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The brain seamlessly performs a diverse set of cognitive functions
like attention, memory and sensory processing, yet it is unclear how it

ensures that each of these is fulfilled within areasonable period. One

way in which this requirement can be metis if each of these cognitive
functions occurs as part of arepeated cycle. Here we studied the temporal
evolution of canonical, large-scale, cortical functional networks that

are thought to underlie cognition. We showed that, although network
dynamics are stochastic, the overall ordering of their activity forms a
robust cyclical pattern. This cyclical structure groups states with similar
function and spectral content at specific phases of the cycle and occurs
attimescales of 300-1,000 ms. These results are reproduced in five large
magnetoencephalography datasets. Moreover, we show that metrics

that characterize the cycle strength and speed are heritable and relate to
age, cognition and behavioral performance. These results show that the
activations of a canonical set of large-scale cortical functional networks are
organized in an inherently cyclical manner, ensuring periodic activation of
essential cognitive functions.

The human brain fulfills many cognitive and homeostatic functionsin
aflexible and adaptive manner, whichis essential for survival. Yet, itis
unclear howitis organized to ensure that each of theseis within a certain
time frame whenthebrainisinanonstructured temporal environment.
Onewayinwhichthisrequirement can be metisifeach of the cognitive
functions occurs as part of a repeating cycle. As large-scale cortical
networks, studied through functional brain imaging, are thought to
underlie specialized cognitive functions''°, we can examine the dynam-
ics of these cortical networks to see whether cyclical patterns exist.
Researchintospontaneousbrainactivity recorded in wakeful rest
using magnetoencephalography (MEG), electroencephalography™
and functional magnetic resonance imaging (fMRI)"*"'* has shown that
transitions between cortical networks in wakeful rest, or resting state,
networks are nonrandom and different levels of organization have
been observed. For example, multimodal evidence from MEG™" and

fMRIP*® suggests that the default mode network (DMN) and the dorsal
attention network (DAN), associated with an inward versus an outward
orientation of attention, respectively, are anti-correlated and unlikely
to transition into each other directly. Moreover, recent results from
fMRI show that the nonrandom transitions between resting state net-
works contain a hierarchical component, with clusters of brain states
thatare more likely to transition into each other within but not across
clusters™. These asymmetries in transition probabilities between brain
networks have further been shown to be more directional in states of
higher awareness and in more physically and cognitively demanding
tasks in both electrophysiology”? and fMRI?>*>. However, the exist-
ence of cyclical patterns between a full set of canonical, large-scale
cortical networks has not previously been shown.

Here we investigated the temporal dynamics of large-scale corti-
cal networks in multiple MEG datasets obtained during wakeful rest.
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Fig.1|Schematic of TINDA, with state 1as an example reference state.

a, Asegment of the (1to nregions of interest (nyo;)) multi-region, resting state
MEG data (top) and the inferred HMM state activations (bottom). Segment i is
the period between reactivations of network state 1, whichis further subdivided
into two interval halves (first half yellow, second half blue). b, The FO (that is,
relative time spent) for each network state in both intervalsin a (left) and the

FO distributions over all state-1-to-state-1intervals (right). Asterisks represent
statistical significance (P < 0.05, Bonferroni-corrected). ¢, The FO asymmetry
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matrix showing the mean FO difference over intervals between the two interval
halves with respect to areference state (in this example, state 1). This procedure
isrepeated for all reference states n to create the full FO asymmetry matrix,
whichis usedin the results going forward. Asterisks denote significant (P< 0.05,
Bonferroni-corrected) FO asymmetries. Note that each state gets used in turn as
the reference state, with the outputs then combined within the TINDA procedure.
Theresults fromaandb are condensed in the column enclosed by the green
dotted line.

We developed a new method for quantifying the transition asym-
metries of these networks at a range of timescales, which showed
that asymmetrical transitions are ubiquitous in human brain activity.
Moreover, although individual transitions were stochastic, together
they produced arobust cyclical pattern of cortical network activations
ontimescales of300-1,000 ms, an order of magnitude longer than the
average lifetime of a single network. These patterns were reproduced
in five independent datasets and robustly showed a preferred posi-
tion of each brain network in the cycle. Furthermore, we showed that
cyclical summary metrics are heritable and relate to age, cognition and
behavioral performance. Together, these results show an overarching
flow of cortical networks, suggesting that cortical network activations
areinherently cyclical, ensuring periodic activation of essential cogni-
tive functions.

Results
Functional brain networks activate in cycles
To explore the temporal dynamics of large-scale functional brain
networksinresting state MEG, we first conducted asecondary analysis
of previously published results*. This new analysis considered the
longer-term patterns of resting state network (RSN) activity in the
Nottingham MEG UK dataset (55 participants)®. Using hidden Markov
modeling (HMM), the analysis (Methods) identified K =12 states,
reflecting distinct brain networks with unique spatial configurations
of power and coherence that reoccur at different pointsin time. States
areinferred that best explain the multivariate distribution of activity
across the entire brain whenever that stateis active; they do not model
anysingle spatial region inisolation, although spatially confined activ-
ity may nevertheless be characteristic of a particular state. The state
descriptions of all network states are shown in Supplementary Fig. 1.
We characterized the tendency of network states to follow or
precede each other using a new method called temporal interval
network density analysis (TINDA; Fig. 1). This method focuses on the
variable-length intervals between network state occurrences, which

relaxes more common assumptions of fixed-length timing patterns,
anapproach that we show to be crucial toits success (Supplementary
Fig. 4). For each reference state n, TINDA takes all intervals between
reoccurrences of the same state (that is, state-n-to-n intervals) and
partitions them evenly in half. It then defines the fractional occupancy
(FO) asymmetry as the difference between the probability of another
network state m occurring in the first half versus the second half of
those intervals. This measure captures whether there is a tendency
for a network state to follow, or precede, another state over variable
timescales (Methods and Fig. 1d,e).

We used this method to investigate whether an overarching pat-
ternemerged when every state’s tendency to follow or precede every
other state was analyzed. Toillustrate its use more clearly, we first used
thismethod ontheintervals defined by subsequent visitstostaten=1
(Fig. 1). This revealed that certain network states (state 5, t(54) =5.1,
P=4.1x10"% and state 9, t(54) = 6.4, P=3.7 x10°®) tend to occur after
state1, whereas other states (state 2, t(54) = —4.6, P= 2.3 x 10°, and state
8,t(54)=-6.1,P=9.9 x107®) tend to occur before state 1. All other states
(3,6,7,10,11and 12) did not exhibit significant asymmetrical activation
probability after Bonferroni’s correction for multiple comparisons.
In the interest of reproducibility, we repeated the same analysis for
the equivalent state in two other large datasets (Cambridge Centre
for Aging Neuroscience (Cam-CAN; n = 612)*** and the Human Con-
nectome Project (HCP; n=79)*) and found consistent results (Sup-
plementary Fig. 2).

We nextinvestigated whether asymmetries in activation probabili-
ties also existed for other network states. Using TINDA on all pairs of
network states, we confirmed that thiswasindeed the case and, moreo-
ver, that these pathways were unique to each state (Fig. 1c and Sup-
plementary Fig.2). All results that follow rely on the full FO asymmetry
matrix (Fig. 1c), that is, where TINDA is applied to state-n-to-state-n
intervalsfornel: K.

We then explored the possibility that the asymmetries in net-
work activation probabilities are unified by an overarching structure.
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Fig.2| TINDA reveals cyclical activation of functional brain networks in three
large MEG datasets. a-c, The group-average FO asymmetry in three large MEG
datasets (MEG UK, n =55 (a); Cam-CAN, n = 612 (b); HCP, n =79 (c)), showing the
activation probability of one network state (y axis) relative to another (x axis).
Asterisks denote statistically significant elements (Bonferroni-corrected at
a=0.05,a=10"°, a=0.01, respectively). d-f, Visualizing the statistically

significant FO asymmetries in the MEG UK (d), Cam-CAN (e), and HCP (f) datasets
as directed edges reveal an overarching cyclical activation structure of functional
brain networks. The colors of nodes in the different datasets are distinct to
indicate that network state descriptions are inferred independently from each
dataset. State numbers in Cam-CAN or HCP are matched to the MEG UK dataset
(Methods), whichis numbered in order of decreasing coherence.

Inparticular, visual inspection of these networks raised the possibility
that they were unified by a globally cyclical structure (Fig. 2d and Sup-
plementary Video 1), an emergent dynamic that could not arise trivi-
ally from the first-order state asymmetries (P < 0.01; Supplementary
Information Section II). We defined the cycle strength (S) to test the
potential cyclical structure statistically (see Methods for details). Cycle
strengthis +1for graphs where all transitions are perfectly clockwise,
zero for completely stochastic graphs and negative for overall counter-
clockwise transitions (note that, when states are ordered to maximize
S, negative cycle strength can be true only for individual participants,
not for the group average, and vice versa when S is minimized). We
confirmed that the cyclical pattern, as a result of all FO asymmetries
together, could not have arisen by chance by permuting network state
labels within each participant.Ineach of1,000 permutations, the order
of states was shuffled independently for each participant and cycle
strength was computed using the optimal cycle order for that permu-
tation; the observed cycle strength was significantly greater than in
permutations (mean (s.d.): S =0.066 (0.041), P < 0.001). Moreover, in
additional control analyses, weruled out the possibility that the cyclical
pattern could arise from common (rhythmic) physiological artifacts;
Supplementary Information Section VI.

In the interests of reproducibility, we replicated these analyses
in the two other datasets, confirming both the presence of cyclical
dynamics and the consistency of individual state ordering within the
cyclical configuration across all datasets. HMMs were independently
trained on each dataset, after which states were reordered to match the
ordering in the MEG UK dataset (Methods); state numbers across the
three datasets thus refer to equivalent network states. We confirmed
that cycle strength was higher than permutationsin both the Cam-CAN
(§=0.049(0.033), P < 0.001; Fig.2b,e) and the HCP (§ = 0.048 (0.035),
P<0.001; Fig.2c,f). This confirmed the presence of a cyclical structure
in all three datasets, but it remained plausible that these were differ-
ent cyclical structures. As we identified equivalent states in all three
datasets, we could test whether the order of states in the cycle was
comparable between datasets. We computed the cycle phase differ-
ence between equivalent states in each dataset and compared this to
arandom placement of states across the cycle (thatis, permuting state
positions 10,000x). This analysis confirmed that the order of states
in the Cam-CAN cycle matched the order in MEG UK: the mean phase
difference (A6) between equivalent states was smaller than expected
by chance (A6 =0.645rad, P=0.0038; Supplementary Information
Sectionlll). Despite the use of an entirely different parcellationin HCP,

Nature Neuroscience | Volume 28 | October 2025 | 2118-2128

2120


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-025-02052-8

Percentile bin

— 0-20% — 20-40% 40-60% — 60-80% 80-100% === Permutations (mean + s.d.) . . @
a b c ®
® s8n1 ®
. ‘ .

1+ t 1 F. S0 9 Ns

L R
s o 4k TR

! '3 - -

A + i

L Ll Ll Ll | | | |
1072 107 10° 10' -0.1 0.1 0.2 0.3

Mean interval time (s)

Fig. 3| The observed cyclical organization of network state activations is
driven by longer interval times in the MEG UK dataset (n = 55).Foreach
participant and state, intervals were binned by interval times into five percentile
bins. a, The mean duration of interval times pooled over all 12 states within

each percentile bin. b, The cycle strength resulting from running TINDA on

each percentile binina. Circles are individual participants, boxplots display

the median, mean (+s.d.), and 25th and 75th percentiles and whiskers indicate
the minimal and maximal value in the group. Theline and error bar around zero
cycle strength are the mean and s.d. of the empirical permutation distribution

Cycle strength (a.u.)

based on1,000 permutations. Significant cycle strength (permutation test, one
sided) was observed for percentile bin 2 (S = 0.014, P= 0.025), bin 3 (S = 0.018,
P=0.0060),bin4 (5=0.052,P<0.001) and bin5(5=0.086, P<0.001), but not
for percentile bin1(S=0.0060, P=0.17). Significance is denoted by asterisks:
'P<0.05,"P<0.01, "P<0.001 (Bonferroni-corrected). ¢, Graphs similar to

Fig. 2d for binned interval times with increasing duration from top to bottom.
Note that arrows are only shown for significant FO asymmetries, that is, bin1
does not contain any significant asymmetries and is therefore empty. NS, not
significant.

the same was true in this dataset (A@=0.472 rad, P=0.0001). These
analyses thus show that the same cyclical dynamics can be observed
across three independent datasets.

Cycles are strongest over timescales of seconds

Given the strength of this cyclical activation pattern, we considered
why it had not been characterized previously in the literature. TINDA
differs from other methods of characterizing dynamics in that it meas-
uresdynamics over interstate intervals (ISIs) of variable length. These
intervals have a highly dispersive distribution with avery long tail**%.
Common means of modeling temporal dynamics typically assume
either aMarkovianstructure, asinour work (thatis, that the state at one
time point is conditionally dependent on only the immediately prior
state™), orastructure of temporal dependency with fixed-length time
lags™. Simulations from either of these models trained on the exist-
ing dataset illustrate why such a cyclical activation pattern would not
have been detected in previous work without an additional post hoc
analysis such as TINDA to capture dependencies that are not reflected
explicitly in the model parameters. These simulations capture only a
small part of thisinherent cyclical structure, most of which is lost due
to the variability of ISI durations (Supplementary Fig. 4). The fact that
other models capture only asmall part of thisinherent cyclical structure
underlines the importance of our new approach.

This also suggests two key temporal features of the cyclical pat-
terns that we have characterized: first, that these cyclical patterns are
instantiated over longer timescales and, second, that they do not have
aregular cyclical period (Supplementary Information Section VI and
Supplementary Video1). To verify this quantitatively, we looked at the
dependency of the FO asymmetry and cycle strength on the interval
duration (thatis, 7 with m = 1in Fig. 1, the interval time between sub-
sequent visits to the network state of interest (m)). We expected that,
if cyclical patterns were instantiated over longer timescales, then the
FO asymmetries and the characteristic cycle would be apparent only
atlonger interval times.

Todothiswe partitioned the distribution of interval times (Fig. 3a)
into five equally sized bins. We did this separately for each state to

ensure that there was no state biasin each bin. This procedure resulted
in each bin containing an average (s.d.) of 885 (111) intervals for each
participant. We then reran the TINDA procedure separately on (the
intervals from) each bin. Figure 3b shows that group mean cycle
strengthis close to zero for the bins with the shortest durationintervals
and increases for bins with higher interval durations. Cycle strength
is significantly higher thanin permutations (Methods) inbins2-5and
strongest in the bin containing the longest interval durations (with a
meaninterval time of 3 s). Thiswasreplicated in the Cam-CAN and HCP
datasets (Supplementary Fig.5) and together these results prove that
thecyclicactivation of network states is occurring at timescales of the
order of seconds.

Cycles connect networks with similar properties and function
Having established that resting state networks tend to activateina
cyclical progression, we next characterized what acomplete traversal
of a single cycle might look like. We did this by mapping the spatial
or spectral network state descriptions provided by the HMM on to
the cycle. The result of this is shown in Fig. 4 for the MEG UK dataset
with power maps and Supplementary Fig. 7 for the other datasets and
coherence maps. We emphasize that each network state comprises
aspatially defined pattern of power and coherence. To display these
high dimensional representations more succinctly, Fig. 4ashows only
the single dominant spatiospectral mode in each state (Methods and
Supplementary Fig.1); thisinformation s further condensed and sum-
marized inFig. 4b,c. Quantitative comparisons of the MEG HMM states
and the Yeo7 atlas® have been made in Supplementary Information
Section XII.

The first major mode of differentiation between network states
emerges onthe north-south axis of the clock face. Statesin the upper
quadrant have a higher overall power and interarea coherence (that s,
phase locking). States1and 3, in particular, show strong overlap with
areas overlapping the DMN (including bilateral inferior parietal lobe,
medial prefrontal cortex and medial temporal lobe; Supplementary
Information Section XIl). Thisis notamere broadband power increase,
but rather reflects different combinations of oscillatory activity in
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maps and replication in Cam-CAN and HCP and Supplementary Fig.1for detailed

spectral characteristics for each network state). To the right of each brain map
is the spatial average PSD (solid line) and coherence (Coh; colored dashed line)
asafunction of frequency, relative to the average over states (horizontal dashed
black line). b,c, Qualitative summary of the spectral (b) and spatial (c) modes
seenina (Supplementary Information Section XII).

Fig. 4| The cyclical structure groups together network states that have
similar spectral properties and cognitive functionin the MEG UK dataset.

a, The spatiospectral characteristics of functional brain networks embedded
intheir cyclical progression. Each brain map shows the percentage increase in
power (for visualization purposes, this is shown relative to the mean over states),
projected on to the left hemisphere (see Supplementary Fig. 7 for the coherence
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distinct or overlapping frequency bands®. On the lower quadrant,
states have lower overall power and interarea coherence, particularly
in sensorimotor and parietal areas. These states are associated with
sensorimotor processing (states 9 and 12) and the DAN (Supplementary
Information Section XII).

A second mode of differentiation emerges on the east-west axis
of the clock face. In terms of spectral activity, network states on the
left of the quadrant display activity in higher-frequency bands, for
instance, state 6 is associated with 3-band (14-30 Hz) activity and
state2with a-band (7-13 Hz) activity. On the other hand, states on the
right-hand side show activity in lower-frequency bands, particularly the
6 (1-4 Hz) and 6 (4-7 Hz) bands. Spatially, states on the left-hand side
show increased low-frequency activity in sensorimotor and parietal
areas, whichare associated with sensorimotor inhibition. Meanwhile,
states on the right-hand side show activity mostly in frontotemporal
and language areas>***.

The differentiationin spatiospectral activity suggests that differ-
ent types of brain function and processes are localized to particular
phases of the cycle, for example, these results suggest that network
states going into the DMN are linked to sensorimotor inhibition
throughincreased o or f power. In contrast, networks going away from
the DMN comprise slower-frequency content in higher-order fronto-
temporal areas, which is followed in turn by low-power sensorimotor
states, in particular state 7, characterized by a decrease in oscillatory
power in the parietal regions overlapping the DAN.

In the interest of reproducibility, this plot has been replicated
onthe Cam-CAN and HCP datasets. The main findings summarizedin
Fig.4b,c havebeenreliably reproduced (Supplementary Fig. 7), despite
some moderate differences in network state definitions.

Cycle statistics relate to cognition and demographics

Inspired by this qualitative segmentation of cyclesinto four ‘metastates’
of distinct spatiospectral characteristics, we defined a full-cycle tra-
versal as the sequential activation of these (see Methods and Supple-
mentary Information Section VIl for details). This allowed us to define
cycle duration as ametric to summarize the timescale of these dynam-
ics. Cycle duration was, on average, on the timescale of 300-1,000 ms
(MEG UK mean (u) (s.d.) = 549 (154) ms; Supplementary Information
Section VIII: Cam-CAN  (s.d.) =355 (62.4) ms; Fig. 5d: HCP u (s.d.) = 528
(104) ms). We could then relate cycle duration, or in fact its more
normally distributed inverse (that is, cycle rate), to individual traits,
together with the previously defined cycle strength.

We first made sure that the cycle strength and cycle rate are con-
sistent within individuals. We computed the intraclass correlation
coefficient (R) on the metrics for the three sessions per participant
available in the HCP dataset. This confirmed that both metrics are
consistent across sessions (cycle strength: R = 0.43 (95% confidence
interval (Cl): 0.29-0.56), F-statistic F(78,158) =3.2,P=1.9 x107%; cycle
rate: R =0.80 (95%Cl: 0.72-0.86), F(78,158) =12.9, P= 0). We also found
that these metrics are robust to the number of network states fitted
in the first-level HMM (Supplementary Information Section IX). We
then took advantage of the large and equally distributed age range
(18-86 years) and sexin the Cam-CAN dataset and asked whether either
could be predicted by cycle strength or cycle rate (Fig. 5). Asboth age
and sex are known to affect heart rate, and the heartbeat has a strong
effect on the MEG signal, we first regressed out heart rate. Next, we
fitted a generalized linear model, which revealed that cycle strength
reliably predicted age (8=2.49, s.e.=0.75, t(605) = 3.30, P= 0.0010,
post hoc Pearson’s correlation R = 0.16), but not sex (f=-0.052,
s.e.=0.085,t(605) =-0.61,P=0.54,Cohen’sd=-0.10), and cycle rate
predicted age (=-2.04, s.e.=0.75, t(605) =-2.71, P=0.0070; post
hoc Pearson’s correlation R = -0.15) and sex (8 = 0.24, s.e.= 0.086,
t(605) =2.81, P=0.0050, Cohen’s d = 0.27). These findings are robust
tominor changes in the way that metrics are defined (Supplementary
Information Section IX). We replicated these correlationsinthe other

datasets and confirmed the correlations betweenage and cycle rateand
strength but found no statistical difference between males and females
(Supplementary Information Section X). A post hoc analysis revealed
thatthe correlation between age and cycle strength can be explained by
acombination of (1) stronger pairwise asymmetries between network
states on average and (2) fewer deviations from the cycle structure (that
is, fewer backward or random transitions) (Supplementary Fig. 11).

The correlations between cycle metrics and age suggest that older
people have slower and stronger cycle dynamics. Given that cognitive
slowing and inflexibility are often observed in older people'***, we
wondered whether these were related. We first regressed out age, sex
and heartrate fromall variables and then used a canonical correlation
analysis (CCA) tofind arelationship between cycle metrics and cogni-
tive scores, resulting in two orthogonal, canonical correlation variates.
This confirmed a statistically significant relationship between cogni-
tive scores and cycle metrics for the second (R=0.17, F(12,597) =1.51,
P=0.0087 versus permutations; Fig. 5g), but not the first (R =0.19,
F(26,1,192) =1.54, P=0.19; Supplementary Fig.15) variate. Notably, the
canonical weights of cycle metrics for the significant relationship with
cognitive scores were in the opposite direction and so was the correla-
tionbetween these metrics and age. This could suggest arelationship
between cycle dynamics and age-related cognitive decline. Replication
of this finding was not assessed in other datasets because comparable
cognitive scores were not available.

We next wondered whether cycle metrics could be genetically
determined. The Cam-CAN dataset did not allow us to test this for
lack of twin data, so we turned to the HCP dataset, which contains
data of monozygotic (MZ) and dizygotic (DZ) twins and unrelated
pairs of participants. using an ACE model of heritability***. The ACE
aims to partition the phenotypic variance into three components:
additive genetic variance (A), shared environmental factors (C) and
nonshared environmental factors (E). Despite the relatively small
cohort of twin data, we found strong evidence that cycle rate, but
not cycle strength, is heritable (Fig. 5¢,f). In fact, 73% of the variance
in cycle rate in the population could be explained by genetic factors
(h?=0.73,95% Cl=0.29-0.98, P= 0.0039). We did not find such an
effect for cycle strength (h*=0.32, 95% Cl = 0.01-0.67, P= 0.12) nor
didwe find evidence that environmental factors affected cycle metrics
(cycle strength: the amount of variance explained by environmental
factors (c?) = 0.18,95% Cl = 0-0.41; cycle rate: ¢*= 0, 95% Cl = 0-0.43).
To make sure that demographic or morphometrics factors did not bias
theseresults, we systematically regressed out potential confounds (for
example, age, sex, brain volume; Methods and Supplementary Fig. 10).
The heritability estimate of cycle rate remained high (h*= 0.68) and
significant even with the most stringent confound modeling.

Cycles are preserved in task data and behaviorally relevant
Having established that cortical networks activate in cycles across
multiple datasetsinamanner predictive of individual traits, it remained
possible that they nevertheless reflect some neurophysiological fea-
ture of little or norelevance to cognitive processes. We therefore first
asked whether the cyclical patterns observed during rest were related
to spontaneous memory replay. Second, we tested whether cyclical
patterns persisted in task dataand whether variance in cyclical metrics
over task epochs related to variance in task performance.

In the memory replay®® dataset, participants learned sequence
structures between different visual images. The representations of
these have been shown to replay spontaneously during a subsequent
rest period*® and recent work has shown that states 1-4 in particular
co-activated with memory replay*, whereas most other network states
were less likely to be active. Here we found cycle structure to persist
in this dataset (Fig. 6a; cycle strength, mean (s.d.): = 0.017 (0.017),
P<0.001, versus permutations) and, interestingly, that those network
states that have previously been shown to be positively correlated with
memory replay are clustered in the north face of the circle, whereas
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Fig. 5| Cyclical activation statistics relate to individual traits and are
heritable. a, Cycle strength predicting age in Cam-CAN (n = 609; Student’s
t-test, twosided, §=2.49,s.e.=0.75, t(605) = 3.30, P= 0.0010; post hoc Pearson’s
correlation R=0.16). b, Cycle strength not differing in males and females
(n=609; Student’s t-test, two sided, =-0.052, s.e. = 0.085, t(605) =-0.61,
P=0.54; Cohen’sd =-0.10). c, The absolute difference in cycle strength across
MZ twins, DZ twins or unrelated pairs in the HCP (n = 79). The cycle strength is not
significantly heritable (n=79; ACE test, h*= 0.32,95% Cl = 0.01-0.67, P=0.12).

d, Cyclerate predictive of age (n = 609; Student’s t-test, two sided, = -2.04,
s.e.=0.75,t(605) = -2.71, P= 0.0070; post hoc Pearson’s correlation R = -0.15).

e, Cyclerate differing in males and females (n = 609; Student’s t-test, two sided,

B=0.24,s.e.=0.086, t(605) =2.81, P=0.0050; Cohen’s d = 0.27). f, Heritable
cyclerate (n=79, ACE test, h*=0.73,95% Cl = 0.29-0.98, P = 0.0039). The circles
correspond to individual participants (a, b, d or e) or pairs of participants
(candf), the boxplots display the median and 25th and 75th percentiles and the
whiskers indicate the minimal and maximal values not considered as outliers.
'P<0.05,"P<0.01, "P<0.001. g, Canonical weights from the second (significant)
pair of canonical variates. Left: cycle metrics; right: cognitive scores. See
Supplementary Information Section IX for evidence that these results are robust
to minor changes in metric definitions and Supplementary Information Section
Xl for the other canonical variate variables and post hoc Pearson’s correlations
betweenindividual variables.
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the strongest negatively correlated states are on the opposite phase
(Fig. 6a, polar histogram).

These results suggest that these internally generated memory
replay events might be precisely timed withrespect to the phase of the
cyclical activity. However, memory replay does not involve any exog-
enously prompted behavior. In particular, it is possible that external
events or active behavior dictate network state activations such that
cyclicalactivity disappears. To answer this question, we applied TINDA
toavisual task dataset”.

In the Wakeman-Henson faces dataset”, 19 participants saw a
series of famous, unfamiliar or scrambled facesin 6 sessions and had to
report theirasymmetry with abutton press. This dataset has previously
been shown to elicit task-dependent network dynamics®. Despite the
trial structure, we again confirmed the presence of an overall cycli-
cal structure in network state activation (S=0.058 (0.031), P< 0.001
versus permutations) and we also observed that the ordering of states
along the cycle replicated that of the MEG UK dataset (A6 = 0.84 rad,
P=0.027; Fig. 6b). We then correlated the state time courses time
locked to button press with the reaction times for each trial. Network
probability at 500 ms before button onset in each individual was sig-
nificantly positively correlated with their reaction times in state 3
(R=0.069,95% Cl=0.031-0.11, £(18) = 3.8, P= 0.0014; Student’s t-test
against zero) and state 9 (R=0.11, 95% Cl = 0.051-0.17, t(18) = 3.9,
P=0.0009) and negatively correlated with state 2 (R =-0.058, 95%
CI=-0.034t0-0.083, ¢(18) =-5.0,P=0.0001), state 4 (R = -0.094,95%
Cl=-0.056 t0 -0.13, £(18) =-5.2, P=0.0001) and state 6 (R =-0.051,
95% Cl=-0.023t0 -0.078, t(18) =-3.9, P=0.001). Notably, as in the
Replay dataset, the positive and negative correlations, respectively,
clustered on opposite sides of the cycle (Fig. 6b, polar histogram). In
particular, if there were a high probability that a low-power state was
active 500 ms before the button press, responses would be slower,
and vice versa for high-power visual or attentional states. Further-
more, when we estimated cycle strength on a trial-by-trial basis (that
is, by running TINDA on the 3-s segment before a button press), we
found asmall, but significant Pearson’s correlation between the cycle

strength and reaction times over trials (R =-0.025, 95% Cl =-0.011
to —0.040, t(18) =-3.8, P=0.0014), such that higher cycle strength
was associated with faster responses. Together, these results indi-
cate that cycle dynamics on a moment-to-moment basis are relevant
for cognition.

Discussion

Summary

We showed that the activations of a canonical set of large-scale corti-
cal networks are organized in an inherently cyclical manner, where
networks are activated at a preferred phase in a periodic cycle. Fur-
thermore, we showed that the cycle’s period and integrity relate to
age and cognition, whereas cycle phase is predictive of behavior on
amoment-to-moment basis. Together, these results suggested that
cyclical activation of functional brain networks might ensure a periodic
activation of essential cognitive functions.

Organizational structures in functional brain networks
Previous research in fMRI has showna dissociation of RSNs into cogni-
tive and perceptual clusters or ‘metastates”***~*!, In particular, states
within the perceptual or cognitive clusters were highly correlated in
terms of temporal occurrence*” and connectivity profile*, but not
inthe states between clusters. Although fMRIand MEG have different
biophysical origins and temporal sensitivity, the spatial extent of RSNs
is remarkably similar”*, Our results indeed suggest a dissociation
of perceptual and cognitive network states, by positioning them on
opposite phases of the cycle, most clearly observed for the DMN and
DAN (Fig.3). Moreover, it suggests a preferred pathway of state transi-
tions between these extrema.

Broken detailed balance in brain activity

Network state transition asymmetries like these have further been
linked to macroscopic broken detailed balance. This deviation from
thermodynamic equilibrium is a hallmark of living systems and can
be directly linked to energy consumption and system complexity**.
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Previousresearchinthisfield has shown that thelevel of broken detailed
balance correlates with the level of consciousness®**' and cognitive
exertion'®”?, and has potential as a biomarker for progressive brain
disorders*. Here we add insights into the fast transient networks of
oscillatory power and synchronization underlying macroscale, broken
detailed balance and revealed the timescale at which these cognitively
relevant networks cycle. Furthermore, we found that macroscale, bro-
ken detailed balance increased with age and was stronger on longer
timescales, although it is unknown how different methodological
approaches interrelate and provide insights into the temporal sensi-
tivity of broken detailed balance.

Motifs in brain networks

Although prior research has established that transitions between brain
network states are not random, identifying phenomena like ‘asym-
metric transitions’, ‘repeated motifs’ or potentially localized ‘cyclical
motifs***, these findings differ fundamentally from the ‘cyclical pat-
tern’ investigated in this paper. Previous work typically highlighted
specific, oftenlocalized, aspects of network dynamics: asymmetrical
transitions show a preferred direction between two states (A > B is
more likely than B > A) and repeated or cyclical motifs might reveal
recurring short sequences or small loops involving a subset of net-
works. For example, Sporns and Kotter showed that some motifs are
more prevalentin anatomical connectomes thanin random networks,
some of which are cyclical**. However, none of these necessarily imply
the existence of aglobal, overarching cycle thatincorporates afull set
of canonical networks in a specific, repeatable order. For example,
strong asymmetry between a few states or the existence of a small
recurring motif, like A> B > C > A (for example, VP > V3> V2> VPin
the macaque visual cortex*?), does not guarantee that the system tends
to progress through all other major network states, forexample, D, E, F,
inaconsistent sequence before returning. The current study’s cyclical
pattern posits thismore comprehensive, large-scale temporal organi-
zation, suggesting that the brain tends to flow through the full set of
recognizable, canonical, large-scale cortical networks over hundreds
of milliseconds, a distinct concept from previously described local
transition biases or mini-sequences.

Timescales of structured brain dynamics

Previous studies investigating the asymmetry in functional brain net-
works have focused on either Markovian state transitions'* or the
(time-lagged) correlation between network activation patterns>>'*',
TINDA differs from these by considering the general patternin network
transitions beyond the direct (that is, Markovian) transitions. This
revealed that asymmetrical network transitions occur to a different
extent at different timescales, with strongest asymmetries on>2 s
timescales (Fig. 3). These asymmetries described an overall cyclical
activation pattern, which, due to the stochasticity of individual cycles,
had lower typical durations of 300-1,000 ms (Fig. 5and Supplementary
Information Section VIII), an order of magnitude larger than the typical
lifetime of a cortical network state™. These timescales have previously
beenshowntobealower limit for scale-free global brain dynamics' and
the mostrelevant timescale for global brain processing*”*%. Although we
have shown that cycle dynamics at these temporal scales are relevant
for behavior on amoment-to-moment basis (see below), future work
should further explore their role in different cognitive tasks and at
different temporal scales.

Cycle dynamics and age

Itis interesting that we found these timescales to lengthen with age,
concurrent with an increase in cycle strength. This is in line with
age-related cognitive decline and slowing*, although correlations
with cognitive performance indicated a more complex relationship.
Other age-dependent changes in brain activity are ubiquitous and
includeaslowinginthe power spectrum®*~?and adecrease in network

connectivity, which has been related to a decrease in the segregation
of functional networks™ ¥,

Heritability of cycle metrics

Another observation that argues for cyclical dynamics toberootedin
our biology isits strong genetic component of cycle rate. Other herit-
able components to large-scale brain networks have been shown in
the past, including connectivity in specific functional networks™*¢!,
frequency bands®*and static connectivity®. In particular, Vidaurre et al.
found that the degree to which anindividual spent more timein either
perceptual or cognitive fMRI resting states was heritable™. How these
and other fMRIdynamics arerelated to the cyclical dynamics described
hereis atopic for future research.

Relevance for cognition

Although most datasets that we explored here involved wakeful rest,
thecyclical dynamics also persisted in task data. Moreover, the phase
within the cycle and cycle strength were predictive of cognitive func-
tion. Although the HMM framework has successfully shown large-scale
cortical network associations with cognitive function before***, here
we add that positive and negative associations with memory replay,
or response speed, were predicted by network states on oppositive
phases of the cycle. One question that arises is whether cycle dynam-
ics like speed and phase can be (consciously) controlled or disrupted
by a cognitive task, which is expected from the stochasticity of state
transitions within the cycle. On the other hand, the persistence of the
ordering of network states within the cycle and the detrimental effect
of cycle phase on certain cognitive functions suggests that it could
reflect ahomeostatic process. In fact, homeostatic cyclical rhythms
are omnipresentin biological systems®*, with the sleep cycle being one
of the most well-known examples®. In sleep, cycling through each of
the five functional stages allows the body to experience the benefits
of each stage multiple times throughout the night, ensuring thateach
function is carried out even if sleep is disrupted. Similarly, cycles in
large-scale brain networks could ensure periodic activation of essential
cognitive functions, with stochasticity enabling cognitive flexibility.

Limitations and future directions

The present study comes with anumber of limitations. First, the TINDA
method is a post hoc analysis tool that is used on binarized state time
courses (thatis, brain networks are either ‘on’ or ‘off’) and, furthermore,
itdoes notincorporate an explicit model of long-term (variable time)
state transitions. In future work, we hope to deploy non-Markovian
models like neural networks for inferring brain networks (such as
DyNeMo®), but it remains an open question how to adapt TINDA to
state time courses that are not mutually exclusive. Although we have
reproduced our main results in multiple datasets, some results could
not be reproduced, that is, the heritability of cycle metrics and the
association of cycle metrics with cognitive scores. Replication of these
analysesinindependent datasets is essential but relies on the availabil-
ity of therelevant data. This would also clarify the role of cycle dynam-
ics for cognition across individuals and its potential as a biomarker
for disease. Another limitation of the current study, and the field of
functional brain networks more generally, is a lack of taxonomy with
respect to the macroscale functional brain networks. This can lead
to ambiguity or overinterpretation of the functional network and it
is unclear in what capacity they are rooted in the underlying physiol-
ogy®’. Moreover, there is no consensus in electrophysiology about
which features constitute a brain network, be it coherence, power,
spectral shape or how to relate these to brain networks observed in
fMRI. With regard to the first point, we argue that a principled defini-
tion of abrain networkis one where networks can be distinguished, not
by asingle arbitrarily chosen feature, butinstead by multiple network
features. We therefore use the time-delay-embedded (TDE) HMM?, in
which brain networks are characterized by distinct auto-spectral and
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cross-spectral properties as part of agenerative model thatis capable
of explaining the full signal content. Previous work has also shown that
TDEHMMr resultsinidentifiable networks that are highly reproducible
across different data, sites and task or rest designs, which validates
thisapproach.Second, thereis agrowing effort to compare functional
brain networks across studies***** and modalities””°. We have made
quantitative comparisons of MEG state topographies with the widely
used fMRI-based Yeo7 parcellation® (Supplementary Information Sec-
tion XII), from which we tentatively concluded that the cycle separates
the DMN (top of the cycle) and the DAN (bottom of the cycle). However,
we do note that the existence and presence of cycles shown herein five
independent datasets do not rely on the physiological interpretation
ofindividual networks. More efforts need to be made in quantitatively
comparing functional brain networksinferred from electrophysiology
and hemodynamicresponses, particularly in simultaneous recordings.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41593-025-02052-8.
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Methods

All analyses were carried out in MATLAB”” and Python, using
in-house-developed software packages OHBA Software Library”s %,
HMM-MAR®, OSL-dynamics® and MNE-Python®>®, The TINDA package
is available for MATLAB®* and Python®.

Data

We used data from five MEG datasets: Nottingham MEG UK (n =55),
Cam-CAN (n=612), HCP (n=79), Replay (n = 43) and Wakeman-Hen-
son (n=19). MEG UK, Cam-CAN, HCP and Replay contain MEG resting
state data, Replay and Wakeman-Henson MEG task data and all but the
Replay datasetinclude T1-weighted MRIbrain scans. Datasets include
demographicdataand, inthe case of HCP, heritability data. Ethics and
consent details are outlined separately for each of these datasets below.
No additional ethical approval was required for the present study.

MEG UK

The UK MEG partnership data comprised 77 healthy participants
recruited at the University of Nottingham, of whom 55 were used after
discarding 22 because of excessive head movements or artifacts. The
dataset contains structural MRI scans and MEG data from a CTF MEG
system containing 275 axial gradiometers with a sampling frequency
0f 1,200 Hz. The participant group used in this analysis had a mean
age of 37.8 years (range 19-62 years), 29 of whom were female and
26 male. All participants gave written informed consent and ethical
approval was granted by the University of Nottingham Medical School
Research Ethics Committee. The MEG data comprised roughly 5-6 min
ofeyes-openrestingstate and have previously been used to character-
ize MEG RSN dynamics®**%,

Cam-CAN

The Cam-CAN dataset comprised data of 700 healthy participants
recruited at the University of Cambridge, of whom 612 were used here.
The dataset contained structural MRI scans and MEG data from an
Elekta Neuromag Vectorview system containing 102 magnetometers
and 204 orthogonal planar gradiometers, with asampling rate of 1 kHz.
The participants’ mean age was 54.6 (range 18-88) years, with 83-95
participants per age decile (except in the 18th to 28th decile, which
counts for 45); 310 were male and 302 female, equally distributed
across the age deciles. All participants gave written informed consent
and ethical approval was granted by the Cambridgeshire Research
Ethics Committee. The MEG data comprised approximately 9 min of
eyes-closed resting state.

HCP

The MEG component of the HCP comprised 100 healthy participants
recruited at the Saint Louis University, of whom 79 were used after
discarding participants with excessive variance. The dataset contains
structural MRIscans and MEG data from a 4D Neuroimaging MAGNES
3600 MEG system containing 248 magnetometers sampled at 2 kHz.
The participant group had a mean age of 29 (range 22-35) years, of
whom 37 were females and 42 males and contained data of 13 MZ twin
pairs and 11 DZ twin pairs. All participants gave written informed con-
sent and ethical approval was granted by the local ethics committee.
The MEG data comprised 3x 6 min of eyes-open resting state.

Replay

TheReplay data* contained a primary dataset (dataset 1) and areplica-
tion dataset (dataset 2). For both datasets, participants were scanned
on a275-channel CTF MEG system while engaged in a localizer task, a
sequence learning task and periods of rest. Activations corresponding
toimagesin the localizer task were found to replay during rest, in the
sequence that corresponded to the learned sequences. The top 1%
replay probabilities were here defined as the memory replay events,
asinHiggins etal.?*. Replay dataset1was acquired from 25 participants

with a mean age of 24.9 (range 19-34) years, of whom 11 were males
and 14 females. Four participants were excluded due to large motion
artifacts or missing trigger information. All participants signed written
consentinadvance. Ethical approval for the experiment was obtained
from the Research Ethics Committee at University College London
under ethics no. 9929/002. Replay dataset 2 was acquired from 26
participants with a mean age of 25.5 (range 19-34) years, of whom 10
were males and 16 females. Four participants were later excluded due
to motion artifacts or failure to complete the task. All participants
signed written consentin advance. Ethicalapproval for the experiment
was obtained from the Research Ethics Committee at University Col-
lege London under ethics no. 9929/002. In the present study, Replay
datasets1and 2 were analyzed jointly.

Wakeman-Henson dataset

The Wakeman-Henson faces dataset” comprised MEG data acquired
onanElektaNeuromag Vectorview system of 19 participants. Of these,
8were female and 11 male and the age range was 23-37 years. All partici-
pants gave writteninformed consent and ethical approval was obtained
from the Cambridge University Psychological Ethics Committee. Each
participant completed six sessions of a perceptual task in which they
would see a famous, familiar or scrambled face, to which they had to
respond based on the symmetry of the image. Each trial began with
afixation cross onset between 400 ms and 600 ms before a target
stimulus appeared. The target was either the face or scrambled face
stimulus and remained on-screen for between 800 ms and 1,000 ms.
Further details can be found in ref. 37.

Preprocessing

MEG datawere co-registered to the MRI structural scans or to fiducial
markers in the Replay data where MRI structural scans were not avail-
able. The MEG UK and Cam-CAN data were downsampled to 250 Hz,
filteredinthe1-Hzto 45-Hz range (using zero-phase digital filtering so
that effects were symmetrical across time) and source reconstructed
using an LCMV beamformer to 3,559 dipoles. The dipoles were then
combinedinto 38 parcels spanning the entire cortex by taking the first
principal component of all dipoles in a parcel. This parcellation was
used previously to estimate large-scale static functional connectivity
networksin MEG*. The HCP data were downsampled to 240 Hz, filtered
in the 1-Hz to 80-Hz range and source reconstructed using an LCMV
beamformerto 5,798 dipoles. The dipoles were then combined into 78
parcels of the automated anatomical labeling parcellation®®, spanning
the entire cortex by taking the first principal component of all dipoles
in a parcel. Bad segments were removed manually and correction for
spatial leakage was applied using symmetrical multivariate leakage
correction®. Finally, the potential inconsistency over participants of
ambiguous source polarity was removed using sign flipping based on
lagged partial correlations®,

Hidden Markov modeling

To find large-scale brain networks in a data-driven way, we applied a
TDEHMM with12 states and 15 embeddings, corresponding to lags of
-28 msto+28 ms (—29 ms to +29 ms for HCP). Note that we referred to
the HMM states as ‘network states’ to reflect the method being designed
andthatit hasbeenshownto find states that represent distinct cortical
networks of oscillatory brain activity in MEG or electroencephalo-
graphicdata®. The HMM framework is agenerative model that assumes
that there are afinite number (K) of recurring, transient and mutually
exclusive hidden states that generate the observed data. Here each
state is characterized by a spatiospectral profile (that is, in terms of
power spectral density (PSD) and connectivity in or across regions).
Thus, every time pointin the datawas associated with one of the states
[1,2, ... K], and the sequence of states was assumed to be Markovian.
This meant that the state active at time point t depended only on the
state active at ¢ - 1, captured by the transition probability between all
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states. We used a multivariate Gaussian observation model with zero
mean. Models were inferred separately for the MEG UK, Cam-CAN and
HCP datasets. For the Replay datasets, we kept the model from the
MEG UK dataset fixed and subsequently fitted it to the Replay data, as
inHiggins etal.”

Spectral analysis

We estimated the spectral information (PSD and coherence) for each
state by fitting a multitaper to the original, parcellated data, condi-
tion on the active functional brain network, as in Vidaurre et al.””. The
multitaper used a taper window length of 2 sand a frequency range of
1-45 Hz with a 0.5-Hz resolution (that is, applying 7 Slepian tapers).
This reflected the full multivariate model parameter space (an array
thatwas frequencies x channels x channels x states); however the high
model dimensionality necessitated further dimensionality reduction
methods if this information were to be visualized. We reduced the
spectral dimensionality using spectral mode decomposition, resulting
inspatial power and coherence maps for adata-driven set of frequency
band modes. This decomposition was implemented by non-negative
matrix factorization®*, We fitted this with two modes to separate
wideband activity from high-frequency noise (Supplementary Fig.1).
We then used the wideband mode to weight the frequencies of the
individual states when producing topographies.

Ordering the HMM states

We ordered the HMM states based on state coherence using the MEG
UK dataset. States inferred from the MEG UK dataset were reordered
based on the mean coherence in that state, from high (state 1) to low
(state12) coherence. The orderingin the other datasets (Cam-CAN, HCP
and Wakeman-Henson) was then matched to the MEG UK ordering as
follows. First, the correlation was computed between the coherence of
each pair of states, where a ‘pair of states’ consisted of one state from
MEG UK and one from, for example, Cam-CAN. The correlations were
then used as a cost function to solve the linear assignment problem
using the matchpairs function in MATLAB®, matching every state in,
for example, the Cam-CAN dataset to a state in the MEG UK dataset.
Duetothe different parcellation used inthe HCP dataset, here we used
the correlation between power maps in MNI volume space as the cost
function. In figures throughout the manuscript, state numbers thus
indicateequivalent (thatis, ‘best matching’) states, whereas state colors
were differentbetween datasets, to stress that state descriptions were
inferred independently for each dataset.

TINDA

We developed the TINDA method to analyze interstate dynamicsin the
context of dispersive ISIs. We first partitioned all observed ISls, defining
7,™" to be the set of timepoints that fall within the first half of ISIs for
state mand 7, to be the set of all timepoints that fall within the second
half of these ISIs. We then computed the K x K fractional occupancy (FO)
asymmetry matrix (4), defined as the matrix with (m,n)th entry as:

App = <FOr =FOps >

where <... >, denotes the average FO difference for state n over state
mSI’s (Fig. 1). These FO asymmetry matrices are computed for each
participant.

Cycle detection and cycle strength

TINDA establishes whether there is ageneral flow of statesinto and out
ofaparticular state. We investigated whether this patternis embedded
in a larger, hierarchical structure, specifically a cycle. We interpret
the FO asymmetry matrix, A, as aweighted, directed graph of K nodes
(that is, number of states) and K* - K edges (that is, from every node
to every other node). The FO asymmetry thus defines the weight and
direction of each edge.

To investigate how these edges relate to specifically cyclical
dynamics, we defined a metric of cycle strength for each configura-
tion ofthe Knodes around the unit circle. Each node is associated with
aphase g, positioned on the unit circle in 2p/Kintervals, spanning [0,
2p]. We could thenrepresent each directed transition, from state nto
state m, by a vector in the complex plane defined by the phase differ-
ence between the relative position of nodes mand n:

dm,n = el@"-q") 1)

The magnitude of the imaginary component of this vector rep-
resents ageometric projection of each state transition onto the plane
tangential to the unit circle at node n. Trivially, the cumulative sum of
these vectors for all n and m states is zero. However, if these vectors
are weighted by the strength (and direction) of the corresponding FO
asymmetry, then the sum of their imaginary components represents
the cumulative strength (that is, of the asymmetry) and the polarity
represents the net direction (thatis, clockwise (+) versus counterclock-
wise (-)) of transitions tangential to the unit circle. Hence, we define
the cycle strength, S, as:

S=—BxD, Y A™xsin(g™ —q") )

m n#m

where S is a normalization factor based on the theoretical maximum
cycle strength for K states, such that Sis constrained to be [-1,1]. The
theoretical maximum cycle strength is computed for K states by assum-
ing a perfect asymmetry of +1 for all possible clockwise connections
and —1forall possible negative connections.

We permuted the position of each state on the unit circle (that is,
thenodeidentity) to maximize S. This revealed the sequence of states
for which the overall directionality is maximal in the clockwise direc-
tion. Note that we could have chosen to maximize negative S instead.
Thiswould haveresulted onlyinall circle plots goingina counterclock-
wise direction; it would not have changed any of our results.

Circle plots

Thecircle plots all show the network states in the sequence that maxi-
mizes the cycle strength (in a clockwise direction). The edges E that
areshown are those where the FO asymmetry is statistically significant
(‘Statistics’) and the direction of the arrow depends on the sign of the
corresponding edge asymmetry, where ais the (corrected) statistical
threshold (‘Statistics’):

o, pj,kZCY
pjk<anA* <0 (3)

+L,  pix<anAik>o0

Cyclerate

To quantify cycle rate, we applied a post hoc analysis to the state time
course parameters already learned. Specifically, we derived a feature
from the state time courses defined as the number of state visitsin a
slidingwindow equal to the average state lifetime (64-68 ms, depend-
ing on the dataset). We then fitted a second-level HMM to this feature
time course, where this HMM used Poisson’s observation model and
sequential Markov dynamics®. We selected a model with K = 4 states,
where we initialized the state probabilities as the distance (that is, in
circle space) to the centroid of each of the four modes in Fig. 4b,c. We
alsoenforced asequence of state 1> state 2 > state 3 > state 4 > statel,
andsoon, suchthatasingle cycle was defined as sequential activation
of each of the four modes in Fig. 4b,c. Using this initialized model, we
inferred the state time courses from the data without training the model
to convergence. This was done to not deviate from our definition of a
‘cycle’ and subsequently to quantify cycle duration as the time that it
takes to cycle through a full 1>2 >3 > 4 sequence of the second-level
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HMM. For correlations with individual traits, the inverse (thatis, cycle
rate) was used, because this was more normally distributed.

Statistics

FO asymmetry and circle plots. Circle plots show the edges where the
FO asymmetry is strongest (and significant). To test for significance, the
FO asymmetry was tested onthe group level with atwo-tailed, depend-
entsample Student’s t-test for each of the connections mand n, where
the a threshold of 0.05 was Bonferroni corrected for 132 tests (that
is, K - K), resulting in a corrected a threshold of 0.00038. Due to the
large numbers of participantsin the HCP and Cam-CAN, more stringent
thresholds were applied in these datasets. For the Cam-CAN, the edges
with absolute t-values >11are shown (corresponding to P< 3.8 x 107%*)
and, for the HCP dataset, the edges with absolute ¢t-values >4.3 (cor-
respondingto P<3.8 x107).

Cycle strength. We reported the results for the sequence of network
statesthatresultsinthe strongest, clockwise cycles. A claim of nonzero
cyclestrength could be atrivial consequence of this optimization. For
this reason, we compared the observed cycle strength with that from
permutations, where, for each permutation, we permuted each partici-
pant’s state labels and recomputed the FO asymmetry and optimized
state ordering. This was done1,000x%. The observed cycle strength was
compared with the permuted versions at a = 0.05.

Within-subject consistency of cycle metrics. The individual con-
sistency of cycle metrics was directly estimated using the intraclass
correlation coefficient in MATLAB, with type ‘1-1’ as implemented in
Salarian®.

Correlation with individual traits. For the correlation of cycle rate and
cycle strength with individual traits, we first regressed out heart rate.
Outliers >3 s.d. from the mean value were removed and cycle metrics
were normalized, before the generalized linear model. We fitted amean
term and the cycle rate and cycle strength to age and sex separately,
using a Gaussian and binomial distribution, respectively. The S terms
for each were significant if the corresponding P value was lower than
the athreshold of 0.0125 (that s, 0.05 corrected for 4 tests).

Heritability. To test whether variance in cycle metric could be
explained by genetic factors, we used an ACE model, asimplemented
inthe Accelerated Permutation Inference for the ACE model (APACE)
framework®’. APACE was run on all participants’ cycle metrics for the
threeresting state sessions, separately for cyclerate and cycle strength,
using 10,000 permutations. The a thresholds of 0.05 were Bonferroni
corrected for 2 tests. To ensure that estimated heritability effects were
not caused by common demographic and morphometric measures,
werepeated the analysis after regressing out the following confounds
instepwise fashion (Supplementary Information Section IX): age, the
square of age, sex, an age and sex interaction, an interaction between
sex and the square of age and the cube root of intracranial volume and
cortical volume (both estimated using FreeSurfer®).

Correlation with cognitive scores. A CCA was executed on the
Cam-CAN dataset, between the cyclical summary metrics (cycle rate
and strength), on the one hand, and 13 cognitive scores, on the other.
For all metrics, we first regressed out age, sex and heartrate, and then
z-transformed the data. The CCA resulted in two CCA components,
which were tested for significance by comparing against a permutation
distribution 0f10,000 permutations, where, for each permutation, the
cognitive scores were shuffled over participants.

Correlations with reaction times in the Wakeman-Henson data. We
time locked the state probability time courses to the button pressesin
the Wakeman-Henson dataand correlated state probability at 500 ms

before the button press with the reaction time on that trial. This was
done separately for each session and state, after which we averaged
the correlations over sessions for each participant. We tested whether
the correlation was significantly different from zero for each state
with a paired Student’s ¢-test, using a Bonferroni-corrected a level of
0.05/K. Similarly, we correlated reaction times with an instantane-
ous estimate of cycle strength, computed by running TINDA on 3-s
segments before the button press and calculating the cycle strength.
Correlations were tested against zero on the group level using a paired
Student’s ¢-test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The MEG UK Partnership data are held by the MEG UK Partnership, for
which access can be requested at https://meguk.ac.uk/database. The
Cam-CAN datasetis available uponrequest to https://camcan-archive.
mrc-cbu.cam.ac.uk/dataaccess/datarequest.php. The HCP dataset is
freely available at https://db.humanconnectome.org/app/template/
Login.vm, but will require an application for sensitive data (https://
www.humanconnectome.org/storage/app/media/documenta-
tion/LS2.0/LS_Release_2.0 Access_Instructions_June2022.pdf). The
Replay dataset will be freely available upon request (subject to par-
ticipant consent) to yunzhe.liu.16@ucl.ac.uk. The Wakeman-Henson
dataset is publicly available at OpenNeuro (https://openneuro.org/
datasets/ds000117/versions/1.0.5). Source data are provided with
this paper.

Code availability
The code for all analysis code described here is publicly available via
GitHub at https://github.com/OHBA-analysis/Tinda.

References

77. MATLAB (The MathWorks Inc., 2020).

78. OSL MATLAB (OHBA Analysis Group, 2014).

79. Quinn, A. J.,van Es, M. W. J., Gohil, C. & Woolrich, M. W. OHBA
software library in Python (OSL). Zenodo https://doi.org/10.5281/
ZENODO.6875060 (2022).

80. Van Es, M. W. J.,, Gohil, C., Quinn, A. J. & Woolrich, M. W. osl-ephys:
a Python toolbox for the analysis of electrophysiology data. Front.
Neurosci. 19, 1522675 (2025).

81. HMM-MAR (OHBA Analysis Group, 2016).

82. Gramfort, A. MEG and EEG data analysis with MNE-Python. Front.
Neurosci. 7, 267 (2013).

83. Larson, E. et al. MNE-Python. Zenodo https://doi.org/10.5281/
ZENODO.592483 (2023).

84. van Es, M\W.J. & Higgins, C. TINDA (2023).

85. Hunt, B. A. E. et al. Relationships between cortical
myeloarchitecture and electrophysiological networks. Proc. Natl
Acad. Sci. USA 113, 13510-13515 (2016).

86. Tzourio-Mazoyer, N. et al. Automated anatomical labeling of
activations in SPM using a macroscopic anatomical parcellation
of the MNI MRl single-subject brain. Neurolmage 15, 273-289
(2002).

87. Colclough, G. L., Brookes, M. J., Smith, S. M. & Woolrich, M. W. A
symmetric multivariate leakage correction for MEG connectomes.
Neurolmage 117, 439-448 (2015).

88. Duff, I. S. & Koster, J. On algorithms for permuting large entries
to the diagonal of a sparse matrix. SIAM J. Matrix Anal. Appl. 22,
973-996 (2001).

89. Higgins, C. et al. Spatiotemporally resolved multivariate pattern
analysis for M/EEG. Hum. Brain Mapp. https://doi.org/10.1002/
hbm.25835 (2022).

Nature Neuroscience


http://www.nature.com/natureneuroscience
https://meguk.ac.uk/database/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/datarequest.php
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/datarequest.php
https://db.humanconnectome.org/app/template/Login.vm
https://db.humanconnectome.org/app/template/Login.vm
https://www.humanconnectome.org/storage/app/media/documentation/LS2.0/LS_Release_2.0_Access_Instructions_June2022.pdf
https://www.humanconnectome.org/storage/app/media/documentation/LS2.0/LS_Release_2.0_Access_Instructions_June2022.pdf
https://www.humanconnectome.org/storage/app/media/documentation/LS2.0/LS_Release_2.0_Access_Instructions_June2022.pdf
https://openneuro.org/datasets/ds000117/versions/1.0.5
https://openneuro.org/datasets/ds000117/versions/1.0.5
https://github.com/OHBA-analysis/Tinda
https://doi.org/10.5281/ZENODO.6875060
https://doi.org/10.5281/ZENODO.6875060
https://doi.org/10.5281/ZENODO.592483
https://doi.org/10.5281/ZENODO.592483
https://doi.org/10.1002/hbm.25835
https://doi.org/10.1002/hbm.25835

Article

https://doi.org/10.1038/s41593-025-02052-8

90. Salarian, A. Intraclass Correlation Coefficient (ICC).
MATLAB Central File Exchange https://www.mathworks.
com/matlabcentral/fileexchange/22099-intraclass-corre
lation-coefficient-icc (2024).

91. Chen, X. et al. Accelerated estimation and permutation inference
for ACE modeling. Hum. Brain Mapp. 40, 3488-3507 (2019).

92. Fischl, B. FreeSurfer. Neurolmage 62, 774-781(2012).

Acknowledgements
We thank T. Nichols and X. Chen for their help in using the APACE

model. MW.W's research is supported by the Wellcome Trust (grant nos.

106183/Z/14/Z and 215573/7/19/Z), the New Therapeutics in Alzheimer’s
Diseases and Synaptic Health in Neurodegeneration studies supported
by the UK Medical Research Council and the Dementia Platform UK
(grant no. RG94383/RG89702) and the National Institute for Health

and Care Research (NIHR) Oxford Health Biomedical Research Centre
(grant no. NIHR203316). D.V. is supported by a Novo Nordisk Emerging
Investigator Award (grant no. NNF190C-0054895) and the European
Research Council (grant no. ERC-StG-2019-850404). The Centre for
Integrative Neuroimaging was supported by core funding from the
Wellcome Trust (grant nos. 203139/Z/16/Z and 203139/A/16/Z). For the
purpose of open access, we applied a CC by public copyright license to
any author-accepted manuscript version arising from this submission.
The views expressed are our own and not necessarily those of the NIHR
or the Department of Health and Social Care.

Author contributions

MW.J.v.E. and C.H. have contributed equally to the current work
and have the right to list their name first when referencing the work.
Following CRediT, the following authors contributed to each of the

roles. Conceptualization: MW.J.v.E., C.H. and MW.W. Methodology:
MW.J.V.E., CH., CG, A.JQ., DV.and MWMW. Software: MW.J.v.E. and
C.H. Validation: MW.J.v.E. and C.H. Formal analysis: MW.J.v.E., C.H.,
C.G.and A.J.Q. Investigation: MW.Jv.E., C.H., C.G., A.J.Q., DV. and
M.W.W. Resources: MW.Jv.E., C.H., C.G., A.J.Q., DV. and MW.W. Data
curation: MW.J.v.E. and C.H. Writing—original draft: M.W.J.v.E. and
C.H. Writing—review and editing: MW.J.V.E., C.H., C.G., A.J.Q., DV.
and M\W.W. Visualization: MW.J.v.E. and C.H. Supervision: M.W.W.
Project administration: M.\W.J.v.E. and C.H. Funding acquisition: DV.
and M\W.W. All the authors contributed to the article and approved the
submitted version.

Competing interests
C.H. is an employee and shareholder in Resonait Medical Technologies
Pty Ltd. The other authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41593-025-02052-8.

Correspondence and requests for materials should be addressed to
Mats W. J. van Es.

Peer review information Nature Neuroscience thanks Gustavo Deco,
Ankit Khambhati and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work.

Reprints and permissions information is available at
www.nhature.com/reprints.

Nature Neuroscience


http://www.nature.com/natureneuroscience
https://www.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient-icc
https://www.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient-icc
https://www.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient-icc
https://doi.org/10.1038/s41593-025-02052-8
http://www.nature.com/reprints

nature portfolio

Corresponding author(s): Mats W.J. van Es

Last updated by author(s): Jun 11, 2025

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
~
Q

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OO0 0O O]
XOO X X XK X XK

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.

Data analysis All data were analysed using MATLAB 2023a, Python 3.8, FSL 6.0.5, and custom-written scripts (available at https://github.com/OHBA-
analysis/Tinda). In addition, the following Python/MATLAB based toolboxes were used:
OHBA Software Library (https://github.com/OHBA-analysis/osl-core), HMM-MAR (https://github.com/OHBA-analysis/HMM-MAR/), OSL-
Dynamics (https://github.com/OHBA-analysis/osl-dynamics), OSL-Ephys (https://github.com/OHBA-analysis/osl-ephys/tree/main), and MNE-
Python (https://mne.tools/stable/index.html)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

>
QD
Y
(e
=
)
§o;
o)
=
o
=
_
D)
©
o)
=
S
Q@
wv
(e
=
S}
Q
<L

£zoz |udy




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data used for this manuscript are third-party data, which are available at the respective databases. The MEG UK Partnership data is held by the MEG UK
Partnership, for which access can be requested at https://meguk.ac.uk/database/. The Cam-CAN dataset is available upon request to https://camcan-archive.mrc-
cbu.cam.ac.uk/dataaccess/datarequest.php. The HCP dataset is freely available at https://db.humanconnectome.org/app/template/Login.vm but will require an
application for sensitive data (see https://www.humanconnectome.org/storage/app/media/documentation/LS2.0/

LS Release_ 2.0 Access_lInstructions_June2022.pdf). The Replay dataset will be freely available upon request (subject to participant consent) to
yunzhe.liu.16@ucl.ac.uk. The Wakeman-Henson dataset is publicaly available at OpenNeuro (https://openneuro.org/datasets/ds000117/versions/1.0.5).

>
QD
Y
(e
=
)
§o;
o)
=
o
=
_
D)
©
o)
=
S
Q@
wv
(e
=
S}
Q
<L

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Only reporting on sex, as gender was not collected

Reporting on race, ethnicity, or Data not available
other socially relevant

groupings
Population characteristics MEG UK (N=55): mean age 37.8 (range 19-62), 26 male/29 female
Cam-CAM: mean age 54.6 (range 18-88), 310 male/302 female
HCP: mean age 39 (range 22-35), 42 male/37 female, 13 mono- and 11-dizygotic twin pairs
Replay datasetl: mean age 24.9 (range 19-34), 11 male/14 female
Replay dataset2: mean age 25.5 (range 19-34), 10 male/16 female
Wakeman-Henson: age range 23-37, 11 male/8 female
Recruitment See original data publications
Ethics oversight No ethical approval was required for the analysis of the public data. The ethical approvals for each of the datasets were

acquired by the respective study teams, as outlined below:

MEG UK: ethical approval was granted by the University of Nottingham Medical School Research Ethics Committee.
Cam-CAN: ethical approval was granted by the Cambridgeshire Research Ethics Committee

HCP: ethical approval was granted by the local ethics committee.

Replay dataset1: ethical approval for the experiment was obtained from the Research Ethics Committee at University College
London under ethics number 9929/002

Replay dataset2: ethical approval for the experiment was obtained from the Research Ethics Committee at University College
London under ethics number 9929/002

Wakeman-Henson: ethical approval was obtained from the Cambridge University Psychological Ethics Committee

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were limited by the availability of public datasets, and were not predetermined based on power calculations.

Dataset 1 (MEG UK), N=55

Dataset 2 (Cam-CAN), N=612
Dataset 3 (HCP), N=79
(
(

£zoz |udy

Dataset 4 (Replay), N=43
Dataset 5 (Wakeman-Henson), N=19




Data exclusions  MEG UK: 22 subjects were excluded from the original dataset (N=77) because of excessive head movements or artifacts in the data.
Cam-CAN: 41 subjects were excluded from the original dataset (N=653) because of incompleteness of the data
HCP: 21 subjects were excluded from the original dataset (N=100) because of excessive noise.
Replay datasetl: 4 subjects were excluded from the original dataset (N=25) because of large motion artifacts or missing trigger information
Replay dataset2: 4 subjects were excluded from the original dataset (N=26) because of large motion artifacts or failure to compete the task.

Replication Core results were replicated in five independent dataset, all of which were successful.
Randomization  Subjects were not allocated to a specific group - existing allocations were used based on the original study designs.

Blinding Blinding was not relevant to this study because of the absence of a priori hypotheses regarding participant demographics. Furthermore, the
availability of public datasets limited blinding.

Reporting for specific materials, systems and methods

>
QD
5
(e
()
©
O
=
S
S
3
©
e}
=
>
(@]
wm
(e
3
3
Q
=

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z| D ChlIP-seq
Eukaryotic cell lines |Z| D Flow cytometry
Palaeontology and archaeology D |Z| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

MNXXXNXXX s
Oooooogd

Plants

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-atuthentication-procedures for-each-seed-stock-used-or-novel-genotype-generated.-Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).




Acquisition
Imaging type(s) Structural

Field strength datasetl: 3T
dataset 2: 3T
dataset 3: 3T
dataset 5: 3T

Sequence & imaging parameters dataset 1: 1 x 1 x 1 mm3 resolution running an MPRAGE sequence
dataset 2: Prepared RApid Gradient Echo (MPRAGE) sequence with the following parameters: Repetition Time (TR)
=2250 milleseconds; Echo Time (TE) =2.99 milliseconds; Inversion Time (TI) =900 milliseconds; flip angle =9 degrees;
field of view (FOV) =256mm x 240mm x 192mm; voxel size =1mm isotropic; GRAPPA acceleration factor =2; acquisition
time of 4 minutes and 32 seconds.
dataset 3: MPRAGE; TR/TE = 2400/2.14 ms, 192 slices, 0.7 mm3 isotropic resolution, TI = 1000 ms, parallel imaging (2x,
GRAPPA)
dataset 5: 1mm isotropic T1-weighted ‘structural’ image was acquired using an MPRAGE sequence (TR 2,250ms, TE
2.98ms, TI 900ms, 190Hz/pixel; flip angle 9°)

Area of acquisition whole-brain
Diffusion MRI [ ] used Not used

Preprocessing

Preprocessing software Matlab, OSL-Matlab, OSL-ephys, OSL-dynamics, MNE-Python, FSL,

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template MNI152

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings MEG source-modelling, intracranial volume

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis:  [X] whole brain [ | ROI-based [ | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)
Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|X| |:| Functional and/or effective connectivity

|X| |:| Graph analysis

|:| |X| Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis  T1 scans were used for MEG source modelling
Intracranial volume was used as a confound regressor in testing heritability of cycle rate and cycle strength

>
QD
5
(e
c
()
©
O
=
S
S
3
©
O
=
>
(@]
wm
(e
3
3
Q
=

£zoz |udy




	Large-scale cortical functional networks are organized in structured cycles

	Results

	Functional brain networks activate in cycles

	Cycles are strongest over timescales of seconds

	Cycles connect networks with similar properties and function

	Cycle statistics relate to cognition and demographics

	Cycles are preserved in task data and behaviorally relevant


	Discussion

	Summary

	Organizational structures in functional brain networks

	Broken detailed balance in brain activity

	Motifs in brain networks

	Timescales of structured brain dynamics

	Cycle dynamics and age

	Heritability of cycle metrics

	Relevance for cognition

	Limitations and future directions


	Online content

	Fig. 1 Schematic of TINDA, with state 1 as an example reference state.
	Fig. 2 TINDA reveals cyclical activation of functional brain networks in three large MEG datasets.
	Fig. 3 The observed cyclical organization of network state activations is driven by longer interval times in the MEG UK dataset (n = 55).
	Fig. 4 The cyclical structure groups together network states that have similar spectral properties and cognitive function in the MEG UK dataset.
	Fig. 5 Cyclical activation statistics relate to individual traits and are heritable.
	Fig. 6 Cycle phase is predictive of cognitive function.




