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dynamics in mouse retrosplenial cortex
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% Check for updates From visual perception to language, sensory stimuli change their meaning

depending on previous experience. Recurrent neural dynamics caninterpret
stimuli based on externally cued context, but it is unknown whether they can
compute and employ internal hypotheses to resolve ambiguities. Here we
show that mouse retrosplenial cortex (RSC) can form several hypotheses over
time and perform spatial reasoning through recurrent dynamics. In our task,
mice navigated using ambiguous landmarks that are identified through their

mutual spatial relationship, requiring sequential refinement of hypotheses.
Neurons in RSC and in artificial neural networks encoded mixtures of
hypotheses, location and sensory information, and were constrained by
robust low-dimensional dynamics. RSC encoded hypotheses as locations
inactivity space with divergent trajectories for identical sensory inputs,
enabling their correctinterpretation. Our results indicate that interactions
between internal hypotheses and external sensory datain recurrent circuits
can provide asubstrate for complex sequential cognitive reasoning.

External context can change the processing of stimuli through recur-
rentneural dynamics’. In this process, the evolution of neural popula-
tion activity depends on its own history as well as external inputs?,
giving context-specific meaning to otherwise ambiguous stimuli®. To
study how hypotheses can be held in memory and serve as internal
signals tocompute new information, we developed a task that requires
sequential integration of spatially separated ambiguous landmarks®.
Inthistask, theinformation needed to disambiguate the stimuliis not
provided externally but must be computed, maintained over time and
applied to the stimuli by the brain.

Results

Wetrained freely moving mice to distinguish between two perceptually
identical landmarks, formed by identical dots on a computer-display
arena floor, by sequentially visiting them and reasoning about their
relative locations. The landmarks were separated by <180 degrees in
an otherwise featureless circular arena (50-cm diameter), to create

aclockwise (CW) (‘a’) and a counterclockwise (CCW) (‘b’) landmark.
Across trials, the relative angle between landmarks was fixed and
the same relative port was always the rewarded one; within trials,
the locations of landmarks was fixed. The mouse’s task was to find
and nose-poke at the CCW ‘b’ landmark for water reward (‘b’ was near
one of 16 identical reward ports spaced uniformly around the arena;
other ports caused a time out). At most, one landmark was visible at a
time (enforced by tracking mouse position and modulating landmark
visibility based on relative distance (Extended Data Fig. 1; Methods).
Each trial began with the mouse in the center of the arena in the dark
(‘LMO’ phase; Fig. 1b), without knowledge of its initial pose. In the inter-
val after first encountering a landmark (‘LM1’ phase), an ideal agent’s
location uncertainty is reduced to two possibilities, but there is no way
to disambiguate whether it saw ‘a’or ‘b. After seeing the second land-
mark, anideal agent could infer landmark identity (‘a’or ‘b’; this is the
‘LM2’ phase; Fig. 1b) by estimating the distance and direction traveled
since the first landmark and comparing those with the learned relative
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Fig. 1| RSC represents spatial information conjunctively with hypothesis
states during navigation with locally ambiguous landmarks. a, Two
perceptually identical landmarks are visible only from close up, and their identity
is defined only by their relative location. One of 16 ports, at landmark ‘b, delivers
reward in response to a nose-poke. The animal must infer which of the two
landmarks is ‘b’ to receive reward; wrong pokes result in timeout. Tetrode array
recordings in RSC yield 50-90 simultaneous neurons. b, Top, schematic example
trial; bottom, best possible guesses of the mouse position. LMO, LM1and LM2
denote task phases when the mouse has seen zero, one or two landmarks and
could infer their position with decreasing uncertainty. c, Left, example training
curve showing Pyi/Prise-positives Fandom chance level is 1/16 for 16 ports. Mice
learned the task at values >1, showing they could disambiguate between the two
sequentially visible landmarks. This requires the formation, maintenance and
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use of spatial hypotheses. Asterisks denote per-session binomial 95% significance
for the correct rate. Right, summary statistics show binomial Cls on last half of
sessions for all four mice. d, Mouse location heatmap from one session (red)
with corresponding spatial firing rate profiles for five example cells; color

maps are normalized per cell. e, Task phase (corresponding to hypothesis
statesin b canbe decoded from RSC firing rates. Horizontal line, mean; gray
shaded box, 95% CI. f, Spatial coding changes between LM1 and LM2 phases
(Euclidean distances between spatial firing rate maps, control within versus
across condition; see Extended Data Fig. 2a for test by decoding, median and Cls
(bootstrap)). g, Spatial versus task phase information content of all neurons and
position and state encoding for example cells. Gray, sum-normalized histograms
(colorscaleasind).

layout of the two landmarks; thus, an ideal agent can use sequential
spatial reasoningto localize itself unambiguously. For most analyses,
weignored cases where mice might have gained information from not
encountering alandmark, for example, as the artificial neural network
(ANN) does in Fig. 2e (and Extended Data Fig. 2e). To randomize the
absolute angle of the arena at the start of each new trial (and thus avoid
use of any olfactory or other allocentric cues), mice had to complete
aseparate instructed visually guided dot-hunting task, after which
the landmarks and rewarded port were rotated randomly together
(Extended Data Fig. 1b).

Micelearned the task (P < 0.0001on all mice, Binomial test versus
randomguessing; Fig. 1c), showing that they learnto form hypotheses
about their position during the LM1 phase, retain and update these
hypotheses with self-motion information until they encounter the
second (perceptually identical) landmark, and use them to disambigu-
ate location and determine the rewarded port. We hypothesized that
RSC, which integrates self-motion®, position®®, reward value’ and
sensory'’ inputs, could perform this computation. RSC is causally
required to process landmark information', and we verified that RSC
isrequired for integrating spatial hypotheses with visual information
but not for direct visual search with no memory component (Extended
DataFig.1i-1).

Spatial hypotheses are encoded conjunctively with other
navigation variables in RSC

Werecorded 50-90 simultaneous neuronsin layer 5of RSC in four mice
during navigational task performance using tetrode array drives?and
behavioral tracking (Fig. 1a and Extended Data Figs.1and 3; Methods).
RSC neurons encoded information about both the mouse’s location
(Fig.1d) and about the task phase, corresponding to possible location

hypotheses (Fig.1d,e). This hypothesis encoding was not restrictedtoa
separate population: most cells encoded both hypothesis state as well
asthe animal’s location (Fig. 1g).

Thisencoding was distinct from the encoding of landmark encoun-
tersintheinterleaved dot-hunting task and was correlated per session
with behavioral performance (Extended Data Fig. 4). The encoding of
mouse location changed significantly across task phases (Fig. 1d,f),
similar to the conjunctive coding for other spatial and task variables
in RSC®. This mixed co-encoding of hypothesis, location and other
variables suggests that RSC can transform new ambiguous sensory
informationinto unambiguous spatialinformation through the mainte-
nance and task-specific use of internally generated spatial hypotheses.

Hypothesis-dependent spatial computation using recurrent
dynamics

To test whether recurrent neural networks can solve sequential spa-
tial reasoning tasks that require hypothesis formation, and to pro-
vide insight into how this might be achieved in the brain, we trained
arecurrent ANN on a simplified one-dimensional (1D) version of the
task, since the relevant position variable for the landmarks was their
angular position (inputs were random noisy velocity trajectories and
landmark positions, but not their identity; Fig. 2b). The ANN performed
aswell as anear Bayes-optimal particle filter (Fig. 2b), outperforming
pathintegration with correction (corresponding to continuous path
integration>"* withboundary/landmark resetting'*'®) and represented
multimodal hypotheses, transitioning froma no-information state (in
LMO) to a bimodal two-hypothesis coding state (LM1) and finally to
afullinformation, one-hypothesis coding state (LM2) (Fig. 2c,d and
Extended DataFig. 5). Bimodal hypothesis states did not emerge when
the ANN was given the landmark identity (Extended Data Fig. Sh-k).
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Fig. 2| Recurrent neural dynamics can be used to navigate through locally
ambiguous landmarks by forming and employing multimodal hypotheses.

a, Schematic examples of hypothesis-dependent landmark interpretation. Left,
mouse encounters first LM, then identifies the second as ‘a’ based on the short
relative distance. Right, a different path during LM1leads the mouse to a different
hypothesis state, and to identify the perceptually identical second landmark

as ‘b Hypothesis states preceding LM2 are denoted LM1, and LM1,, depending
ontheidentity of the second landmark. b, Structure of an ANN trained on the
task. Inputs encode velocity and landmarks. Right, mean absolute localization
error averaged across test trials for random trajectories. ¢, Activity of output

neurons ordered by preferred location shows transition between LMO, LM1

and LM2 phases. Red, true location. During LM1 (when the agent has only seen
onelandmark), two hypotheses are maintained, with convergence to astable
unimodal location estimate in LM2 after encountering the second landmark.

d, 3D projection from PCA of ANN hidden neuron activities. During LM2, angular
position in neural state space reflects position estimate encoding. e, Example
ANN trajectories for two trials show how identical visual input (black arrowheads)
leads the activity to travel to different locations on the LM2 attractor because of
different preceding LML, , states.

Together, this shows that recurrent neural dynamics are sufficient to
internally generate, retainand apply hypothesesto reasonacross time
based onambiguous sensory and motor information, with no external
disambiguating inputs.

Both ANN and RSC neurons encoded several navigation variables
conjunctively (Extended Data Fig. 2b) and transitioned from encoding
egocentriclandmark-relative position during LM1to a more allocentric
encoding during LM2 (Extended Data Fig. 6). Instantaneous position
uncertainty (variance derived from particle filter) could be decoded
from ANN activity (Extended Data Fig. 51), analogous to RSC (Fig. le).
ANN neurons preferentially represented landmark locations (Extended
Data Fig. 2¢c; consistent with overrepresentation of reward sites in
hippocampus'™®), but we did not observe this effect in RSC. Average
spatial tuning curves of ANN neurons were shallower in the LM1 state
relative toLM2, corresponding to trial-by-trial ‘disagreements’ between
neurons, evident as bimodal rates per location. RSC rates similarly
became less variable across trials per location in LM2 (Extended Data
Fig.7), indicating that, in addition to the explicit encoding of hypoth-
eses/uncertainty (Fig. le,g), there is a higher degree of trial-to-trial
variability in RSC as a function of spatial uncertainty.

The ANN computed, retained and used multimodal hypotheses
tointerpret otherwise ambiguous inputs: after encounteringthe first
landmark, the travel direction and distance to the second is sufficient
to identify it as ‘a’ or ‘b’ (Figs. 1b and 2a). There are four possible sce-
narios for the sequence of landmark encounters: ‘a’ then‘b’, or ‘b’ then
‘a’, for CW or CCW travel directions, respectively. To understand the
mechanism by which hypothesis encoding enabled disambiguation,
we examined the moment when the second landmark becomes vis-
ible and can be identified (Fig. 2a). We designate LM1 states in which
the following second landmark is ‘a’ as ‘LM1,” and those that lead to
‘b’ as ‘LM1,. Despite trial-to-trial variance resulting from random

exploration trajectories and initial poses, ANN hidden unit activity
fell onalow-dimensional manifold (correlation dimensiond = 3; Fig. 3d)
and could be well captured in a three-dimensional (3D) embedding
using principal component analysis (PCA) (Fig. 2d). Activity states
during the LMO,1,2 phases (green, blue and gray/red, respectively)
were distinct, and transitions between phases (mediated by identi-
cal landmark encounters; black arrows) clustered into discrete loca-
tions. Examining representative trajectories (for the CCW case; Fig. 2e)
reveals that LM1, and LM1, states are well-separated in activity space.
If the second landmark appears at the shorter CCW displacement
(correspondingtothe‘a’to‘b’interval), the state jumpsto the ‘b’ coding
pointonthe LM2 attractor (Fig.2e). Onthe other hand, the absence of
alandmark at the shorter displacement causes the activity to traverse
LM1,, until the second landmark causes ajump onto the ‘a’ codingloca-
tiononthe LM2attractor. Inboth cases, anidentical transient landmark
input pushes the activity from distinct hypothesis-encoding regions
ofactivity space onto different appropriate locationsinthe LM2 state,
constituting successful localization.

We next consider the nature of the dynamics and representa-
tion that allows the circuit to encode the same angular position vari-
ables across LM1 and LM2 regimes while also encoding the different
hypotheses required to disambiguate identical landmarks. Does the
latter drive the network to functionally reorganize throughout the
computation? Or, does the former, together with the need to main-
tainand use the internal hypotheses across time, require the network
to exhibit stable low-dimensional recurrent attractor dynamics? To
test this, we computed the pairwise correlations of the ANN activity
states (Fig. 3a) and found them to be well conserved across LM1 and
LM2 states. As these correlation matrices are the basis for projections
into low-dimensional space, this shows that the same low-dimensional
dynamics were maintained, despite spanning different computational
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Fig. 3 | Stable low-dimensional dynamics for hypothesis-based stimulus
disambiguation. a, Correlation structure in ANN activity is maintained across task
phases, indicating maintained low-dimensional neural dynamics across different
computational regimes. Top, pairwise ANN tuning correlations in LM1and LM2
(same ordering, by preferred location). Bottom, tuning curve pairs (normalized
amplitude). b, Same analysis as a, but for RSCin one session (N = 64 neurons,
computed on entire spike trains, sorted via clustering in LM1). The reorganization
of spatial coding as hypotheses are updated (Fig. 1d,f) is constrained by the stable

2D location encoding in RSC
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pairwise structure of RSC activity. Neurons remain correlated (first and second
pair) or anticorrelated (third and fourth pair) across LM1and LM2. ¢, Summary
statistics (session median and quartiles) for maintenance of correlations

across task phases. This also extends to a separate visually guided dot-hunting
task (Extended Data Fig. 8).d, Activity in both the ANN and RSCis locally low-
dimensional, through correlation dimension (the number of points in aball of
some radius grows with radius to the power of N if data is locally N-dimensional) on
20 principal components. See Extended Data Fig. 8 for analysis by PCA.

and hypothesis-encoding regimes (metastable two-state encoding
with pathintegrationin LM1versus stable single-state path integration
unchanged by further landmark inputs in LM2; Extended Data Fig. 5).
Low-dimensional pairwise structure was also conserved across differ-
ent landmark configurations and varied ANN architectures, and the
low-dimensionality of ANN states was robust to large perturbations
(Extended DataFig. 5w).In sum, these computations were determined
by one stable set of underlying recurrent network dynamics, which,
together with appropriate self-motionand landmark inputs, canmain-
tainand update hypotheses to disambiguate identical landmarks over
time, with no need for external inputs.

RSC fulfills requirements for hypothesis-dependent spatial
computation using recurrent dynamics

We hypothesized that RSC and its reciprocally connected brain regions
may, similarly to the ANN, use internal hypotheses to resolve landmark
ambiguities using recurrent dynamics. Using the ANN as atemplate for
aminimal dynamical system that can solve the task (Fig. 2), we asked
whether neural activity in RSC is consistent with a system that could
solve the task with the same mechanisms. To be described as a dynamical
system, neural activity must first be sufficiently constrained by astable
set of dynamics, that s, the activity of neurons must be sufficiently influ-
enced by that of other neurons, and these relationships must be main-
tained over time'. To test this property, we first computed pairwise rate
correlations and found a preserved structure between LM1and LM2, as
inthe ANN (median R (across sessions) of Rs (across cells) = 0.74 inRSC,
versus 0.73in ANN; Fig. 3c). Firing rates could be predicted fromrates of
otherneurons, using pairwise rate relationships across task phases; this
maintained structure also extended to the visual dot-hunting behavior
(Extended DataFig. 8). Because pairwise correlations form the basis of
dimensionality reduction, this shows that low-dimensional RSC activity

is coordinated by the constraints of stable recurrent neural dynamics
and not afeature of a specific behavioral task or behavior.

To employ neural firing rates as states of a dynamical system that
act as memory and computational substrates in the same manner as
inthe ANN, they should also be low-dimensional. Consistent with the
stable relationships between neurons, most RSC population activity
was low-dimensional (around six significant principal components,
and correlation dimension of around 5.4; Fig. 3d and Extended Data
Fig. 8), similar to findings in hippocampus'. Together, we find that
despite significant changesin neural encoding as different hypotheses
areentertained across task phases (Fig.1d-fand Extended Data Figs. 3f
and 2a) and across different tasks (Extended DataFig. 4a-d), the evolu-
tion of firing ratesin RSC is constrained by stable dynamics that could
implement qualitatively similar states as the ANN.

To compute with a dynamical system, states that act as memory
need to affect how the systemreactsto furtherinput. The ANN solves the
task using distinct hypothesis states that are updated with visual inputs
andlocomotion, by placing themin the state space so that visual input
arriving at different hypothesis states within LM1 (LM1, versus LM1,)
pushesactivity onto the correct statesin LM2 (Fig. 2). We examined this
process in RSC by first looking at the evolution of neural states during
the spatial reasoning process. States evolved at speeds correlated with
animal locomotion, consistent with the observation that hypotheses
areupdated by self-motionin betweenlandmark encounters and were
driven by landmark encounters consistent with findings in head-fixed
tasks" (Extended Data Fig. 9a). Neural states were also driven by fail-
ures to encounter landmarks at expected positions, which can also be
informative (Fig. 2e, right), albeit with a different neural encoding than
we observed for encountering the landmarks (Extended Data Fig. 2e).

We next tested whether sufficiently separated neural states, LM1,
and LM1,, together with stable low-dimensional attractor dynamics
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Fig. 4| RSC exhibits stable attractor dynamics sufficient for computing
hypothesis-dependent landmark identity. a, Top, to study hypothesis
encoding and its impact without sensory or motor confounds, we used trials
with matched egocentric paths just before and after the second landmark

(‘a’or ‘b’) encounter. One example session is shown. Bottom, 3D neural state
space trajectories (isomap); RSC latent states do not correspond directly to those
ofthe ANN. b, RSC encodes the difference between LM1, and LM1,, and between
subsequent LM2 states, as in the ANN (Fig. 2e and Extended Data Fig. 5). Blue,
within-group and grey, across-group distances in neural state space. Horizontal
lines, mean; boxes, 95% Cls (bootstrap). State can also be decoded from raw spike
rates (Extended Data Fig. 9j). ¢, Neural dynamics in RSC are smooth across trials:
pairwise distances between per trial spike counts ina 750 ms window before

LM2 onset remain correlated with later windows; line, median; shading, Cls
(bootstrap).d, RSC activity preceding the second landmark encounter predicts

correct/incorrect port choice (horizontal line, mean; gray shaded box, 95% CI
frombootstrap, cross-validated regression trees). e, Decoding of hypothesis
states and position from RSC using ANNs toillustrate the evolution of neural
activity in the task-relevant space (see b, cand d and Fig. 1e,f, Extended Data
Fig. 9 statistics). f, Schematic of potential computational mechanisms. Left, if
RSC encodes only current spatial and sensorimotor states and no hypotheses
beyond landmark count (LM1, or LM2,, derived from seeing the first landmark
and self-motion integration that lead to identifying the second landmark as ‘a’
or ‘b’), anexternal disambiguating input is needed. Right, because task-specific
hypotheses arising from the learned relative position of the landmarks are
encoded (this figure), and activity follows stable attractor dynamics (Fig. 3),
ambiguous visual inputs can drive the neural activity to different positions,
disambiguating landmark identity in RSC analogously to the ANN.

could resolve the identity of the second landmark. If so, this would
suggestthat,asinthe ANN, the ensemble activity stateinRSC canserve
both as memory and affect future computations. We identified subsets
of trialsin which mouse motion around the LM1to LM2 transition was
matched closely and aligned them in time to the point when the second
landmark became visible (Fig. 4a). In these trials, locomotion and visual
inputs are matched, and only the preceding hypothesis state (LM1, or ;)
differs. RSC firing rates differed between LM1, and LM1, states, as did
subsequent ratesin LM2 (comparing within- to across-group distances
inneural state space across matched trials, and by decoding state from
firingrates: Fig. 4b and Extended Data Fig. 9i,j).

To compute with the same mechanism as the ANN, neural states
must be governed by stable dynamics consistently enough for current
states to reliably influence future states, which requires that nearby
states do not diffuse or mix too quickly'. We found that RSC firing rates
were predictable across trials such that neighboring trials in activity
space remained neighbors (Fig. 4c), which further confirms stable
recurrent dynamics, that these states can be used as computational
substrate, and indicates a topological organization of abstract task
variables”. This indicates that stably maintained hypothesis-encoding

differences in firing over LM1 could interact with ambiguous visual
landmark inputs to push neural activity from distinct starting points
in neural state space to points that correspond to correct landmark
interpretations, asin the ANN.

The ANN achieved high correct rates, but mice make mistakes.
If the dynamical systems interpretation holds, such mistakes would
be explainable by LM1, or , states that are not in the right location,
and lead to the wrong LM2 interpretation. Indeed, we observed that
neural trajectories from LM1, that were close in activity space to LM1,
were dragged along LM1, trajectories and vice-versa (they had simi-
lar movement directions; Extended Data Fig. 9g,h), suggesting that
behaviorallandmarkidentification outcomes might be affected by how
hypotheses were encoded in RSC during LM1. We tested this hypothesis
and found that RSC activity in LM1 (last 5 s preceding the transition to
LM2) was predictive of the animal’s behavioral choice of the correct
versus incorrect port (Fig. 4d). Notably, this behaviorally predictive
hypothesis encoding was absent during training in sessions with low
task performance (Extended DataFig. 4), indicating that the dynamical
structures and hypothesis states observed in RSC were task-specific
and acquired during learning.
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Our unrestrained nonstereotyped behavior is not amenable to
direct comparison of activity trajectories between ANNs and the brain
asothershave donein highly stereotyped trials of macaque behavior'.
Instead, we found that the dynamics of firing rates in mouse RSC are
consistent with, and sufficient for, implementing hypothesis-based
disambiguation ofidentical landmarks using a similar computational
mechanism as observed in the ANN.

Discussion

We report that RSC represents internal spatial hypotheses, sensory
inputs and their interpretation and fulfills the requirements for com-
puting and using hypotheses to disambiguate landmark identity using
stable recurrent dynamics. Specifically, we found that low-dimensional
recurrent dynamics were sufficient to perform spatial reasoning (that
is to form, maintain and use hypotheses to disambiguate landmarks
over time) in an ANN (Fig. 2 and also see Extended Data Fig. 10 for
non-negative ANNs and when no map input was given). We then found
that RSCfulfills the requirements for such dynamics, thatis, encoding
of the required variables (Figs. 1 and 4) with stable low-dimensional
(Fig. 3) and smooth dynamics that predicted behavioral outcomes
(Fig. 4). Due to the higher trial-to-trial variability and lower number
of recorded cells, we do not draw direct connections between specific
latent states of the ANN and neural data, as was done in previous studies
in primates>**° or simpler mouse tasks'**.

We observed thatlocal dynamicsinRSC can disambiguate sensory
inputs based on internally generated and maintained hypotheses
without relying on external context inputs at the time of disambigua-
tion (Fig. 4), indicating that RSC can derive hypotheses over time and
combine these hypotheses with accumulating evidence from the inte-
gration of self-motion (for example, paths after the first landmark
encounter) and sensory stimuli to solve a spatiotemporally extended
spatial reasoning task. These results do not argue for RSC as an exclu-
sive locus of such computations. There is evidence for parallel com-
putations, likely at different levels of abstraction, across subcortical®
and cortical regions such as PFC*>***, PPC*, LIP* and visual”’*® areas.
Further, hippocampal circuits contribute to spatial computations
beyond representing space by learning environmental topology” and
constraining spatial coding using attractor dynamics'****' shaped by
previous experience®. Finally, the landmark disambiguation that we
observed probably interacts with lower sensory areas®, reward value®**
and action selection computations*-*,

The emergence of conjunctive encoding, explicit hypothesis
codes and similar roles for dynamics across RSC and the ANN suggests
that spatial computations and, by extension, cognitive processing
in neocortex may be constrained by simple cost functions?®, simi-
lar to sensory”” or motor*® computations. The ANN does not employ
sampling-based representations, which have been proposed as possible
mechanisms for probabilistic computation®*°, showing that explicit
representation of hypotheses and uncertainty as separate regions in
rate space could serve as alternative or supplementary mechanism
tosampling.

Akey open question is how learning a specific environment, task
or behavioral context occurs. We observed that hypothesis coding
emerges with task learning (Extended Data Fig. 4). Possible, and not
mutually exclusive, mechanisms include: (1) changes of the stable
recurrentdynamicsinRSC, asis suggestedin hippocampal CAl (ref. 29);
(2) modification of dynamics by context-specific tonicinputs®*°; or (3)
changesin how hypotheses and sensory information are encoded and
read out while maintaining attractor dynamics that generalize across
environments or tasks, as indicated by the maintenance of recurrent
structure acrosstasksinour data (Extended DataFig. 8) and as has been
shown in entorhinal®** and motor cortex*®and ANNs**, possibly helped
by the high-dimensional mixed nature of RSC representations***. Fur-
ther, how such processes are driven by factors such as reward expecta-
tion®*isan active area of research.

Our findings show that recurrent dynamics in neocortex can simul-
taneously represent and compute with task and environment-specific
multimodal hypotheses in a way that gives appropriate meaning
to ambiguous data, possibly serving as ageneral mechanismfor cogni-
tive processes.
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Methods

Mouse navigation behavior and RSC recordings

Drive implants. Lightweight drive implants with 16 movable tetrodes
werebuilt as described previously™. The tetrodes were arranged inan
elongated array of approximately 1,250 x 750 um, with an average dis-
tance between electrodes of 250 um. Tetrodes were constructed from
12.7-pm nichrome wire (Sandvik-Kanthal, QH PAC polyimide coated)
with anautomated tetrode twisting machine® and gold-electroplated
to animpedance of approximately 300 kQ.

Surgery. Mice (male, C57BL/6 RRID: IMSR_JAX:000664) were aged
8-15 weeks at the time of surgery. Animals were housed in pairs or
triples when possible and maintained on a12-h cycle, at 65-70 °F with
~60% humidity. All experiments were conducted in accordance with
the National Institutes of Health guidelines and with the approval of
the Committee on Animal Care at the Massachusetts Institute of Tech-
nology (MIT). All surgeries were performed under aseptic conditions
under stereotaxic guidance. Mice were anesthetized with isofluorane
(2% induction, 0.75-1.25% maintenance in11 min™ oxygen) and secured
in a stereotaxic apparatus. A heating pad was used to maintain body
temperature; additional heating was provided until fully recovered.
Thescalp wasshaved, wiped with hair-removal cream and cleaned with
iodine solution and alcohol. After intraperitoneal (IP) injection of dexa-
methasone (4 mg kg™), carprofen (5 mg kg™), subcutaneous injection of
slow-release buprenorphine (0.5 mg kg™) and local application of lido-
caine, the skull was exposed. The skull was cleaned with ethanol, and
a thin base of adhesive cement (C&B Metabond and Ivoclar Vivadent
Tetric EvoFlow) was applied. A stainless steel screw was implanted
superficially anterior of bregmato serve as electrical ground.

A 3-mm craniotomy was drilled over central midline cortex, a
durotomy was performed on one side of the central sinus and tetrode
drives?wereimplanted above RSC, at around anterior—posterior (AP)
-1.25to-2.5 mmand medio-lateral (ML) 0.5 mm, with the long axis of
thetetrode array oriented AP and the tetrode array tilted inwards atan
angle of -15-20° and fixed with dental cement. The ground connection
on the drive was connected to the ground screw, and the skin around
the drive implant was brought over the base layer of adhesive as much
aspossible to minimize the resulting open wound, sutured and secured
with surgical adhesive.

At the time of implant surgery, only two of the tetrodes were
extended from the drive to serve as guides during the procedure. All
other tetrodes were lowered into superficial layers of cortex within
3 days postsurgery. Mice were given1week torecover before the start
of recordings.

Chronic electrophysiology. Afterimplant surgery, individual tetrodes
were lowered over the course of several days until adepth correspond-
ing to layer 5was reached and spiking activity was evident. Data were
acquired with an Open Ephys*® ONIX* prototype system at 30 kHz
using the Bonsai software*® (v.2.2; https://bonsai-rx.org/). The tether
connecting the mouse headstage to the acquisition systemwas routed
through acommutator above the arena and was counterbalanced using
asegmentofflexiblerubber tread. Tetrodes were occasionally lowered
by small increments of ~50 pm to restore good recording conditions
or to ensure sampling of new cells across sessions.

Spike sorting. Voltage data from the 16 tetrodes, sampled at 30 kHz
were bandpass filtered at 300-6,000 Hz, and amedian of the voltage
across all channels that were well connected to tetrode contacts was
subtracted from each channel to reduce common-mode noise such
aslicking artifacts.

Spike sorting was then performed per tetrode using the Moun-
tainsort software*’ (https://github.com/flatironinstitute/mountain-
sort_examples), and neurons were included for further analysis if they
had anoise overlap score <0.05, anisolation score >0.75 (provided by

Mountainsort*), a clear refractory period (to ensure spikes originated
from single neurons), a spike waveform with one peak and a clear
asymmetry (to exclude recordings from passing axon segments) and
asmooth voltage waveformand ISI (inter spike interval) histogram (to
exclude occasional spike candidates driven by electrical noise). Units
were notexcluded based on firing rates, tuning or any higher order fir-
ing properties. The number of simultaneously recorded cells per mouse
for the main analyses was as follows. Blackdot, 52,53,54,49; Gothmog,
55,59,52,51,51,85; Nodot, 65,86,72,69; Unnamed], 67,64; Total, 984. For
the entire dataset analyzed in the analysis over learning (Extended Data
Fig.4),alarger number of cells, and of simultaneously recorded cells,
were collected, and sessions with <50 cells were included.

Histology. To verify the localization of the recording sites (Extended
Data Fig. 3), electrolytic lesions were created by passing currents of
20 pA through a subset of tetrodes (roughly four tetrodes per ani-
mal) for 30 s each under isoflurane anesthesia, and animals were
perfused and brain processed 1 h later. Brains were mounted with
4/,6-diamidino-2-phenylindole and imaged.

Behavioral experiment hardware. Behavior was carried out in a cir-
cular arena of 50-cm diameter. The floor of the arena was formed by
aclear acrylic sheet, under which a diffusion screen and a flat-screen
TVwas positioned on which visual stimuli were displayed. The circular
arenawall was formed by 32 flat black acrylic segments, every other one
of which contained an opening for arecessed reward ports, 16 in total.
Each reward port contained an optical beam break (880-nminfrared
(IR), invisible to mouse) that detected if a mouse was holding its nose
in the port, a computer-controlled syringe pump for water reward
delivery and a dedicated beeper as asecondary reward indicator. The
behavior arena was housed in a soundproof and light-insulated box
withnoindicatorsthat could allow the mice to establish their heading.
Videowas acquired by a central overhead cameraat30 Hz using alow
level of infrared light at 850 nm and the mouse position was tracked
using the oat software® (https://github.com/jonnew/Oat). A custom
behavioral control state machine written in Python was triggered
every time a new camera frame was acquired, and the position of the
animal, time passed and port visits were used to transition the logic
of the state machine (Extended Data Fig. 1). For analysis purposes,
all behavioral data was resampled to 100 Hz and synchronized to the
electrophysiological data.

Inactivation of RSC and causal necessity for hypothesis-based
computations. For pharmacological inactivation of RSC (Extended
Data Fig. 1i-1), four mice were trained on a simplified parametric task
that permitted us to causally test the role of RSC inindividual record-
ingandinactivation sessions. The task required integration of an allo-
centric position hypothesis with visual landmarks (Extended Data
Fig.1i,j). After mice learned the task—quantified as reaching a hit rate
ofabove 30%inthe simple conditions (high eccentricity; Extended Data
Fig.1j)—they were givenaccessto unrestricted water and implanted fol-
lowing the procedure described for the main experimentbut, instead
of a chronic drive implant, a removable cap was implanted and two
burr holes were prepared above RSC and covered with dental cement
(Extended Data Fig. 1k). After recovery from surgery, mice were put
back on water restriction over the course of 1 week and reintroduced
to the task. Before each experiment, mice were anesthetized briefly
withisoflurane, the cap was opened temporarily and the exposed skull
was wiped with lidocaine and an injection of either 50 nl of 1 pg mi™*
muscimol solution in cortex buffer per side, or the same volume of
cortex solution was performed through the existing burr holes. Mice
were left to recover from anesthesia for 15 min and tested on the task.
Performance was assessed as the hit rate on the first port visit per
trial, and confidence level were computed using the Clopper—Pearson
method for binomial confidence intervals (Cls) at the 95% level.
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Behavioral training. After mice had undergone surgery, they were
givenatleast 1 week torecover before water scheduling began. Initially,
mice received 3 ml of water per day in the form of 3 g of HydroGel
(ClearH20), which was reduced gradually to 1.0-1.5 g per day. During
this period, mice were handled by experimenters and habituated to
the arena. Throughout the entire experiment mice were given water
rewards for completion of the task and were given additional water to
maintain their total water intake at 1.25-1.5 ml.

After initial acclimation to the recording arena over 2 days, mice
were trained on the task. Throughout the task we used white circular
cues on the floor (referred to as landmarks) of ~30-mm diameter on a
black background. These landmarks were the only source of lightin the
experiment. Mice were run every day or every other day, for a single
session of 30 minto 3 h per day. Training progressed in several phases:

(1) Initially, mice were trained that circular visual cues on the floor
of the arena indicated reward locations. One of the 16 ports was
selected randomly as reward port and a cue was shown in front
of this port. Visiting an incorrect port resulted in a time out
(-1sinitially, increased later), during which the entire arena
floor was switched to gray leading to a widespread visual
stimulus. Visiting the correct port resulted in an audible beep
from the beeper located in the port and around 0.005 ml of
water were delivered by the syringe pump. After areward, a new
reward port was chosen randomly, and the landmark was ro-
tated together with the port, effectively performing a rotation
of the entire task, and the next trial began. This meant that mice
learned to not rely on any cues other than the visual landmark
to locate the correct port. Mice usually completed this phase in
by day 4.

(2) Wethenintroduced a new task phase, referred to in the text as
‘dot-hunting’ task: after each reward, the landmark disappeared
and instead a blinking dot was shown in a random location in
the arena. If the mouse walked over that dot, it disappeared and
either anew dot in a new random location appeared, repeat-
ing the process, or the next trial was initiated. The number of
required dots—-chases was sampled uniformly from a range
and was increased to six to eight by the time recordings began,
and the last dot was always positioned at the arena center. This
task phase served to obfuscate the rotation of the task. Data
acquired during this task phase were used during spike sorting
but were not part of the main dataset in which we analyzed hy-
pothesis representation. We analyze this task phase separately
in Fig. 3c and Extended Data Figs. 3h,i, 4 and 8. Mice learned this
task phase, with six to eight dots, by day 7 on average.

(3) Throughout phases1and 2, we progressively introduced a
requirement for the mice to hold their snouts in the reward port
for increasing durations to trigger a reward or time out. For
each port visit, the required duration was drawn randomly from
auniform distribution, so on any given trial the mice did not
know when exactly to expect to know the outcome of the port
visit. Initially, this hold time was 500 ms, and the time range was
slowly increased throughout training, depending on animal
performance. By the time recordings began, a range of around
4-6 swas used. Mice were able to tolerate this holding time by
day 20 on average.

(4) Next, weintroduced anidentical second landmark at a nonre-
warded port. Initially, the two landmarks were set two ports
apart (for example, ports 1and 3), and this distance was pro-
gressively increased to four or five ports. As before, the reward-
ed port and landmarks were rotated randomly after each trial,
but their relative positions remained stable. Visiting the reward
portat the incorrect, ‘a’ landmark (and holding there for the
required duration) was handled identically to visits to any other
nonreward port and triggered the same time out. As a result,

mice learned to visit the ‘b’ port. Mice learned to make an initial
distinction between the ports approximately by day 14-16. In
one mouse, we maintained this training phase until overall task
performance was significant over entire sessions (Extended
Data Fig. If), but we noticed that the mouse had trouble consist-
ently relearning the next task phase. We therefore transitioned
subsequent mice to the next phases before a stable behavior
was established.

(5) After the mice started learning to visit the port at the ‘b’ land-
mark, we introduced a view distance limitation that made land-
marks invisible from far away: the mouse’s position was tracked
at 30 Hz and, for each landmark, its brightness was modulated
inreal time as a function of the mouse’s distance from it. The
visibility was O for distances above a threshold, 1 for distances
below a second threshold and transitioned linearly between the
two values. For clarity, we draw only the first threshold where
landmarks initially become visible in the illustrations. The sec-
ond threshold was typically set to about 50% of the first, leading
to a gradual brightening, but in the otherwise totally dark
arena, almost any values >1 are clearly visible. Initially, thresh-
olds were set so that both landmarks were visible from the
arena center (-20 cm); they were then reduced progressively to
values where, at any one time, only one of the landmarks was
visible to the mouse (-10 cm). At this stage, mice that encoun-
ter alandmark after a new trial starts have no way of knowing
whether this is the rewarded or nonrewarded landmark, unless
they infer landmark identity via path integration (See Fig. 2e
right or Extended Data Fig. 2e). Recordings began when mice
were able to complete 100 trials per hour at a hit/miss rate >1.
Mice reached this criterion level on average by total day 30-40
of training.

Statistics and reproducibility. Statistical tests were carried out in
Matlab (Mathworks, v.2019) using built-in functions. Unless stated oth-
erwise, Clswere computed at a 95% level using bootstrap, and Pvalues
were computed using aMann-Whitney Utest or Wilcoxon signed-rank
test. Infigures, significance values are indicated as nonsignificant (NS)
(P>0.05),*(P<0.05),**(P< 0.01) or **(P< 0.001). No statistical method
was used to predetermine sample sizes.

Behavior analysis. Recording sessions were included once mice
performed the task well enough to achieve a session average hit/miss
ratio >1, indicating that mice could infer the correct port between the
‘a’and ‘b’ landmarks (a correct rate of >1/16 would indicate that they
can associate landmarks with rewarded ports, but not that they can
infer landmark identity). Because landmarks are visible sequentially
only after full training, a ratio >1 shows that mice employed amemory
based strategy where they used a previous hypothesis derived from
seeing or not seeing the firstlandmark, together with pathintegration,
toinfer theidentity of the second landmark they encounter. Only ses-
sionswithatleast 50 recorded single neurons, and with at least 50 min
oftask performance were included. This yielded 16 sessions from four
mice. Forsome analyses, particularly for analyses where trajectories of
the mice were matched across trial types to control for potential motor
and sensory confounds, additional selection criteria were applied
yielding a lower number of sessions that could be used, this is stated
forthe respective analyses. For plots of the learning rates, weincluded
trials where mice encountered their first landmark after 20 s or faster
to exclude periods where mice were not engaged.

Behavioral epochs. For analysis, each trial was split into epochs: the
time between the onset of a trial (right after the mouse completes the
preceding reinitialization procedure, and finds itself at the center of
the arena, unsure of its orientation relative to the currently invisible
landmarks) and the onset of the reward (the first time the mouse could
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know whether it reached the correct port, other than by process of
elimination after visiting all other ports) was split up based on the
amount of information the mouse could have accumulated: the initial
state when mice had notseenanylandmark was labeled ‘LMO, time after
the first landmark encounter was labelled ‘LM1, and after the second
encounter as ‘LM2’. The timepoints when landmarks became visible
and the mouse transitioned from LMO to LM1 or from LM1 to LM2,
referred to as ‘landmark encounters’ were defined as the timepoint
when landmark visibility exceeded 50%.

For analyses of the correlation of neural state and eventual behav-
ioral outcomes, each second landmark encounter was further catego-
rized as whether it occurred at the ‘a’ or ‘b’ landmark. For behavioral
analysesinFig.4d, trialswere further categorized by whether they led
toacorrect port visit or toaincorrect visit and a time out.

Similarity of spatial tuning across conditions. Changes in spatial tun-
inginindividual RSC neurons as mice encounter successive landmarks
(Fig. 1f) was quantified by the Euclidian distance of their spatial tuning
profiles (inan 8 x 8 map, resulting in a 64-element vector, for each com-
parisonnonvisited ties were omitted). As aninternal control, distance
between tuning profiles within condition and across condition were
compared using nonoverlapping 1-min segments. The control levels
aredifferentbetweenthe cases because the amount of data per session,
reliability of firing, and so on, is not constant, and each controlis valid
only for its test data. For each comparison (LM1 versus LM2 and LMO
versus LM1), the split spatial tuning maps were compared either within
the conditions, for example, within LM1and within LM2, and compared
with distances between LM1and LM2 maps.

Neural decoding of mouse position. All decoding analyses were
performed on the entire neural population with no preselection. To
decode the mouse position from RSC firing rates, neural firing rates
were first low-passfiltered at 1 Hz with asingle-pole Butterworth filter.
The resulting firing rate time series were used to predict the mouse
position as 100 categorical variables forming a 10 x 10 bin grid (bin
width=50 mm). The network was made up of asingle long short-term
memory (LSTM) layer with 20 units, and a fully connected layerinto a
softmax output into the 100 possible output categories. For analyses
ofintermediate information content of the decoder, the network input
into the final softmax layer was analyzed.

Decoding was reinitialized for each trial. For each decoded trial,
all other trials served as training set. For analysis of how the neural
coding of positionwas dependent on the landmark state of the mouse
(Extended Data Fig. 2a), the same analysis was repeated with training
and testing data further divided by landmark state. For analysis of
the decoding performance, the output likelihood from the decoder
was evaluated at the mouse’s true position for all positions that were
shared across conditions for this session. Statistical analysis was then
performed on a per session average likelihood (not weighted by num-
ber of trials per session).

Neural decoding of landmark state. For the analysis of landmark
state (Fig. 1e), trialswith atleast 0.5 s of datafrom all three states were
used (16 sessions, 486 total trials) and individual trials were held out
from training for decoding. Firing rates were low-pass filtered with a
causal single-pole Butterworth filter at 0.05 Hz, and landmark state
(0,10r2) was decoded independently for each timepoint using a cat-
egoricallinear decoder (dummy variable coding, (N,eurons + 1) X 3 param-
eters), or a neural network with no recurrence, using a single 20-unit
layer receiving instantaneous firing rates, into a six unit layer and into
three softmax outputs. Training data were balanced across condi-
tions. For related analyses of hypothesis state decoding, see also Fig. 4
and Extended Data Fig. 9j, where we decode form position-matched
timepoints to account for location, motor and visual confounds, and
Extended Data Fig. 7 where we match for position.

Analysis of landmark ‘nonencounters’. To show that mice can gain
information by not encountering alandmark (asis shown, for example,
bythe ANN exampleinFig.2), we analyzed cases where the mouse first
encountersalandmark, and then, inthe LM1state, encounters the posi-
tionwhere anotherlandmark could be, but fails to see one. We note that
this analysis has unavoidable confounds, asin one condition the mouse
gets salient visual input, in the other it does not. We consequently
ignored these cases inthe main analysis, and instead concentrated on
cases where visual input was matched, but previous hypotheses differ
(Fig. 4). We analyze these nonencounters by decoding the associated
state change with the same method asin ‘Neural decoding of landmark
state, but with nonbalanced conditions, due to the lower trial count,
and analysis of the prediction around the O-s point.

Dimensionality analysis. PCA was performed by first computing the
covariance matrices of the low-pass filtered (as before) firing rates,
and plotting their eigenvalue spectra, normalized by sum (Extended
Data Fig. 8c). Each scaled eigenvalue corresponds to a proportion
of explained variance. Spectra are plotted together with a control
spectrum computed from covariances of randomly shuffled data. For
adescription of the method used to compute the correlation dimen-
sion of RSCrates (Extended DataFig. 8d), see the heading ‘Correlation
dimension’in the section about ANN methods below.

Prediction of firing rates across RSC population. For quantification
oftheindependence of individual RSC neurons from the surrounding
RSC population (Extended Data Fig. 8f,g), the firing rates of each neu-
ronwere predicted fromthose of all other neurons using linear regres-
sion. Rates were first filtered at 0.01-0.5 Hz with a third-order
Butterworth filter, and subsampled to 3.3 Hz. Each neuron’s rate was
predicted with L, regularized linear regression® (lasso, 1 ~ 0.0001) from
therates of all other neurons and preceding firing rates using eight lags
(-0.2.5s). Goodness of fit was quantified as the proportion of variance
explained, R =1-3,(¥; - Yf“d)z/zi()/i - )7)2 . Predictions were com-
puted bothwithin condition (LM1, LM2 and dot-hunting phase), as well
asacross conditions, where the model was fit using coefficients deter-
mined from the other conditions.

Computation of firing rate distribution entropies. Entropies of
empirical firing rate distributions were computed in bits according to
their Shannonentropy, H(X) = —E;':IP(xi) log,P(x;), relative to auniform
histogramofthe samesize, H (X) = — (H (X) — H(uniform)).Incases where
zeros appeared, a small offset term <<1was added and all histograms
werenormalized toasumof1.Forexample, A ([1,0]) = A([1,1,0,0]) = 1bit,
and A([1,1,1,1.3]) = 0.01bit. For the analysis in Fig. 1g, a 8 x 8 grid was
used for spatial coding, and three bins for the state coding. Although
the 8 x 8 grid is coarse enough to allow accurate capture of the spatial
firingrate profile even for low-rate cells, the resulting estimates could
be minimally affected by firing rate differences between neurons.

Trial-to-trial variance of firing rates conditioned on position. For
analysis of whether partial hypothesis representationin the LMl state
correspondstotrial-by-trial changes in firing rates, evidentin bimodal
firing rate histograms, histograms of hidden unit firing rates of the
ANN, conditioned onbinned 1D position are displayed (Extended Data
Fig. 7a). Data are from Experiment configuration 2 (‘Overview over
experiment configurations used with ANNs’). Tuning curves were cal-
culated using 20 bins of location/displacements and normalized indi-
vidually for each neuron. The first timestep in each trial and timesteps
with nonzero landmark input were excluded from the analysis. For
histograms, each condition was binned in100 column bins and neuron
rates in ten row bins. Histograms were normalized to equal sum per
column. For analysis of RSC firing rates (Extended Data Fig. 7b-d), we
did not observe bimodal rate distributions and instead quantified the
dispersion of the rate distributions according to their entropy: firing
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rates were low-pass filtered at 0.5 Hz to bring them into the timescale
of navigation behavior, and firing rate histograms were computed with
eightbins spanning from each neurons lowest to highest firing rate per
neuron, for each spatial bin in a 4 x 4 grid. Because the computation
of histogram entropy is biased by the number of samples, for each
spatial bin, the same number of timepoints were used for the LM1
and LM2 conditions. The dispersion of the firing rate distribution was
then computed as average entropies per cell across all space bin, and
compared across the two conditions.

Analysis of encoding of angular position and displacement from
last seen landmark. Firing rate profiles were analyzed in two reference
frames, thatis, global angle of the mouse in the arena, and relative angle
to the last visible landmark. Only timepoints from the foraging state
where the distance of mouse from the center of the arena exceeded 70%
ofthearenadiameter wereincluded. Timepoints from the LM1and LM2
conditions were subsampled to yield matched number of timepoints.
Firing rates were analyzed in a -1t to Tt range in six bins by computing
their entropy as described before.

Pairwise correlation of firing rates. Recordings were split into
LMI[0,1,2] states as before, firing rates were low-pass filtered at 1 Hz,
and the Pearson correlation coefficient between each pair of neurons
was computed. For display purposes, the neurons were reordered by
first computing the matrix for the LM1 state, applying hierarchical
clustering®’, and the resulting reordering was applied toboth LM1and
LM2 conditions. Thisreordering hasnoimpact on any further analyses.
For summary statistics, we computed the correlation of correlations
for each session. We observed no systematic change in the results as
afunction of the low-pass cutoff frequency, see Extended Data Fig. 8e
for acomparison of al-Hz versus a 5-Hz cutoff.

Low-dimensional embedding of neural activity. Neural firing rates
were bandpassfiltered asbefore, and aninitial smoothing and dimen-
sionality reduction step was performed by training a small LSTM with
asingle layer of 30 units to decode the mouse position. The hidden
unit activations were then embedded in 3D space with the isomap
algorithm®, using the Toolbox for Dimensionality Reduction by Lau-
rens van der Maaten®*.

Analysis of speed of neural state evolution. For quantification of how
fast the neural state evolves, the firing rates of the entire population
were computed by low-pass filtering the spike trains at1 Hz (third-order
Butterworth filter), and the speed of the five largest principal com-
ponents of the resulting vector in Hz s were related to the running
speed of the mouse (ms™, also low-pass filtered at 1 Hz) or the change
inlandmark brightness (percent per second) (Extended Data Fig. 9a).
Data were binned in 30 bins from O to 0.5 m s and ten bins from 0.5
to2 ms™ for running speed and ten bins from -50 to 50% and ten bins
for+50-200%. Cls were computed by treating median data fromeach
session asindependent samples.

Analysis of context-encoding in RSC across similar motor and
sensory states. To study the encoding of context with minimal sensory
and motor confounds (Fig. 4 and Extended Data Fig. 9), we split the
appearances of the second landmark into two groups depending on
whether the second landmarkis‘a’or ‘b, as described in the main text.
We thenselected subsets of trials manually where egocentric paths just
before the appearance of the second landmark are matched across the
two groups. Figure 4a shows an example of such matched approach
paths/trials. Sessionsin which at least 16 trials could be matched were
used for these analyses, yielding a total of 133 trials from six sessions
(persession, 16,23,24,24,25and 21). For each session, all of these trials
were aligned to the time when the second landmark became visible,
yielding a set of time ranges where the animals experienced similar

visualinputs, performed similar locomotion behavior but potentially
encoded different previous experience leading them to subsequently
disambiguate the perceptually identical second landmark as ‘a’ or ‘b.

To test whether there was consistent encoding of this context in
RSC, we then compared the distances across these groups in3D neural
activity space (‘Low-dimensional embedding of neural activity’) to
distances within the groups (Fig. 4b and Extended Data Fig. 9). This
test was performed at the point where the second landmark became
visible to assess encoding of previous context, as well as200 ms after-
wards to assess how the identity of the (now visible) landmark affects
encoding inRSC.

Analysis of smooth neural trajectories across sessions. To assess
whether neural trajectories were determined by population dynamics
that were stable across trials and could therefore serve as substrate for
the computation performed by the mice, we tested whether neural
trajectories behaved consistent with a laminar flow regime where
neighboring particles (in our case, neural firing rate vectors) remain
neighbors for asignificant amount of time, or whether they decorrelate
quickly (Fig.4cand Extended DataFig. 9¢,f). To assess temporal dynam-
ics of the neural spiking without imposing any smoothing, we investi-
gated raw spike counts in 750-ms windows for this analysis. For each
session, an initial set of pairwise high-dimensional distances in spike
counts between the trials with egocentrically similar paths (‘Analysis
of context-encoding in RSC across similar motor and sensory states’)
was computed from the last 750 ms preceding the appearance of the
second landmark. These distances were then correlated with those in
a second sliding window; Extended Data Fig. 9f). An offset of O s was
defined as the point where both windows stopped overlapping. The
correlation coefficient R was then computed for increasing window
offset up to 2 s. Summary statistics were computed across sessions
by first shifting each session individually by its 95% level for R (from a
shuffled control which removed the relationship between cells) which
results in the summary plot showing a highest value for R of -0.8 even
for offsets where the windows fully overlap and the uncorrected Rvalue
is 1. Because of this offset, the null level for each trialisnow at R = 0. We
then computed the Cls for the group by bootstrap relative to this level.

Decoding of low-dimensional task-relevant states from RSC
activity. To illustrate the joint encoding of position and task states
(as sketched conceptually in Fig. 4f) using neural data, we decoded
the hypothesis state, as well as x/y position from firing rates (Fig. 4e).
Individual trials were held out as test set, an ANN was trained on the
remaining trials and the resulting predictionsin the test trial were plot-
ted with hypothesis state in zand x/y in x/y dimensions. True LMO, 1a
and 1b states were indicated with same colors as throughout the figure.
Rates were low-pass-filtered with a causal third-order Butterworth
filter at 0.5 Hz to bring rates into the behavioral timescale. For posi-
tion decoding, the network architecture was filtered rates > 20-unit
LSTMIayer >15-unit LSTM > 6-unit LSTM > 2 element regression output
(mousex/y position). For hypothesis states, rates >10-unit LSTM > sin-
gleregression layer, withLMO encodedat 0,and LMlaandbas-1and +1,
respectively. This analysis was not used to make statistical statements.
Instead, we tested x/y encoding in Fig. 1, and hypothesis encoding in
Fig. 4 and Extended Data Fig. 9 with statistical methods.

Analysis of direction of neural trajectories. To further test whether
neural trajectories were determined by population dynamics that were
stable across trials, and were independent of the interpretation of the
second (locally ambiguous) landmark, we tested whether neural activ-
ity evolvedinsimilar directions across trialsifiit started close together
in 3D neural activity space (‘Low-dimensional embedding of neural
activity’) (Extended Data Fig. 9g,h). We therefore looked at neural
trajectories within the motor and sensory-matched LM2 approaches
where the neural state at the point where the second landmark became
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visible started neurally close to other trials from the opposing class.
For example, for an LM2, trial, we examined whether this trial might
follow other close-by LM2, trials. We computed neural proximity inthe
3D neural embedding (see above) and defined close-by trials as ones
thatwere within1a.u.in Euclidean distanceintheisomap embedding
around the time when the second landmark became visible, yieldinga
total of 42 out of 79 trials with close neighbors from opposing classes
from the five sessions (one session was excluded because the neural
activity in the relevant time ranges was collapsed onto a point in the
LSTM embedding). As a control, we also selected corresponding neu-
rally furthest points. Similarity of neural evolution was then quantified
as the angular difference between the trials in (3D) LSTM space over
time, to assess coevolution independently of the initial selection by
distance. Significance was computed by bootstrap across trials versus
random alignments corresponding to a 90-degree difference.

Behavior prediction. For the behavior prediction analysis, sessions
with atleast five correct and incorrect port visits after the second land-
mark visit were used (N =11) and an equal number of hitand miss trials
(outcome of next port visit is a time out or a correct) were selected,
leading to a chance prediction level of 0.5. The spike rates from the
5s preceding the second landmark becoming visible, binned into
1-s bins, were used to predict the behavioral outcome with a binary
classification decision tree with a minimum leaf size of six, previously
determined using cross-validation. Predictions for each trial were fit
using all other trials.

Specificity of landmark encounter coding to the foraging task. We
trained adecoder to predict either the number of encountered dotsin
the main task, or in the dot-hunting task. These tasks were interleaved,
andthe same neurons were used (Extended Data Fig. 4). Train and test
sets were split by trial, and decoding was performed with a regres-
sion tree on low-pass-filtered firing rates as before, performance was
quantified as mean error on the number of landmarks. Only the first
two landmarks were predicted in the dot-hunting task to allow use of
the same classifier across both. Decoding performance was compared
between the within-class (for example, decode main task encounters
with decoder trained on other trials in the main task) and cross-class
(for example, decode dot-hunting from decoder trained on the main
task, and so on).

Analysis of neural coding as a function of task performance. To test
whether the encoding of hypothesis states in RSC is specific to task
performance, we analyzed alarger number of sessions from the entire
period during which two landmarks with local visibility were used (92
recording sessions in total) (Extended Data Fig. 4). We analyzed the
effect of task performance on the behavior prediction analysis (as
described above; Extended Data Fig. 4). We also analyzed the more
general decoding of landmark encounter count (same method as in
‘Specificity of landmark encounter coding to the foraging task’; Fig.1) in
all of the 92 sessions with two landmarks, and correlated decoding per-
formance with task performance on a per sessionlevel. As anadditional
control, we performed the same analysis on the number of dots encoun-
tered in the interleaved dot-hunting task. For all of these analyses, we
used ananalogous method as for the nonbehavior-correlated analyses.

Correlation dimension in RSC. For details of the calculation of the
correlation dimension for RSC data, see ‘Correlation dimension.

Artificial neural networks

We chose a simple recurrent neural network as one of the simplest
architectures that canlearnto maintain state over time. Unless stated
in the text, the default architecture consisted of rate neurons with an
inputlayerinto 128 hidden recurrent units (tanh nonlinearity) into 80
output neurons, trained on random velocity trajectories in random

environments of up to four landmarks (see ‘Network architecture and
training’ for details). For the analyses in the main text, landmark inputs
were relayed to the ANN as a map that encoded their relative position
but notidentity (‘external map’ ANN, 80 input neurons). The findings
werereplicated withan ANN that received only binary landmark pres-
ence input (‘internal map’ ANN, 11 input neurons) and non-negative
ANNs (Extended Data Fig. 10), on a subset of environments. The ANN
servesto establish whether and how recurrent systems could solve the
task, and we make no connections between the circuitry of RSCand the
connectionsinthe ANN.

A simulated animal runs with varying velocity in a circular envi-
ronment starting from a random unknown position and eventually
infers its position using noisy velocity information and two, three or
fourindistinguishable landmarks. A trial consists of a fixed duration of
explorationinafixed environment, starting from anunknown starting
location; the environment can change between trials. Environments
are generated by randomly drawing a constellation of two to four
landmarks, and the network must generalizably localize in any of these
environments when supplied with its map. The network must adjust
its spatial inference computations on the basis of the configurations
ofthe different environments, without changing its weights; thus, the
adjustments must be dynamic. Inthe internal map scheme (Extended
DataFig.10a-m), aninputcell simply encodes by its activation whether
the animal is at any landmark; it does not specify the location of the
landmark, the identity of the environment, or the spatial configu-
ration of the various landmarks in the environment. The task in the
internal map scheme is substantially harder, since the network must
infer the configuration of landmarks in the environment purely from
the time sequence of landmark visits, while simultaneously localizing
itself within the environment. Information about the maps must be
acquired and stored within the network. To make the task tractable,
we limit training and testing in the internal map setting to four specific
environments.

In the external map task (Figs. 2 and 3 and Extended Data Figs. 2
and 5-7), landmark locations were random and the set of locations
(map) were provided to the network, whereas in the internal map task
(Extended Data Fig. 10a-m) one of four landmark configurations was
used, but the maps were not provided to the network. Landmarks
could be observed only for a short distance. A three-layer network
witharecurrenthiddenlayer was trained toinfer location. Velocity and
landmark encounter informationwere encoded inthe input layer, and
allweights of the network were trained. The training target for the out-
put layer was activation of a unit with von Mises tuning and preferred
location matching the true location.

Network performance was compared witha number of alternative
algorithms: pathintegration plus correctionintegrated the noisy veloc-
ityinformation starting fromaninitial location guess and corrected this
estimate by areset to the coordinates of the nearest landmark when a
landmark was encountered. Particle filters approximated sequential
Bayesianinference given the available velocity and landmark informa-
tion, with each particle capturing a location hypothesis whose pos-
terior probability is given by an associated weight. Particle locations
are updated using velocity information and particles are reweighted
afterlandmark encounters. The enhanced particle filter also reweights
particleswhen alandmark is expected but not encountered, thus can
infer location not only from the presence but also from the absence
of landmarks. The output and hidden representations of the trained
network were evaluated in a variety of conditions involving both ran-
dom and fixed landmark locations and trajectories with random and
fixed velocities.

Definition of environments and trajectories. The task is defined by
a simulated animal moving along a circular track of radius 0.5 m for
10 s. Theanimal starts atarandom, unknown position along theccircle
at rest and starts running along a trajectory at nonconstant velocity.
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A trajectory is sampled every d,= 0.1s in the following way: at each
time ¢, acceleration a, is sampled from a zero-mean Gaussian dis-
tribution with s.d. o, =1/4 ms?that is truncated if |a,| > /2 m s ™.
Acceleration is integrated to obtain the velocity v, and truncated if
|U,| > Upmax = /2 m s, The actual location on the track is the integral of
this velocity.

In a trial of the external map task, the locations of K=2, 3 or
4 indistinguishable landmarks were determined sequentially: the
firstlandmark was sampled from a uniform random distribution on
thecircle, with subsequentlandmarks also sampled from a uniform
random distribution but subject to the condition that the minimum
angular distance from any previously sampled landmark is at least
6=1m/9 rad.

The internal map task involved four environments, each with
a unique configuration of landmarks: two environments had two
landmarks, one had three and the last had four. Landmark locations
in the four environments were chosen so that pairwise angular dis-
tances were sufficiently unique to allow the inference of environment
identity. Landmark coordinates in environment e; were given by: e, =
{0,2mn/3} rad, e, ={1.9562, 3.7471} rad, e, = {0.2641,1.2920, 3.7243} rad
ande, = {3.0511, 3.8347,5.1625, 5.7165} rad.

Experiment configurations used with ANNs. After training, the net-
works were evaluated in different testing configurations that each con-
sisted of adistribution over landmark configurations and trajectories:

Experiment configuration 1. Training distribution: this test set was
generated exactly as in the training set, as described in ‘Definition of
environments and trajectories’.

Experiment configuration 2. Fixed landmarks, random trajectories:
the landmark configuration was given by two landmarks located at
e=1{0, 21/3}, the trajectories were sampled in an identical way as in
the training distribution. Note that this landmark configuration cor-
responds to the first environment in the internal map task.

Experiment configuration 3. Fixed landmarks, constant velocity trajec-
tories: thelandmark configuration was given by two landmarks located
at e=1{0, 2m/3} and the trajectories were given by constant velocity
trajectories with |v,| = v,,,,/2. The initial position and the direction of
thetrajectory was random.

Experiment configuration4. Two variable landmarks, constant velocity
trajectory: the landmark configuration was given by two landmarks
located at e= {0, 21/3 + am/3}, where a € [0, 1]. The trajectories were
given by constant velocity trajectories with |v, | = v,,,,,/2 and the initial
position and the direction of the trajectory was random.

Experiment configuration 5. Two environments, random trajectories:
the landmark configuration was given by either e, or e, of the internal
map task, trajectories are random.

Landmark observation. The animalis considered tohaveencountered a
landmarkifitapproached withind,,,, =V, X dt/2=1/40 m?=1/20 rad.
This threshold is large enough to prevent an animal from ‘missing’
alandmark even if it is running at maximum velocity. This ‘visibility
radius’is smaller than the one we used for the mouse behavior experi-
ments (Fig. 1). In the ANN experiments, landmark encounters were
therefore roughly coincident with the agent’s position coinciding
with the landmark, whereas in the mouse data, landmark encounters
occurasignificant distance away fromthe landmark, whenitbecomes
visible (for example, Fig.4a).In the same way as in the mouse behavior
analysis, hovering around the samelandmark or approaching the same
landmark consecutively would trigger a landmark encounter only at
the first approach; a new encounter was triggered only if the animal

approached anlandmark different from the previous one, equivalent
tothe definition used in the analysis of mouse behavior. Also, only tri-
als in which the animal encountered at least two different landmarks
wereincluded.

Sensory noise. The largest sources of uncertainty in the tasks were
the unknown starting position and the indistinguishability of the land-
marks. In addition, we assumed that the velocity information and
the landmark location memory (in the external map scenario) were
corrupted by noise. At each timestep of size d, = 0.1, the velocity input
to the network corresponded to the true displacement vd, corrupted
by zero-mean Gaussian noise of standard deviation o,=v,,,,d,/10. In
the external map task, the landmark map provided to the network
and particle filter was corrupted by zero-mean Gaussian noise with
standard deviation g,= /50 rad, without changing the relative land-
mark positions: The map was coherently slightly rotated at alandmark
encounter, and the rotation was sampled independently at each land-
mark encounter.

ANN preferred firing at landmark locations. This analysis was per-
formed by evaluating the network of the external map task on the
experiment configuration 1 of the internal map task (Extended Data
Fig.2c). First, location tuning curves were determined after the second
landmark encounter using 5,000 trials from distribution 1and using
50 location bins. Tuning curves were calculated separately for each
of the four environment of the internal map task. Preferred location
was determined to be the location corresponding to the tuning curve
maximum. The density of preferred locations smaller thandistance d,,,
away fromalandmark was then compared with the density of preferred
locations further away from landmarks.

Network architecture and training. The network consisted of three
layers of rate neurons with input-to-hidden, hidden-to-hidden and
hidden-to-output weights. All weights were trained.

Network input. The input layer consisted of 80 neurons in the external
map case and 11 neurons in the internal map case. Ten neurons coded
for velocity corrupted by noise (noise as described above). The velocity
neurons had aminimum firing rate between 0 and 0.2 and amaximum
firing rate between 0.8 and lin arbitrary units, and within this output
range coded linearly for the whole range of velocity between -v,,,,,and
Unmax- Negative and positive velocity here corresponds to CW and CCW
travel, respectively.

The remaining neurons (70 in the external map case and 1in the
internal map case) coded for landmark input and were activated only at
the timestep of,and up to, three timesteps after alandmark encounter.
Inthe external map case, the landmark input simultaneously encoded
the locations of all landmarks in the environment, thus supplying a
map of the environment, but contained no information about which
LMwas currently encountered. The LM neurons had von Mises tuning
with preferred locations x;= (j—1) x 2r/70rad,j=1...70, that tiled the
circleequally. Given nlandmarks atlocations /;, i = 1...n, the firing rate
of thej-thlandmark input neuron was given by

cos(x;—f)-1
202, ’

rj=Zexp(
i

where [; ~ N(li,o[z) is the noise-corrupted landmark coordinate
(‘Sensory noise’). This mixture of von Mises activation hills produces
the pattern depicted as the ‘map’ input in Extended Data Fig. 5a.

Intheinternal map case (Extended Data Fig.10a-m), the landmark
input neuron consisted of a single binary neuron that responded for
four timesteps with activationlinarbitrary unitswhenever alandmark
was encountered. This input encoded neither environment identity
nor landmark location.
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Hidden layer. The hiddenlayer consisted of 128 recurrently connected
neurons. The activation h, of hidden layer neurons at timestep t was
determined by h,=tanh(W,x,+ W,h,— 1+ b), where x,arethe activations
of input neurons at timestep t, W, are the input-to-hidden weights,
W, are the hidden-to-hidden weights and b are the biases of hidden
neurons. The nonlinearity should be considered as an effective non-
linearity at long times; since the timestep d, = 0.1 s was large compared
with atypical membrane time constant (7 = 0.02 s), we did notinclude
anexplicitleak term.

Hidden layer (non-negative network). In the non-negative network
(Extended Data Fig. 10n-t), the recurrent activation was determined
by h,=tanh([W,x,+ W,h,_; + b],), where [u], denotes rectification.

Outputlayer. The outputlayer consisted of a population of 70 neurons
with activity o, given by o, = tanh(W,h,+ b,), where W, are the output
weights and b, the biases of the output neurons.

Network training. The training targets of the output layer were place
cellswithvonMises tuning of width g, = /6 rad to the true locationy,,

By, = eXp(cos(za -y —1>’
| 202

where z,, a=1...70 are the equally spaced preferred locations of each

training target.

The network was trained by stochastic gradient descent using the
Adam algorithm®, to minimize the average square error between out-
puto.and training targets 4,, with the average taken over neurons, time
within each trial and trials. The gradients were clipped to 100. The
training set consisted of 10° independently generated trials. During
training, performance was monitored on a validation set of 1,000
independent trials and network parameters with the smallest validation
error were selected. All results were cross-validated on a separate set
of test trials to ensure that the network generalized across new random
trajectories and/or landmark configurations.

Network location estimate. Given the activity of the output layer at
time ¢, we define the network location estimate for that time to equal
the preferred location (the preferred location was set over training) of
the most active output neuron:

Vi = Z4,, 0 = argmax,0q

Performance comparisons. InFig.2b, we compared the performance
of the network in the external map task with a number of alternative
algorithms. To ensure afair comparison, we make sure that each alter-
native algorithm has access to exactly the same information as the
network: the landmark identities are indistinguishable and both
velocity and landmark location information are corrupted by the
same small amount of sensory noise. Error statistics were computed
from 5,000 trials.

Path integration and correction. This algorithm implements path
integration and landmark correction using a single location esti-
mate, similar to what is implemented in hand-designed continuous
attractor networks that implement resets at boundaries or other
landmarks™'****”, The algorithm starts with aninitial location estimate
aty =0 (despite the trueinitial location being random and unknown),
andintegrates the noise-corrupted velocity signal to obtain location. At
eachlandmark encounter, the algorithm correctsitslocation estimate
toequal the coordinates of the landmark nearest toits current estimate.

Basic particle filter. Particle filters implement approximate sequen-
tial Bayesian inference using a sampling-based representation of the

posterior distribution. Here, the posterior distribution over location at
eachtimepointis represented using a cloud of weighted particles, each
of which encodes throughits weights abelief, or estimated probability,
of being at a certain location. In the beginning of the trial, N,=1,000
particles are sampled from a uniform distribution along the circle
and weighted equally. In the prediction step, particles are propagated
independently using arandom walk whose meanis the noise-corrupted
velocity update and whose s.d. is the velocity noise o,. In the absence
of alandmark encounter, particle weights remain unchanged and the
particle cloud diffuses. If alandmark is encountered, the importance
weights w,;of particles f=1...N,are multiplied by

cos (yep— 1) - 1
Wep o We 1+ Z’: exp ( 27 )
wherey, sare the current estimates of the particles, and the weights are
subsequently normalized such that E/}wiﬂ = 1.Ifthe effective number
of particles becomestoo small, thatis, N = I/Zﬂwig < N,/5,the parti-
cles are resampled using low variance sampling>® and the weights
equalized. This resampling step both allows for better coverage of
probabilities and permits the particle cloud to sharpen again.
The particle filter estimate at a given timepoint is given by the
weighted circular mean y, = arg(3 ;Wes exp(yep) of the particle
locations. In addition, we also calculate the circular variance as

var () = 1= | S e s exp (ive )

Enhanced particlefilter. This particle filter hasidentical initialization,
prediction step and weight update at landmark encounters as the basic
particlefilter and proceedsin exactly the same way until the first land-
mark encounter. Subsequently, the enhanced particle filter can also
use the absence of expected landmark encounters to narrow downits
location posterior, similar to the network’s ability shown in Extended
DataFig.5. Thisisimplementedin the following way: ifaparticle comes
withinthe observation threshold 6 of apossible landmark locationbut
no landmark encounter occurs, the particle is deleted by setting its
weight to zero; afterwards the particle weights are renormalized. A
complication to this implementation is that a subsequent landmark
encounter only occurs if the current landmark is different than the
previous one (‘landmark encounters’); to prevent the deletion of par-
ticles that correctly report alandmark at the current position but do
not receive a landmark encounter signal because it is the same land-
mark as previously encountered, particles are deleted only if they come
within the observation threshold 6 to a possible landmark that is dif-
ferent than thelastlandmark and do not encounter it. In case all parti-
cles have been deleted, particles are resampled from a uniform
distribution and their weights are equalized. As for the basic particle
filter, particles are resampled whenever the effective number of
particles becomes too small Ny = I/Zﬂwfﬁ <N,/5. The particle
filter estimate y, = arg(X pte,p exp(ivep)) and the circular variance
var (y;) = 1- |3 qw, s exp (i, p)| are also calculated in anidentical way.

Analysis of location disambiguation in output layer. The timing
and accuracy of location disambiguation in Extended Data Fig. 5 was
calculated in the following way: we first constructed the trajectory of
the ‘alternative location hypothesis, corresponding to the location
estimates of amodel animal that made the wrong location disambigua-
tionat the firstlandmark encounter, but otherwise updated its location
by the correct velocity. This trajectory is shifted relative to the true
trajectory by a constant distance equal to the distance between the two
landmarks. At each pointintime, we thenidentified the two neuronsin
the output population whose preferred locations were closest to that
of the true and alternative trajectory, respectively; the activation of
these neurons roughly corresponded to the height of the activation
bump corresponding to the true and alternative location hypothesis
as seen in Extended Data Fig. 5¢,d,h. The disambiguation time was
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defined as the earliest time after which either the true or alternative
location bump height fell below a threshold of 0.1 and stayed beyond
that threshold until the end of the trial. To determine the accuracy of
location disambiguation the network estimate at the last landmark
interaction was analyzed. If this network estimate was closer to the
true than to the wrong landmark location the trial was categorized as
acorrecttrial, otherwise it was categorized as an incorrect trial.

State space analysis. We performed PCA onthe hidden neuron states
from training trials to obtain the top three principal directions. We then
projected network states obtained from the distribution of testing trials
2 or 3 (Supplementary Information) onto these principal directions.
Theresulting reduced-dimension versions of the hidden neuron states
fromtestingtrials areshowninFig.2 and Extended Data Figs.5and 10.

Correlation dimension. To calculate the correlation dimension for the
ANN and RSC activity, we first performed linear dimensionality reduc-
tion (PCA) on hidden layer activations from the training trials, retain-
ing 20 principal components. For RSC data, rates were first low-pass
filtered at 0.5 Hz. In the 20-dimensional space, we randomly picked
1,000 base points (500 for RSC). From each of these base points, we
estimated how the number of neighbors inaball of radius Rscales with
R. The minimum ball radius was determined such that the logarithm
of the number of neighbors averaged over base points was near 1. The
maximum radius was set to ten times the minimum radius, and interme-
diate values for the radius were spaced equally onalog scale. The slope
ofthelinear part of therelationship betweenthe logarithm of number
of neighbors versus ball radius determined the fractal dimension

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The experimental data of this study are available via Figshare at
https://doi.org/10.6084/m9.figshare.27890997 (ref. 59).

Code availability
Code for training ANNs is available at: https://github.com/jvoigts/
Voigts_Kanitscheider_et_al 2024.
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Extended Data Fig. 1| Task structure and behavioral data, and necessity of RSC
for egocentric-allocentric computations. (a) Schematic of task structure and
timing. (b) Example trial schematic showing all possible task states (see Methods
for more details). Landmarks were formed by white dots displayed on ascreen
which served as the floor of the arena. They were only made visible when mice
crossed a distance threshold. Only one landmark was visible at a time in the final
training stage. Nose-pokes were only registered after mice held their nose in

the port for arandomly chosen delay period that was randomized for each visit
and not known to the mouse. Incorrect port visits resulted in timeouts that were
associated with a bright background across the entire arena. After each complete
trial, which results in the reward state, mice are required to complete a separate
task in which they need to ‘hunt’ for a series of 4 to 8 randomly placed blinking
dots onthe arenafloor. Each dot disappears as soon as the mouse reachesiit,
resulting either in anew random annulus, or initialization of the next trial. The
next trial begins with anew random rotation of the landmarks and rewarded
port. (c) Training phases (see Methods). Mice are trained with a single landmark
first, then 2 landmarks at unlimited view distance, and finally a limited view
distance. (d) Top: Experimental setup for electrophysiology and real-time mouse
position tracking. The arena was placed on top of acommercial flat-screen TV
that was used to display visual landmarks. A motorized commutator* was used
toreduce tether-induced torque on the mouse, and a real-time optical tracking
system was used to regulate the visibility of the landmarks and to identify when
the mouse reached any of the blinking dots in the dot-hunting task. Bottom:
view of the arena from the top, showing a subset of the reward ports as well as
the tracking camera and the motorized commutator. (e) Example excerpt of
behavioral data, with state transitions. Landmark visits (black arrowheads)

are defined as the point when new landmarks become visible. (f) Top: Training
curves for all 4 mice. The three major training phases are indicated with shading
(corresponding to panel ¢). Red: Proportion of time that alandmark s visible
(remains 1.0 (100%) until view distance is introduced). Blue: Maximum reward
port hold time for each session, the actual hold times are drawn from a uniform
distribution. Black: proportion of hits/ false positives (corresponds to rewards
/timeouts, or proportion correct), for the 1% port visit in each trial. Values over
1/16 indicate that mice can distinguish the correct port amongst all ports. Values
overlindicate that mice could reliably visit the correct port among the two
portsindicated by locally ambiguous landmarks without excluding any other
ports by trial and error (see main text and methods). Trials with 1* landmark visit
after <20 sec are included in analysis. Grey: Proportion of trials in which mice
seebothlandmarks, and then turn around to go back to the 1* landmark. If this
proportionwas 0, it would indicate that mice always visit the 2" port after seeing
it, which would on average lead to chance-level behavioral performance. For
eachindividual session, significance of correct choice for the 1* port visitamong
the two indicated ports was tested with abinomial fit at the 95% level (two-sided,

Clopper-Pearson exact method) and is indicated with a star. If the mouse also
visited a large proportion of unmarked ports, this fraction can be significant
despite the overall correct rate among all 16 ports being small. Bottom: latency
to reward after encountering the 2" landmarkin seconds (blue), proportion of
visits to ‘a’and ‘b’ as fraction of all port visits (orange) and proportion correct
choice between ‘a’ or ‘b’ with binomial 95% CI (binomial as described before,
green). See y-axis labels for unit definitions. (g) All paths taken by the mouse in
one example session, splitby LMO,1,2 state (green, glue, grey). (h) 6 example
trials from the same session plotted from the start of the trial to the reward
delivery, same color scheme asin g. 2 of the trials include time-outs (red). (i)
Retrosplenial cortex is required for integrating egocentric sensory information
and hypotheses about the animal’s allocentric location, but not for visually
guided navigation. To causally test the role of RSC in relating spatial hypotheses
tosensory data, we used a parametric allocentric/egocentric task using the same
apparatus as in the main experiment and pharmacologically inactivated RSC.
Schematic of task structure: Water restricted mice had to visit the port closest
to asingle visual landmark for a water reward. Visits to any other port resulted
inatime-out, but allowed the mice to self-correct. Asin the main experiment,
thelandmark and rewarded port were rotated randomly after each trial, forcing
mice to use only the visual landmark. (j) To make the task reliant on allocentric
hypotheses, we randomly varied the eccentricity of the landmark (center of the
landmark to center of the arena, as fraction of the arena radius) at the beginning
of each trial. Trials with low eccentricity (left) required the mouse to find the
arena center (though path integration, requiring maintenance of a self-position
hypothesis or memory in absence of persistence visual cues indicating the
center of the arena) and then extrapolate a straight path through the landmark
to the correct rewarded port. Alternatively, mice might triangulate which port
isthe closest to the landmark from the periphery. These strategies all require
integration of self-location hypotheses with visual landmark information. Trials
with high eccentricity (right) required merely walking to the port closest to

the landmark. This design allowed us to test the role of RSCiin the integration
oflocation hypotheses with egocentric visual landmark information while
simultaneously determining whether simpler visually-guided navigation was
also affected. (k) RSC was either 1) transiently inactivated with Muscimol, 2)
shaminjected with cortex buffer, or 3) not injected (see methods). Each mouse
was tested in both groups, with balanced ordering. (I) Task performance (mean
and 95% confidence intervals for hit rate on 1* port visits per trial, viabinomial
bootstrap). Mice always performed above full chance level (1/16™, assuming
they cannot make use of the landmark). Performance was selectively reduced by
RSCinactivation for low eccentricity conditions where integration of location
hypotheses and visual landmarks was required. Performance in the visually
guided condition was only minimally affected.
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Extended Data Fig. 2| The spatial code in RSC changes with hypothesis states,
ANN and RSC neurons employ conjunctive codes, and preferentially represent
landmark/ reward locations. (a) Location decoders (neural network, cross-
validated per trial) do not generalize across landmark states, and LM1 carries less
spatialinformation than LM2. Performance is measured by prediction likelihood
inal0x10 grid, means and shaded 95% Cls across sessions (N =16 sessions). See
Fig. 1f for test via spatial RF differences. (b) Left: Example ANN neuron tuning
curves (from LM2) split by travel direction, speed, or location uncertainty
(corresponding to LMO,1,2 states, derived from particle filter), showing
conjunctive coding. Right: Three RSC example cells showing conjunctive coding
oflocation vs. speed, and direction (Fig. 1d shows task phase vs. location). (c)
Left: ANN neurons and, Right: RSC cells (N = 984 neurons) weakly preferentially
fire atlandmark locations. Top: distribution of locations where RSC cells fire
most. Bottom: total average rates, split by LM1and LM2. (d) Distribution of
firing rates by angular position in the arena, same data as panel c. Blue: quantile
of firing rates across population. Red: 95% Cl of the mean across the population
viabootstrap. Despite a small preference for the landmark locations, this

effect is small compared to the overall variability on firing rates, and there is no
systematic preference for cells to fire in proximity of one vs. the other landmark,
eveninthe LM2 condition. (e) Information gain, which we study by analyzing
landmark encounters, as transitions between LM, , states throughout the
manuscript, can also occur when mice fail to encounter alandmark where one
would be expected given some hypothesis (see Fig. 2e for an ANN example).
These cases can also be decoded from neural activity, but cannot be directly
compared to landmark encounters, as they don’t offer the matched sensory
input (thatis no visual input vs. appearance of salient landmark) that we employ
in Fig. 4 (mouse encounters 2" landmark, but it is either ‘a’ or ‘b’). These ‘virtual’
landmark encounters were decoded with a cross-validated NN on a trial level and
compared toreal landmark encounters. The same decoder was then cross tested
onthereverse condition (grey plot) to show that the neural code for encounters
and non-encounters is different, as is expected from the different sensory inputs.
Analysis as in Extended Data Fig. 9a, but plots are aligned to the value at the
0-second point, see Methods for details.
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Extended Data Fig. 3 | Extracellular recording in mouse retrosplenial cortex.
(a) Tetrode drive” implants targeting mouse retrosplenial cortex (RSC). See
Methods for details. (b) Example band-passed (100Hz-5kHz) raw voltage traces
from 16 tetrodes. (c) Verification of drive implant locations in RSC via histology
inall 4 mice. White arrowheads indicate electrolytic lesion sites. (d) Histograms
of mean firing rates of all 984 neurons across LMO (green), LM1 (blue), and LM2
(black) conditions. Neurons are treated as independent samples. Overall rates
did not shift significantly across these states. (e) Relative per-neuron changes
infiring rates across conditions. Despite the lack of a population-wide shift
inaverage rates, the firing rates of individual cells varied significantly across
conditions with heterogeneous patterns of rates. Each grouping shows rates per
cell, relative to the rate in LMO (left) LM1 (middle), and LM2 (right) as individual
rates (grey lines and histograms). Bar graphs show the 50% and 95% quantiles. (f)
Spatial firing profiles of 42 example neurons split by hypothesis state. Number
insets denote Max. firing rate in Hz per condition. For clarity, missing data is that

was not due to exclusion vialandmark visibility in LM1is plotted as the darkest
colorin each plot. (g) Spatial firing rate profiles for all neurons from one example
session (52 total), from the main task phase. Profiles were computed in 25x25
bins, and individually normalized to their 99'" percentile. (h) same as panel g, but
from the separate trial initialization task (‘dot-hunting’) in which mice had to hunt
for aseries of blinking dots that appeared in random positions. (i) 36 example
neurons from multiple sessions and animals, chosen to represent the broad range
of tuning profiles. For each neuron, the main task tuning and the ‘dot-hunting’

are plotted together on the same brightness scale, normalized to their total
maximal rate. In the dot-hunting task there is no conserved radial tuning due to
the absence of consistent landmarks, however some cells retain angular spatial
tuning due to olfactory cues in the arena. Tuning to eccentricity (distance to
arenawall or center) is maintained across task phases in many neurons. Small
numbers indicate maximum firing rates in Hz for each plot (color scale is same
across the pairs).
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Extended Data Fig. 4| Hypothesis encoding in RSCis task-specificandisa
function of task learning. (a) Foraging and dot-hunting tasks are interleaved,
allowing comparisons of how the same neural population represents hypotheses.
(b) We predict the number of encountered landmarks either within condition
(for example foraging from foraging, each time using one trial as test, fitting
toall others), or across. Only the first 2landmarks were predicted to allow use

of the same classifier across both despite the higher number of landmarks

inthe dot-hunting task. Train and test sets were split by trial. Decoding was

done with aregression tree on low-passfiltered firing rates. Performance was
quantified as mean error on the N of landmarks. (c) Example dot-hunting trial,
the performance from using the foraging predictor is lower. (d) Summary stats
fromall sessions, means and bootstrapped Cls. The prediction is significantly
better when using training data from the same category than when using the
neural code from the other; for example dot-hunting to predict the foraging
(P=-0/~0withinvs. across categories for predicting dot-hunting and foraging
landmark state), showing that hypothesis coding is task-specific. (e) To test
whether hypothesis encoding is a specific function of task learning or a general
feature of RSC, we examined whether coding persisted in case when mice
performed the task but were not yet performing well. We first examined the
ability to predict correct vs. incorrect port choice (same as in Fig. 4) as a function
of per-session task performance. We analyzed data from sessions from the entire
training period where the 2 landmarks were used, with at least 5 correctand 5

02 04 06 08 1 12 14 16 18
Task performance (<1is visiting non-LM ports, ~1 s picking one LM randomly,

>1 means the 1st pickis correct on average )
incorrect choices (N = 42 sessions), due to the closely spaced recordings, neurons
might be re-recorded across sessions. On average we analyzed ~15-30 port visits
per session (number of trials was unaffected by behavioral performance: Cl of
slope =[-7.7,2.7], p=0.33). Predictions were made as before with a test/train
spliton balanced hit/miss data with aregression tree. Prediction performance
was at chance level (- 47%, P = 0.81vs. chance) for low performance sessions
(total correct choice ratio of 0.8 or lower), and the same as in our initial analysis
(Fig. 4) for sessions with high mouse performance (-~ 66%, P = 0.00096 vs.
chance). Overall, prediction performance was significantly correlated with task
performance (P = 0.0014 vs. constant model). Individual mice are indicated with
colored markers. (f) We also analyzed the more general decoding of landmark
encounter count (same as Fig.1) in all of the 92 sessions with 2 landmarks, and
also found asignificant correlation (p = 0.0045 vs. constant model), showing
that hypothesis encoding throughout the task is driven by task learning. (g) As
acontrol experiment, we tested whether decoding the number of landmarks
encountered in the interleaved dot-hunting task might also be affected by task
performance, if for instance the neural encoding and performance was a function
of general spatial learning, habituation to the arena, motivation, etc.,and we
found this correlation to be flat (P = .6, Cl for slope =[-0.17,0.29]). We conclude
that the encoding of hypothesis state is task-specific and a function of the mouse
performing the task.
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Extended DataFig. 5| Architecture, trajectories, and population statistics for
ANN with external map input. (a) Structure of the recurrent network. Input
neurons encoded noisy velocity input with linear tuning curves (similar to speed
cellsin the entorhinal cortex®°), and landmark information. In the standard setup
(referred to as “external map”), the landmark input signaled the global
configuration of landmarks (map). If there are K landmarks (all assumed to be
perceptually indistinguishable), then whenever the animal encounters a
landmark, the input provides a simultaneous encoding of all Klandmark
locations using spatially tuned input cells. Thus, the input encodes the map of the
environment but does not disambiguate locations within it. Thisinput can be
thought of as originating from a distinct brain area that identifies the current
environment and provides the network with its map. (b) Trajectories varied
randomly and continuously in speed and direction. There were 2-4 landmarks at
random locations. (c) Activity of output neurons ordered by preferred location as
afunction of timein an easy trial with two nearby landmarks and a constant
velocity trajectory. Black arrows: landmark encounters. Thick black dashed line:
time of disambiguation of location estimate in output layer. Thin red dashed line:
true location. The network’s decision on when to collapse its estimate is flexible,
and dynamically adapts the decision time to task difficulty: When the task is
harder because of the configuration of landmarks (the task becomes harder as
the two landmarks approach a180 degree separation because of velocity noise
and theresulting imprecision in estimating distances; the task isimpossible at
180 degree because of symmetry), the network keeps alive multiple hypotheses
aboutits states across more landmark encounters until itis able to reach an
accurate decision. Panels c,d,f,g show example trials from experiment
configuration 4 (See Methods) with different values of landmark separation
parametrized by a. (d) Same as ¢, but in a difficult trial with two landmarks almost
opposite of each other. (e) Top: The ANN took longer to disambiguate its location
in harder task configurations: average time until disambiguation as a function of
landmark separation (Standard error bars are narrower than line width). Middle:
Distribution of the number of landmark encounters until the network
disambiguates location, as a function of landmark separation. Bottom: Fraction
of trialsin which the network location estimate is closer to the correct than the
alternative landmark location at the last landmark encounter, as a function of
landmark separation. Data from 10000 trials in experiment configuration 4,
1000 for each of the 10 equally spaced values of . The performance of the ANN
(Fig.2 main text) can be compared to the much poorer performance achieved by
astrategy of path integration to update a single location estimate with
landmark-based resets (to the coordinates of the landmark that is nearest the
current path-integrated estimate), Fig. 2b (black versus gray). The latter strategy
is equivalent to existing continuous attractor integration models™'* combined
with alandmark- or border based resetting mechanism'***”*!, which to our
knowledge is as far as models of brain localization circuits have gonein
combining internal velocity-based estimates with external spatial cues. The
present network goes beyond a simple resetting strategy, matching the
performance of asequential probabilistic estimator - the particle filter (PF) -
which updates samples from a multi-peaked probability distribution over
possible locations over time and is asymptotically Bayes-optimal (M =1000
particles versus N =128 neurons in network; Fig. 2b, lavender (PF) and green
(enhanced PF)). Notably, the network matches PF performance without using
stochastic or sampling-based representations, which have been proposed as
possible neural mechanisms for probabilistic computation®®2, (f) Similar toc,
butin atrial where the network disambiguates its location before the second
landmark encounter. Yellow arrows mark times of landmark interactions if the
alternative location hypothesis had been correct. Disambiguation occurs shortly
after the absence of alandmark encounter at the first yellow arrow. (g) Similar to
f,butin atrial where disambiguation occurs at the first landmark location, since
no landmark has been encountered at the time denoted by the first gray arrow.
(h) Inthe regular task where landmark identity must be inferred by the ANN,
discrete hypothesis states (denoted LMO,1,2 throughout) emerge during the LM1
state. (j) If the ANN isinstead given the landmark identity via separate input
channels, itimmediately identifies the correct location after the 1* landmark
encounter and learns to acts as asimple path integration attractor without
hypothesis states. Plots show ANN output asin ¢,d,g,f. (i,k) To quantify the
separation of hypothesis states in the ANNs hidden states even in cases where
such separation might not be evidentin a PCA projection, we linearly projected
hidden state activations onto the axis that separates the hypothesis states. The
regular ANN shows a clear LM1vs LM2 separation, but the ANN trained with
landmark identity does not distinguish between these. (I) Population statistics

for ANN with external map input. Scatter plot of enhanced particle filter (ePF)
circular variance vs. estimate decoded from hidden layer of the network.4000
trials from experiment configuration 1were used to train alinear decoder on the
posterior circular variance of the ePF from the activity of the hidden units and
performance was evaluated on 1000 test trials. (m) Scatter plot of widths and
heights of ANN tuning curves after the 2" landmark encounter. Insets: example
tuning curves corresponding to red dots. Unlike hand-designed continuous
attractor networks, where neurons typically display homogeneous tuning across
cells™***** our model reproduces the heterogeneity observed in hippocampus
and associated cortical areas. Tuning curves are from LM2 using 1000 trials from
experiment configuration 2 using 20 location bins. Tuning height specifies the
difference between the tuning curve maximum and minimum, and tuning width
denotes the fraction of the tuning curve above the mean of maximum and
minimum. (n) The distribution of recurrent weights shows that groups of
neurons with strong or weak location tuning or selectivity have similar patterns
and strengths of connectivity within and between groups: distribution of
absolute connection strength between and across location-sensitive “place cells”
(PCs) and location-insensitive “unselective cells” (UCs) in the ANN. The black line
denotes the mean; s.e.m. is smaller than the linewidth. The result is consistent
with data suggesting that place cells and non-place cells do not form distinct
sub-networks, but are part of a system that collectively encodes more thanjust
place information®. Location tuning curves were determined after the second
landmark encounter using 5000 trials from distribution1and using 20 location
bins. The resulting tuning curves were shifted to have minimum value O and
normalized to sum to one. The location entropy of each neuron was defined to be
the entropy of the normalized location tuning curve. Neurons were splitin two
equal sets according to their location entropy, where neurons with low entropy
were defined as “place cells” (PCs) and neurons with high entropy were defined as
“non-place cells” (UCs). Between and across PCs and UCs absolute connection
strength was calculated as the absolute value of the recurrent weight between
non-identical pairs. (0) Pairwise correlation structure® is maintained across
LM[1,2] states and environments. Corresponds to Fig. 3a. Top: Correlationsin
spatial tuning between pairs of cells in one environment after the 1* landmark
encounter / LM1 (left), after the 2" encounter /LM2, and in a separate
environment in LM2 (right). The neurons are ordered according to their
preferred locations in environment 1. Bottom: Example tuning curve pairs
(normalized amplitude) corresponding to the indicated locations i-iv. Data from
experiment configuration 1. (p) State-space activity of ANN is approximately
3-dimensional. Even when summed across all environments and random
trajectories, the states still occupy a very low-dimensional subspace of the full
state space, quantified by the correlation dimension as d = 3 (left, see Methods).
This measure typically overestimates manifold dimension®®, and serves as an
upper bound on the true manifold dimension. As a control, the method yields a
much larger dimension (d = 14) on the same network architecture with large
random recurrent weights (right); thus, the low-dimensional dynamics are an
emergent property of the network whenit is trained on the navigation task. Data
from 5000 trial, recurrent weights were sampled i.i.d. from a uniform
distribution W, ;- U([ - 1,1]), then fixed across trials. The initial hidden state
across trials was sampled from h,_,;~ U([ - 1,1]). Data from 5000 trials from
experiment configuration 1. (q) In the LM2 state, position on the rate-space
attractor corresponds to location in the maze. State-space trajectories after
second landmark encounter for random trajectories. Color corresponds to true
location (plot shows 100 trials). (r) ANN with external map input implements a
circular attractor structure: Hidden layer activity arranged by preferred location
inan example trial shows abump of activity that moves coherently. Black arrows:
first two landmark encounters. Preferred location was determined after the
second landmark encounter using 5000 trials from experiment configuration 1.
(s) Left: Recurrent weight matrix arranged by preferred location of neurons
(determined after the second landmark encounter using 5000 trials from
experiment configuration 1) indicates no apparent ring structure, despite
apparent bump of activity that moves with velocity inputs (panel a). Right:
However, recurrent coupling of modes defined by output weights (defined by
WoueWrec WZu[, where W, are the recurrent weights and W, are the output
weights) has a clear band structure. Connections between appropriate neural
mixtures in the hidden layer - defined by the output projection of the neurons -
therefore exhibit a circulant structure, but the actual recurrent weights do not,
even after sorting neurons according to their preferred locations. The ANN thus
implements a generalization of hand-wired attractor networks, in which the
integration of velocity inputs by the recurrent weights occurs ina basis shuffled
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by an arbitrary linear transformation. Given these results, one cannot expecta
connectomic reconstruction of arecurrent circuit to display an ordered matrix
structure even when the dynamics are low-dimensional, without considering the
output projection. Because trials in the mouse experiments typically ended
almostimmediately when the mouse had seen both landmarks (See Extended
DataFig. 1f for a quantification), we did not quantify the topology of the neural
dynamics in RSC. (t) Low-dimensional state-space dynamics in the ANN with
external map input suggests novel form of probabilistic encoding. Visualization
of the full state-space dynamics of the hidden layer population, projected onto
the three largest principal components, for constant-velocity trajectories. ANN
hidden layer activity was low-dimensional: Fig. 3a shows data on low-dimensional
dynamics, evident in maintained pairwise correlations, and Fig. 3d and panel p
show correlation dimension. Trajectories are shown from the beginning of the
trials; arrows indicate landmark encounter locations, black squares: first
landmark encounter; black circles: second landmark encounter; line colors
denote trajectory stage: LMO (green), LM1 (blue), andLM2 (grey). Datain a-cis
from1000 trials from experiment configuration 3 (see Methods); sensory noise
was set to zero. Trajectory starting points were selected to be a fixed distance
before the first landmark. The intermediate ring (LM1) corresponds to times at
which the output neurons represent multiple hypotheses, whereas the final
location-coding ring (LM2), well-separated from the multiple hypothesis coding
ring, corresponds to the period during which the output estimate has collapsed
to asingle hypothesis. In other words, the network internally encodes

single-location hypothesis states separably from multi-location hypothesis
states, as we find in RSC (Fig. 1), and transitions smoothly between them, a novel
form of encoding of probability distributions that appears distinct from
previously suggested forms of probabilistic representation®**%. (u) ANN trial
trajectory examples, (corresponding to Fig. 2e). Divergence of trajectories for
two paths that are idiothetically identical until after the second landmark
encounter. ‘a’and ‘b’ denote identities of locally ambiguous identical landmarks.
Disambiguation occurs at the second landmark encounter, or by encountering
locations where alandmark would be expected in the opposite identity
assignments. See insets for geometry of trajectories and landmark locations.
LM2 state has been simplified in these plots. (v) All four trajectories from panel b
plotted simultaneously, and with full corresponding LM2 state. (w) The
low-dimensional state-space manifold is stable, attracting perturbed states back
toit, which suggests that the network dynamics follow a low-dimensional
continuous attractor and the network’s computations are robust to most types of
noise. Relaxations in state space after perturbations before the first (left),
between first and second (middle), and after the second (right) landmark
encounter. For the base trial, a trial with two landmarks and random trajectory
was chosen. The first and second landmark encounter in this base trial is at time
t=2sandt=4.6srespectively. Attimet=1s (left), t =4 s (middle),andt=7s
(right) amultiplicative perturbation of size 50% was introduced at the hidden
layer. See Extended Data Fig. 101 for same result on internal map ANNs.
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Extended Data Fig. 6| ANN and RSC coding transitions dynamically from

an egocentric landmark-relative to an allocentric global reference frame
based on phasein trial. (a) Top: Tuning curves (mean rate) for displacement
from last encountered landmark for LM1and LM2 states in ANN. Bottom: Same
data, butdistribution of firing rates. The network discovers that displacement
fromthelastlandmark encounter in the LM1 period is a key latent variable, and
its encoding is an emergent property. Intriguingly, a similar displacement-to-
location coding switch has been observed in mouse CA1¥, suggesting that the
empirically observed switch may be related to the brain performing spatial
reasoning to disambiguate between multiple location hypotheses. (b) Same

as panel abut for global location, ANN neurons became more tuned to global
location rather than landmark-relative information after encountering the 2"
landmark. (c) Decoding of location, displacement, and separation between
landmarks from the ANN in a 2-landmark environment by a linear decoder that
remains fixed across trials and environments. Top: Squared population decoding
error of location (green) and displacement (blue), as a function of the number
of encountered landmarks. As suggested by the well-tuned activity of ANN
neurons, location can be linearly decoded in the LM2 state. Displacement can
be best decoded in the LM1 state. Bottom: Square decoding error of distance
between landmarks, as a function of the number of encountered landmarks.
The representation is particularly accurate around the time just before and after
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the first landmark encounter, when location disambiguation takes place. Top:
Performance was evaluated on 1000 trials from experiment configuration 2.
Forlocation, the decoder corresponded to the network location estimate. For
displacement, the linear decoder was trained on 4000 separate trials. Bottom:
experiment configuration 1with 4000 trials to train the linear decoder and

1000 trials to evaluate it. Thus, the network’s encoding of these three critical
variables is dynamic and tied to the different computational imperatives at each
stage: displacement and landmark separation are not explicit inputs but the
network estimates these and represents themin adecodable way at LM1, the
critical time when this information is essential to the computation. After LM2, the
network decodability of landmark separation drops, as itis no longer essential.
(d) Neuronsin RSC also became less well tuned to relative displacements from
landmarks in LM2 relative to LM1: histogram across all RSC neurons of entropy
of tuning curve for angular displacement from last seen landmark in RSC. Black:
for LM2 state, Blue: for LM1state. Red: histogram of pairwise differences. For
this analysis, angular firing rate distributions were analyzed relative to either the
global reference frame or the last seen landmark. (e) Same as d, but for global
location. (f) The absolute change in landmark-relative displacement coding (d) is
larger than that of the allocentric location tuning (e), suggesting that the latter is
less affected by task state.
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Extended Data Fig. 7| In addition to explicitly encoding number of visited
landmarks, RSC and the ANN exhibit higher trial-to-trial variability in partial
information states. (a) Bottom: Mean spatial activity profile of 2 example ANN
neurons for LM1and LM2. Average tuning is higher for the LM2 state. Top: same
dataas histograms, showing that the less well-tuned LM1 state corresponds
to abimodal rate distribution (rates are high in some trials, low in others) that
transitions to a unimodal distribution once the 2™ landmark has been identified
in LM2. Data are from experiment configuration 2 (See Methods, section
‘Overview over experiment configurations used with ANNs’). Tuning curves were
calculated using 20 bins of location/displacements and normalized individually
for each neuron. The first time step in each trial and time steps with non-zero
landmark input were excluded from the analysis. For histograms, each condition
was binned in100 column bins and neuron rates in 10 row bins. Histograms were
normalized to equal sum per column. (b) Similarly, RSC rates are more dispersed
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perlocationin LM1. Schematic of analysis: firing rates were low pass filtered at
0.5Hz, and for eachlocation, the distribution of rates was computed in 8 bins,
between the lowest and highest rate of that cell. (c) Example analysis for one
cell. Top: Rate distribution resolved by 2D-location (4x4 bins) for example RSC
neuron. Bottom: the resulting 16 histograms for LM1and LM2 each, red dotted
example histograms correspond to indicated example location (red dotted
circles). (d) Summary statistics showing amore dispersed rate distribution
perlocationin LML In sum, this analysis shows that in addition to the explicit
encoding of uncertainty by a stable rate code (conjunctive with position

and other variables), as shown in Fig. 1d,e,fand Extended Data Fig. 2a,

where one would not expect a higher degree of trial-to-trial variability with
higher uncertainty, there is stilla degree of increased variability in states where
the mouse might ‘take a guess’ that would differ between trials. This parallels a
similar behaviorin the ANN (panel a).

Nature Neuroscience


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-025-01944-z

a Example neuron pairs b  Examplesession
LML LM2 dot-hunting neuron Dot-hunting
R=0.33 R=0.32 5 -
¢ pairi WMMM D gl w%kﬁ‘ﬁ&éw%w
8 14vs.12
3 ﬁ R=0.28 R=0.20 R=041 &
o pairii & 3
S 15vs.54 o < -
s S : i
3 g '
 pairiii N R -0.11 R=-0.02 R=-0.10 i
62vs. 15
1I ‘
1 1 a
pairi
0 2 t(sec) z 14vs.12 «
(M1 ©
c 0.2 = M2 d 6 L E
| 0.1f4 “idot-hunt. pairii
3 =5 15vs. 54 I
£ 3 .
55 N=16 sessions £ 4 c
£ 501 23 pair iii €
£ 8 0 5 10 15 2, 62vs. 15
g2 i i o correlation dimension: 5.44+0.11
g § Shuffled spike trains 1 K216 cesaions
= 0 0 M .
0 5 10 15 20 25 30 35 40 45 0 5 10 15 5 -45-4 353 25-2 -15-1 050 predict LM2 from LM2 ' °°;’95P°“d'“g
Nth eigenvector of covariance matrix Close-up of eigs. 1-15 log(ball radius) (no cross-val.) H 95% Cls
e o] —— predict LM1 from LM2 corresponding
Correlation Predict individual neuron rates from others via (L, regularized) linear regression —— predict Dot-hunting from LM2 : rate-only
of pairwise N=16 sessions models
rate correlations —1M2 —LM1 —— Dot-hunting
------- redict rom —— predict LM1 from —— predict Dot-hunting from -
LML LML predict LM2 from LM2 predict LM1 from LM2 predict Dot-hunting from LM2 0.1
1t vs.LM2 vs.dot-hunting (nocrossval) gz 572 220296 R2=0.049 N=984 neurons,
- 16 sessions
s Rvalues P s A &A \ A
$ 0.8 .- of R values 2 - EAL)
2 va in ANN 0.05
Soel 8 MLvsiM2 - w 0.435 2=0.452 R?=0.343
x 0.6} 2 - (R=0.73) = £
£ 1g. 1 g g
o s 2 AARPANPPINAN PN AN AN 3
So4 ® ; £ B \
g o 8 R2=0.382 R?=0.404 R?=0.254 Ty
%02 Sle i ‘ A 0.5
i WAAT A Proportion variance explained R*
0 10s
h Example session 3 Scatterplot of correlation over all pairs and i
neuron Dot-hunting 0.5 . ' 0.7
I LM1toLM2 R=0.79 LM1todothuntR=0.54 . L L
: E 06
e
3 §° 0.5 Shuffled spike trains
o 2
3 0 5w 04
= GN) g
T8 03
£ § N=16 sessions
% 02
i s ES
&l o5 N=2016pairs @3 & 0% MA/\
t ] 0 0.5-0.5 0 0.5 ol— A N\ P

Extended Data Fig. 8 | Pairwise rate correlation structure in RSC is maintained
across LM1and LM2 states. (a) Low-dimensional population structure can be
probed by pairwise neural relationships®’: correlations or offsets in spatial tuning
between cell pairs should be preserved across environments if the dynamics
across environments is low-dimensional. Example spike rates (6 sec window,
low-passed at1Hz using a single-pole Butterworth filter) for 3 RSC neuron pairs
from one example session. R values for each pair were computed across the LM1
and LM2 condition, as well as in the task-initialization phase where mice had

to hunt blinking dots (Extended Data Figs. 1, 4). The latter provides a control
condition where no landmark-based navigation was required and mice instead
had to walk to randomly appearing targets. (b) Top: pairwise correlation matrices
for LM1,2 and dot-hunting conditions. Example pairs are highlighted (i, ii, iii).
Bottom: spatial firing rate profiles for example pairs. Same analysis as in Fig. 3a.
(c) RSCactivity is globally low-dimensional. Proportion of variance of low-pass
filtered (0.5 Hz) firing rates explained by first 45 principal components from the
LMl1 states. Proportion of variance explained (black, 16 sessions) drops to below
that of shuffled spike trains (red) after the 6-10" principal component. The inset
shows the analysis split by condition (same as in panels a and b), and 95% Cis for
the spectraacross sessions. The right panel shows zoomed in region of the same
plot. We found no relationship between individual PCA components and task
variables. (d) Correlation dimension in RSCis also low (same analysis as for the
ANN in Extended Data Fig. 5p). This measure typically overestimates manifold
dimension®®, and thus serves as an upper bound on the true manifold dimension.
(e) Grey/black: Summary statistics (median and quartiles) for correlation

of correlations (panel b shows one example session, black dots indicate
individual sessions, N =16). Median of R value of R values for LM1vs. LM2 =0.74
(corresponding Rin ANN = 0.73), for LM1vs. dot-hunting = 0.51. Green: same
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analysis but spike rates were computed with a 5 Hz low-pass instead of the 1 Hz
used throughout, no systematic changes were observed as function of low-

pass settings. (f) Rates of individual RSC neurons can be predicted from other
neurons with linear regression. In the LM2 to LM2 condition (black), the linear
fitis computed for one held-out neuron’s rate from other concurrent rates, and
the same regression weights are then used to predict rates during LM1 (green)
and dot-hunting (red) time periods. True rates of predicted neurons are plotted
assolid black lines. (g) Summary statistics for the linear regression. Histograms
show the proportion of explained variance for all 984 neurons, split by condition.
Inthe LM2 to LM2 condition, the fit is computed from other concurrent rates
(40.5% variance explained, median across neurons). In the two other conditions,
theregression weights are fitin LM2 and held fixed. The sequential, non-
interleaved nature of this train/test split across task phases means that any
consistent firing rate drifts across the conditions will lead to poor predictions,
and consequently, asmall number of neurons exhibit negative R* values
indicating a fit that can, for some cells, be worse than an average rate model
(11.3% for LM1, 19.3% median across neurons for dot-hunting, small grey bars).
However, 24.3% of variance (median across neurons) can be explained despite
significant changes in spatial receptive fields (predict LM1 with LM2 weights) and
even for adifferent task, with 16.2% when predicting dot-hunting activity from
LM2 weights (red and green histogram and bars showing 95% Cl of median). (h)
Pairwise correlations between RSC neurons in another example session, same
analysis asin panel b, and associated scatterplots. (i) Low-dimensional activity
quantified via participation ratio (PR)®®. This analysis does not account for noisy
eigenvalue estimates from spiketrains, and consequently the shuffled spike
trains where there are no prominent modes that correspond to stable sensory,
motor, or latent states, yield values of PR = ~ 45.
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Extended Data Fig. 9| Low-dimensional spatial modes of mouse RSC activity.
(a) Top left: the speed at which the neural activity evolves (avg. speed of largest
Sprincipal components, filtered at 1 Hz, Cls via bootstrap) correlates with
running speed. Top right: When landmarks appear/disappear, they perturb
neural activity (effect of mouse speed is regressed out). Bottom: Analysis of the
time course of the prediction of LMO,1,2 state from RSC firing rates around the
time when the landmarks appeared. Plots show 95% Cls for the mean of the state
prediction, aligned to the mean, corresponding to a de-biased state estimation
probability over time. Decoding was performed using the same method asin

Fig. 1. (b) For some analyses of the low-dimensional dynamicsin RSC (Fig. 4, this
figure panel h), rate fluctuations related to non-spatial covariates such as speed,
heading, etc. were removed: a single-layer LSTM with 20 hidden units was trained
to predict the mouse positionin a10x10 grid from the RSC rates. The network
learned 20 spatially relevant mixtures of input firing rates, with appropriate
temporal smoothing to represent the mouse location. These activations were
then embedded into 3-D space viaisomap™. (c) To find trials across which mouse
trajectories as they approached the 2™ landmark were similar, mouse trajectories
were clustered (see Methods) leading to a subset of trials with similar locomotion
and visualinputs. (d) The activity of RSC, in the low-dimensional representation,
and in raw spike counts was then analyzed further. The example plot shows
low-dimensional neural trajectories from LMO,1,2 states during matched

mouse trajectories. (e) Alternative hypotheses for smoothness/ predictability

of neural dynamics across trials (corresponding to Fig. 4c). Dynamics across
trials could behave like alaminar flow, so that trials with similar neural state

101 matched trials  histograms

remain so (top), or they could shuffle, leading to aloss of the pairwise distance
relationships across trials (bottom). (f) We measured this maintenance vs. loss

of correlation in a sliding 750 ms window beginning at the 2" landmark onset,
versus awindow just before. Cls were computed across sessions (See Methods).
(g) Hypotheses for whether stable neural dynamics (Fig. 3b,c, Extended Data Fig.
8) can determine how RSC activity encodes disambiguated landmark identity (‘a’
or ‘b’). Top: trials in which the correct identity is ‘a’but that are neurally close to
other trials where the answer is ‘b’ might get dragged along in the wrong direction
atleast transiently. This would indicate relevance of recurrent dynamics on this
computation. Bottom: alternatively, neural activity could be determined by the
correct answer, evenin trials that (in neural rate space) are close to trials from the
opposing class. (h) We tested this by finding the closest trial from the opposing
class (for example the closest LML, for a LM1, trial) in the 3-D embedded (via
Isomap) RSC rate space. To evaluate co-evolution regardless of this selection
confound, we then analyzed the direction of flow of the neural state over time
(red). As acontrol, we also analyzed neurally far trials (grey). The flow direction
of the neural activity was significantly aligned for ~-100 ms. Median and Cl via
bootstrap. (i) Left: Schematic for the analysis of representation of LM1, vs. LM1,
states. Trial-to-trial distances were compared within group vs. across group.
Right: Both before and after the 2" landmark becomes visible, the classes are
distinctin neural state space. (Same data asin Fig. 4b, 5 sessions, 101 matched
trials). (j) Whether a trial comes from LM1, or , can also be decoded from low-pass
filtered (2 Hz) firing rates before the 2" landmark onset (viaregression tree,
cross-validated across trials, balanced N across conditions, 5 sessions).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | ANN with binary landmark presence input, and ANN
with non-negative rates, recapitulates all main findings from the external
map ANN. (a) ANN with binary landmark presence input. Here, the ANN must
simultaneously infer the landmark locations and the location of the animal, in
contrast to the previous “external map” configuration. These determinations
areinter-related, thus the much higher difficulty of the task. Structure of the
recurrent network. Input neurons encoded noisy velocity (10 neurons) and
landmark information (1neuron). In the internal map setup, the input signaled
whether alandmark was present at the current position or not. (b) State space
trajectories in the internal map network after the second landmark encounter in
two different environments. The dark green/ dark blue parts of the trajectories
correspond to the sections before the third landmark encounter. Left:
Predominantly counterclockwise trajectories, right: Predominantly clockwise
trajectories. Landmarks and trajectories were sampled with the same parameters
as experiment configuration 1, but the duration of test trials was extended
from10 s (100 timesteps) to 50 s (500 timesteps). Only trials with low error
after the second landmark encounter are shown, defined as maximum network
localization error smaller than 0.5 rad, measured in a time window between 5
timesteps after the second landmark encounter until the end of the trial. Only
the state-space trajectory after the second landmark encounter is displayed.

(c) State space dimension is approximately 3, same analysis as in Extended Data
Fig. 5p. (d) Example tuning curves, same analysis as in Extended Data Fig. 5m.
(e) Linear decoding of position, displacement from last landmark and landmark
separation from ANN activity, same analysis as in Extended Data Fig. 6¢c. A
multinomial regression decoder was trained on 4000 trials from experiment
configuration1(the training distribution of the internal map task) to predict

from hidden layer activities which of the four possible environments was present.

Performance was evaluated on separate 1000 test trials sampled from the
training distribution. (f) Example neurons showing transition from egocentric
landmark-relative displacement coding to allocentric location encoding, same
analysis asin Extended Data Fig. 6a,b. (g) Example neurons showing conjunctive
encoding, same analysis as in Extended Data Fig. 2b. Location tuning curves
were determined after the second landmark encounter using 1000 trials from
experiment configuration 2 using 20 location bins. Velocity and uncertainty
from the posterior circular variance of the enhanced particle filter were binned
inthree equal bins. (h) Distribution of absolute connection strength between
and across location-sensitive “place cells” (PCs) and location-insensitive
“unselective cells” (UCs), same analysis as in Extended Data Fig. 5n. (i) Hidden
unit activations, corresponding to Fig. 2d. (j) Trajectories from example trials,
asinFig. 2e. (k) Same trajectories as ini&;j but with full LM2 state. (I) ANN is
robust to perturbations, same as in Extended Data Fig. 5w. (m) ANN maintains

pairwise correlation structure across states and environments, same as in Fig.
3aand Extended Data Fig. 50. (n) ANN with non-negative rates recapitulates the
main findings from the conventional ANNs. Training an ANN in the external map
condition but with non-negative activity replicated all key results from the other
NN types: we observed similar results with respect to location and displacement
tuning (r), the transition in linear decodability of displacement to location from
the population and dynamically varying decodability of landmark separations
within trials (p), the presence of heterogeneous and conjunctive tuning (s), lack
of modularity in connectivity between cells with high and low amounts of spatial
selectivity (t), and the preservation of cell-to-cell correlations across time within
trials and across environments (q). The nonlinearity does affect the distribution
of recurrent weights: The distribution of non-diagonal elements in the non-
negative network is sparse (excess kurtosis k = 7.8), while it is close to Gaussian
for the external and internal map networks with tanh-nonlinearity (k = 0.6 and
k=0.9respectively; panel u); however, the distributions of eigenvalues of the
recurrent weights have similar characteristics for all trained networks (panel

v). Structure of the recurrent network: Input neurons encoded noisy velocity
(10 neurons) and received external map input (70 neuron), same as the regular
external map ANN. Recurrent layer rates were constrained to be non-negative.
(o) Example tuning curves, same analysis as before. (p)Linear decoding of
position, displacement from last landmark and landmark separation from

ANN activity, same analysis as before. (q) ANN maintains pairwise correlation
structure across states and environments, same as before. (r) Example neurons
showing transition from egocentric landmark-relative displacement coding

to allocentric location encoding, same analysis as before. (s) Example neurons
showing conjunctive encoding, same analysis before. (t) Distribution of absolute
connection strength between and across location-sensitive “place cells” (PCs)
and location-insensitive “unselective cells” (UCs), same analysis as before.

(u) Distribution of non-diagonal recurrent weights for randomly initialized
(untrained), external map, internal map, and non-negative network. The k-value
measured denotes excess kurtosis, ameasure of deviation from Gaussianity

(k = 0for Gaussian distributions). The presence of a nonlinearity constraint
onthe ANN affects the distribution of recurrent weights: The distribution of
non-diagonal elements in the non-negative network is sparse (excess kurtosis
k=7.8), whileitis close to Gaussian for the external and internal map networks
with tanh-nonlinearity (k= 0.6 and k = 0.9 respectively). (v) Scatterplot of real
and imaginary part of complex eigenvalues of recurrent weight matrix for
randomly initialized (untrained), external map, internal map, and non-negative
network. The distributions of eigenvalues of the recurrent weights have similar
characteristics for all trained networks.
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the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

Authentication VDVg;cbfl/%ﬁé”gﬁ)'/ authentication-procedures for-each seed stock used-or-novel-genotype generated.-Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.




	Spatial reasoning via recurrent neural dynamics in mouse retrosplenial cortex

	Results

	Spatial hypotheses are encoded conjunctively with other navigation variables in RSC

	Hypothesis-dependent spatial computation using recurrent dynamics

	RSC fulfills requirements for hypothesis-dependent spatial computation using recurrent dynamics


	Discussion

	Online content

	Fig. 1 RSC represents spatial information conjunctively with hypothesis states during navigation with locally ambiguous landmarks.
	Fig. 2 Recurrent neural dynamics can be used to navigate through locally ambiguous landmarks by forming and employing multimodal hypotheses.
	Fig. 3 Stable low-dimensional dynamics for hypothesis-based stimulus disambiguation.
	Fig. 4 RSC exhibits stable attractor dynamics sufficient for computing hypothesis-dependent landmark identity.
	Extended Data Fig. 1 Task structure and behavioral data, and necessity of RSC for egocentric-allocentric computations.
	Extended Data Fig. 2 The spatial code in RSC changes with hypothesis states, ANN and RSC neurons employ conjunctive codes, and preferentially represent landmark / reward locations.
	Extended Data Fig. 3 Extracellular recording in mouse retrosplenial cortex.
	Extended Data Fig. 4 Hypothesis encoding in RSC is task-specific and is a function of task learning.
	Extended Data Fig. 5 Architecture, trajectories, and population statistics for ANN with external map input.
	Extended Data Fig. 6 ANN and RSC coding transitions dynamically from an egocentric landmark-relative to an allocentric global reference frame based on phase in trial.
	Extended Data Fig. 7 In addition to explicitly encoding number of visited landmarks, RSC and the ANN exhibit higher trial-to-trial variability in partial information states.
	Extended Data Fig. 8 Pairwise rate correlation structure in RSC is maintained across LM1 and LM2 states.
	Extended Data Fig. 9 Low-dimensional spatial modes of mouse RSC activity.
	Extended Data Fig. 10 ANN with binary landmark presence input, and ANN with non-negative rates, recapitulates all main findings from the external map ANN.




