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Large-scale cortical functional networks are 
organized in structured cycles
 

Mats W. J. van Es    1,7  , Cameron Higgins    1,2,7, Chetan Gohil1,3,4, 
Andrew J. Quinn1,5, Diego Vidaurre1,6 & Mark W. Woolrich    1

The brain seamlessly performs a diverse set of cognitive functions 
like attention, memory and sensory processing, yet it is unclear how it 
ensures that each of these is fulfilled within a reasonable period. One 
way in which this requirement can be met is if each of these cognitive 
functions occurs as part of a repeated cycle. Here we studied the temporal 
evolution of canonical, large-scale, cortical functional networks that 
are thought to underlie cognition. We showed that, although network 
dynamics are stochastic, the overall ordering of their activity forms a 
robust cyclical pattern. This cyclical structure groups states with similar 
function and spectral content at specific phases of the cycle and occurs 
at timescales of 300–1,000 ms. These results are reproduced in five large 
magnetoencephalography datasets. Moreover, we show that metrics 
that characterize the cycle strength and speed are heritable and relate to 
age, cognition and behavioral performance. These results show that the 
activations of a canonical set of large-scale cortical functional networks are 
organized in an inherently cyclical manner, ensuring periodic activation of 
essential cognitive functions.

The human brain fulfills many cognitive and homeostatic functions in 
a flexible and adaptive manner, which is essential for survival. Yet, it is 
unclear how it is organized to ensure that each of these is within a certain 
time frame when the brain is in a nonstructured temporal environment. 
One way in which this requirement can be met is if each of the cognitive 
functions occurs as part of a repeating cycle. As large-scale cortical 
networks, studied through functional brain imaging, are thought to 
underlie specialized cognitive functions1–10, we can examine the dynam-
ics of these cortical networks to see whether cyclical patterns exist.

Research into spontaneous brain activity recorded in wakeful rest 
using magnetoencephalography (MEG), electroencephalography1,11–13 
and functional magnetic resonance imaging (fMRI)14–16 has shown that 
transitions between cortical networks in wakeful rest, or resting state, 
networks are nonrandom and different levels of organization have 
been observed. For example, multimodal evidence from MEG11,17 and 

fMRI5,18 suggests that the default mode network (DMN) and the dorsal 
attention network (DAN), associated with an inward versus an outward 
orientation of attention, respectively, are anti-correlated and unlikely 
to transition into each other directly. Moreover, recent results from 
fMRI show that the nonrandom transitions between resting state net-
works contain a hierarchical component, with clusters of brain states 
that are more likely to transition into each other within but not across 
clusters14. These asymmetries in transition probabilities between brain 
networks have further been shown to be more directional in states of 
higher awareness and in more physically and cognitively demanding 
tasks in both electrophysiology19–21 and fMRI22,23. However, the exist-
ence of cyclical patterns between a full set of canonical, large-scale 
cortical networks has not previously been shown.

Here we investigated the temporal dynamics of large-scale corti-
cal networks in multiple MEG datasets obtained during wakeful rest.  
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relaxes more common assumptions of fixed-length timing patterns, 
an approach that we show to be crucial to its success (Supplementary 
Fig. 4). For each reference state n, TINDA takes all intervals between 
reoccurrences of the same state (that is, state-n-to-n intervals) and 
partitions them evenly in half. It then defines the fractional occupancy 
(FO) asymmetry as the difference between the probability of another 
network state m occurring in the first half versus the second half of 
those intervals. This measure captures whether there is a tendency 
for a network state to follow, or precede, another state over variable 
timescales (Methods and Fig. 1d,e).

We used this method to investigate whether an overarching pat-
tern emerged when every state’s tendency to follow or precede every 
other state was analyzed. To illustrate its use more clearly, we first used 
this method on the intervals defined by subsequent visits to state n = 1 
(Fig. 1). This revealed that certain network states (state 5, t(54) = 5.1, 
P = 4.1 × 10−6, and state 9, t(54) = 6.4, P = 3.7 × 10−8) tend to occur after 
state 1, whereas other states (state 2, t(54) = −4.6, P = 2.3 × 10−5, and state 
8, t(54) = −6.1, P = 9.9 × 10−8) tend to occur before state 1. All other states 
(3, 6, 7, 10, 11 and 12) did not exhibit significant asymmetrical activation 
probability after Bonferroni’s correction for multiple comparisons. 
In the interest of reproducibility, we repeated the same analysis for 
the equivalent state in two other large datasets (Cambridge Centre 
for Aging Neuroscience (Cam-CAN; n = 612)26,27 and the Human Con-
nectome Project (HCP; n = 79)28) and found consistent results (Sup-
plementary Fig. 2).

We next investigated whether asymmetries in activation probabili-
ties also existed for other network states. Using TINDA on all pairs of 
network states, we confirmed that this was indeed the case and, moreo-
ver, that these pathways were unique to each state (Fig. 1c and Sup-
plementary Fig. 2). All results that follow rely on the full FO asymmetry 
matrix (Fig. 1c), that is, where TINDA is applied to state-n-to-state-n 
intervals for n ∈ 1 ∶ K .

We then explored the possibility that the asymmetries in net-
work activation probabilities are unified by an overarching structure.  

We developed a new method for quantifying the transition asym-
metries of these networks at a range of timescales, which showed 
that asymmetrical transitions are ubiquitous in human brain activity. 
Moreover, although individual transitions were stochastic, together 
they produced a robust cyclical pattern of cortical network activations 
on timescales of 300–1,000 ms, an order of magnitude longer than the 
average lifetime of a single network. These patterns were reproduced 
in five independent datasets and robustly showed a preferred posi-
tion of each brain network in the cycle. Furthermore, we showed that 
cyclical summary metrics are heritable and relate to age, cognition and 
behavioral performance. Together, these results show an overarching 
flow of cortical networks, suggesting that cortical network activations 
are inherently cyclical, ensuring periodic activation of essential cogni-
tive functions.

Results
Functional brain networks activate in cycles
To explore the temporal dynamics of large-scale functional brain  
networks in resting state MEG, we first conducted a secondary analysis 
of previously published results24. This new analysis considered the 
longer-term patterns of resting state network (RSN) activity in the 
Nottingham MEG UK dataset (55 participants)25. Using hidden Markov 
modeling (HMM), the analysis (Methods) identified K = 12 states, 
reflecting distinct brain networks with unique spatial configurations 
of power and coherence that reoccur at different points in time. States 
are inferred that best explain the multivariate distribution of activity 
across the entire brain whenever that state is active; they do not model 
any single spatial region in isolation, although spatially confined activ-
ity may nevertheless be characteristic of a particular state. The state 
descriptions of all network states are shown in Supplementary Fig. 1.

We characterized the tendency of network states to follow or 
precede each other using a new method called temporal interval 
network density analysis (TINDA; Fig. 1). This method focuses on the 
variable-length intervals between network state occurrences, which 
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Fig. 1 | Schematic of TINDA, with state 1 as an example reference state. 
 a, A segment of the (1 to n regions of interest (nROI)) multi-region, resting state 
MEG data (top) and the inferred HMM state activations (bottom). Segment i is 
the period between reactivations of network state 1, which is further subdivided 
into two interval halves (first half yellow, second half blue). b, The FO (that is, 
relative time spent) for each network state in both intervals in a (left) and the 
FO distributions over all state-1-to-state-1 intervals (right). Asterisks represent 
statistical significance (P < 0.05, Bonferroni-corrected). c, The FO asymmetry 

matrix showing the mean FO difference over intervals between the two interval 
halves with respect to a reference state (in this example, state 1). This procedure 
is repeated for all reference states n to create the full FO asymmetry matrix, 
which is used in the results going forward. Asterisks denote significant (P < 0.05, 
Bonferroni-corrected) FO asymmetries. Note that each state gets used in turn as 
the reference state, with the outputs then combined within the TINDA procedure. 
The results from a and b are condensed in the column enclosed by the green 
dotted line.
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In particular, visual inspection of these networks raised the possibility 
that they were unified by a globally cyclical structure (Fig. 2d and Sup-
plementary Video 1), an emergent dynamic that could not arise trivi-
ally from the first-order state asymmetries (P < 0.01; Supplementary 
Information Section II). We defined the cycle strength (S) to test the 
potential cyclical structure statistically (see Methods for details). Cycle 
strength is +1 for graphs where all transitions are perfectly clockwise, 
zero for completely stochastic graphs and negative for overall counter-
clockwise transitions (note that, when states are ordered to maximize 
S, negative cycle strength can be true only for individual participants, 
not for the group average, and vice versa when S is minimized). We 
confirmed that the cyclical pattern, as a result of all FO asymmetries 
together, could not have arisen by chance by permuting network state 
labels within each participant. In each of 1,000 permutations, the order 
of states was shuffled independently for each participant and cycle 
strength was computed using the optimal cycle order for that permu-
tation; the observed cycle strength was significantly greater than in 
permutations (mean (s.d.): S = 0.066 (0.041), P < 0.001). Moreover, in 
additional control analyses, we ruled out the possibility that the cyclical 
pattern could arise from common (rhythmic) physiological artifacts; 
Supplementary Information Section VI.

In the interests of reproducibility, we replicated these analyses 
in the two other datasets, confirming both the presence of cyclical 
dynamics and the consistency of individual state ordering within the 
cyclical configuration across all datasets. HMMs were independently 
trained on each dataset, after which states were reordered to match the 
ordering in the MEG UK dataset (Methods); state numbers across the 
three datasets thus refer to equivalent network states. We confirmed 
that cycle strength was higher than permutations in both the Cam-CAN 
(S = 0.049 (0.033), P < 0.001; Fig. 2b,e) and the HCP (S = 0.048 (0.035), 
P < 0.001; Fig. 2c,f). This confirmed the presence of a cyclical structure 
in all three datasets, but it remained plausible that these were differ-
ent cyclical structures. As we identified equivalent states in all three 
datasets, we could test whether the order of states in the cycle was 
comparable between datasets. We computed the cycle phase differ-
ence between equivalent states in each dataset and compared this to 
a random placement of states across the cycle (that is, permuting state 
positions 10,000×). This analysis confirmed that the order of states 
in the Cam-CAN cycle matched the order in MEG UK: the mean phase 
difference (Δθ) between equivalent states was smaller than expected 
by chance (Δθ = 0.645 rad, P = 0.0038; Supplementary Information 
Section III). Despite the use of an entirely different parcellation in HCP, 
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Fig. 2 | TINDA reveals cyclical activation of functional brain networks in three 
large MEG datasets. a–c, The group-average FO asymmetry in three large MEG 
datasets (MEG UK, n = 55 (a); Cam-CAN, n = 612 (b); HCP, n = 79 (c)), showing the 
activation probability of one network state (y axis) relative to another (x axis). 
Asterisks denote statistically significant elements (Bonferroni-corrected at  
α = 0.05, α = 10−20, α = 0.01, respectively). d–f, Visualizing the statistically 

significant FO asymmetries in the MEG UK (d), Cam-CAN (e), and HCP (f) datasets 
as directed edges reveal an overarching cyclical activation structure of functional 
brain networks. The colors of nodes in the different datasets are distinct to 
indicate that network state descriptions are inferred independently from each 
dataset. State numbers in Cam-CAN or HCP are matched to the MEG UK dataset 
(Methods), which is numbered in order of decreasing coherence.
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the same was true in this dataset (Δθ = 0.472 rad, P = 0.0001). These 
analyses thus show that the same cyclical dynamics can be observed 
across three independent datasets.

Cycles are strongest over timescales of seconds
Given the strength of this cyclical activation pattern, we considered 
why it had not been characterized previously in the literature. TINDA 
differs from other methods of characterizing dynamics in that it meas-
ures dynamics over interstate intervals (ISIs) of variable length. These 
intervals have a highly dispersive distribution with a very long tail11,24,29. 
Common means of modeling temporal dynamics typically assume 
either a Markovian structure, as in our work (that is, that the state at one 
time point is conditionally dependent on only the immediately prior 
state11), or a structure of temporal dependency with fixed-length time 
lags30. Simulations from either of these models trained on the exist-
ing dataset illustrate why such a cyclical activation pattern would not 
have been detected in previous work without an additional post hoc 
analysis such as TINDA to capture dependencies that are not reflected 
explicitly in the model parameters. These simulations capture only a 
small part of this inherent cyclical structure, most of which is lost due 
to the variability of ISI durations (Supplementary Fig. 4). The fact that 
other models capture only a small part of this inherent cyclical structure 
underlines the importance of our new approach.

This also suggests two key temporal features of the cyclical pat-
terns that we have characterized: first, that these cyclical patterns are 
instantiated over longer timescales and, second, that they do not have 
a regular cyclical period (Supplementary Information Section VI and 
Supplementary Video 1). To verify this quantitatively, we looked at the 
dependency of the FO asymmetry and cycle strength on the interval 
duration (that is, Tm,i with m = 1 in Fig. 1, the interval time between sub-
sequent visits to the network state of interest (m)). We expected that, 
if cyclical patterns were instantiated over longer timescales, then the 
FO asymmetries and the characteristic cycle would be apparent only 
at longer interval times.

To do this we partitioned the distribution of interval times (Fig. 3a) 
into five equally sized bins. We did this separately for each state to 

ensure that there was no state bias in each bin. This procedure resulted 
in each bin containing an average (s.d.) of 885 (111) intervals for each 
participant. We then reran the TINDA procedure separately on (the 
intervals from) each bin. Figure 3b shows that group mean cycle 
strength is close to zero for the bins with the shortest duration intervals 
and increases for bins with higher interval durations. Cycle strength 
is significantly higher than in permutations (Methods) in bins 2–5 and 
strongest in the bin containing the longest interval durations (with a 
mean interval time of 3 s). This was replicated in the Cam-CAN and HCP 
datasets (Supplementary Fig. 5) and together these results prove that 
the cyclic activation of network states is occurring at timescales of the 
order of seconds.

Cycles connect networks with similar properties and function
Having established that resting state networks tend to activate in a 
cyclical progression, we next characterized what a complete traversal 
of a single cycle might look like. We did this by mapping the spatial 
or spectral network state descriptions provided by the HMM on to 
the cycle. The result of this is shown in Fig. 4 for the MEG UK dataset 
with power maps and Supplementary Fig. 7 for the other datasets and 
coherence maps. We emphasize that each network state comprises 
a spatially defined pattern of power and coherence. To display these 
high dimensional representations more succinctly, Fig. 4a shows only 
the single dominant spatiospectral mode in each state (Methods and 
Supplementary Fig. 1); this information is further condensed and sum-
marized in Fig. 4b,c. Quantitative comparisons of the MEG HMM states 
and the Yeo7 atlas31 have been made in Supplementary Information 
Section XII.

The first major mode of differentiation between network states 
emerges on the north–south axis of the clock face. States in the upper 
quadrant have a higher overall power and interarea coherence (that is, 
phase locking). States 1 and 3, in particular, show strong overlap with 
areas overlapping the DMN (including bilateral inferior parietal lobe, 
medial prefrontal cortex and medial temporal lobe; Supplementary 
Information Section XII). This is not a mere broadband power increase, 
but rather reflects different combinations of oscillatory activity in 
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Fig. 3 | The observed cyclical organization of network state activations is 
driven by longer interval times in the MEG UK dataset (n = 55). For each 
participant and state, intervals were binned by interval times into five percentile 
bins. a, The mean duration of interval times pooled over all 12 states within 
each percentile bin. b, The cycle strength resulting from running TINDA on 
each percentile bin in a. Circles are individual participants, boxplots display 
the median, mean (+ s.d.), and 25th and 75th percentiles and whiskers indicate 
the minimal and maximal value in the group. The line and error bar around zero 
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based on 1,000 permutations. Significant cycle strength (permutation test, one 
sided) was observed for percentile bin 2 (S = 0.014, P = 0.025), bin 3 (S = 0.018, 
P = 0.0060), bin 4 (S = 0.052, P < 0.001) and bin 5 (S = 0.086, P < 0.001), but not 
for percentile bin 1 (S = 0.0060, P = 0.17). Significance is denoted by asterisks: 
*P < 0.05, **P < 0.01, ***P < 0.001 (Bonferroni-corrected). c, Graphs similar to  
Fig. 2d for binned interval times with increasing duration from top to bottom. 
Note that arrows are only shown for significant FO asymmetries, that is, bin 1 
does not contain any significant asymmetries and is therefore empty. NS, not 
significant.
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Fig. 4 | The cyclical structure groups together network states that have 
similar spectral properties and cognitive function in the MEG UK dataset. 
a, The spatiospectral characteristics of functional brain networks embedded 
in their cyclical progression. Each brain map shows the percentage increase in 
power (for visualization purposes, this is shown relative to the mean over states), 
projected on to the left hemisphere (see Supplementary Fig. 7 for the coherence 

maps and replication in Cam-CAN and HCP and Supplementary Fig. 1 for detailed 
spectral characteristics for each network state). To the right of each brain map 
is the spatial average PSD (solid line) and coherence (Coh; colored dashed line) 
as a function of frequency, relative to the average over states (horizontal dashed 
black line). b,c, Qualitative summary of the spectral (b) and spatial (c) modes 
seen in a (Supplementary Information Section XII).
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distinct or overlapping frequency bands29. On the lower quadrant, 
states have lower overall power and interarea coherence, particularly 
in sensorimotor and parietal areas. These states are associated with 
sensorimotor processing (states 9 and 12) and the DAN (Supplementary 
Information Section XII).

A second mode of differentiation emerges on the east-west axis 
of the clock face. In terms of spectral activity, network states on the 
left of the quadrant display activity in higher-frequency bands, for 
instance, state 6 is associated with β-band (14–30 Hz) activity and 
state 2 with α-band (7–13 Hz) activity. On the other hand, states on the 
right-hand side show activity in lower-frequency bands, particularly the 
δ (1–4 Hz) and θ (4–7 Hz) bands. Spatially, states on the left-hand side 
show increased low-frequency activity in sensorimotor and parietal 
areas, which are associated with sensorimotor inhibition. Meanwhile, 
states on the right-hand side show activity mostly in frontotemporal 
and language areas2,29,32.

The differentiation in spatiospectral activity suggests that differ-
ent types of brain function and processes are localized to particular 
phases of the cycle, for example, these results suggest that network 
states going into the DMN are linked to sensorimotor inhibition 
through increased α or β power. In contrast, networks going away from 
the DMN comprise slower-frequency content in higher-order fronto-
temporal areas, which is followed in turn by low-power sensorimotor 
states, in particular state 7, characterized by a decrease in oscillatory 
power in the parietal regions overlapping the DAN.

In the interest of reproducibility, this plot has been replicated 
on the Cam-CAN and HCP datasets. The main findings summarized in 
Fig. 4b,c have been reliably reproduced (Supplementary Fig. 7), despite 
some moderate differences in network state definitions.

Cycle statistics relate to cognition and demographics
Inspired by this qualitative segmentation of cycles into four ‘metastates’ 
of distinct spatiospectral characteristics, we defined a full-cycle tra-
versal as the sequential activation of these (see Methods and Supple-
mentary Information Section VIII for details). This allowed us to define 
cycle duration as a metric to summarize the timescale of these dynam-
ics. Cycle duration was, on average, on the timescale of 300–1,000 ms 
(MEG UK mean (μ) (s.d.) = 549 (154) ms; Supplementary Information 
Section VIII: Cam-CAN μ (s.d.) = 355 (62.4) ms; Fig. 5d: HCP μ (s.d.) = 528 
(104) ms). We could then relate cycle duration, or in fact its more 
normally distributed inverse (that is, cycle rate), to individual traits, 
together with the previously defined cycle strength.

We first made sure that the cycle strength and cycle rate are con-
sistent within individuals. We computed the intraclass correlation 
coefficient (R) on the metrics for the three sessions per participant 
available in the HCP dataset. This confirmed that both metrics are 
consistent across sessions (cycle strength: R = 0.43 (95% confidence 
interval (CI): 0.29–0.56), F-statistic F(78,158) = 3.2, P = 1.9 × 10−10; cycle 
rate: R = 0.80 (95% CI: 0.72–0.86), F(78,158) = 12.9, P = 0). We also found 
that these metrics are robust to the number of network states fitted 
in the first-level HMM (Supplementary Information Section IX). We 
then took advantage of the large and equally distributed age range 
(18–86 years) and sex in the Cam-CAN dataset and asked whether either 
could be predicted by cycle strength or cycle rate (Fig. 5). As both age 
and sex are known to affect heart rate, and the heartbeat has a strong 
effect on the MEG signal, we first regressed out heart rate. Next, we 
fitted a generalized linear model, which revealed that cycle strength 
reliably predicted age (β = 2.49, s.e. = 0.75, t(605) = 3.30, P = 0.0010, 
post hoc Pearson’s correlation R = 0.16), but not sex (β = −0.052, 
s.e. = 0.085, t(605) = −0.61, P = 0.54, Cohen’s d = −0.10), and cycle rate 
predicted age (β = −2.04, s.e. = 0.75, t(605) = −2.71, P = 0.0070; post 
hoc Pearson’s correlation R = −0.15) and sex (β = 0.24, s.e. = 0.086, 
t(605) = 2.81, P = 0.0050, Cohen’s d = 0.27). These findings are robust 
to minor changes in the way that metrics are defined (Supplementary 
Information Section IX). We replicated these correlations in the other 

datasets and confirmed the correlations between age and cycle rate and 
strength but found no statistical difference between males and females 
(Supplementary Information Section X). A post hoc analysis revealed 
that the correlation between age and cycle strength can be explained by 
a combination of (1) stronger pairwise asymmetries between network 
states on average and (2) fewer deviations from the cycle structure (that 
is, fewer backward or random transitions) (Supplementary Fig. 11).

The correlations between cycle metrics and age suggest that older 
people have slower and stronger cycle dynamics. Given that cognitive 
slowing and inflexibility are often observed in older people14,33, we 
wondered whether these were related. We first regressed out age, sex 
and heart rate from all variables and then used a canonical correlation 
analysis (CCA) to find a relationship between cycle metrics and cogni-
tive scores, resulting in two orthogonal, canonical correlation variates. 
This confirmed a statistically significant relationship between cogni-
tive scores and cycle metrics for the second (R = 0.17, F(12, 597) = 1.51, 
P = 0.0087 versus permutations; Fig. 5g), but not the first (R = 0.19, 
F(26, 1,192) = 1.54, P = 0.19; Supplementary Fig. 15) variate. Notably, the 
canonical weights of cycle metrics for the significant relationship with 
cognitive scores were in the opposite direction and so was the correla-
tion between these metrics and age. This could suggest a relationship 
between cycle dynamics and age-related cognitive decline. Replication 
of this finding was not assessed in other datasets because comparable 
cognitive scores were not available.

We next wondered whether cycle metrics could be genetically 
determined. The Cam-CAN dataset did not allow us to test this for 
lack of twin data, so we turned to the HCP dataset, which contains 
data of monozygotic (MZ) and dizygotic (DZ) twins and unrelated 
pairs of participants. using an ACE model of heritability34,35. The ACE 
aims to partition the phenotypic variance into three components: 
additive genetic variance (A), shared environmental factors (C) and 
nonshared environmental factors (E). Despite the relatively small 
cohort of twin data, we found strong evidence that cycle rate, but 
not cycle strength, is heritable (Fig. 5c,f). In fact, 73% of the variance 
in cycle rate in the population could be explained by genetic factors 
(h2 = 0.73, 95% CI = 0.29–0.98, P = 0.0039). We did not find such an 
effect for cycle strength (h2 = 0.32, 95% CI = 0.01–0.67, P = 0.12) nor 
did we find evidence that environmental factors affected cycle metrics 
(cycle strength: the amount of variance explained by environmental 
factors (c2) = 0.18, 95% CI = 0–0.41; cycle rate: c2 = 0, 95% CI = 0–0.43). 
To make sure that demographic or morphometrics factors did not bias 
these results, we systematically regressed out potential confounds (for 
example, age, sex, brain volume; Methods and Supplementary Fig. 10). 
The heritability estimate of cycle rate remained high (h2 = 0.68) and 
significant even with the most stringent confound modeling.

Cycles are preserved in task data and behaviorally relevant
Having established that cortical networks activate in cycles across 
multiple datasets in a manner predictive of individual traits, it remained 
possible that they nevertheless reflect some neurophysiological fea-
ture of little or no relevance to cognitive processes. We therefore first 
asked whether the cyclical patterns observed during rest were related 
to spontaneous memory replay. Second, we tested whether cyclical 
patterns persisted in task data and whether variance in cyclical metrics 
over task epochs related to variance in task performance.

In the memory replay36 dataset, participants learned sequence 
structures between different visual images. The representations of 
these have been shown to replay spontaneously during a subsequent 
rest period36 and recent work has shown that states 1–4 in particular 
co-activated with memory replay24, whereas most other network states 
were less likely to be active. Here we found cycle structure to persist 
in this dataset (Fig. 6a; cycle strength, mean (s.d.): S = 0.017 (0.017), 
P < 0.001, versus permutations) and, interestingly, that those network 
states that have previously been shown to be positively correlated with 
memory replay are clustered in the north face of the circle, whereas 
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Fig. 5 | Cyclical activation statistics relate to individual traits and are 
heritable. a, Cycle strength predicting age in Cam-CAN (n = 609; Student’s 
t-test, two sided, β = 2.49, s.e. = 0.75, t(605) = 3.30, P = 0.0010; post hoc Pearson’s 
correlation R = 0.16). b, Cycle strength not differing in males and females 
(n = 609; Student’s t-test, two sided, β = −0.052, s.e. = 0.085, t(605) = −0.61, 
P = 0.54; Cohen’s d = −0.10). c, The absolute difference in cycle strength across 
MZ twins, DZ twins or unrelated pairs in the HCP (n = 79). The cycle strength is not 
significantly heritable (n = 79; ACE test, h2 = 0.32, 95% CI = 0.01–0.67, P = 0.12). 
d, Cycle rate predictive of age (n = 609; Student’s t-test, two sided, β = −2.04, 
s.e. = 0.75, t(605) = −2.71, P = 0.0070; post hoc Pearson’s correlation R = −0.15). 
e, Cycle rate differing in males and females (n = 609; Student’s t-test, two sided, 

β = 0.24, s.e. = 0.086, t(605) = 2.81, P = 0.0050; Cohen’s d = 0.27). f, Heritable 
cycle rate (n = 79, ACE test, h2 = 0.73, 95% CI = 0.29–0.98, P = 0.0039). The circles 
correspond to individual participants (a, b, d or e) or pairs of participants  
(c and f), the boxplots display the median and 25th and 75th percentiles and the 
whiskers indicate the minimal and maximal values not considered as outliers. 
*P < 0.05, **P < 0.01, ***P < 0.001. g, Canonical weights from the second (significant) 
pair of canonical variates. Left: cycle metrics; right: cognitive scores. See 
Supplementary Information Section IX for evidence that these results are robust 
to minor changes in metric definitions and Supplementary Information Section 
XIII for the other canonical variate variables and post hoc Pearson’s correlations 
between individual variables.
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the strongest negatively correlated states are on the opposite phase 
(Fig. 6a, polar histogram).

These results suggest that these internally generated memory 
replay events might be precisely timed with respect to the phase of the 
cyclical activity. However, memory replay does not involve any exog-
enously prompted behavior. In particular, it is possible that external 
events or active behavior dictate network state activations such that 
cyclical activity disappears. To answer this question, we applied TINDA 
to a visual task dataset37.

In the Wakeman–Henson faces dataset37, 19 participants saw a 
series of famous, unfamiliar or scrambled faces in 6 sessions and had to 
report their asymmetry with a button press. This dataset has previously 
been shown to elicit task-dependent network dynamics38. Despite the 
trial structure, we again confirmed the presence of an overall cycli-
cal structure in network state activation (S = 0.058 (0.031), P < 0.001 
versus permutations) and we also observed that the ordering of states 
along the cycle replicated that of the MEG UK dataset (Δθ = 0.84 rad, 
P = 0.027; Fig. 6b). We then correlated the state time courses time 
locked to button press with the reaction times for each trial. Network 
probability at 500 ms before button onset in each individual was sig-
nificantly positively correlated with their reaction times in state 3 
(R = 0.069, 95% CI = 0.031–0.11, t(18) = 3.8, P = 0.0014; Student’s t-test 
against zero) and state 9 (R = 0.11, 95% CI = 0.051–0.17, t(18) = 3.9, 
P = 0.0009) and negatively correlated with state 2 (R = −0.058, 95% 
CI = −0.034 to −0.083, t(18) = −5.0, P = 0.0001), state 4 (R = −0.094, 95% 
CI = −0.056 to −0.13, t(18) = −5.2, P = 0.0001) and state 6 (R = −0.051, 
95% CI = −0.023 to −0.078, t(18) = −3.9, P = 0.001). Notably, as in the 
Replay dataset, the positive and negative correlations, respectively, 
clustered on opposite sides of the cycle (Fig. 6b, polar histogram). In 
particular, if there were a high probability that a low-power state was 
active 500 ms before the button press, responses would be slower, 
and vice versa for high-power visual or attentional states. Further-
more, when we estimated cycle strength on a trial-by-trial basis (that 
is, by running TINDA on the 3-s segment before a button press), we 
found a small, but significant Pearson’s correlation between the cycle 

strength and reaction times over trials (R = −0.025, 95% CI = −0.011 
to −0.040, t(18) = −3.8, P = 0.0014), such that higher cycle strength 
was associated with faster responses. Together, these results indi-
cate that cycle dynamics on a moment-to-moment basis are relevant  
for cognition.

Discussion
Summary
We showed that the activations of a canonical set of large-scale corti-
cal networks are organized in an inherently cyclical manner, where 
networks are activated at a preferred phase in a periodic cycle. Fur-
thermore, we showed that the cycle’s period and integrity relate to 
age and cognition, whereas cycle phase is predictive of behavior on 
a moment-to-moment basis. Together, these results suggested that 
cyclical activation of functional brain networks might ensure a periodic 
activation of essential cognitive functions.

Organizational structures in functional brain networks
Previous research in fMRI has shown a dissociation of RSNs into cogni-
tive and perceptual clusters or ‘metastates’14,39–41. In particular, states 
within the perceptual or cognitive clusters were highly correlated in 
terms of temporal occurrence14,39 and connectivity profile41, but not 
in the states between clusters. Although fMRI and MEG have different 
biophysical origins and temporal sensitivity, the spatial extent of RSNs 
is remarkably similar11,17,38. Our results indeed suggest a dissociation 
of perceptual and cognitive network states, by positioning them on 
opposite phases of the cycle, most clearly observed for the DMN and 
DAN (Fig. 3). Moreover, it suggests a preferred pathway of state transi-
tions between these extrema.

Broken detailed balance in brain activity
Network state transition asymmetries like these have further been 
linked to macroscopic broken detailed balance. This deviation from 
thermodynamic equilibrium is a hallmark of living systems and can 
be directly linked to energy consumption and system complexity42. 
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Fig. 6 | Cycle phase is predictive of cognitive function. a,b, Cycle dynamics 
in a memory replay dataset24,36 (a) and a visuomotor task dataset37 (b). Positive 
or negative associations of the network state probability with memory replay 
(a; ranging from 0% to 7% increased (red) or decreased (blue) probability) and 

reaction times (b; correlations ranging from −0.11 (blue) to +0.11 (red)) are 
indicated by polar histogram insets. The colored solid lines indicate the PSD and 
the colored dashed lines the coherence.
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Previous research in this field has shown that the level of broken detailed 
balance correlates with the level of consciousness20,21 and cognitive 
exertion19,22, and has potential as a biomarker for progressive brain 
disorders43. Here we add insights into the fast transient networks of 
oscillatory power and synchronization underlying macroscale, broken 
detailed balance and revealed the timescale at which these cognitively 
relevant networks cycle. Furthermore, we found that macroscale, bro-
ken detailed balance increased with age and was stronger on longer 
timescales, although it is unknown how different methodological 
approaches interrelate and provide insights into the temporal sensi-
tivity of broken detailed balance.

Motifs in brain networks
Although prior research has established that transitions between brain 
network states are not random, identifying phenomena like ‘asym-
metric transitions’, ‘repeated motifs’ or potentially localized ‘cyclical 
motifs’44,45, these findings differ fundamentally from the ‘cyclical pat-
tern’ investigated in this paper. Previous work typically highlighted 
specific, often localized, aspects of network dynamics: asymmetrical 
transitions show a preferred direction between two states (A → B is 
more likely than B → A) and repeated or cyclical motifs might reveal 
recurring short sequences or small loops involving a subset of net-
works. For example, Sporns and Kötter showed that some motifs are 
more prevalent in anatomical connectomes than in random networks, 
some of which are cyclical44. However, none of these necessarily imply 
the existence of a global, overarching cycle that incorporates a full set 
of canonical networks in a specific, repeatable order. For example, 
strong asymmetry between a few states or the existence of a small 
recurring motif, like A → B → C → A (for example, VP → V3 → V2 → VP in 
the macaque visual cortex46), does not guarantee that the system tends 
to progress through all other major network states, for example, D, E, F, 
in a consistent sequence before returning. The current study’s cyclical 
pattern posits this more comprehensive, large-scale temporal organi-
zation, suggesting that the brain tends to flow through the full set of 
recognizable, canonical, large-scale cortical networks over hundreds 
of milliseconds, a distinct concept from previously described local 
transition biases or mini-sequences.

Timescales of structured brain dynamics
Previous studies investigating the asymmetry in functional brain net-
works have focused on either Markovian state transitions11,22 or the 
(time-lagged) correlation between network activation patterns2,5,14,19. 
TINDA differs from these by considering the general pattern in network 
transitions beyond the direct (that is, Markovian) transitions. This 
revealed that asymmetrical network transitions occur to a different 
extent at different timescales, with strongest asymmetries on >2 s 
timescales (Fig. 3). These asymmetries described an overall cyclical 
activation pattern, which, due to the stochasticity of individual cycles, 
had lower typical durations of 300–1,000 ms (Fig. 5 and Supplementary 
Information Section VIII), an order of magnitude larger than the typical 
lifetime of a cortical network state11. These timescales have previously 
been shown to be a lower limit for scale-free global brain dynamics1 and 
the most relevant timescale for global brain processing47,48. Although we 
have shown that cycle dynamics at these temporal scales are relevant 
for behavior on a moment-to-moment basis (see below), future work 
should further explore their role in different cognitive tasks and at 
different temporal scales.

Cycle dynamics and age
It is interesting that we found these timescales to lengthen with age, 
concurrent with an increase in cycle strength. This is in line with 
age-related cognitive decline and slowing49, although correlations 
with cognitive performance indicated a more complex relationship. 
Other age-dependent changes in brain activity are ubiquitous and 
include a slowing in the power spectrum50–52 and a decrease in network 

connectivity, which has been related to a decrease in the segregation 
of functional networks53–57.

Heritability of cycle metrics
Another observation that argues for cyclical dynamics to be rooted in 
our biology is its strong genetic component of cycle rate. Other herit-
able components to large-scale brain networks have been shown in 
the past, including connectivity in specific functional networks14,58–61, 
frequency bands62 and static connectivity63. In particular, Vidaurre et al. 
found that the degree to which an individual spent more time in either 
perceptual or cognitive fMRI resting states was heritable14. How these 
and other fMRI dynamics are related to the cyclical dynamics described 
here is a topic for future research.

Relevance for cognition
Although most datasets that we explored here involved wakeful rest, 
the cyclical dynamics also persisted in task data. Moreover, the phase 
within the cycle and cycle strength were predictive of cognitive func-
tion. Although the HMM framework has successfully shown large-scale 
cortical network associations with cognitive function before24,38, here 
we add that positive and negative associations with memory replay, 
or response speed, were predicted by network states on oppositive 
phases of the cycle. One question that arises is whether cycle dynam-
ics like speed and phase can be (consciously) controlled or disrupted 
by a cognitive task, which is expected from the stochasticity of state 
transitions within the cycle. On the other hand, the persistence of the 
ordering of network states within the cycle and the detrimental effect 
of cycle phase on certain cognitive functions suggests that it could 
reflect a homeostatic process. In fact, homeostatic cyclical rhythms 
are omnipresent in biological systems64, with the sleep cycle being one 
of the most well-known examples65. In sleep, cycling through each of 
the five functional stages allows the body to experience the benefits 
of each stage multiple times throughout the night, ensuring that each 
function is carried out even if sleep is disrupted. Similarly, cycles in 
large-scale brain networks could ensure periodic activation of essential 
cognitive functions, with stochasticity enabling cognitive flexibility.

Limitations and future directions
The present study comes with a number of limitations. First, the TINDA 
method is a post hoc analysis tool that is used on binarized state time 
courses (that is, brain networks are either ‘on’ or ‘off’) and, furthermore, 
it does not incorporate an explicit model of long-term (variable time) 
state transitions. In future work, we hope to deploy non-Markovian 
models like neural networks for inferring brain networks (such as 
DyNeMo66), but it remains an open question how to adapt TINDA to 
state time courses that are not mutually exclusive. Although we have 
reproduced our main results in multiple datasets, some results could 
not be reproduced, that is, the heritability of cycle metrics and the 
association of cycle metrics with cognitive scores. Replication of these 
analyses in independent datasets is essential but relies on the availabil-
ity of the relevant data. This would also clarify the role of cycle dynam-
ics for cognition across individuals and its potential as a biomarker 
for disease. Another limitation of the current study, and the field of 
functional brain networks more generally, is a lack of taxonomy with 
respect to the macroscale functional brain networks. This can lead 
to ambiguity or overinterpretation of the functional network and it 
is unclear in what capacity they are rooted in the underlying physiol-
ogy67. Moreover, there is no consensus in electrophysiology about 
which features constitute a brain network, be it coherence, power, 
spectral shape or how to relate these to brain networks observed in 
fMRI. With regard to the first point, we argue that a principled defini-
tion of a brain network is one where networks can be distinguished, not 
by a single arbitrarily chosen feature, but instead by multiple network 
features. We therefore use the time-delay-embedded (TDE) HMM29, in 
which brain networks are characterized by distinct auto-spectral and 
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cross-spectral properties as part of a generative model that is capable 
of explaining the full signal content. Previous work has also shown that 
TDE HMM results in identifiable networks that are highly reproducible 
across different data, sites and task or rest designs, which validates 
this approach. Second, there is a growing effort to compare functional 
brain networks across studies29,68,69 and modalities70–76. We have made 
quantitative comparisons of MEG state topographies with the widely 
used fMRI-based Yeo7 parcellation31 (Supplementary Information Sec-
tion XII), from which we tentatively concluded that the cycle separates 
the DMN (top of the cycle) and the DAN (bottom of the cycle). However, 
we do note that the existence and presence of cycles shown here in five 
independent datasets do not rely on the physiological interpretation 
of individual networks. More efforts need to be made in quantitatively 
comparing functional brain networks inferred from electrophysiology 
and hemodynamic responses, particularly in simultaneous recordings.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41593-025-02052-8.
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Methods
All analyses were carried out in MATLAB77 and Python, using 
in-house-developed software packages OHBA Software Library78–80, 
HMM-MAR81, OSL-dynamics69 and MNE-Python82,83. The TINDA package 
is available for MATLAB84 and Python69.

Data
We used data from five MEG datasets: Nottingham MEG UK (n = 55), 
Cam-CAN (n = 612), HCP (n = 79), Replay (n = 43) and Wakeman–Hen-
son (n = 19). MEG UK, Cam-CAN, HCP and Replay contain MEG resting 
state data, Replay and Wakeman–Henson MEG task data and all but the 
Replay dataset include T1-weighted MRI brain scans. Datasets include 
demographic data and, in the case of HCP, heritability data. Ethics and 
consent details are outlined separately for each of these datasets below. 
No additional ethical approval was required for the present study.

MEG UK
The UK MEG partnership data comprised 77 healthy participants 
recruited at the University of Nottingham, of whom 55 were used after 
discarding 22 because of excessive head movements or artifacts. The 
dataset contains structural MRI scans and MEG data from a CTF MEG 
system containing 275 axial gradiometers with a sampling frequency 
of 1,200 Hz. The participant group used in this analysis had a mean 
age of 37.8 years (range 19–62 years), 29 of whom were female and 
26 male. All participants gave written informed consent and ethical 
approval was granted by the University of Nottingham Medical School 
Research Ethics Committee. The MEG data comprised roughly 5–6 min 
of eyes-open resting state and have previously been used to character-
ize MEG RSN dynamics24,29,85.

Cam-CAN
The Cam-CAN dataset comprised data of 700 healthy participants 
recruited at the University of Cambridge, of whom 612 were used here. 
The dataset contained structural MRI scans and MEG data from an 
Elekta Neuromag Vectorview system containing 102 magnetometers 
and 204 orthogonal planar gradiometers, with a sampling rate of 1 kHz. 
The participants’ mean age was 54.6 (range 18–88) years, with 83–95 
participants per age decile (except in the 18th to 28th decile, which 
counts for 45); 310 were male and 302 female, equally distributed 
across the age deciles. All participants gave written informed consent 
and ethical approval was granted by the Cambridgeshire Research 
Ethics Committee. The MEG data comprised approximately 9 min of 
eyes-closed resting state.

HCP
The MEG component of the HCP comprised 100 healthy participants 
recruited at the Saint Louis University, of whom 79 were used after 
discarding participants with excessive variance. The dataset contains 
structural MRI scans and MEG data from a 4D Neuroimaging MAGNES 
3600 MEG system containing 248 magnetometers sampled at 2 kHz. 
The participant group had a mean age of 29 (range 22–35) years, of 
whom 37 were females and 42 males and contained data of 13 MZ twin 
pairs and 11 DZ twin pairs. All participants gave written informed con-
sent and ethical approval was granted by the local ethics committee. 
The MEG data comprised 3× 6 min of eyes-open resting state.

Replay
The Replay data36 contained a primary dataset (dataset 1) and a replica-
tion dataset (dataset 2). For both datasets, participants were scanned 
on a 275-channel CTF MEG system while engaged in a localizer task, a 
sequence learning task and periods of rest. Activations corresponding 
to images in the localizer task were found to replay during rest, in the 
sequence that corresponded to the learned sequences. The top 1% 
replay probabilities were here defined as the memory replay events, 
as in Higgins et al.24. Replay dataset 1 was acquired from 25 participants 

with a mean age of 24.9 (range 19–34) years, of whom 11 were males 
and 14 females. Four participants were excluded due to large motion 
artifacts or missing trigger information. All participants signed written 
consent in advance. Ethical approval for the experiment was obtained 
from the Research Ethics Committee at University College London 
under ethics no. 9929/002. Replay dataset 2 was acquired from 26 
participants with a mean age of 25.5 (range 19–34) years, of whom 10 
were males and 16 females. Four participants were later excluded due 
to motion artifacts or failure to complete the task. All participants 
signed written consent in advance. Ethical approval for the experiment 
was obtained from the Research Ethics Committee at University Col-
lege London under ethics no. 9929/002. In the present study, Replay 
datasets 1 and 2 were analyzed jointly.

Wakeman–Henson dataset
The Wakeman–Henson faces dataset37 comprised MEG data acquired 
on an Elekta Neuromag Vectorview system of 19 participants. Of these, 
8 were female and 11 male and the age range was 23–37 years. All partici-
pants gave written informed consent and ethical approval was obtained 
from the Cambridge University Psychological Ethics Committee. Each 
participant completed six sessions of a perceptual task in which they 
would see a famous, familiar or scrambled face, to which they had to 
respond based on the symmetry of the image. Each trial began with 
a fixation cross onset between 400 ms and 600 ms before a target 
stimulus appeared. The target was either the face or scrambled face 
stimulus and remained on-screen for between 800 ms and 1,000 ms. 
Further details can be found in ref. 37.

Preprocessing
MEG data were co-registered to the MRI structural scans or to fiducial 
markers in the Replay data where MRI structural scans were not avail-
able. The MEG UK and Cam-CAN data were downsampled to 250 Hz, 
filtered in the 1-Hz to 45-Hz range (using zero-phase digital filtering so 
that effects were symmetrical across time) and source reconstructed 
using an LCMV beamformer to 3,559 dipoles. The dipoles were then 
combined into 38 parcels spanning the entire cortex by taking the first 
principal component of all dipoles in a parcel. This parcellation was 
used previously to estimate large-scale static functional connectivity 
networks in MEG50. The HCP data were downsampled to 240 Hz, filtered 
in the 1-Hz to 80-Hz range and source reconstructed using an LCMV 
beamformer to 5,798 dipoles. The dipoles were then combined into 78 
parcels of the automated anatomical labeling parcellation86, spanning 
the entire cortex by taking the first principal component of all dipoles 
in a parcel. Bad segments were removed manually and correction for 
spatial leakage was applied using symmetrical multivariate leakage 
correction87. Finally, the potential inconsistency over participants of 
ambiguous source polarity was removed using sign flipping based on 
lagged partial correlations38.

Hidden Markov modeling
To find large-scale brain networks in a data-driven way, we applied a 
TDE HMM with 12 states and 15 embeddings, corresponding to lags of 
−28 ms to +28 ms (−29 ms to +29 ms for HCP). Note that we referred to 
the HMM states as ‘network states’ to reflect the method being designed 
and that it has been shown to find states that represent distinct cortical 
networks of oscillatory brain activity in MEG or electroencephalo-
graphic data29. The HMM framework is a generative model that assumes 
that there are a finite number (K) of recurring, transient and mutually 
exclusive hidden states that generate the observed data. Here each 
state is characterized by a spatiospectral profile (that is, in terms of 
power spectral density (PSD) and connectivity in or across regions). 
Thus, every time point in the data was associated with one of the states 
[1, 2, … K], and the sequence of states was assumed to be Markovian. 
This meant that the state active at time point t depended only on the 
state active at t − 1, captured by the transition probability between all 
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states. We used a multivariate Gaussian observation model with zero 
mean. Models were inferred separately for the MEG UK, Cam-CAN and 
HCP datasets. For the Replay datasets, we kept the model from the 
MEG UK dataset fixed and subsequently fitted it to the Replay data, as 
in Higgins et al.24.

Spectral analysis
We estimated the spectral information (PSD and coherence) for each 
state by fitting a multitaper to the original, parcellated data, condi-
tion on the active functional brain network, as in Vidaurre et al.29. The 
multitaper used a taper window length of 2 s and a frequency range of 
1–45 Hz with a 0.5-Hz resolution (that is, applying 7 Slepian tapers). 
This reflected the full multivariate model parameter space (an array 
that was frequencies × channels × channels × states); however the high 
model dimensionality necessitated further dimensionality reduction 
methods if this information were to be visualized. We reduced the 
spectral dimensionality using spectral mode decomposition, resulting 
in spatial power and coherence maps for a data-driven set of frequency 
band modes. This decomposition was implemented by non-negative 
matrix factorization29,38. We fitted this with two modes to separate 
wideband activity from high-frequency noise (Supplementary Fig. 1). 
We then used the wideband mode to weight the frequencies of the 
individual states when producing topographies.

Ordering the HMM states
We ordered the HMM states based on state coherence using the MEG 
UK dataset. States inferred from the MEG UK dataset were reordered 
based on the mean coherence in that state, from high (state 1) to low 
(state 12) coherence. The ordering in the other datasets (Cam-CAN, HCP 
and Wakeman–Henson) was then matched to the MEG UK ordering as 
follows. First, the correlation was computed between the coherence of 
each pair of states, where a ‘pair of states’ consisted of one state from 
MEG UK and one from, for example, Cam-CAN. The correlations were 
then used as a cost function to solve the linear assignment problem 
using the matchpairs function in MATLAB88, matching every state in, 
for example, the Cam-CAN dataset to a state in the MEG UK dataset. 
Due to the different parcellation used in the HCP dataset, here we used 
the correlation between power maps in MNI volume space as the cost 
function. In figures throughout the manuscript, state numbers thus 
indicate equivalent (that is, ‘best matching’) states, whereas state colors 
were different between datasets, to stress that state descriptions were 
inferred independently for each dataset.

TINDA
We developed the TINDA method to analyze interstate dynamics in the 
context of dispersive ISIs. We first partitioned all observed ISIs, defining 
T1

m,i to be the set of timepoints that fall within the first half of ISIs for 
state m and T2

m,i to be the set of all timepoints that fall within the second 
half of these ISIs. We then computed the K × K fractional occupancy (FO) 
asymmetry matrix (A), defined as the matrix with (m,n)th entry as:

Am,n = < FOT n
1
− FOT n

2
>

m

where < … >m denotes the average FO difference for state n over state 
m ISI’s (Fig. 1). These FO asymmetry matrices are computed for each 
participant.

Cycle detection and cycle strength
TINDA establishes whether there is a general flow of states into and out 
of a particular state. We investigated whether this pattern is embedded 
in a larger, hierarchical structure, specifically a cycle. We interpret 
the FO asymmetry matrix, A, as a weighted, directed graph of K nodes 
(that is, number of states) and K2 − K edges (that is, from every node 
to every other node). The FO asymmetry thus defines the weight and 
direction of each edge.

To investigate how these edges relate to specifically cyclical 
dynamics, we defined a metric of cycle strength for each configura-
tion of the K nodes around the unit circle. Each node is associated with 
a phase q, positioned on the unit circle in 2p/K intervals, spanning [0, 
2p]. We could then represent each directed transition, from state n to 
state m, by a vector in the complex plane defined by the phase differ-
ence between the relative position of nodes m and n:

dm,n = ei(qm−qn) (1)

The magnitude of the imaginary component of this vector rep-
resents a geometric projection of each state transition onto the plane 
tangential to the unit circle at node n. Trivially, the cumulative sum of 
these vectors for all n and m states is zero. However, if these vectors 
are weighted by the strength (and direction) of the corresponding FO 
asymmetry, then the sum of their imaginary components represents 
the cumulative strength (that is, of the asymmetry) and the polarity 
represents the net direction (that is, clockwise (+) versus counterclock-
wise (−)) of transitions tangential to the unit circle. Hence, we define 
the cycle strength, S, as:

S = −β ×∑
m

∑
n≠m

Am,n × sin (qm − qn) (2)

where β is a normalization factor based on the theoretical maximum 
cycle strength for K states, such that S is constrained to be [−1, 1]. The 
theoretical maximum cycle strength is computed for K states by assum-
ing a perfect asymmetry of +1 for all possible clockwise connections 
and −1 for all possible negative connections.

We permuted the position of each state on the unit circle (that is, 
the node identity) to maximize S. This revealed the sequence of states 
for which the overall directionality is maximal in the clockwise direc-
tion. Note that we could have chosen to maximize negative S instead. 
This would have resulted only in all circle plots going in a counterclock-
wise direction; it would not have changed any of our results.

Circle plots
The circle plots all show the network states in the sequence that maxi-
mizes the cycle strength (in a clockwise direction). The edges E that 
are shown are those where the FO asymmetry is statistically significant 
(ʽStatisticsʼ) and the direction of the arrow depends on the sign of the 
corresponding edge asymmetry, where α is the (corrected) statistical 
threshold (ʽStatisticsʼ):

E j,k =
⎧⎪
⎨⎪
⎩

0, p j,k ≥ α

−1, p j,k < α ∧ A j,k < 0

+1, p j,k < α ∧ A j,k > 0

(3)

Cycle rate
To quantify cycle rate, we applied a post hoc analysis to the state time 
course parameters already learned. Specifically, we derived a feature 
from the state time courses defined as the number of state visits in a 
sliding window equal to the average state lifetime (64–68 ms, depend-
ing on the dataset). We then fitted a second-level HMM to this feature 
time course, where this HMM used Poisson’s observation model and 
sequential Markov dynamics89. We selected a model with K = 4 states, 
where we initialized the state probabilities as the distance (that is, in 
circle space) to the centroid of each of the four modes in Fig. 4b,c. We 
also enforced a sequence of state 1 > state 2 > state 3 > state 4 > state 1, 
and so on, such that a single cycle was defined as sequential activation 
of each of the four modes in Fig. 4b,c. Using this initialized model, we 
inferred the state time courses from the data without training the model 
to convergence. This was done to not deviate from our definition of a 
‘cycle’ and subsequently to quantify cycle duration as the time that it 
takes to cycle through a full 1 > 2 > 3 > 4 sequence of the second-level 

http://www.nature.com/natureneuroscience
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HMM. For correlations with individual traits, the inverse (that is, cycle 
rate) was used, because this was more normally distributed.

Statistics
FO asymmetry and circle plots. Circle plots show the edges where the 
FO asymmetry is strongest (and significant). To test for significance, the 
FO asymmetry was tested on the group level with a two-tailed, depend-
ent sample Student’s t-test for each of the connections m and n, where 
the α threshold of 0.05 was Bonferroni corrected for 132 tests (that 
is, K2 − K), resulting in a corrected α threshold of 0.00038. Due to the 
large numbers of participants in the HCP and Cam-CAN, more stringent 
thresholds were applied in these datasets. For the Cam-CAN, the edges 
with absolute t-values >11 are shown (corresponding to P < 3.8 × 10−24) 
and, for the HCP dataset, the edges with absolute t-values >4.3 (cor-
responding to P < 3.8 × 10−5).

Cycle strength. We reported the results for the sequence of network 
states that results in the strongest, clockwise cycles. A claim of nonzero 
cycle strength could be a trivial consequence of this optimization. For 
this reason, we compared the observed cycle strength with that from 
permutations, where, for each permutation, we permuted each partici-
pant’s state labels and recomputed the FO asymmetry and optimized 
state ordering. This was done 1,000×. The observed cycle strength was 
compared with the permuted versions at α = 0.05.

Within-subject consistency of cycle metrics. The individual con-
sistency of cycle metrics was directly estimated using the intraclass 
correlation coefficient in MATLAB, with type ‘1-1’ as implemented in 
Salarian90.

Correlation with individual traits. For the correlation of cycle rate and 
cycle strength with individual traits, we first regressed out heart rate. 
Outliers >3 s.d. from the mean value were removed and cycle metrics 
were normalized, before the generalized linear model. We fitted a mean 
term and the cycle rate and cycle strength to age and sex separately, 
using a Gaussian and binomial distribution, respectively. The β terms 
for each were significant if the corresponding P value was lower than 
the α threshold of 0.0125 (that is, 0.05 corrected for 4 tests).

Heritability. To test whether variance in cycle metric could be 
explained by genetic factors, we used an ACE model, as implemented 
in the Accelerated Permutation Inference for the ACE model (APACE) 
framework91. APACE was run on all participants’ cycle metrics for the 
three resting state sessions, separately for cycle rate and cycle strength, 
using 10,000 permutations. The α thresholds of 0.05 were Bonferroni 
corrected for 2 tests. To ensure that estimated heritability effects were 
not caused by common demographic and morphometric measures, 
we repeated the analysis after regressing out the following confounds 
in stepwise fashion (Supplementary Information Section IX): age, the 
square of age, sex, an age and sex interaction, an interaction between 
sex and the square of age and the cube root of intracranial volume and 
cortical volume (both estimated using FreeSurfer92).

Correlation with cognitive scores. A CCA was executed on the 
Cam-CAN dataset, between the cyclical summary metrics (cycle rate 
and strength), on the one hand, and 13 cognitive scores, on the other. 
For all metrics, we first regressed out age, sex and heart rate, and then 
z-transformed the data. The CCA resulted in two CCA components, 
which were tested for significance by comparing against a permutation 
distribution of 10,000 permutations, where, for each permutation, the 
cognitive scores were shuffled over participants.

Correlations with reaction times in the Wakeman–Henson data. We 
time locked the state probability time courses to the button presses in 
the Wakeman–Henson data and correlated state probability at 500 ms 

before the button press with the reaction time on that trial. This was 
done separately for each session and state, after which we averaged 
the correlations over sessions for each participant. We tested whether 
the correlation was significantly different from zero for each state 
with a paired Student’s t-test, using a Bonferroni-corrected α level of 
0.05/K. Similarly, we correlated reaction times with an instantane-
ous estimate of cycle strength, computed by running TINDA on 3-s 
segments before the button press and calculating the cycle strength. 
Correlations were tested against zero on the group level using a paired  
Student’s t-test.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The MEG UK Partnership data are held by the MEG UK Partnership, for 
which access can be requested at https://meguk.ac.uk/database. The 
Cam-CAN dataset is available upon request to https://camcan-archive.
mrc-cbu.cam.ac.uk/dataaccess/datarequest.php. The HCP dataset is 
freely available at https://db.humanconnectome.org/app/template/
Login.vm, but will require an application for sensitive data (https://
www.humanconnectome.org/storage/app/media/documenta-
tion/LS2.0/LS_Release_2.0_Access_Instructions_June2022.pdf). The 
Replay dataset will be freely available upon request (subject to par-
ticipant consent) to yunzhe.liu.16@ucl.ac.uk. The Wakeman–Henson 
dataset is publicly available at OpenNeuro (https://openneuro.org/
datasets/ds000117/versions/1.0.5). Source data are provided with  
this paper.

Code availability
The code for all analysis code described here is publicly available via 
GitHub at https://github.com/OHBA-analysis/Tinda.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis All data were analysed using MATLAB 2023a, Python 3.8, FSL 6.0.5, and custom-written scripts (available at https://github.com/OHBA-

analysis/Tinda). In addition, the following Python/MATLAB based toolboxes were used: 

OHBA Software Library (https://github.com/OHBA-analysis/osl-core), HMM-MAR (https://github.com/OHBA-analysis/HMM-MAR/), OSL-

Dynamics (https://github.com/OHBA-analysis/osl-dynamics), OSL-Ephys (https://github.com/OHBA-analysis/osl-ephys/tree/main), and MNE-

Python (https://mne.tools/stable/index.html)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data used for this manuscript are third-party data, which are available at the respective databases. The MEG UK Partnership data is held by the MEG UK 

Partnership, for which access can be requested at https://meguk.ac.uk/database/. The Cam-CAN dataset is available upon request to https://camcan-archive.mrc-

cbu.cam.ac.uk/dataaccess/datarequest.php. The HCP dataset is freely available at https://db.humanconnectome.org/app/template/Login.vm but will require an 

application for sensitive data (see https://www.humanconnectome.org/storage/app/media/documentation/LS2.0/

LS_Release_2.0_Access_Instructions_June2022.pdf). The Replay dataset will be freely available upon request (subject to participant consent) to 

yunzhe.liu.16@ucl.ac.uk. The Wakeman-Henson dataset is publicaly available at OpenNeuro (https://openneuro.org/datasets/ds000117/versions/1.0.5).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Only reporting on sex, as gender was not collected

Reporting on race, ethnicity, or 

other socially relevant 

groupings

Data not available

Population characteristics MEG UK (N=55): mean  age 37.8 (range 19-62), 26 male/29 female 

Cam-CAM: mean age 54.6 (range 18-88), 310 male/302 female 

HCP: mean age 39 (range 22-35), 42 male/37 female, 13 mono- and 11-dizygotic twin pairs 

Replay dataset1: mean age 24.9 (range 19-34), 11 male/14 female 

Replay dataset2: mean age 25.5 (range 19-34), 10 male/16 female 

Wakeman-Henson: age range 23-37, 11 male/8 female

Recruitment See original data publications

Ethics oversight No ethical approval was required for the analysis of the public data. The ethical approvals for each of the datasets were 

acquired by the respective study teams, as outlined below: 

MEG UK: ethical approval was granted by the University of Nottingham Medical School Research Ethics Committee. 

Cam-CAN: ethical approval was granted by the Cambridgeshire Research Ethics Committee 

HCP: ethical approval was granted by the local ethics committee. 

Replay dataset1: ethical approval for the experiment was obtained from the Research Ethics Committee at University College 

London under ethics number 9929/002 

Replay dataset2: ethical approval for the experiment was obtained from the Research Ethics Committee at University College 

London under ethics number 9929/002 

Wakeman-Henson: ethical approval was obtained from the Cambridge University Psychological Ethics Committee

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were limited by the availability of public datasets, and were not predetermined based on power calculations.  

 

Dataset 1 (MEG UK), N=55 

Dataset 2 (Cam-CAN), N=612 

Dataset 3 (HCP), N=79 

Dataset 4 (Replay), N=43 

Dataset 5 (Wakeman-Henson), N=19
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Data exclusions MEG UK: 22 subjects were excluded from the original dataset (N=77) because of excessive head movements or artifacts in the data. 

Cam-CAN: 41 subjects were excluded from the original dataset (N=653) because of incompleteness of the data 

HCP: 21 subjects were excluded from the original dataset (N=100) because of excessive noise. 

Replay dataset1: 4 subjects were excluded from the original dataset (N=25) because of large motion artifacts or missing trigger information 

Replay dataset2: 4 subjects were excluded from the original dataset (N=26) because of large motion artifacts or failure to compete the task. 

Replication Core results were replicated in five independent dataset, all of which were successful. 

Randomization Subjects were not allocated to a specific group - existing allocations were used based on the original study designs. 

Blinding Blinding was not relevant to this study because of the absence of a priori hypotheses regarding participant demographics. Furthermore, the 

availability of public datasets limited blinding.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 

off-target gene editing) were examined.

Plants

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 

or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 

to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 

subjects).
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Acquisition

Imaging type(s) Structural

Field strength dataset1: 3T  

dataset 2: 3T 

dataset 3: 3T 

dataset 5: 3T

Sequence & imaging parameters dataset 1: 1 × 1 × 1 mm3 resolution running an MPRAGE sequence 

dataset 2: Prepared RApid Gradient Echo (MPRAGE) sequence with the following parameters: Repetition Time (TR) 

=2250 milleseconds; Echo Time (TE) =2.99 milliseconds; Inversion Time (TI) =900 milliseconds; flip angle =9 degrees; 

field of view (FOV) =256mm x 240mm x 192mm; voxel size =1mm isotropic; GRAPPA acceleration factor =2; acquisition 

time of 4 minutes and 32 seconds. 

dataset 3: MPRAGE; TR/TE = 2400/2.14 ms, 192 slices, 0.7 mm3 isotropic resolution, TI = 1000 ms, parallel imaging (2×, 

GRAPPA) 

dataset 5: 1 mm isotropic T1-weighted ‘structural’ image was acquired using an MPRAGE sequence (TR 2,250 ms, TE 

2.98 ms, TI 900 ms, 190 Hz/pixel; flip angle 9°)

Area of acquisition whole-brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Matlab, OSL-Matlab, OSL-ephys, OSL-dynamics, MNE-Python, FSL, 

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 

transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template MNI152

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 

physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings MEG source-modelling, intracranial volume

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 

ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis T1 scans were used for MEG source modelling 

Intracranial volume was used as a confound regressor in testing heritability of cycle rate and cycle strength
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