5 ml.

After initial acclimation to the recording arena over 2 days, mice 
were trained on the task. Throughout the task we used white circular 
cues on the floor (referred to as landmarks) of ~30-mm diameter on a 
black background. These landmarks were the only source of light in the 
experiment. Mice were run every day or every other day, for a single 
session of 30 min to 3 h per day. Training progressed in several phases:

	(1)	 Initially, mice were trained that circular visual cues on the floor 
of the arena indicated reward locations. One of the 16 ports was 
selected randomly as reward port and a cue was shown in front 
of this port. Visiting an incorrect port resulted in a time out  
(~1 s initially, increased later), during which the entire arena 
floor was switched to gray leading to a widespread visual 
stimulus. Visiting the correct port resulted in an audible beep 
from the beeper located in the port and around 0.005 ml of 
water were delivered by the syringe pump. After a reward, a new 
reward port was chosen randomly, and the landmark was ro-
tated together with the port, effectively performing a rotation 
of the entire task, and the next trial began. This meant that mice 
learned to not rely on any cues other than the visual landmark 
to locate the correct port. Mice usually completed this phase in 
by day 4.

	(2)	 We then introduced a new task phase, referred to in the text as 
‘dot-hunting’ task: after each reward, the landmark disappeared 
and instead a blinking dot was shown in a random location in 
the arena. If the mouse walked over that dot, it disappeared and 
either a new dot in a new random location appeared, repeat-
ing the process, or the next trial was initiated. The number of 
required dots–chases was sampled uniformly from a range 
and was increased to six to eight by the time recordings began, 
and the last dot was always positioned at the arena center. This 
task phase served to obfuscate the rotation of the task. Data 
acquired during this task phase were used during spike sorting 
but were not part of the main dataset in which we analyzed hy-
pothesis representation. We analyze this task phase separately 
in Fig. 3c and Extended Data Figs. 3h,i, 4 and 8. Mice learned this 
task phase, with six to eight dots, by day 7 on average.

	(3)	 Throughout phases 1 and 2, we progressively introduced a 
requirement for the mice to hold their snouts in the reward port 
for increasing durations to trigger a reward or time out. For 
each port visit, the required duration was drawn randomly from 
a uniform distribution, so on any given trial the mice did not 
know when exactly to expect to know the outcome of the port 
visit. Initially, this hold time was 500 ms, and the time range was 
slowly increased throughout training, depending on animal 
performance. By the time recordings began, a range of around 
4–6 s was used. Mice were able to tolerate this holding time by 
day 20 on average.

	(4)	 Next, we introduced an identical second landmark at a nonre-
warded port. Initially, the two landmarks were set two ports 
apart (for example, ports 1 and 3), and this distance was pro-
gressively increased to four or five ports. As before, the reward-
ed port and landmarks were rotated randomly after each trial, 
but their relative positions remained stable. Visiting the reward 
port at the incorrect, ‘a’ landmark (and holding there for the 
required duration) was handled identically to visits to any other 
nonreward port and triggered the same time out. As a result, 

mice learned to visit the ‘b’ port. Mice learned to make an initial 
distinction between the ports approximately by day 14–16. In 
one mouse, we maintained this training phase until overall task 
performance was significant over entire sessions (Extended 
Data Fig. 1f), but we noticed that the mouse had trouble consist-
ently relearning the next task phase. We therefore transitioned 
subsequent mice to the next phases before a stable behavior 
was established.

	(5)	 After the mice started learning to visit the port at the ‘b’ land-
mark, we introduced a view distance limitation that made land-
marks invisible from far away: the mouse’s position was tracked 
at 30 Hz and, for each landmark, its brightness was modulated 
in real time as a function of the mouse’s distance from it. The 
visibility was 0 for distances above a threshold, 1 for distances 
below a second threshold and transitioned linearly between the 
two values. For clarity, we draw only the first threshold where 
landmarks initially become visible in the illustrations. The sec-
ond threshold was typically set to about 50% of the first, leading 
to a gradual brightening, but in the otherwise totally dark 
arena, almost any values >1 are clearly visible. Initially, thresh-
olds were set so that both landmarks were visible from the 
arena center (~20 cm); they were then reduced progressively to 
values where, at any one time, only one of the landmarks was 
visible to the mouse (~10 cm). At this stage, mice that encoun-
ter a landmark after a new trial starts have no way of knowing 
whether this is the rewarded or nonrewarded landmark, unless 
they infer landmark identity via path integration (See Fig. 2e 
right or Extended Data Fig. 2e). Recordings began when mice 
were able to complete 100 trials per hour at a hit/miss rate >1. 
Mice reached this criterion level on average by total day 30–40 
of training.

Statistics and reproducibility. Statistical tests were carried out in 
Matlab (Mathworks, v.2019) using built-in functions. Unless stated oth-
erwise, CIs were computed at a 95% level using bootstrap, and P values 
were computed using a Mann–Whitney U test or Wilcoxon signed-rank 
test. In figures, significance values are indicated as nonsignificant (NS) 
(P > 0.05), *(P ≤ 0.05), **(P ≤ 0.01) or ***(P ≤ 0.001). No statistical method 
was used to predetermine sample sizes.

Behavior analysis. Recording sessions were included once mice  
performed the task well enough to achieve a session average hit/miss 
ratio >1, indicating that mice could infer the correct port between the 
‘a’ and ‘b’ landmarks (a correct rate of >1/16 would indicate that they 
can associate landmarks with rewarded ports, but not that they can 
infer landmark identity). Because landmarks are visible sequentially 
only after full training, a ratio >1 shows that mice employed a memory 
based strategy where they used a previous hypothesis derived from 
seeing or not seeing the first landmark, together with path integration, 
to infer the identity of the second landmark they encounter. Only ses-
sions with at least 50 recorded single neurons, and with at least 50 min 
of task performance were included. This yielded 16 sessions from four 
mice. For some analyses, particularly for analyses where trajectories of 
the mice were matched across trial types to control for potential motor 
and sensory confounds, additional selection criteria were applied 
yielding a lower number of sessions that could be used, this is stated 
for the respective analyses. For plots of the learning rates, we included 
trials where mice encountered their first landmark after 20 s or faster 
to exclude periods where mice were not engaged.

Behavioral epochs. For analysis, each trial was split into epochs: the 
time between the onset of a trial (right after the mouse completes the 
preceding reinitialization procedure, and finds itself at the center of 
the arena, unsure of its orientation relative to the currently invisible 
landmarks) and the onset of the reward (the first time the mouse could 
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know whether it reached the correct port, other than by process of 
elimination after visiting all other ports) was split up based on the 
amount of information the mouse could have accumulated: the initial 
state when mice had not seen any landmark was labeled ‘LM0,’ time after 
the first landmark encounter was labelled ‘LM1,’ and after the second 
encounter as ‘LM2’. The timepoints when landmarks became visible 
and the mouse transitioned from LM0 to LM1 or from LM1 to LM2, 
referred to as ‘landmark encounters’ were defined as the timepoint 
when landmark visibility exceeded 50%.

For analyses of the correlation of neural state and eventual behav-
ioral outcomes, each second landmark encounter was further catego-
rized as whether it occurred at the ‘a’ or ‘b’ landmark. For behavioral 
analyses in Fig. 4d, trials were further categorized by whether they led 
to a correct port visit or to a incorrect visit and a time out.

Similarity of spatial tuning across conditions. Changes in spatial tun-
ing in individual RSC neurons as mice encounter successive landmarks 
(Fig. 1f) was quantified by the Euclidian distance of their spatial tuning 
profiles (in an 8 × 8 map, resulting in a 64-element vector, for each com-
parison nonvisited ties were omitted). As an internal control, distance 
between tuning profiles within condition and across condition were 
compared using nonoverlapping 1-min segments. The control levels 
are different between the cases because the amount of data per session, 
reliability of firing, and so on, is not constant, and each control is valid 
only for its test data. For each comparison (LM1 versus LM2 and LM0 
versus LM1), the split spatial tuning maps were compared either within 
the conditions, for example, within LM1 and within LM2, and compared 
with distances between LM1 and LM2 maps.

Neural decoding of mouse position. All decoding analyses were 
performed on the entire neural population with no preselection. To 
decode the mouse position from RSC firing rates, neural firing rates 
were first low-pass filtered at 1 Hz with a single-pole Butterworth filter. 
The resulting firing rate time series were used to predict the mouse 
position as 100 categorical variables forming a 10 × 10 bin grid (bin 
width = 50 mm). The network was made up of a single long short-term 
memory (LSTM) layer with 20 units, and a fully connected layer into a 
softmax output into the 100 possible output categories. For analyses 
of intermediate information content of the decoder, the network input 
into the final softmax layer was analyzed.

Decoding was reinitialized for each trial. For each decoded trial, 
all other trials served as training set. For analysis of how the neural 
coding of position was dependent on the landmark state of the mouse 
(Extended Data Fig. 2a), the same analysis was repeated with training 
and testing data further divided by landmark state. For analysis of 
the decoding performance, the output likelihood from the decoder 
was evaluated at the mouse’s true position for all positions that were 
shared across conditions for this session. Statistical analysis was then 
performed on a per session average likelihood (not weighted by num-
ber of trials per session).

Neural decoding of landmark state. For the analysis of landmark 
state (Fig. 1e), trials with at least 0.5 s of data from all three states were 
used (16 sessions, 486 total trials) and individual trials were held out 
from training for decoding. Firing rates were low-pass filtered with a 
causal single-pole Butterworth filter at 0.05 Hz, and landmark state 
(0, 1 or 2) was decoded independently for each timepoint using a cat-
egorical linear decoder (dummy variable coding, (Nneurons + 1) × 3 param-
eters), or a neural network with no recurrence, using a single 20-unit 
layer receiving instantaneous firing rates, into a six unit layer and into 
three softmax outputs. Training data were balanced across condi-
tions. For related analyses of hypothesis state decoding, see also Fig. 4 
and Extended Data Fig. 9j, where we decode form position-matched 
timepoints to account for location, motor and visual confounds, and 
Extended Data Fig. 7 where we match for position.

Analysis of landmark ‘nonencounters’. To show that mice can gain 
information by not encountering a landmark (as is shown, for example, 
by the ANN example in Fig. 2), we analyzed cases where the mouse first 
encounters a landmark, and then, in the LM1 state, encounters the posi-
tion where another landmark could be, but fails to see one. We note that 
this analysis has unavoidable confounds, as in one condition the mouse 
gets salient visual input, in the other it does not. We consequently 
ignored these cases in the main analysis, and instead concentrated on 
cases where visual input was matched, but previous hypotheses differ 
(Fig. 4). We analyze these nonencounters by decoding the associated 
state change with the same method as in ‘Neural decoding of landmark 
state,’ but with nonbalanced conditions, due to the lower trial count, 
and analysis of the prediction around the 0-s point.

Dimensionality analysis. PCA was performed by first computing the 
covariance matrices of the low-pass filtered (as before) firing rates, 
and plotting their eigenvalue spectra, normalized by sum (Extended 
Data Fig. 8c). Each scaled eigenvalue corresponds to a proportion 
of explained variance. Spectra are plotted together with a control 
spectrum computed from covariances of randomly shuffled data. For 
a description of the method used to compute the correlation dimen-
sion of RSC rates (Extended Data Fig. 8d), see the heading ‘Correlation 
dimension’ in the section about ANN methods below.

Prediction of firing rates across RSC population. For quantification 
of the independence of individual RSC neurons from the surrounding 
RSC population (Extended Data Fig. 8f,g), the firing rates of each neu-
ron were predicted from those of all other neurons using linear regres-
sion. Rates were first filtered at 0.01–0.5 Hz with a third-order 
Butterworth filter, and subsampled to 3.3 Hz. Each neuron’s rate was 
predicted with L1 regularized linear regression51 (lasso, λ ≈ 0.0001) from 
the rates of all other neurons and preceding firing rates using eight lags 
(~0.2.5 s). Goodness of fit was quantified as the proportion of variance 

explained, R2 = 1 −∑i(Yi − Ypredi )
2
/∑i(Yi − ̄Y)2 . Predictions were com-

puted both within condition (LM1, LM2 and dot-hunting phase), as well 
as across conditions, where the model was fit using coefficients deter-
mined from the other conditions.

Computation of firing rate distribution entropies. Entropies of 
empirical firing rate distributions were computed in bits according to 
their Shannon entropy, H (X) = −∑n

i=1P (xi) log2P(xi), relative to a uniform 
histogram of the same size, ̂H (X) = − (H (X) − H (uniform)). In cases where 
zeros appeared, a small offset term <<1 was added and all histograms 
were normalized to a sum of 1. For example, ̂H ([1,0]) = ̂H ([1, 1,0,0]) = 1 bit, 
and ̂H ([1, 1, 1, 1.3]) ≅ 0.01bit. For the analysis in Fig. 1g, a 8 × 8 grid was 
used for spatial coding, and three bins for the state coding. Although 
the 8 × 8 grid is coarse enough to allow accurate capture of the spatial 
firing rate profile even for low-rate cells, the resulting estimates could 
be minimally affected by firing rate differences between neurons.

Trial-to-trial variance of firing rates conditioned on position. For 
analysis of whether partial hypothesis representation in the LM1 state 
corresponds to trial-by-trial changes in firing rates, evident in bimodal 
firing rate histograms, histograms of hidden unit firing rates of the 
ANN, conditioned on binned 1D position are displayed (Extended Data 
Fig. 7a). Data are from Experiment configuration 2 (‘Overview over 
experiment configurations used with ANNs’). Tuning curves were cal-
culated using 20 bins of location/displacements and normalized indi-
vidually for each neuron. The first timestep in each trial and timesteps 
with nonzero landmark input were excluded from the analysis. For 
histograms, each condition was binned in 100 column bins and neuron 
rates in ten row bins. Histograms were normalized to equal sum per 
column. For analysis of RSC firing rates (Extended Data Fig. 7b–d), we 
did not observe bimodal rate distributions and instead quantified the 
dispersion of the rate distributions according to their entropy: firing 
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rates were low-pass filtered at 0.5 Hz to bring them into the timescale 
of navigation behavior, and firing rate histograms were computed with 
eight bins spanning from each neurons lowest to highest firing rate per 
neuron, for each spatial bin in a 4 × 4 grid. Because the computation 
of histogram entropy is biased by the number of samples, for each 
spatial bin, the same number of timepoints were used for the LM1 
and LM2 conditions. The dispersion of the firing rate distribution was 
then computed as average entropies per cell across all space bin, and 
compared across the two conditions.

Analysis of encoding of angular position and displacement from 
last seen landmark. Firing rate profiles were analyzed in two reference 
frames, that is, global angle of the mouse in the arena, and relative angle 
to the last visible landmark. Only timepoints from the foraging state 
where the distance of mouse from the center of the arena exceeded 70% 
of the arena diameter were included. Timepoints from the LM1 and LM2 
conditions were subsampled to yield matched number of timepoints. 
Firing rates were analyzed in a −π to π range in six bins by computing 
their entropy as described before.

Pairwise correlation of firing rates. Recordings were split into 
LM[0,1,2] states as before, firing rates were low-pass filtered at 1 Hz, 
and the Pearson correlation coefficient between each pair of neurons 
was computed. For display purposes, the neurons were reordered by 
first computing the matrix for the LM1 state, applying hierarchical 
clustering52, and the resulting reordering was applied to both LM1 and 
LM2 conditions. This reordering has no impact on any further analyses. 
For summary statistics, we computed the correlation of correlations 
for each session. We observed no systematic change in the results as 
a function of the low-pass cutoff frequency, see Extended Data Fig. 8e 
for a comparison of a 1-Hz versus a 5-Hz cutoff.

Low-dimensional embedding of neural activity. Neural firing rates 
were bandpass filtered as before, and an initial smoothing and dimen-
sionality reduction step was performed by training a small LSTM with 
a single layer of 30 units to decode the mouse position. The hidden 
unit activations were then embedded in 3D space with the isomap 
algorithm53, using the Toolbox for Dimensionality Reduction by Lau-
rens van der Maaten54.

Analysis of speed of neural state evolution. For quantification of how 
fast the neural state evolves, the firing rates of the entire population 
were computed by low-pass filtering the spike trains at 1 Hz (third-order 
Butterworth filter), and the speed of the five largest principal com-
ponents of the resulting vector in Hz s−1 were related to the running 
speed of the mouse (m s−1, also low-pass filtered at 1 Hz) or the change 
in landmark brightness (percent per second) (Extended Data Fig. 9a). 
Data were binned in 30 bins from 0 to 0.5 m s−1 and ten bins from 0.5 
to 2 m s−1 for running speed and ten bins from −50 to 50% and ten bins 
for ±50–200%. CIs were computed by treating median data from each 
session as independent samples.

Analysis of context-encoding in RSC across similar motor and 
sensory states. To study the encoding of context with minimal sensory 
and motor confounds (Fig. 4 and Extended Data Fig. 9), we split the 
appearances of the second landmark into two groups depending on 
whether the second landmark is ‘a’ or ‘b,’ as described in the main text. 
We then selected subsets of trials manually where egocentric paths just 
before the appearance of the second landmark are matched across the 
two groups. Figure 4a shows an example of such matched approach 
paths/trials. Sessions in which at least 16 trials could be matched were 
used for these analyses, yielding a total of 133 trials from six sessions 
(per session, 16, 23, 24, 24, 25 and 21). For each session, all of these trials 
were aligned to the time when the second landmark became visible, 
yielding a set of time ranges where the animals experienced similar 

visual inputs, performed similar locomotion behavior but potentially 
encoded different previous experience leading them to subsequently 
disambiguate the perceptually identical second landmark as ‘a’ or ‘b.’

To test whether there was consistent encoding of this context in 
RSC, we then compared the distances across these groups in 3D neural 
activity space (‘Low-dimensional embedding of neural activity’) to 
distances within the groups (Fig. 4b and Extended Data Fig. 9). This 
test was performed at the point where the second landmark became 
visible to assess encoding of previous context, as well as 200 ms after-
wards to assess how the identity of the (now visible) landmark affects 
encoding in RSC.

Analysis of smooth neural trajectories across sessions. To assess 
whether neural trajectories were determined by population dynamics 
that were stable across trials and could therefore serve as substrate for 
the computation performed by the mice, we tested whether neural 
trajectories behaved consistent with a laminar flow regime where 
neighboring particles (in our case, neural firing rate vectors) remain 
neighbors for a significant amount of time, or whether they decorrelate 
quickly (Fig. 4c and Extended Data Fig. 9e,f). To assess temporal dynam-
ics of the neural spiking without imposing any smoothing, we investi-
gated raw spike counts in 750-ms windows for this analysis. For each 
session, an initial set of pairwise high-dimensional distances in spike 
counts between the trials with egocentrically similar paths (‘Analysis 
of context-encoding in RSC across similar motor and sensory states’) 
was computed from the last 750 ms preceding the appearance of the 
second landmark. These distances were then correlated with those in 
a second sliding window; Extended Data Fig. 9f). An offset of 0 s was 
defined as the point where both windows stopped overlapping. The 
correlation coefficient R was then computed for increasing window 
offset up to 2 s. Summary statistics were computed across sessions 
by first shifting each session individually by its 95% level for R (from a 
shuffled control which removed the relationship between cells) which 
results in the summary plot showing a highest value for R of ~0.8 even 
for offsets where the windows fully overlap and the uncorrected R value 
is 1. Because of this offset, the null level for each trial is now at R = 0. We 
then computed the CIs for the group by bootstrap relative to this level.

Decoding of low-dimensional task-relevant states from RSC 
activity. To illustrate the joint encoding of position and task states 
(as sketched conceptually in Fig. 4f) using neural data, we decoded 
the hypothesis state, as well as x/y position from firing rates (Fig. 4e). 
Individual trials were held out as test set, an ANN was trained on the 
remaining trials and the resulting predictions in the test trial were plot-
ted with hypothesis state in z and x/y in x/y dimensions. True LM0, 1a 
and 1b states were indicated with same colors as throughout the figure. 
Rates were low-pass-filtered with a causal third-order Butterworth 
filter at 0.5 Hz to bring rates into the behavioral timescale. For posi-
tion decoding, the network architecture was filtered rates > 20-unit 
LSTM layer > 15-unit LSTM > 6-unit LSTM > 2 element regression output 
(mouse x/y position). For hypothesis states, rates > 10-unit LSTM > sin-
gle regression layer, with LM0 encoded at 0, and LM1a and b as −1 and +1, 
respectively. This analysis was not used to make statistical statements. 
Instead, we tested x/y encoding in Fig. 1, and hypothesis encoding in 
Fig. 4 and Extended Data Fig. 9 with statistical methods.

Analysis of direction of neural trajectories. To further test whether 
neural trajectories were determined by population dynamics that were 
stable across trials, and were independent of the interpretation of the 
second (locally ambiguous) landmark, we tested whether neural activ-
ity evolved in similar directions across trials if it started close together 
in 3D neural activity space (‘Low-dimensional embedding of neural 
activity’) (Extended Data Fig. 9g,h). We therefore looked at neural 
trajectories within the motor and sensory-matched LM2 approaches 
where the neural state at the point where the second landmark became 
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visible started neurally close to other trials from the opposing class. 
For example, for an LM2a trial, we examined whether this trial might 
follow other close-by LM2b trials. We computed neural proximity in the 
3D neural embedding (see above) and defined close-by trials as ones 
that were within 1 a.u. in Euclidean distance in the isomap embedding 
around the time when the second landmark became visible, yielding a 
total of 42 out of 79 trials with close neighbors from opposing classes 
from the five sessions (one session was excluded because the neural 
activity in the relevant time ranges was collapsed onto a point in the 
LSTM embedding). As a control, we also selected corresponding neu-
rally furthest points. Similarity of neural evolution was then quantified 
as the angular difference between the trials in (3D) LSTM space over 
time, to assess coevolution independently of the initial selection by 
distance. Significance was computed by bootstrap across trials versus 
random alignments corresponding to a 90-degree difference.

Behavior prediction. For the behavior prediction analysis, sessions 
with at least five correct and incorrect port visits after the second land-
mark visit were used (N = 11) and an equal number of hit and miss trials 
(outcome of next port visit is a time out or a correct) were selected, 
leading to a chance prediction level of 0.5. The spike rates from the 
5 s preceding the second landmark becoming visible, binned into 
1-s bins, were used to predict the behavioral outcome with a binary 
classification decision tree with a minimum leaf size of six, previously 
determined using cross-validation. Predictions for each trial were fit 
using all other trials.

Specificity of landmark encounter coding to the foraging task. We 
trained a decoder to predict either the number of encountered dots in 
the main task, or in the dot-hunting task. These tasks were interleaved, 
and the same neurons were used (Extended Data Fig. 4). Train and test 
sets were split by trial, and decoding was performed with a regres-
sion tree on low-pass-filtered firing rates as before, performance was 
quantified as mean error on the number of landmarks. Only the first 
two landmarks were predicted in the dot-hunting task to allow use of 
the same classifier across both. Decoding performance was compared 
between the within-class (for example, decode main task encounters 
with decoder trained on other trials in the main task) and cross-class 
(for example, decode dot-hunting from decoder trained on the main 
task, and so on).

Analysis of neural coding as a function of task performance. To test 
whether the encoding of hypothesis states in RSC is specific to task 
performance, we analyzed a larger number of sessions from the entire 
period during which two landmarks with local visibility were used (92 
recording sessions in total) (Extended Data Fig. 4). We analyzed the 
effect of task performance on the behavior prediction analysis (as 
described above; Extended Data Fig. 4). We also analyzed the more 
general decoding of landmark encounter count (same method as in 
‘Specificity of landmark encounter coding to the foraging task’; Fig. 1) in 
all of the 92 sessions with two landmarks, and correlated decoding per-
formance with task performance on a per session level. As an additional 
control, we performed the same analysis on the number of dots encoun-
tered in the interleaved dot-hunting task. For all of these analyses, we 
used an analogous method as for the nonbehavior-correlated analyses.

Correlation dimension in RSC. For details of the calculation of the 
correlation dimension for RSC data, see ‘Correlation dimension.’

Artificial neural networks
We chose a simple recurrent neural network as one of the simplest 
architectures that can learn to maintain state over time. Unless stated 
in the text, the default architecture consisted of rate neurons with an 
input layer into 128 hidden recurrent units (tanh nonlinearity) into 80 
output neurons, trained on random velocity trajectories in random 

environments of up to four landmarks (see ‘Network architecture and 
training’ for details). For the analyses in the main text, landmark inputs 
were relayed to the ANN as a map that encoded their relative position 
but not identity (‘external map’ ANN, 80 input neurons). The findings 
were replicated with an ANN that received only binary landmark pres-
ence input (‘internal map’ ANN, 11 input neurons) and non-negative 
ANNs (Extended Data Fig. 10), on a subset of environments. The ANN 
serves to establish whether and how recurrent systems could solve the 
task, and we make no connections between the circuitry of RSC and the 
connections in the ANN.

A simulated animal runs with varying velocity in a circular envi-
ronment starting from a random unknown position and eventually 
infers its position using noisy velocity information and two, three or 
four indistinguishable landmarks. A trial consists of a fixed duration of 
exploration in a fixed environment, starting from an unknown starting 
location; the environment can change between trials. Environments 
are generated by randomly drawing a constellation of two to four 
landmarks, and the network must generalizably localize in any of these 
environments when supplied with its map. The network must adjust 
its spatial inference computations on the basis of the configurations 
of the different environments, without changing its weights; thus, the 
adjustments must be dynamic. In the internal map scheme (Extended 
Data Fig. 10a–m), an input cell simply encodes by its activation whether 
the animal is at any landmark; it does not specify the location of the 
landmark, the identity of the environment, or the spatial configu-
ration of the various landmarks in the environment. The task in the 
internal map scheme is substantially harder, since the network must 
infer the configuration of landmarks in the environment purely from 
the time sequence of landmark visits, while simultaneously localizing 
itself within the environment. Information about the maps must be 
acquired and stored within the network. To make the task tractable, 
we limit training and testing in the internal map setting to four specific 
environments.

In the external map task (Figs. 2 and 3 and Extended Data Figs. 2 
and 5–7), landmark locations were random and the set of locations 
(map) were provided to the network, whereas in the internal map task 
(Extended Data Fig. 10a–m) one of four landmark configurations was 
used, but the maps were not provided to the network. Landmarks 
could be observed only for a short distance. A three-layer network 
with a recurrent hidden layer was trained to infer location. Velocity and 
landmark encounter information were encoded in the input layer, and 
all weights of the network were trained. The training target for the out-
put layer was activation of a unit with von Mises tuning and preferred 
location matching the true location.

Network performance was compared with a number of alternative 
algorithms: path integration plus correction integrated the noisy veloc-
ity information starting from an initial location guess and corrected this 
estimate by a reset to the coordinates of the nearest landmark when a 
landmark was encountered. Particle filters approximated sequential 
Bayesian inference given the available velocity and landmark informa-
tion, with each particle capturing a location hypothesis whose pos-
terior probability is given by an associated weight. Particle locations 
are updated using velocity information and particles are reweighted 
after landmark encounters. The enhanced particle filter also reweights 
particles when a landmark is expected but not encountered, thus can 
infer location not only from the presence but also from the absence 
of landmarks. The output and hidden representations of the trained 
network were evaluated in a variety of conditions involving both ran-
dom and fixed landmark locations and trajectories with random and 
fixed velocities.

Definition of environments and trajectories. The task is defined by 
a simulated animal moving along a circular track of radius 0.5 m for 
10 s. The animal starts at a random, unknown position along the circle 
at rest and starts running along a trajectory at nonconstant velocity.  
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A trajectory is sampled every dt = 0.1 s in the following way: at each 
time t, acceleration at is sampled from a zero-mean Gaussian dis-
tribution with s.d. σa = π/4 m s−2 that is truncated if |at | > π/2 m s−2. 
Acceleration is integrated to obtain the velocity vt and truncated if 
|vt | > vmax = π/2 m s−1. The actual location on the track is the integral of  
this velocity.

In a trial of the external map task, the locations of K = 2, 3 or 
4 indistinguishable landmarks were determined sequentially: the 
first landmark was sampled from a uniform random distribution on 
the circle, with subsequent landmarks also sampled from a uniform 
random distribution but subject to the condition that the minimum 
angular distance from any previously sampled landmark is at least 
δ = π/9 rad.

The internal map task involved four environments, each with 
a unique configuration of landmarks: two environments had two 
landmarks, one had three and the last had four. Landmark locations 
in the four environments were chosen so that pairwise angular dis-
tances were sufficiently unique to allow the inference of environment 
identity. Landmark coordinates in environment ei were given by: e1 =  
{0, 2π/3} rad, e2 = {1.9562, 3.7471} rad, e3 = {0.2641, 1.2920, 3.7243} rad 
and e4 = {3.0511, 3.8347, 5.1625, 5.7165} rad.

Experiment configurations used with ANNs. After training, the net-
works were evaluated in different testing configurations that each con-
sisted of a distribution over landmark configurations and trajectories:

Experiment configuration 1. Training distribution: this test set was 
generated exactly as in the training set, as described in ‘Definition of 
environments and trajectories’.

Experiment configuration 2. Fixed landmarks, random trajectories:  
the landmark configuration was given by two landmarks located at 
e = {0, 2π/3}, the trajectories were sampled in an identical way as in 
the training distribution. Note that this landmark configuration cor-
responds to the first environment in the internal map task.

Experiment configuration 3. Fixed landmarks, constant velocity trajec-
tories: the landmark configuration was given by two landmarks located 
at e = {0, 2π/3} and the trajectories were given by constant velocity 
trajectories with |vt | = vmax/2. The initial position and the direction of 
the trajectory was random.

Experiment configuration 4. Two variable landmarks, constant velocity 
trajectory: the landmark configuration was given by two landmarks 
located at e = {0, 2π/3 + απ/3}, where α ϵ [0, 1]. The trajectories were 
given by constant velocity trajectories with |vt | = vmax/2 and the initial 
position and the direction of the trajectory was random.

Experiment configuration 5. Two environments, random trajectories: 
the landmark configuration was given by either e1 or e2 of the internal 
map task, trajectories are random.

Landmark observation. The animal is considered to have encountered a 
landmark if it approached within dmin = vmax × dt/2 = π/40 m−2 = π/20 rad. 
This threshold is large enough to prevent an animal from ‘missing’ 
a landmark even if it is running at maximum velocity. This ‘visibility 
radius’ is smaller than the one we used for the mouse behavior experi-
ments (Fig. 1). In the ANN experiments, landmark encounters were 
therefore roughly coincident with the agent’s position coinciding 
with the landmark, whereas in the mouse data, landmark encounters 
occur a significant distance away from the landmark, when it becomes 
visible (for example, Fig. 4a). In the same way as in the mouse behavior 
analysis, hovering around the same landmark or approaching the same 
landmark consecutively would trigger a landmark encounter only at 
the first approach; a new encounter was triggered only if the animal 

approached an landmark different from the previous one, equivalent 
to the definition used in the analysis of mouse behavior. Also, only tri-
als in which the animal encountered at least two different landmarks 
were included.

Sensory noise. The largest sources of uncertainty in the tasks were 
the unknown starting position and the indistinguishability of the land-
marks. In addition, we assumed that the velocity information and 
the landmark location memory (in the external map scenario) were 
corrupted by noise. At each timestep of size dt = 0.1, the velocity input 
to the network corresponded to the true displacement vdt corrupted 
by zero-mean Gaussian noise of standard deviation σv = vmaxdt/10. In 
the external map task, the landmark map provided to the network 
and particle filter was corrupted by zero-mean Gaussian noise with 
standard deviation σl = π/50 rad, without changing the relative land-
mark positions: The map was coherently slightly rotated at a landmark 
encounter, and the rotation was sampled independently at each land-
mark encounter.

ANN preferred firing at landmark locations. This analysis was per-
formed by evaluating the network of the external map task on the 
experiment configuration 1 of the internal map task (Extended Data 
Fig. 2c). First, location tuning curves were determined after the second 
landmark encounter using 5,000 trials from distribution 1 and using 
50 location bins. Tuning curves were calculated separately for each 
of the four environment of the internal map task. Preferred location 
was determined to be the location corresponding to the tuning curve 
maximum. The density of preferred locations smaller than distance dmin 
away from a landmark was then compared with the density of preferred 
locations further away from landmarks.

Network architecture and training. The network consisted of three 
layers of rate neurons with input-to-hidden, hidden-to-hidden and 
hidden-to-output weights. All weights were trained.

Network input. The input layer consisted of 80 neurons in the external 
map case and 11 neurons in the internal map case. Ten neurons coded 
for velocity corrupted by noise (noise as described above). The velocity 
neurons had a minimum firing rate between 0 and 0.2 and a maximum 
firing rate between 0.8 and 1 in arbitrary units, and within this output 
range coded linearly for the whole range of velocity between −vmax and 
vmax. Negative and positive velocity here corresponds to CW and CCW 
travel, respectively.

The remaining neurons (70 in the external map case and 1 in the 
internal map case) coded for landmark input and were activated only at 
the timestep of, and up to, three timesteps after a landmark encounter. 
In the external map case, the landmark input simultaneously encoded 
the locations of all landmarks in the environment, thus supplying a 
map of the environment, but contained no information about which 
LM was currently encountered. The LM neurons had von Mises tuning 
with preferred locations xj = (j − 1) × 2π/70 rad, j = 1…70, that tiled the 
circle equally. Given n landmarks at locations li, i = 1…n, the firing rate 
of the j-th landmark input neuron was given by

r j = ∑
i
exp(

cos (x j − ̃li) − 1
2σ2w

) ,

where ̃li ∼ N (li,σ2l )  is the noise-corrupted landmark coordinate  
(‘Sensory noise’). This mixture of von Mises activation hills produces 
the pattern depicted as the ‘map’ input in Extended Data Fig. 5a.

In the internal map case (Extended Data Fig. 10a–m), the landmark 
input neuron consisted of a single binary neuron that responded for 
four timesteps with activation 1 in arbitrary units whenever a landmark 
was encountered. This input encoded neither environment identity 
nor landmark location.
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Hidden layer. The hidden layer consisted of 128 recurrently connected 
neurons. The activation ht of hidden layer neurons at timestep t was 
determined by ht = tanh(Wxxt + Whht − 1 + b), where xt are the activations 
of input neurons at timestep t, Wx are the input-to-hidden weights, 
Wh are the hidden-to-hidden weights and b are the biases of hidden 
neurons. The nonlinearity should be considered as an effective non-
linearity at long times; since the timestep dt = 0.1 s was large compared 
with a typical membrane time constant (τ ≈ 0.02 s), we did not include 
an explicit leak term.

Hidden layer (non-negative network). In the non-negative network 
(Extended Data Fig. 10n–t), the recurrent activation was determined 
by ht = tanh([Wxxt + Whht−1 + b]+), where [u]+ denotes rectification.

Output layer. The output layer consisted of a population of 70 neurons 
with activity ot given by ot = tanh(Woht + bo), where Wo are the output 
weights and bo the biases of the output neurons.

Network training. The training targets of the output layer were place 
cells with von Mises tuning of width σo = π/6 rad to the true location yt,

õα,t = exp ( cos (za − yt) − 1
2σ2o

) ,

where zα, α = 1…70 are the equally spaced preferred locations of each 
training target.

The network was trained by stochastic gradient descent using the 
Adam algorithm55, to minimize the average square error between out-
put ot and training targets ̃ot, with the average taken over neurons, time 
within each trial and trials. The gradients were clipped to 100. The 
training set consisted of 106 independently generated trials. During 
training, performance was monitored on a validation set of 1,000 
independent trials and network parameters with the smallest validation 
error were selected. All results were cross-validated on a separate set 
of test trials to ensure that the network generalized across new random 
trajectories and/or landmark configurations.

Network location estimate. Given the activity of the output layer at 
time t, we define the network location estimate for that time to equal 
the preferred location (the preferred location was set over training) of 
the most active output neuron:

̂yt = zα̂t , α̂t = argmaxαoα,t

Performance comparisons. In Fig. 2b, we compared the performance 
of the network in the external map task with a number of alternative 
algorithms. To ensure a fair comparison, we make sure that each alter-
native algorithm has access to exactly the same information as the  
network: the landmark identities are indistinguishable and both 
velocity and landmark location information are corrupted by the 
same small amount of sensory noise. Error statistics were computed  
from 5,000 trials.

Path integration and correction. This algorithm implements path 
integration and landmark correction using a single location esti-
mate, similar to what is implemented in hand-designed continuous 
attractor networks that implement resets at boundaries or other 
landmarks15,16,56,57. The algorithm starts with an initial location estimate 
at y = 0 (despite the true initial location being random and unknown), 
and integrates the noise-corrupted velocity signal to obtain location. At 
each landmark encounter, the algorithm corrects its location estimate 
to equal the coordinates of the landmark nearest to its current estimate.

Basic particle filter. Particle filters implement approximate sequen-
tial Bayesian inference using a sampling-based representation of the 

posterior distribution. Here, the posterior distribution over location at 
each timepoint is represented using a cloud of weighted particles, each 
of which encodes through its weights a belief, or estimated probability, 
of being at a certain location. In the beginning of the trial, Np = 1,000 
particles are sampled from a uniform distribution along the circle 
and weighted equally. In the prediction step, particles are propagated 
independently using a random walk whose mean is the noise-corrupted 
velocity update and whose s.d. is the velocity noise σv. In the absence 
of a landmark encounter, particle weights remain unchanged and the 
particle cloud diffuses. If a landmark is encountered, the importance 
weights wt,β of particles β = 1…Np are multiplied by

wt,β ∝ wt−1,β •∑
i
exp(

cos (yt,β − ̃li) − 1
2σ2l

)

where yt,β are the current estimates of the particles, and the weights are 
subsequently normalized such that ∑βw

2
t,β = 1. If the effective number 

of particles becomes too small, that is, Neff = 1/∑βw
2
t,β < Np/5, the parti-

cles are resampled using low variance sampling58 and the weights 
equalized. This resampling step both allows for better coverage of 
probabilities and permits the particle cloud to sharpen again.  
The particle filter estimate at a given timepoint is given by the  
weighted circular mean ̂yt = arg(∑βwt,β exp(iyt,β))  of the particle  
locations. In addition, we also calculate the circular variance as 
var (yt) = 1 − ||∑βwt,β exp (iyt,β)||.

Enhanced particle filter. This particle filter has identical initialization, 
prediction step and weight update at landmark encounters as the basic 
particle filter and proceeds in exactly the same way until the first land-
mark encounter. Subsequently, the enhanced particle filter can also 
use the absence of expected landmark encounters to narrow down its 
location posterior, similar to the network’s ability shown in Extended 
Data Fig. 5. This is implemented in the following way: if a particle comes 
within the observation threshold δ of a possible landmark location but 
no landmark encounter occurs, the particle is deleted by setting its 
weight to zero; afterwards the particle weights are renormalized. A 
complication to this implementation is that a subsequent landmark 
encounter only occurs if the current landmark is different than the 
previous one (‘landmark encounters’); to prevent the deletion of par-
ticles that correctly report a landmark at the current position but do 
not receive a landmark encounter signal because it is the same land-
mark as previously encountered, particles are deleted only if they come 
within the observation threshold δ to a possible landmark that is dif-
ferent than the last landmark and do not encounter it. In case all parti-
cles have been deleted, particles are resampled from a uniform 
distribution and their weights are equalized. As for the basic particle 
filter, particles are resampled whenever the effective number of  
particles becomes too small Neff = 1/∑βw

2
t,β < Np/5 . The particle  

filter estimate ̂yt = arg(∑βwt,β exp(iyt,β))  and the circular variance 
var (yt) = 1 − ||∑βwt,β exp (iyt,β)|| are also calculated in an identical way.

Analysis of location disambiguation in output layer. The timing 
and accuracy of location disambiguation in Extended Data Fig. 5 was 
calculated in the following way: we first constructed the trajectory of 
the ‘alternative location hypothesis,’ corresponding to the location 
estimates of a model animal that made the wrong location disambigua-
tion at the first landmark encounter, but otherwise updated its location 
by the correct velocity. This trajectory is shifted relative to the true 
trajectory by a constant distance equal to the distance between the two 
landmarks. At each point in time, we then identified the two neurons in 
the output population whose preferred locations were closest to that 
of the true and alternative trajectory, respectively; the activation of 
these neurons roughly corresponded to the height of the activation 
bump corresponding to the true and alternative location hypothesis 
as seen in Extended Data Fig. 5c,d,h. The disambiguation time was 
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defined as the earliest time after which either the true or alternative 
location bump height fell below a threshold of 0.1 and stayed beyond 
that threshold until the end of the trial. To determine the accuracy of 
location disambiguation the network estimate at the last landmark 
interaction was analyzed. If this network estimate was closer to the 
true than to the wrong landmark location the trial was categorized as 
a correct trial, otherwise it was categorized as an incorrect trial.

State space analysis. We performed PCA on the hidden neuron states 
from training trials to obtain the top three principal directions. We then 
projected network states obtained from the distribution of testing trials 
2 or 3 (Supplementary Information) onto these principal directions. 
The resulting reduced-dimension versions of the hidden neuron states 
from testing trials are shown in Fig. 2 and Extended Data Figs. 5 and 10.

Correlation dimension. To calculate the correlation dimension for the 
ANN and RSC activity, we first performed linear dimensionality reduc-
tion (PCA) on hidden layer activations from the training trials, retain-
ing 20 principal components. For RSC data, rates were first low-pass 
filtered at 0.5 Hz. In the 20-dimensional space, we randomly picked 
1,000 base points (500 for RSC). From each of these base points, we 
estimated how the number of neighbors in a ball of radius R scales with 
R. The minimum ball radius was determined such that the logarithm 
of the number of neighbors averaged over base points was near 1. The 
maximum radius was set to ten times the minimum radius, and interme-
diate values for the radius were spaced equally on a log scale. The slope 
of the linear part of the relationship between the logarithm of number 
of neighbors versus ball radius determined the fractal dimension

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The experimental data of this study are available via Figshare at  
https://doi.org/10.6084/m9.figshare.27890997 (ref. 59).

Code availability
Code for training ANNs is available at: https://github.com/jvoigts/
Voigts_Kanitscheider_et_al_2024.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Task structure and behavioral data, and necessity of RSC 
for egocentric-allocentric computations. (a) Schematic of task structure and 
timing. (b) Example trial schematic showing all possible task states (see Methods 
for more details). Landmarks were formed by white dots displayed on a screen 
which served as the floor of the arena. They were only made visible when mice 
crossed a distance threshold. Only one landmark was visible at a time in the final 
training stage. Nose-pokes were only registered after mice held their nose in 
the port for a randomly chosen delay period that was randomized for each visit 
and not known to the mouse. Incorrect port visits resulted in timeouts that were 
associated with a bright background across the entire arena. After each complete 
trial, which results in the reward state, mice are required to complete a separate 
task in which they need to ‘hunt’ for a series of 4 to 8 randomly placed blinking 
dots on the arena floor. Each dot disappears as soon as the mouse reaches it, 
resulting either in a new random annulus, or initialization of the next trial. The 
next trial begins with a new random rotation of the landmarks and rewarded 
port. (c) Training phases (see Methods). Mice are trained with a single landmark 
first, then 2 landmarks at unlimited view distance, and finally a limited view 
distance. (d) Top: Experimental setup for electrophysiology and real-time mouse 
position tracking. The arena was placed on top of a commercial flat-screen TV 
that was used to display visual landmarks. A motorized commutator47 was used 
to reduce tether-induced torque on the mouse, and a real-time optical tracking 
system was used to regulate the visibility of the landmarks and to identify when 
the mouse reached any of the blinking dots in the dot-hunting task. Bottom: 
view of the arena from the top, showing a subset of the reward ports as well as 
the tracking camera and the motorized commutator. (e) Example excerpt of 
behavioral data, with state transitions. Landmark visits (black arrowheads) 
are defined as the point when new landmarks become visible. (f) Top: Training 
curves for all 4 mice. The three major training phases are indicated with shading 
(corresponding to panel c). Red: Proportion of time that a landmark is visible 
(remains 1.0 (100%) until view distance is introduced). Blue: Maximum reward 
port hold time for each session, the actual hold times are drawn from a uniform 
distribution. Black: proportion of hits / false positives (corresponds to rewards 
/ timeouts, or proportion correct), for the 1st port visit in each trial. Values over 
1/16 indicate that mice can distinguish the correct port amongst all ports. Values 
over 1 indicate that mice could reliably visit the correct port among the two 
ports indicated by locally ambiguous landmarks without excluding any other 
ports by trial and error (see main text and methods). Trials with 1st landmark visit 
after <20 sec are included in analysis. Grey: Proportion of trials in which mice 
see both landmarks, and then turn around to go back to the 1st landmark. If this 
proportion was 0, it would indicate that mice always visit the 2nd port after seeing 
it, which would on average lead to chance-level behavioral performance. For 
each individual session, significance of correct choice for the 1st port visit among 
the two indicated ports was tested with a binomial fit at the 95% level (two-sided, 

Clopper-Pearson exact method) and is indicated with a star. If the mouse also 
visited a large proportion of unmarked ports, this fraction can be significant 
despite the overall correct rate among all 16 ports being small. Bottom: latency 
to reward after encountering the 2nd landmark in seconds (blue), proportion of 
visits to ‘a’ and ‘b’ as fraction of all port visits (orange) and proportion correct 
choice between ‘a’ or ‘b’ with binomial 95% CI (binomial as described before, 
green). See y-axis labels for unit definitions. (g) All paths taken by the mouse in 
one example session, split by LM0,1,2 state (green, glue, grey). (h) 6 example 
trials from the same session plotted from the start of the trial to the reward 
delivery, same color scheme as in g. 2 of the trials include time-outs (red). (i) 
Retrosplenial cortex is required for integrating egocentric sensory information 
and hypotheses about the animal’s allocentric location, but not for visually 
guided navigation. To causally test the role of RSC in relating spatial hypotheses 
to sensory data, we used a parametric allocentric/egocentric task using the same 
apparatus as in the main experiment and pharmacologically inactivated RSC. 
Schematic of task structure: Water restricted mice had to visit the port closest 
to a single visual landmark for a water reward. Visits to any other port resulted 
in a time-out, but allowed the mice to self-correct. As in the main experiment, 
the landmark and rewarded port were rotated randomly after each trial, forcing 
mice to use only the visual landmark. (j) To make the task reliant on allocentric 
hypotheses, we randomly varied the eccentricity of the landmark (center of the 
landmark to center of the arena, as fraction of the arena radius) at the beginning 
of each trial. Trials with low eccentricity (left) required the mouse to find the 
arena center (though path integration, requiring maintenance of a self-position 
hypothesis or memory in absence of persistence visual cues indicating the 
center of the arena) and then extrapolate a straight path through the landmark 
to the correct rewarded port. Alternatively, mice might triangulate which port 
is the closest to the landmark from the periphery. These strategies all require 
integration of self-location hypotheses with visual landmark information. Trials 
with high eccentricity (right) required merely walking to the port closest to 
the landmark. This design allowed us to test the role of RSC in the integration 
of location hypotheses with egocentric visual landmark information while 
simultaneously determining whether simpler visually-guided navigation was 
also affected. (k) RSC was either 1) transiently inactivated with Muscimol, 2) 
sham injected with cortex buffer, or 3) not injected (see methods). Each mouse 
was tested in both groups, with balanced ordering. (l) Task performance (mean 
and 95% confidence intervals for hit rate on 1st port visits per trial, via binomial 
bootstrap). Mice always performed above full chance level (1/16th, assuming 
they cannot make use of the landmark). Performance was selectively reduced by 
RSC inactivation for low eccentricity conditions where integration of location 
hypotheses and visual landmarks was required. Performance in the visually 
guided condition was only minimally affected.
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Extended Data Fig. 2 | The spatial code in RSC changes with hypothesis states, 
ANN and RSC neurons employ conjunctive codes, and preferentially represent 
landmark / reward locations. (a) Location decoders (neural network, cross-
validated per trial) do not generalize across landmark states, and LM1 carries less 
spatial information than LM2. Performance is measured by prediction likelihood 
in a 10×10 grid, means and shaded 95% CIs across sessions (N = 16 sessions). See 
Fig. 1f for test via spatial RF differences. (b) Left: Example ANN neuron tuning 
curves (from LM2) split by travel direction, speed, or location uncertainty 
(corresponding to LM0,1,2 states, derived from particle filter), showing 
conjunctive coding. Right: Three RSC example cells showing conjunctive coding 
of location vs. speed, and direction (Fig. 1d shows task phase vs. location). (c) 
Left: ANN neurons and, Right: RSC cells (N = 984 neurons) weakly preferentially 
fire at landmark locations. Top: distribution of locations where RSC cells fire 
most. Bottom: total average rates, split by LM1 and LM2. (d) Distribution of 
firing rates by angular position in the arena, same data as panel c. Blue: quantile 
of firing rates across population. Red: 95% CI of the mean across the population 
via bootstrap. Despite a small preference for the landmark locations, this 

effect is small compared to the overall variability on firing rates, and there is no 
systematic preference for cells to fire in proximity of one vs. the other landmark, 
even in the LM2 condition. (e) Information gain, which we study by analyzing 
landmark encounters, as transitions between LM0,1,2 states throughout the 
manuscript, can also occur when mice fail to encounter a landmark where one 
would be expected given some hypothesis (see Fig. 2e for an ANN example). 
These cases can also be decoded from neural activity, but cannot be directly 
compared to landmark encounters, as they don’t offer the matched sensory 
input (that is no visual input vs. appearance of salient landmark) that we employ 
in Fig. 4 (mouse encounters 2nd landmark, but it is either ‘a’ or ‘b’). These ‘virtual’ 
landmark encounters were decoded with a cross-validated NN on a trial level and 
compared to real landmark encounters. The same decoder was then cross tested 
on the reverse condition (grey plot) to show that the neural code for encounters 
and non-encounters is different, as is expected from the different sensory inputs. 
Analysis as in Extended Data Fig. 9a, but plots are aligned to the value at the 
0-second point, see Methods for details.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Extracellular recording in mouse retrosplenial cortex. 
(a) Tetrode drive12 implants targeting mouse retrosplenial cortex (RSC). See 
Methods for details. (b) Example band-passed (100Hz-5kHz) raw voltage traces 
from 16 tetrodes. (c) Verification of drive implant locations in RSC via histology 
in all 4 mice. White arrowheads indicate electrolytic lesion sites. (d) Histograms 
of mean firing rates of all 984 neurons across LM0 (green), LM1 (blue), and LM2 
(black) conditions. Neurons are treated as independent samples. Overall rates 
did not shift significantly across these states. (e) Relative per-neuron changes 
in firing rates across conditions. Despite the lack of a population-wide shift 
in average rates, the firing rates of individual cells varied significantly across 
conditions with heterogeneous patterns of rates. Each grouping shows rates per 
cell, relative to the rate in LM0 (left) LM1 (middle), and LM2 (right) as individual 
rates (grey lines and histograms). Bar graphs show the 50% and 95% quantiles. (f) 
Spatial firing profiles of 42 example neurons split by hypothesis state. Number 
insets denote Max. firing rate in Hz per condition. For clarity, missing data is that 

was not due to exclusion via landmark visibility in LM1 is plotted as the darkest 
color in each plot. (g) Spatial firing rate profiles for all neurons from one example 
session (52 total), from the main task phase. Profiles were computed in 25×25 
bins, and individually normalized to their 99th percentile. (h) same as panel g, but 
from the separate trial initialization task (‘dot-hunting’) in which mice had to hunt 
for a series of blinking dots that appeared in random positions. (i) 36 example 
neurons from multiple sessions and animals, chosen to represent the broad range 
of tuning profiles. For each neuron, the main task tuning and the ‘dot-hunting’ 
are plotted together on the same brightness scale, normalized to their total 
maximal rate. In the dot-hunting task there is no conserved radial tuning due to 
the absence of consistent landmarks, however some cells retain angular spatial 
tuning due to olfactory cues in the arena. Tuning to eccentricity (distance to 
arena wall or center) is maintained across task phases in many neurons. Small 
numbers indicate maximum firing rates in Hz for each plot (color scale is same 
across the pairs).
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Extended Data Fig. 4 | Hypothesis encoding in RSC is task-specific and is a 
function of task learning. (a) Foraging and dot-hunting tasks are interleaved, 
allowing comparisons of how the same neural population represents hypotheses. 
(b) We predict the number of encountered landmarks either within condition 
(for example foraging from foraging, each time using one trial as test, fitting 
to all others), or across. Only the first 2 landmarks were predicted to allow use 
of the same classifier across both despite the higher number of landmarks 
in the dot-hunting task. Train and test sets were split by trial. Decoding was 
done with a regression tree on low-pass filtered firing rates. Performance was 
quantified as mean error on the N of landmarks. (c) Example dot-hunting trial, 
the performance from using the foraging predictor is lower. (d) Summary stats 
from all sessions, means and bootstrapped CIs. The prediction is significantly 
better when using training data from the same category than when using the 
neural code from the other; for example dot-hunting to predict the foraging 
(P= ~0 / ~ 0 within vs. across categories for predicting dot-hunting and foraging 
landmark state), showing that hypothesis coding is task-specific. (e) To test 
whether hypothesis encoding is a specific function of task learning or a general 
feature of RSC, we examined whether coding persisted in case when mice 
performed the task but were not yet performing well. We first examined the 
ability to predict correct vs. incorrect port choice (same as in Fig. 4) as a function 
of per-session task performance. We analyzed data from sessions from the entire 
training period where the 2 landmarks were used, with at least 5 correct and 5 

incorrect choices (N = 42 sessions), due to the closely spaced recordings, neurons 
might be re-recorded across sessions. On average we analyzed ~15-30 port visits 
per session (number of trials was unaffected by behavioral performance: CI of 
slope = [-7.7, 2.7], p = 0.33). Predictions were made as before with a test/train 
split on balanced hit/miss data with a regression tree. Prediction performance 
was at chance level ( ~ 47%, P = 0.81 vs. chance) for low performance sessions 
(total correct choice ratio of 0.8 or lower), and the same as in our initial analysis 
(Fig. 4) for sessions with high mouse performance ( ~ 66%, P = 0.00096 vs. 
chance). Overall, prediction performance was significantly correlated with task 
performance (P = 0.0014 vs. constant model). Individual mice are indicated with 
colored markers. (f) We also analyzed the more general decoding of landmark 
encounter count (same as Fig. 1) in all of the 92 sessions with 2 landmarks, and 
also found a significant correlation (p = 0.0045 vs. constant model), showing 
that hypothesis encoding throughout the task is driven by task learning. (g) As 
a control experiment, we tested whether decoding the number of landmarks 
encountered in the interleaved dot-hunting task might also be affected by task 
performance, if for instance the neural encoding and performance was a function 
of general spatial learning, habituation to the arena, motivation, etc., and we 
found this correlation to be flat (P = .6, CI for slope = [-0.17, 0.29]). We conclude 
that the encoding of hypothesis state is task-specific and a function of the mouse 
performing the task.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Architecture, trajectories, and population statistics for 
ANN with external map input. (a) Structure of the recurrent network. Input 
neurons encoded noisy velocity input with linear tuning curves (similar to speed 
cells in the entorhinal cortex60), and landmark information. In the standard setup 
(referred to as “external map”), the landmark input signaled the global 
configuration of landmarks (map). If there are K landmarks (all assumed to be 
perceptually indistinguishable), then whenever the animal encounters a 
landmark, the input provides a simultaneous encoding of all K landmark 
locations using spatially tuned input cells. Thus, the input encodes the map of the 
environment but does not disambiguate locations within it. This input can be 
thought of as originating from a distinct brain area that identifies the current 
environment and provides the network with its map. (b) Trajectories varied 
randomly and continuously in speed and direction. There were 2-4 landmarks at 
random locations. (c) Activity of output neurons ordered by preferred location as 
a function of time in an easy trial with two nearby landmarks and a constant 
velocity trajectory. Black arrows: landmark encounters. Thick black dashed line: 
time of disambiguation of location estimate in output layer. Thin red dashed line: 
true location. The network’s decision on when to collapse its estimate is flexible, 
and dynamically adapts the decision time to task difficulty: When the task is 
harder because of the configuration of landmarks (the task becomes harder as 
the two landmarks approach a 180 degree separation because of velocity noise 
and the resulting imprecision in estimating distances; the task is impossible at 
180 degree because of symmetry), the network keeps alive multiple hypotheses 
about its states across more landmark encounters until it is able to reach an 
accurate decision. Panels c,d,f,g show example trials from experiment 
configuration 4 (See Methods) with different values of landmark separation 
parametrized by α. (d) Same as c, but in a difficult trial with two landmarks almost 
opposite of each other. (e) Top: The ANN took longer to disambiguate its location 
in harder task configurations: average time until disambiguation as a function of 
landmark separation (Standard error bars are narrower than line width). Middle: 
Distribution of the number of landmark encounters until the network 
disambiguates location, as a function of landmark separation. Bottom: Fraction 
of trials in which the network location estimate is closer to the correct than the 
alternative landmark location at the last landmark encounter, as a function of 
landmark separation. Data from 10000 trials in experiment configuration 4, 
1000 for each of the 10 equally spaced values of α. The performance of the ANN 
(Fig. 2 main text) can be compared to the much poorer performance achieved by 
a strategy of path integration to update a single location estimate with 
landmark-based resets (to the coordinates of the landmark that is nearest the 
current path-integrated estimate), Fig. 2b (black versus gray). The latter strategy 
is equivalent to existing continuous attractor integration models13,14 combined 
with a landmark- or border based resetting mechanism16,56,57,61, which to our 
knowledge is as far as models of brain localization circuits have gone in 
combining internal velocity-based estimates with external spatial cues. The 
present network goes beyond a simple resetting strategy, matching the 
performance of a sequential probabilistic estimator – the particle filter (PF) – 
which updates samples from a multi-peaked probability distribution over 
possible locations over time and is asymptotically Bayes-optimal (M = 1000 
particles versus N = 128 neurons in network; Fig. 2b, lavender (PF) and green 
(enhanced PF)). Notably, the network matches PF performance without using 
stochastic or sampling-based representations, which have been proposed as 
possible neural mechanisms for probabilistic computation39,62. (f) Similar to c, 
but in a trial where the network disambiguates its location before the second 
landmark encounter. Yellow arrows mark times of landmark interactions if the 
alternative location hypothesis had been correct. Disambiguation occurs shortly 
after the absence of a landmark encounter at the first yellow arrow. (g) Similar to 
f, but in a trial where disambiguation occurs at the first landmark location, since 
no landmark has been encountered at the time denoted by the first gray arrow. 
(h) In the regular task where landmark identity must be inferred by the ANN, 
discrete hypothesis states (denoted LM0,1,2 throughout) emerge during the LM1 
state. (j) If the ANN is instead given the landmark identity via separate input 
channels, it immediately identifies the correct location after the 1st landmark 
encounter and learns to acts as a simple path integration attractor without 
hypothesis states. Plots show ANN output as in c,d,g,f. (i,k) To quantify the 
separation of hypothesis states in the ANNs hidden states even in cases where 
such separation might not be evident in a PCA projection, we linearly projected 
hidden state activations onto the axis that separates the hypothesis states. The 
regular ANN shows a clear LM1 vs LM2 separation, but the ANN trained with 
landmark identity does not distinguish between these. (l) Population statistics 

for ANN with external map input. Scatter plot of enhanced particle filter (ePF) 
circular variance vs. estimate decoded from hidden layer of the network. 4000 
trials from experiment configuration 1 were used to train a linear decoder on the 
posterior circular variance of the ePF from the activity of the hidden units and 
performance was evaluated on 1000 test trials. (m) Scatter plot of widths and 
heights of ANN tuning curves after the 2nd landmark encounter. Insets: example 
tuning curves corresponding to red dots. Unlike hand-designed continuous 
attractor networks, where neurons typically display homogeneous tuning across 
cells13,63,64, our model reproduces the heterogeneity observed in hippocampus 
and associated cortical areas. Tuning curves are from LM2 using 1000 trials from 
experiment configuration 2 using 20 location bins. Tuning height specifies the 
difference between the tuning curve maximum and minimum, and tuning width 
denotes the fraction of the tuning curve above the mean of maximum and 
minimum. (n) The distribution of recurrent weights shows that groups of 
neurons with strong or weak location tuning or selectivity have similar patterns 
and strengths of connectivity within and between groups: distribution of 
absolute connection strength between and across location-sensitive “place cells” 
(PCs) and location-insensitive “unselective cells” (UCs) in the ANN. The black line 
denotes the mean; s.e.m. is smaller than the linewidth. The result is consistent 
with data suggesting that place cells and non-place cells do not form distinct 
sub-networks, but are part of a system that collectively encodes more than just 
place information65. Location tuning curves were determined after the second 
landmark encounter using 5000 trials from distribution 1 and using 20 location 
bins. The resulting tuning curves were shifted to have minimum value 0 and 
normalized to sum to one. The location entropy of each neuron was defined to be 
the entropy of the normalized location tuning curve. Neurons were split in two 
equal sets according to their location entropy, where neurons with low entropy 
were defined as “place cells” (PCs) and neurons with high entropy were defined as 
“non-place cells” (UCs). Between and across PCs and UCs absolute connection 
strength was calculated as the absolute value of the recurrent weight between 
non-identical pairs. (o) Pairwise correlation structure30 is maintained across 
LM[1,2] states and environments. Corresponds to Fig. 3a. Top: Correlations in 
spatial tuning between pairs of cells in one environment after the 1st landmark 
encounter / LM1 (left), after the 2nd encounter / LM2, and in a separate 
environment in LM2 (right). The neurons are ordered according to their 
preferred locations in environment 1. Bottom: Example tuning curve pairs 
(normalized amplitude) corresponding to the indicated locations i-iv. Data from 
experiment configuration 1. (p) State-space activity of ANN is approximately 
3-dimensional. Even when summed across all environments and random 
trajectories, the states still occupy a very low-dimensional subspace of the full 
state space, quantified by the correlation dimension as d ≈ 3 (left, see Methods). 
This measure typically overestimates manifold dimension66, and serves as an 
upper bound on the true manifold dimension. As a control, the method yields a 
much larger dimension (d = 14) on the same network architecture with large 
random recurrent weights (right); thus, the low-dimensional dynamics are an 
emergent property of the network when it is trained on the navigation task. Data 
from 5000 trial, recurrent weights were sampled i.i.d. from a uniform 
distribution Wh,ij ~ U([ − 1, 1]), then fixed across trials. The initial hidden state 
across trials was sampled from ht=0,i ~ U([ − 1, 1]). Data from 5000 trials from 
experiment configuration 1. (q) In the LM2 state, position on the rate-space 
attractor corresponds to location in the maze. State-space trajectories after 
second landmark encounter for random trajectories. Color corresponds to true 
location (plot shows 100 trials). (r) ANN with external map input implements a 
circular attractor structure: Hidden layer activity arranged by preferred location 
in an example trial shows a bump of activity that moves coherently. Black arrows: 
first two landmark encounters. Preferred location was determined after the 
second landmark encounter using 5000 trials from experiment configuration 1. 
(s) Left: Recurrent weight matrix arranged by preferred location of neurons 
(determined after the second landmark encounter using 5000 trials from 
experiment configuration 1) indicates no apparent ring structure, despite 
apparent bump of activity that moves with velocity inputs (panel a). Right: 
However, recurrent coupling of modes defined by output weights (defined by 
WoutWrecWT

out, where Wrec are the recurrent weights and Wout  are the output 
weights) has a clear band structure. Connections between appropriate neural 
mixtures in the hidden layer – defined by the output projection of the neurons – 
therefore exhibit a circulant structure, but the actual recurrent weights do not, 
even after sorting neurons according to their preferred locations. The ANN thus 
implements a generalization of hand-wired attractor networks, in which the 
integration of velocity inputs by the recurrent weights occurs in a basis shuffled 
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by an arbitrary linear transformation. Given these results, one cannot expect a 
connectomic reconstruction of a recurrent circuit to display an ordered matrix 
structure even when the dynamics are low-dimensional, without considering the 
output projection. Because trials in the mouse experiments typically ended 
almost immediately when the mouse had seen both landmarks (See Extended 
Data Fig. 1f for a quantification), we did not quantify the topology of the neural 
dynamics in RSC. (t) Low-dimensional state-space dynamics in the ANN with 
external map input suggests novel form of probabilistic encoding. Visualization 
of the full state-space dynamics of the hidden layer population, projected onto 
the three largest principal components, for constant-velocity trajectories. ANN 
hidden layer activity was low-dimensional: Fig. 3a shows data on low-dimensional 
dynamics, evident in maintained pairwise correlations, and Fig. 3d and panel p 
show correlation dimension. Trajectories are shown from the beginning of the 
trials; arrows indicate landmark encounter locations, black squares: first 
landmark encounter; black circles: second landmark encounter; line colors 
denote trajectory stage: LM0 (green), LM1 (blue), andLM2 (grey). Data in a-c is 
from 1000 trials from experiment configuration 3 (see Methods); sensory noise 
was set to zero. Trajectory starting points were selected to be a fixed distance 
before the first landmark. The intermediate ring (LM1) corresponds to times at 
which the output neurons represent multiple hypotheses, whereas the final 
location-coding ring (LM2), well-separated from the multiple hypothesis coding 
ring, corresponds to the period during which the output estimate has collapsed 
to a single hypothesis. In other words, the network internally encodes  

single-location hypothesis states separably from multi-location hypothesis 
states, as we find in RSC (Fig. 1), and transitions smoothly between them, a novel 
form of encoding of probability distributions that appears distinct from 
previously suggested forms of probabilistic representation39,62. (u) ANN trial 
trajectory examples, (corresponding to Fig. 2e). Divergence of trajectories for 
two paths that are idiothetically identical until after the second landmark 
encounter. ‘a’ and ‘b’ denote identities of locally ambiguous identical landmarks. 
Disambiguation occurs at the second landmark encounter, or by encountering 
locations where a landmark would be expected in the opposite identity 
assignments. See insets for geometry of trajectories and landmark locations. 
LM2 state has been simplified in these plots. (v) All four trajectories from panel b 
plotted simultaneously, and with full corresponding LM2 state. (w) The 
low-dimensional state-space manifold is stable, attracting perturbed states back 
to it, which suggests that the network dynamics follow a low-dimensional 
continuous attractor and the network’s computations are robust to most types of 
noise. Relaxations in state space after perturbations before the first (left), 
between first and second (middle), and after the second (right) landmark 
encounter. For the base trial, a trial with two landmarks and random trajectory 
was chosen. The first and second landmark encounter in this base trial is at time 
t = 2 s and t = 4.6 s respectively. At time t = 1 s (left), t = 4 s (middle), and t = 7 s 
(right) a multiplicative perturbation of size 50% was introduced at the hidden 
layer. See Extended Data Fig. 10l for same result on internal map ANNs.
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Extended Data Fig. 6 | ANN and RSC coding transitions dynamically from 
an egocentric landmark-relative to an allocentric global reference frame 
based on phase in trial. (a) Top: Tuning curves (mean rate) for displacement 
from last encountered landmark for LM1 and LM2 states in ANN. Bottom: Same 
data, but distribution of firing rates. The network discovers that displacement 
from the last landmark encounter in the LM1 period is a key latent variable, and 
its encoding is an emergent property. Intriguingly, a similar displacement-to-
location coding switch has been observed in mouse CA167, suggesting that the 
empirically observed switch may be related to the brain performing spatial 
reasoning to disambiguate between multiple location hypotheses. (b) Same 
as panel a but for global location, ANN neurons became more tuned to global 
location rather than landmark-relative information after encountering the 2nd 
landmark. (c) Decoding of location, displacement, and separation between 
landmarks from the ANN in a 2-landmark environment by a linear decoder that 
remains fixed across trials and environments. Top: Squared population decoding 
error of location (green) and displacement (blue), as a function of the number 
of encountered landmarks. As suggested by the well-tuned activity of ANN 
neurons, location can be linearly decoded in the LM2 state. Displacement can 
be best decoded in the LM1 state. Bottom: Square decoding error of distance 
between landmarks, as a function of the number of encountered landmarks. 
The representation is particularly accurate around the time just before and after 

the first landmark encounter, when location disambiguation takes place. Top: 
Performance was evaluated on 1000 trials from experiment configuration 2. 
For location, the decoder corresponded to the network location estimate. For 
displacement, the linear decoder was trained on 4000 separate trials. Bottom: 
experiment configuration 1 with 4000 trials to train the linear decoder and 
1000 trials to evaluate it. Thus, the network’s encoding of these three critical 
variables is dynamic and tied to the different computational imperatives at each 
stage: displacement and landmark separation are not explicit inputs but the 
network estimates these and represents them in a decodable way at LM1, the 
critical time when this information is essential to the computation. After LM2, the 
network decodability of landmark separation drops, as it is no longer essential. 
(d) Neurons in RSC also became less well tuned to relative displacements from 
landmarks in LM2 relative to LM1: histogram across all RSC neurons of entropy 
of tuning curve for angular displacement from last seen landmark in RSC. Black: 
for LM2 state, Blue: for LM1 state. Red: histogram of pairwise differences. For 
this analysis, angular firing rate distributions were analyzed relative to either the 
global reference frame or the last seen landmark. (e) Same as d, but for global 
location. (f) The absolute change in landmark-relative displacement coding (d) is 
larger than that of the allocentric location tuning (e), suggesting that the latter is 
less affected by task state.
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Extended Data Fig. 7 | In addition to explicitly encoding number of visited 
landmarks, RSC and the ANN exhibit higher trial-to-trial variability in partial 
information states. (a) Bottom: Mean spatial activity profile of 2 example ANN 
neurons for LM1 and LM2. Average tuning is higher for the LM2 state. Top: same 
data as histograms, showing that the less well-tuned LM1 state corresponds 
to a bimodal rate distribution (rates are high in some trials, low in others) that 
transitions to a unimodal distribution once the 2nd landmark has been identified 
in LM2. Data are from experiment configuration 2 (See Methods, section 
‘Overview over experiment configurations used with ANNs’). Tuning curves were 
calculated using 20 bins of location/displacements and normalized individually 
for each neuron. The first time step in each trial and time steps with non-zero 
landmark input were excluded from the analysis. For histograms, each condition 
was binned in 100 column bins and neuron rates in 10 row bins. Histograms were 
normalized to equal sum per column. (b) Similarly, RSC rates are more dispersed 

per location in LM1. Schematic of analysis: firing rates were low pass filtered at 
0.5 Hz, and for each location, the distribution of rates was computed in 8 bins, 
between the lowest and highest rate of that cell. (c) Example analysis for one 
cell. Top: Rate distribution resolved by 2D-location (4×4 bins) for example RSC 
neuron. Bottom: the resulting 16 histograms for LM1 and LM2 each, red dotted 
example histograms correspond to indicated example location (red dotted 
circles). (d) Summary statistics showing a more dispersed rate distribution 
per location in LM1. In sum, this analysis shows that in addition to the explicit 
encoding of uncertainty by a stable rate code (conjunctive with position  
and other variables), as shown in Fig. 1d,e,f and Extended Data Fig. 2a,  
where one would not expect a higher degree of trial-to-trial variability with 
higher uncertainty, there is still a degree of increased variability in states where 
the mouse might ‘take a guess’ that would differ between trials. This parallels a 
similar behavior in the ANN (panel a).
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Extended Data Fig. 8 | Pairwise rate correlation structure in RSC is maintained 
across LM1 and LM2 states. (a) Low-dimensional population structure can be 
probed by pairwise neural relationships30: correlations or offsets in spatial tuning 
between cell pairs should be preserved across environments if the dynamics 
across environments is low-dimensional. Example spike rates (6 sec window, 
low-passed at 1 Hz using a single-pole Butterworth filter) for 3 RSC neuron pairs 
from one example session. R values for each pair were computed across the LM1 
and LM2 condition, as well as in the task-initialization phase where mice had 
to hunt blinking dots (Extended Data Figs. 1, 4). The latter provides a control 
condition where no landmark-based navigation was required and mice instead 
had to walk to randomly appearing targets. (b) Top: pairwise correlation matrices 
for LM1,2 and dot-hunting conditions. Example pairs are highlighted (i,ii,iii). 
Bottom: spatial firing rate profiles for example pairs. Same analysis as in Fig. 3a. 
(c) RSC activity is globally low-dimensional. Proportion of variance of low-pass 
filtered (0.5 Hz) firing rates explained by first 45 principal components from the 
LM1 states. Proportion of variance explained (black, 16 sessions) drops to below 
that of shuffled spike trains (red) after the 6-10th principal component. The inset 
shows the analysis split by condition (same as in panels a and b), and 95% Cis for 
the spectra across sessions. The right panel shows zoomed in region of the same 
plot. We found no relationship between individual PCA components and task 
variables. (d) Correlation dimension in RSC is also low (same analysis as for the 
ANN in Extended Data Fig. 5p). This measure typically overestimates manifold 
dimension66, and thus serves as an upper bound on the true manifold dimension. 
(e) Grey/black: Summary statistics (median and quartiles) for correlation 
of correlations (panel b shows one example session, black dots indicate 
individual sessions, N = 16). Median of R value of R values for LM1 vs. LM2 = 0.74 
(corresponding R in ANN = 0.73), for LM1 vs. dot-hunting = 0.51. Green: same 

analysis but spike rates were computed with a 5 Hz low-pass instead of the 1 Hz 
used throughout, no systematic changes were observed as function of low-
pass settings. (f) Rates of individual RSC neurons can be predicted from other 
neurons with linear regression. In the LM2 to LM2 condition (black), the linear 
fit is computed for one held-out neuron’s rate from other concurrent rates, and 
the same regression weights are then used to predict rates during LM1 (green) 
and dot-hunting (red) time periods. True rates of predicted neurons are plotted 
as solid black lines. (g) Summary statistics for the linear regression. Histograms 
show the proportion of explained variance for all 984 neurons, split by condition. 
In the LM2 to LM2 condition, the fit is computed from other concurrent rates 
(40.5% variance explained, median across neurons). In the two other conditions, 
the regression weights are fit in LM2 and held fixed. The sequential, non-
interleaved nature of this train/test split across task phases means that any 
consistent firing rate drifts across the conditions will lead to poor predictions, 
and consequently, a small number of neurons exhibit negative R2 values 
indicating a fit that can, for some cells, be worse than an average rate model 
(11.3% for LM1, 19.3% median across neurons for dot-hunting, small grey bars). 
However, 24.3% of variance (median across neurons) can be explained despite 
significant changes in spatial receptive fields (predict LM1 with LM2 weights) and 
even for a different task, with 16.2% when predicting dot-hunting activity from 
LM2 weights (red and green histogram and bars showing 95% CI of median). (h) 
Pairwise correlations between RSC neurons in another example session, same 
analysis as in panel b, and associated scatterplots. (i) Low-dimensional activity 
quantified via participation ratio (PR)68. This analysis does not account for noisy 
eigenvalue estimates from spiketrains, and consequently the shuffled spike 
trains where there are no prominent modes that correspond to stable sensory, 
motor, or latent states, yield values of PR = ~ 45.
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Extended Data Fig. 9 | Low-dimensional spatial modes of mouse RSC activity. 
(a) Top left: the speed at which the neural activity evolves (avg. speed of largest 
5 principal components, filtered at 1 Hz, CIs via bootstrap) correlates with 
running speed. Top right: When landmarks appear/disappear, they perturb 
neural activity (effect of mouse speed is regressed out). Bottom: Analysis of the 
time course of the prediction of LM0,1,2 state from RSC firing rates around the 
time when the landmarks appeared. Plots show 95% CIs for the mean of the state 
prediction, aligned to the mean, corresponding to a de-biased state estimation 
probability over time. Decoding was performed using the same method as in 
Fig. 1. (b) For some analyses of the low-dimensional dynamics in RSC (Fig. 4, this 
figure panel h), rate fluctuations related to non-spatial covariates such as speed, 
heading, etc. were removed: a single-layer LSTM with 20 hidden units was trained 
to predict the mouse position in a 10×10 grid from the RSC rates. The network 
learned 20 spatially relevant mixtures of input firing rates, with appropriate 
temporal smoothing to represent the mouse location. These activations were 
then embedded into 3-D space via isomap53. (c) To find trials across which mouse 
trajectories as they approached the 2nd landmark were similar, mouse trajectories 
were clustered (see Methods) leading to a subset of trials with similar locomotion 
and visual inputs. (d) The activity of RSC, in the low-dimensional representation, 
and in raw spike counts was then analyzed further. The example plot shows 
low-dimensional neural trajectories from LM0,1,2 states during matched 
mouse trajectories. (e) Alternative hypotheses for smoothness / predictability 
of neural dynamics across trials (corresponding to Fig. 4c). Dynamics across 
trials could behave like a laminar flow, so that trials with similar neural state 

remain so (top), or they could shuffle, leading to a loss of the pairwise distance 
relationships across trials (bottom). (f) We measured this maintenance vs. loss 
of correlation in a sliding 750 ms window beginning at the 2nd landmark onset, 
versus a window just before. CIs were computed across sessions (See Methods). 
(g) Hypotheses for whether stable neural dynamics (Fig. 3b,c, Extended Data Fig. 
8) can determine how RSC activity encodes disambiguated landmark identity (‘a’ 
or ‘b’). Top: trials in which the correct identity is ‘a’ but that are neurally close to 
other trials where the answer is ‘b’ might get dragged along in the wrong direction 
at least transiently. This would indicate relevance of recurrent dynamics on this 
computation. Bottom: alternatively, neural activity could be determined by the 
correct answer, even in trials that (in neural rate space) are close to trials from the 
opposing class. (h) We tested this by finding the closest trial from the opposing 
class (for example the closest LM1a for a LM1b trial) in the 3-D embedded (via 
Isomap) RSC rate space. To evaluate co-evolution regardless of this selection 
confound, we then analyzed the direction of flow of the neural state over time 
(red). As a control, we also analyzed neurally far trials (grey). The flow direction 
of the neural activity was significantly aligned for ~100 ms. Median and CI via 
bootstrap. (i) Left: Schematic for the analysis of representation of LM1a vs. LM1b 
states. Trial-to-trial distances were compared within group vs. across group. 
Right: Both before and after the 2nd landmark becomes visible, the classes are 
distinct in neural state space. (Same data as in Fig. 4b, 5 sessions, 101 matched 
trials). (j) Whether a trial comes from LM1a or b can also be decoded from low-pass 
filtered (2 Hz) firing rates before the 2nd landmark onset (via regression tree, 
cross-validated across trials, balanced N across conditions, 5 sessions).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | ANN with binary landmark presence input, and ANN 
with non-negative rates, recapitulates all main findings from the external 
map ANN. (a) ANN with binary landmark presence input. Here, the ANN must 
simultaneously infer the landmark locations and the location of the animal, in 
contrast to the previous “external map” configuration. These determinations 
are inter-related, thus the much higher difficulty of the task. Structure of the 
recurrent network. Input neurons encoded noisy velocity (10 neurons) and 
landmark information (1 neuron). In the internal map setup, the input signaled 
whether a landmark was present at the current position or not. (b) State space 
trajectories in the internal map network after the second landmark encounter in 
two different environments. The dark green / dark blue parts of the trajectories 
correspond to the sections before the third landmark encounter. Left: 
Predominantly counterclockwise trajectories, right: Predominantly clockwise 
trajectories. Landmarks and trajectories were sampled with the same parameters 
as experiment configuration 1, but the duration of test trials was extended 
from 10 s (100 timesteps) to 50 s (500 timesteps). Only trials with low error 
after the second landmark encounter are shown, defined as maximum network 
localization error smaller than 0.5 rad, measured in a time window between 5 
timesteps after the second landmark encounter until the end of the trial. Only 
the state-space trajectory after the second landmark encounter is displayed. 
(c) State space dimension is approximately 3, same analysis as in Extended Data 
Fig. 5p. (d) Example tuning curves, same analysis as in Extended Data Fig. 5m. 
(e) Linear decoding of position, displacement from last landmark and landmark 
separation from ANN activity, same analysis as in Extended Data Fig. 6c. A 
multinomial regression decoder was trained on 4000 trials from experiment 
configuration 1 (the training distribution of the internal map task) to predict 
from hidden layer activities which of the four possible environments was present. 
Performance was evaluated on separate 1000 test trials sampled from the 
training distribution. (f) Example neurons showing transition from egocentric 
landmark-relative displacement coding to allocentric location encoding, same 
analysis as in Extended Data Fig. 6a,b. (g) Example neurons showing conjunctive 
encoding, same analysis as in Extended Data Fig. 2b. Location tuning curves 
were determined after the second landmark encounter using 1000 trials from 
experiment configuration 2 using 20 location bins. Velocity and uncertainty 
from the posterior circular variance of the enhanced particle filter were binned 
in three equal bins. (h) Distribution of absolute connection strength between 
and across location-sensitive “place cells” (PCs) and location-insensitive 
“unselective cells” (UCs), same analysis as in Extended Data Fig. 5n. (i) Hidden 
unit activations, corresponding to Fig. 2d. (j) Trajectories from example trials, 
as in Fig. 2e. (k) Same trajectories as in i&j but with full LM2 state. (l) ANN is 
robust to perturbations, same as in Extended Data Fig. 5w. (m) ANN maintains 

pairwise correlation structure across states and environments, same as in Fig. 
3a and Extended Data Fig. 5o. (n) ANN with non-negative rates recapitulates the 
main findings from the conventional ANNs. Training an ANN in the external map 
condition but with non-negative activity replicated all key results from the other 
NN types: we observed similar results with respect to location and displacement 
tuning (r), the transition in linear decodability of displacement to location from 
the population and dynamically varying decodability of landmark separations 
within trials (p), the presence of heterogeneous and conjunctive tuning (s), lack 
of modularity in connectivity between cells with high and low amounts of spatial 
selectivity (t), and the preservation of cell-to-cell correlations across time within 
trials and across environments (q). The nonlinearity does affect the distribution 
of recurrent weights: The distribution of non-diagonal elements in the non-
negative network is sparse (excess kurtosis k = 7.8), while it is close to Gaussian 
for the external and internal map networks with tanh-nonlinearity (k = 0.6 and 
k = 0.9 respectively; panel u); however, the distributions of eigenvalues of the 
recurrent weights have similar characteristics for all trained networks (panel 
v). Structure of the recurrent network: Input neurons encoded noisy velocity 
(10 neurons) and received external map input (70 neuron), same as the regular 
external map ANN. Recurrent layer rates were constrained to be non-negative. 
(o) Example tuning curves, same analysis as before. (p)Linear decoding of 
position, displacement from last landmark and landmark separation from 
ANN activity, same analysis as before. (q) ANN maintains pairwise correlation 
structure across states and environments, same as before. (r) Example neurons 
showing transition from egocentric landmark-relative displacement coding 
to allocentric location encoding, same analysis as before. (s) Example neurons 
showing conjunctive encoding, same analysis before. (t) Distribution of absolute 
connection strength between and across location-sensitive “place cells” (PCs) 
and location-insensitive “unselective cells” (UCs), same analysis as before. 
(u) Distribution of non-diagonal recurrent weights for randomly initialized 
(untrained), external map, internal map, and non-negative network. The k-value 
measured denotes excess kurtosis, a measure of deviation from Gaussianity 
(k = 0 for Gaussian distributions). The presence of a nonlinearity constraint 
on the ANN affects the distribution of recurrent weights: The distribution of 
non-diagonal elements in the non-negative network is sparse (excess kurtosis 
k = 7.8), while it is close to Gaussian for the external and internal map networks 
with tanh-nonlinearity (k = 0.6 and k = 0.9 respectively). (v) Scatterplot of real 
and imaginary part of complex eigenvalues of recurrent weight matrix for 
randomly initialized (untrained), external map, internal map, and non-negative 
network. The distributions of eigenvalues of the recurrent weights have similar 
characteristics for all trained networks.
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