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Selective direct influence of motor cortex 
on limb muscle activity during naturalistic 
climbing in mice
 

Natalie Koh1,4, Zhengyu Ma    1,2,4, Abhishek Sarup1, Amy C. Kristl1, 
Mark Agrios    1, Margaret Young1,3 & Andrew Miri    1 

When and how motor cortical output directly influences limb muscle 
activity through descending projections remain poorly resolved, impeding 
a mechanistic understanding of motor control. Here we addressed this in 
mice performing an ethologically inspired climbing behavior. We quantified 
the direct influence of forelimb primary motor cortex (caudal forelimb area) 
on muscles across the muscle activity states expressed during climbing. 
We found that the caudal forelimb area instructs muscle activity pattern by 
selectively activating certain muscles, while less frequently activating or 
suppressing their antagonists. From Neuropixels recordings, we identified 
linear combinations (components) of motor cortical activity that covary 
with these effects. These components differ partially from those that covary 
with muscle activity and differ almost completely from those that covary 
with kinematics. Collectively, our results reveal an instructive direct motor 
cortical influence on limb muscles that is selective within a motor behavior 
and reliant on a distinct neural activity subspace.

Motor cortex and its descending projections have expanded in certain 
mammalian lineages, seemingly because of the fitness conferred by 
the motor performance that they support1–3. Without normal motor 
cortical output, certain types of movement cannot be executed4–6. Many 
other types are slower, less agile and less effective, especially when 
dexterity is challenged or movements must adapt during execution7–12. 
Yet, when and how motor cortical output directly influences muscle 
activity through its descending projections to mediate this influence 
remains poorly resolved. The consequent ambiguity of direct motor 
cortical influence on muscles has stymied the development of more 
mechanistic models of descending motor control13.

Deficits from lesions and other inactivation of the motor cortex 
have not clearly resolved its involvement in movement execution. 
As the motor cortex is involved in motor learning14,15 and movement 
preparation or initiation16,17, deficits could reflect disturbance to these 
processes on which execution depends, rather than on the execution 

itself. Moreover, recent results indicate that motor cortical influence 
on muscle activity at the shortest latencies (10–20 ms in mice) differs 
from its influence on even slightly longer timescales (~50 ms)18.

During tasks requiring the motor cortex, existing results leave 
open several basic possibilities for the form that direct motor cortical 
influence on muscles could take. First, the motor cortex could drive the 
entirety of limb muscle activity patterns, with substantial compensa-
tion provided by other motor system regions after motor cortical 
disturbance. For example, when motor cortex needs to generate some 
muscle activity patterns that cannot be achieved by other regions19, it 
may assume all of the pattern-generating burden20. Second, the motor 
cortex could participate together with the rest of the motor system in 
generating motor output, without playing a role necessary to determin-
ing its pattern. Here loss of direct motor cortical influence on muscles 
would cause, at most, a nonspecific, fractional attenuation of motor 
output. Third, the motor cortex could selectively influence particular 
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or kinematics in total may be a consequence of monitoring or predicting 
the body state29, perhaps to subserve aspects of motor control apart from 
directly driving muscle activation30. In line with this, muscle activity can 
be decoded from motor cortical activity during movements where this 
activity does not directly drive muscles18. Thus, the components of motor 
cortical activity responsible for its direct influence may differ from those 
to which functional roles have previously been attributed31–35.

Below we address these basic questions about direct motor corti-
cal influence on limb muscles36 using mice. The three possible forms 
that direct motor cortical influence on muscles could take make dif-
ferent predictions about how the influence will vary across different 
muscle activity states during a given motor behavior. Thus, we meas-
ured this influence across muscle activity states during a behavior 
expected to depend on motor cortical output. Our characterization 
of this influence includes identification of states where motor corti-
cal output activates and deactivates muscles. Finally, we describe 
components of motor cortical output that could be responsible for 
its influence on muscle activity.

A naturalistic climbing paradigm
As previous studies have implicated the motor cortex in adaptive limb 
movements in response to unpredictable sensory information10,13,37,  

components of muscle activity, such that it informs (‘instructs’) ongo-
ing muscle activity patterns and acts in a distinctly different way from 
the rest of the motor system. The loss of direct motor cortical influence 
would then cause changes in muscle activity that themselves vary as 
the state of muscle activity changes.

This ambiguity about the form of direct motor cortical influence 
on muscles has prevented resolution of other key issues related to the 
mechanisms of this influence. It remains unclear whether, on balance, 
motor cortical output only activates individual limb muscles or at times also 
suppresses their activity. The motor cortex is thought to drive online move-
ment corrections and the adaptation of movements based on context9,21–24;  
such a role could involve the activation and deactivation of individual 
muscles at different times to steer movement as the context requires.

It also remains unclear what components of motor cortical output 
drive muscle activity. Previous descriptions of motor cortical activity 
have focused on components that covary with limb muscle activity25,26 
or movement parameters like joint angles or reach direction (kinemat-
ics)27,28. However, if motor cortical output does not contribute to all 
muscle activity patterns, but instead selectively alters them, we might 
expect that the components of motor cortical output driving muscle 
activity may not reflect muscle activity in total, but only some fraction 
of it. Moreover, motor cortical activity that covaries with muscle activity 
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Fig. 1 | Head-fixed climbing paradigm. a, Bird’s eye view of wheel apparatus 
for climbing. A shaft encoder measures the wheel’s angular position. Actuators 
randomize the position of each right handhold when they reach a point 180° away 
from the mouse. A ratchet ensures that the wheel rotates in only one direction. 
A slip ring commutes voltage signals to and from the actuators. b, A head-fixed 
mouse climbing in the paradigm. c, Frame of side-view video of a mouse climbing, 
with line plots connecting points tracked on the right forelimb and hindlimb 
from 50 sequential images (100 Hz) that have been overlaid. Line plot color 
reflects the time in the sequence. The points tracked were on the shoulder, elbow, 
wrist, last digit of the hand, hip, knee, ankle and edge of the foot. d, Same as c, 
but showing only the last frame in the sequence. e, Example sequence of right 
handhold positions over time, illustrating randomization. f, Autocorrelation of 
right handhold positions. g–i, Median (black dots, n = 9 mice) and first and third 

quartiles (whiskers) for the fraction of time spent climbing (g), median climbing 
velocity (h) and median climbing bout distance (i) across sessions. Gray lines in 
g–m are for individual mice. Session 1 indicates the first session after the mice 
had learned the pairing between climbing and reward, when reward dispensation 
switched from experimenter to computer control. j,k, Median (black dots, 
n = 9 mice) and first and third quartiles (whiskers) for the first (j) and second (k) 
principal angles between electromyographic time series collected during the 
twentieth climbing session and each of the first 20 climbing sessions. l,m, Median 
(black dots, n = 9 mice) and first and third quartiles (whiskers) for the sample 
entropy of muscle activity (l) and limb kinematics (m) time series across sessions. 
For each session, we took the mean across-sample entropy values for each 
muscle or for the xand y positions of each tracked limb point. The sample entropy 
measures the regularity in the time series40.
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we developed a behavioral paradigm that emphasizes such movements. 
Inspired by the natural movement repertoire of mice, we developed 
a paradigm in which head-fixed mice climbed across a series of hand-
holds that extend radially from a wheel, thereby rotating the wheel 
(Fig. 1a–d, Extended Data Fig. 1 and Supplementary Video 1). After each 
handhold accessible to the right limbs has rotated 180° past the mouse, 
a linear actuator embedded within the wheel moves the handhold to 
a new, randomly chosen, mediolateral position; the left handholds 
remain fixed (Fig. 1e and Extended Data Fig. 1b–d). This ensures that 
the sequence of right handholds across which the mouse climbs is 
unpredictable (Fig. 1f), so sensory information must be used in real 
time to steer right limb movement. In this paradigm, water-restricted 
mice earn water rewards by climbing intermittently in bouts throughout 
hour-long daily sessions. The variation in the mediolateral position of 
the right handholds leads to a variation in the direction in which the 
right forelimb reaches (Supplementary Video 1). A broad range of body 
postures is expressed (Extended Data Fig. 1e).

As it may be relevant to motor cortical involvement38, we assessed 
how the performance of climbing mice varied across daily sessions. 
To look for progressive improvement in a performance, we examined 
the measures of bout length and climbing speed, because the reward 
scheme depends on them. We found that, after mice are acclimated to 
head fixation (two sessions) and taught the pairing between climbing 
and reward (one to three sessions), there was little change, on average, 
in the time spent climbing (Fig. 1g), the velocity of climbing (Fig. 1h) 
and the distance of climbing bouts (Fig. 1i). To assess whether forelimb 
muscle activity patterns change progressively across sessions, we 
computed the principal angles between the first two principal com-
ponents (PCs) for the activity of four muscles in the right forelimb39 
during each session (two PCs by T time points; Extended Data Fig. 1f–h). 
Comparing each of the first 20 daily sessions to the twentieth ses-
sion, we found that the first principal angle was generally low, averag-
ing <2° (Fig. 1j,k). Although adjacent sessions appeared more similar 
(see the lower angles for session 19), there was little indication that 
increasingly distant sessions were increasingly more dissimilar, which 
would be expected for a progressive change in muscle activity. We also 
found that the stereotypy in both muscle activity and limb kinematics 
did not show clear signs of increasing across sessions40 (Fig. 1l,m and 
Extended Data Fig. 1i). Thus, after beginning to climb for rewards, mice 
do not appear to progressively develop climbing skills specific to our 
paradigm nor does muscle activity appear to change progressively 
across sessions. These results indicate that our climbing paradigm 
differs from those in which participants learn new tasks and become 
increasingly skillful and stereotyped with repeated training14,41.

Quantifying direct motor cortical influence 
during climbing
We next sought to quantify direct motor cortical influence on con-
tralateral forelimb muscles across the range of muscle activity states 
expressed during climbing. Such an influence is not seen during 
treadmill walking18 and mice can still learn new stereotyped locomo-
tor behaviors during split-belt treadmill adaptation after a bilateral 
motor cortical lesion42. However, lesion and pharmacological inactiva-
tion of the motor cortex does affect the execution of new locomotor 
adaptations in mice10,42,43. Given the different form and predictability 
of the movements elicited in our climbing paradigm, motor cortical 
influence was unclear a priori.

While mice (n = 8) were actively climbing, we sporadically and 
briefly inactivated the left caudal forelimb area (CFA, forelimb primary 
motor cortex + primary somatosensory cortex (M1 + S1)) at random. We 
used transgenic mice that express Channelrhodopsin-2 in all cortical 
inhibitory interneurons, applying occasional 25-ms blue light pulses 
that covered the surface of CFA (10 mW mm−2; Fig. 2a). This yields an 
~50% activity reduction across cortical layers within 7 ms, which reaches 
90–95% in <20 ms (refs. 18,44). Light pulses were always >4 s apart to 

allow recovery of neural activity between events; on average, ~100–200 
trials were collected during each daily session (11–37 sessions per ani-
mal). Equivalent events without blue light were notated in recordings to 
serve as control trials. Random trial timing ensured broad coverage of 
the muscle activity states that each mouse expressed during climbing. 
We found that inactivation and control trial averages diverged ~10 ms 
after light onset, which reflects the shortest latency at which CFA output 
influences muscles18 (Fig. 2a–c and Extended Data Fig. 2a–d). We also 
found that inactivation effects were similar in form across mice (Fig. 2a 
and Extended Data Fig. 2b) and strikingly consistent both within and 
across sessions (Extended Data Fig. 2e–g). Thus, CFA directly influences 
muscle activity during climbing, as we previously observed in mice 
performing a trained forelimb reaching task18.

To initially gauge whether direct motor cortical influence varies 
throughout climbing, we examined the effects of CFA inactivation 
during three stereotypical features of climbing: pulling a handhold 
down with the right forelimb, reaching the right forelimb up and pal-
pation of the right handhold while grasping it (Extended Data Fig. 3). 
We assembled trial averages for muscle activity and limb kinematic 
time series aligned on trial onsets that occurred during each feature. 
The effect magnitude appeared to be vary across features. The effects 
were also more prominent in trial-averaged muscle activity than limb 
kinematics across all three features, which we explore further below.

We thus proceeded to more comprehensively assess CFA influence 
at different muscle activity states during climbing. We first sought 
a means for collecting together inactivation and control trials that 
began at similar muscle activity states, so that we could average across 
them. Plotting trials according to linear functions of muscle activ-
ity at trial onset led to an uneven distribution of trials across plots 
(Extended Data Fig. 3d,e). This was suboptimal for efficiently utilizing 
the statistical power afforded by our trials to differentiate CFA influ-
ence across states (Methods). We also suspected that this statistical 
power would be improved if trials were grouped together based on 
the time-varying pattern of muscle activity right before trial onset, 
because CFA influence could depend on this pattern.

We thus defined states using the activity of all four muscles over 
50-ms epochs, rather than individual time points, and used Uniform 
Manifold Approximation and Projection (UMAP)45 to generate a 
two-dimensional (2D) map of the states expressed by each mouse, 
where similar states are close together. To ensure proximity on maps 
among states visited that are close in time, we defined epochs that 
overlapped in time. The muscle activity traces surrounding each trial, 
together with their corresponding first derivatives, were subsampled 
in 5-ms increments and divided into overlapping 50-ms epochs that 
began every 10 ms (Fig. 2d). For each 50-ms epoch, the muscle activity 
and first derivative trace segments were concatenated into a single 
vector (8 segments × 10 time bins = 80 elements). UMAP was then 
applied to map vectors onto two dimensions (Fig. 2e). On the resulting 
maps, embedded state vectors (points) from successive epochs form 
trajectories that reflect the sequence of states surrounding control 
and inactivation trials.

To measure direct CFA influence at different muscle activity states, 
we quantified the immediate inactivation effects for trials starting from 
states within local neighborhoods on the maps. We first defined a grid 
over each map (Fig. 2f). For each muscle, we computed its trial-averaged 
activity at each grid point, separately, for inactivation and control trials. 
For these averages, we used all trials, but we weighted each by a Gauss-
ian function of the Euclidean distance between the given grid point and 
the point for the epoch just before an inactivation effect could begin 
on the given trial (−40 ms to +10 ms from trial onset: ‘weight epoch’; 
Fig. 2d). Trial weights are hence not influenced by inactivation effects. 
As a consequence, weight epoch states from control and inactivation 
trials are similarly distributed across maps (Fig. 2f). We set the Gauss-
ian s.d. as roughly 10% of the map width, so trial averages are heavily 
weighted toward trials beginning at states close to the given grid point. 
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Fig. 2 | Comprehensive assessment of CFA influence across muscle activity 
states. a, Control (n = 1,671 trials) and inactivation (795 trials) trial averages 
(mean ± s.e.m.) for 4 muscles in 1 mouse. The inset showing the brain schematic 
is adapted from ref. 18. Vertical cyan bars in a–d, g and k indicate the 25-ms epoch 
of blue light applied to the CFA and gray dotted lines are 10 ms after light onset. 
As we z-scored muscle activity measurements using the mean and s.d. from each 
given session, here and throughout we express measurements in s.d. values 
of the recorded signal. b, Control (18,397 trials) and inactivation (9,029 trials) 
trial averages for all 8 mice. c, Mean absolute difference between inactivation 
and control trial averages across all four muscles. Light-gray lines are individual 
animals and the solid black line is the mean across animals. For baseline 
subtraction, control trials were resampled to estimate the baseline difference 
expected by chance. d, Example of muscle activities and their corresponding first 
derivatives surrounding trials that were used for creating muscle activity state 
maps. The weight epoch immediately precedes the start of effects. e, Example 
of muscle activity state map from one animal. Larger, connected dots show 
examples of states for sequential overlapping epochs from individual trials. Pairs 
were chosen based on their similarity during the weight epoch. f, Grid overlaying 
a map, including only points from the weight epochs used for weighting trials in 
grid point trial averages. g, Schematic of the calculation of the inactivation effect 
at each grid point from the control (black) and inactivation (cyan) trial-averaged 
muscle activity. ΔC and ΔL reflect the slopes of lines connecting the average 

activity just before to just after the inactivation effect begins, for control trials 
and light trials, respectively. h, Schematic illustration of the effect size on a plot 
of ΔL versus ΔC. Their difference is proportional to the distance from the identity 
line. i, Map in which each grid point colored by the mean distance, in the full 
80 dimensional space, between all pairs of embedded state vectors, with each 
individual distance weighted by a Gaussian function of the pair’s mean distance 
from the grid point on the 2D map. The Gaussian function is the same as that 
used for inactivation maps. j, Inactivation effect maps for the four recorded 
muscles. The color scale maximum and minimum reflect the maximum and 
minimum effect sizes across all four muscles collectively. j–m, Representative 
results from one mouse. k, Grid point-averaged muscle activity from control 
(gray, mean ± s.e.m.) and inactivation (cyan, mean) trials, for three example grid 
points from the maps in j. l, Maps of P values computed for inactivation effects at 
each grid point. The q values (gray overlay) reflect the expected false discovery 
rate below the corresponding P value46. m, Maps showing the average activity 
for the four recorded muscles at each grid point. The color scale maximum and 
minimum reflect the maximum and minimum activity level for each muscle 
separately. The darker blue regions reflect states where the given muscle is 
inactive. The darker red regions reflect states where the given muscle is highly 
active, up to between 2.7 s.d. and 5.5 s.d. values above the mean. dist., distance; 
max., maximum; min., minimum.
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Only grid points close to a substantial number of weight epoch states 
were subsequently considered (‘valid grid points’; Methods). For each 
muscle, we measured separately the size of the inactivation effect at 
each valid grid point as the difference between the rate of change in 
inactivation and the control trial averages from 0 ms to 20 ms after 
trial onset (Fig. 2g,h). We then plotted the resulting effect sizes at each 
valid grid point across the map, producing an ‘inactivation effect map’ 
(Fig. 2j and Extended Data Fig. 4a–d). Maps for different muscles in a 
given mouse show wide variation in the magnitude and sign of inactiva-
tion effects across grid points (Fig. 2j,k). We resampled from control 
trials to compute a P value for each grid point’s effect size (Fig. 2l and 
Extended Data Fig. 4a–c). The map structure was not strongly depend-
ent on the choice of key parameters (Extended Data Fig. 4f–i).

As UMAP is nonlinear, it is not clear how the distance across maps 
will correspond to differences in muscle activity state. To address this 
and clarify muscle activity levels at different map locations, we plotted 
the average activity of each individual muscle at each grid point using 
the same Gaussian weighting method as above (Fig. 2m). These plots 
showed smooth and gradual variation across grid points. We also plot-
ted the average similarity between nearby state vectors across maps 
(Fig. 2i and Extended Data Fig. 4e). The only prominent variation that 
we observed was a gradual increase in pairwise distance from the map 
center to the edges; there was no indication of abrupt changes in pair-
wise distance. Thus muscle activity state varies smoothly across state 
maps at the resolution of our inactivation effect maps.

The CFA acts primarily by selectively exciting 
physiological flexors
To distinguish among the three possible forms that direct motor corti-
cal influence on muscles could take, we then analyzed the inactivation 
effect maps. We first generated histograms of the P values computed for 
effects on each muscle at all valid grid points. These histograms consist-
ently showed a skew toward zero, reflecting a substantial fraction of grid 
points where the null hypothesis of no effect was false (Fig. 3a,b). From 
these distributions, we estimated the fraction of grid points showing 
effects46 (Fig. 3c). The mean estimated fractions were 0.62, 0.22, 0.73 
and 0.37 for elbow flexor, elbow extensor, wrist extensor and wrist 
flexor muscles, respectively. These estimates were significantly above 
zero for all four muscles. Control maps generated from comparisons 
between separate sets of control trials yielded uniform distributions, 
as expected under the null hypothesis (Extended Data Fig. 5a). These 
results show that the direct influence of CFA on muscles is specific to 
a subset of muscle activity states. This is not consistent with either 
the CFA driving the entirety of limb muscle activity or the CFA having 
a nonspecific effect on muscles. Rather, CFA appears to selectively 
influence particular components of muscle activity.

To better characterize this selective influence, we next assessed 
whether CFA influence varies in magnitude across muscle activity 
states. If this were true, then the 2D autocorrelation of inactivation 
effect maps should be significantly above what is expected by chance. 
We computed the 2D autocorrelation of both inactivation effect maps 
and control maps, observing substantially heightened autocorrela-
tion in the former (Fig. 3d). To assess whether these differences were 
significant, we computed the mean difference between inactivation 
effect map autocorrelation and that of control maps, averaged over 
spatial lags up to 20 grid points (Fig. 3e). These differences were signifi-
cantly >0 for all four muscles. We also found that the magnitude of CFA 
influence across muscle activity states differed significantly between 
muscles in six out of eight mice. The magnitude of CFA influence was 
not simply proportional to the magnitude of the muscle activity; the 
coefficient of determination (R2) for linear fits to effect size versus mus-
cle activity magnitude was low (Fig. 3f,g and Extended Data Fig. 5b–e) 
and the residuals were significantly nonuniform.

A number of previous observations indirectly suggest that primary 
motor cortex may preferentially control certain muscle groups more 
so than their antagonists47–49. We thus compared the distributions of 
effect sizes across grid points for each muscle. We found larger devia-
tions from control effect sizes for the elbow flexor and wrist extensor 
(Fig. 3h). The estimated fraction of grid points showing effects (false 
null hypotheses, Fig. 3c) was significantly greater for the elbow flexor 
(61% higher) and wrist extensor (43% higher), compared with their 
respective antagonists. This indicates that CFA output preferentially 
influences elbow flexors and wrist extensors, which can be grouped 
together as physiological flexors because of their coactivation during 
both locomotion and the flexion reflex50.

We also assessed whether these differences in effects on muscles 
might extend to the direction of effects. Reduction or elevation of 
muscle activity after inactivation indicates that CFA output activates 
or suppresses muscle activity, respectively. We examined the effect 
sizes that were significantly different from zero, finding that, for the 
physiological flexors, effects were always a reduction in muscle activ-
ity (Fig. 3i–k). However, the elbow extensor exhibited both reduction 
and elevation and the wrist flexor showed elevation in a small fraction 
of states as well (Fig. 3k). This can be seen in the trial-averaged muscle 
activity for individual grid points from inactivation effect maps (Fig. 3l). 
We also observed that inactivation effect maps for the physiological 
flexors were more highly correlated compared to those for all other 
pairs of muscles (Fig. 3m), suggesting a greater degree of coordinated 
control of these muscles. Collectively, these results indicate that the 
CFA influences muscles to varying degrees and only at some muscle 
activity states (that is, the influence is selective). CFA’s influence is 
therefore primarily an activation of physiological flexors; only the 

Fig. 3 | The CFA selectively excites physiological flexors. a,b, Distributions of  
P values for inactivation effects on each muscle for all grid points in one mouse (a) 
and across all eight mice (b). Left: elbow flexor (first), elbow extensor (second). 
Right: wrist extensor (second) and wrist flexor (first). The error bars in b indicate 
the s.e.m. c, Estimated fraction of grid points at which the null hypothesis of no 
effect is false, calculated from distributions of P values for eight individual mice 
(black circles) and the mean across mice (red bars). Values were significantly 
above 0 for all muscles (P = 0.008 or P = 0.016, two-sided Wilcoxon’s signed-rank 
test). The estimated fraction of grid points yielding false null hypotheses was 
significantly greater for the elbow flexor (P = 0.007, two-sided Wilcoxon’s rank-sum 
test) and wrist extensor (P = 0.015), compared with their respective antagonists. 
d, For one mouse, the 2D autocorrelation (autocorr.) for inactivation effect maps 
and control maps generated with only control trials (top) and scatterplots of 
correlation values versus their spatial offset (lag from zero offset). pts., points. 
e, Difference between inactivation effect maps and control maps in their mean 
autocorrelation over spatial offsets from 0 grid points to 20 grid points for 8 
individual mice (black circles) and the mean across mice (red bars). Differences 
were significantly >0 for all four muscles (P = 0.008, two-sided Wilcoxon’s  

signed-rank test). The magnitude of CFA influence across states differed 
significantly between muscles in six of eight mice (P < 0.004, P = 0.19 and P = 0.83 in 
two other mice, Kruskal–Wallis test). f, For one animal, scatterplots of inactivation 
effect size versus muscle activity at trial onset (averaged from −40 ms to +10 ms 
relative to onset). Each point reflects a different grid point. The R2 is for a linear fit 
(red). g, R2 for linear fits to scatterplots of inactivation effect size versus muscle 
activity at trial onset for eight individual mice (black circles) and the mean across 
mice (red bars). The residuals were significantly nonuniform (P < 10−10 for all mice, 
two-sided Kolmogorov–Smirnov test). h, Effect size distributions for all grid points 
across all eight mice, separately for inactivation effect maps and control maps.  
i,j, Effect size distributions for all significant grid points from all eight mice (i) and  
one mouse (j). Left: elbow; right: wrist. k, Same as i, but zoomed in to clarify rarer 
effects. l, Grid point-averaged muscle activity (mean ± s.e.m.) from control and 
inactivation trials, for four example grid points where inactivation significantly 
increased muscle activity in four different mice. The three on the left are for the 
elbow extensor and the one on the right is for the wrist flexor. m, The 2D correlation 
between inactivation effect maps for different muscles for one mouse (top) and the 
means across all eight mice (bottom).
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elbow extensor, where influence was relatively infrequent, shows a 
balance of activation and suppression.

Weak covariation between CFA influence and 
gross kinematic state of the forelimb
A number of previous observations suggest that the motor cortex 
may, to some extent, control the limb via commands that dictate its 

kinematics rather than muscle activation51,52, although this remains 
controversial32,53. If the CFA were dictating contralateral forelimb kin-
ematics, we reasoned that direct CFA influence on muscles should cor-
relate with the orientation of the contralateral forelimb. We therefore 
probed for this correlation.

Here we mimicked the approach that we took to assess how CFA 
influence covaries with muscle activity state. We computed new state 
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maps with UMAP using vectors composed of the horizontal and vertical 
positions of sites on the right forelimb tracked from a video (Fig. 4a,b 
and Extended Data Fig. 6a–c). Nearby points on these maps thus reflect 
50-ms epochs of limb kinematics that are similar. The resulting 2D maps 
separated states that correspond to different limb orientations into dif-
ferent map regions (Fig. 4c), with the cyclic changes in limb orientation 
during iterative climbing ordered around the map. Using these maps, 
we quantified the effects of CFA inactivation on each forelimb muscle at 
grid points covering the maps as above. Histograms of the inactivation 
effect sizes across all grid points showed deviations from the controls 
(Fig. 4d). However, the P-value distributions for effects on each muscle 
showed very limited skew toward zero, indicating discernible effects 

on only a small fraction of grid points (Fig. 4e). Thus, CFA influence on 
muscles does not covary with forelimb orientation nearly as well as it 
does with muscle activity state.

If CFA output dictates forelimb kinematics, we might expect CFA 
inactivation to perturb the limb kinematics themselves. We there-
fore quantified the effect of inactivation on the position of the sites 
tracked at the shoulder, elbow, wrist and finger. Inactivation effects 
were computed as above, but using trial-averaged site position in place 
of trial-averaged muscle activity. Again, histograms of inactivation 
effect sizes did show deviation from controls (Fig. 4f), but P-value 
distributions showed very limited skew toward zero. This indicates 
that there are discernible effects on only a small fraction of grid points 
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Fig. 4 | Gross forelimb kinematics capture CFA influence worse than muscle 
activity. a, Time series of tracked forelimb sites and their corresponding 
first derivatives surrounding inactivation and control trials windowed into 
overlapping segments. The segments are used to create 2D embedding via 
UMAP. b, Image showing the locations of the eight sites tracked on the forelimb, 
according to the color code in a. c, Example map of forelimb orientation states 
from one mouse, along with the trial-averaged positions of the forelimb sites 
at selected grid points within the map (red circles). As the video was captured 
at 100 Hz, time series segments used here had 10-ms spacing between points 
instead of 5 ms, as in Fig. 2. d–g, Distributions of the sizes of inactivation effects 
on muscles (d), P-value distributions for inactivation effects on muscles  
(e), distributions of the sizes of inactivation effects on four main forelimb sites 
(f) and P-value distributions for inactivation effects on four main forelimb sites 
(g), calculated using forelimb orientation maps, across all grid points and all 

eight mice. The error bars in e and g indicate the s.e.m. h, Histograms of Pearson’s 
correlation between muscle activity and four forelimb site positions (shoulder, 
elbow, wrist and finger), aggregated over all eight mice and all four sites.  
i,j, Maps of muscle activity states (left: orange) and limb orientation states 
(right: green) from one animal. Black circles in each panel mark corresponding 
sets of embedded vectors on the two maps (that is, those coming from the same 
set of epochs). The marked sets are clustered based on muscle activity state (i) 
or limb orientation state (j). Both map types used the same time point spacing 
(10 ms) and equivalent amounts of data. k, For the embedded vectors from 
200 randomly selected epochs, the Euclidean distance between all possible 
pairs of those vectors on the muscle activity map in i and j plotted against the 
distance between their corresponding vectors on the limb orientation map. 
corr., correlation; ES1 and ES2, first and second sites between elbow and shoulder 
joints; WE1 and WE2, first and second sites between wrist and elbow joints.
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(Fig. 4g). Collectively, these results suggest that CFA output directly 
specifies muscle activity and not limb orientation.

Given an expectation that muscle activity and limb kinematics 
should covary, these results may seem surprising. However, we note 
that, during adaptive, nonstereotyped motor behaviors like climbing 
in our paradigm, linear covariation between muscle activity and limb 
orientation will not necessarily be consistent, due to the complex causal 
interrelationship of these variables. To illustrate this, we measured 
their correlation over 150-ms epochs (Fig. 4h). Correlation values 
were broadly distributed from −1 to 1 in all cases. We verified that this 
was not because changes in muscle activity were somehow not associ-
ated with the changes in joint angles that they are expected to cause 
(Extended Data Fig. 6d–g). Next, we made state maps using muscle 
activity or limb orientation from the same set of recording epochs. 
We found that the proximity of muscle activity states on maps only 
weakly predicted the proximity of the corresponding limb orienta-
tion states and vice versa (Fig. 4i–k). Subsets of states close together 
on one map type corresponded to states that were widely distributed 
on the other map type. This decoupling between muscle activity and 
limb kinematics may have helped reveal that CFA influence is not well 
organized by limb orientation.

CFA firing patterns during climbing
To assess what components of CFA output might drive the direct 
influence that we have identified, we next sought to determine how 
CFA firing patterns covary with CFA influence on muscles. We used 
Neuropixels to measure the firing of CFA neurons across cortical lay-
ers in three mice for which inactivation effect maps were computed 
(Fig. 5a–c). After completing the collection of inactivation trials for 
mapping influence, we recorded neural activity in the CFA with acutely 
implanted Neuropixels during the next three to four daily behavioral 
sessions. The majority of both wide-waveform and narrow-waveform 
units had higher firing rates during forelimb muscle activity compared 
with periods when all recorded muscles were quiescent (Fig. 5d). Over 
80% of recorded units had firing rate time series that were significantly 
correlated with the activity of at least one muscle (Fig. 5e). Fitting mus-
cle activity time series with neuronal firing rates using ridge regression 
and Weiner’s cascade models yielded similar accuracy across muscles 
(Extended Data Fig. 7a).

To enable alignment with CFA influence, we measured the variation 
in the firing of neurons across the muscle activity state maps used for 
quantifying inactivation effects (Fig. 5f). Muscle activity state vectors 
for 50-ms epochs during Neuropixels recordings were embedded on 
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(gray) and the means thereof (black bars).
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the same state maps used for quantifying inactivation effects in the 
given animal. For each neuron, its average firing rate was estimated at 
each grid point, producing a ‘neural activity map’. This aligns neural 
activity during muscle activity states with inactivation effects which 
immediately follow similar muscle activity states.

Neural activity maps showed a wide array of muscle state-dependent  
firing patterns. In particular, we found many neurons with firing 
that was somewhat sparse across maps; firing was heavily concen-
trated in subregions of the maps and mostly or completely absent in 
others (Fig. 5g). To quantify this sparsity, we used an index that was 
originally developed to measure the place-dependent firing of hip-
pocampal neurons54. Ordering neurons by this sparsity index revealed 
that even the neurons with a median level of sparsity had firing that 
was heavily concentrated in subregions of the maps (Fig. 5h,i and 
Extended Data Fig. 7b). Sparsity was only weakly dependent on the 
mean firing rate during climbing (Fig. 5j). Neural activity maps did 
not vary substantially across cortical layers, because the average 2D 
correlation between maps for neurons assigned to different layers was 
similar to that expected, assuming no variation across layers (Fig. 5k). 
Thus, a substantial fraction of CFA neurons across cortical layers each 
fire primarily at a limited range of muscle activity states during climb-
ing. These results indicate that CFA neuron firing carries information 
about muscle activity states organized by their similarity.

CFA activity components that align with 
inactivation effects
We then used neural activity maps to identify components of CFA 
firing that align with CFA influence on muscles. We did so by combin-
ing singular value decomposition (SVD) and canonical correlation 
analysis (CCA) to align neural activity maps with the inactivation effect 
maps computed for the same animals55. The neural activity map for 
each wide-waveform neuron with overall mean firing rate >0.1 Hz was 
converted to a vector by concatenating its columns. For each mouse, 
these vectors were combined into grid points by neurons matrix, which 
was then replaced with a dimensionally reduced grid points by 20 
neural singular vectors matrix computed with SVD (Fig. 6a,b). These 
dimensionally reduced matrices were then aligned through CCA with 
grid points by muscles matrices formed similarly by concatenating 
the columns of inactivation effect maps for the four recorded muscles 
(Fig. 6a–d).

The resulting canonical variables reflect the components of CFA 
firing patterns that maximally correlate with components of inac-
tivation effects but are mutually uncorrelated with each other. For 
all three animals, neural and inactivation effect canonical variables 
were highly correlated and the inactivation effect variables captured 
substantial fractions of inactivation effect variance (Fig. 6e,f; mean 
correlation = 0.99, 0.97, 0.92 and 0.86 for canonical variables 1–4; 
mean effect variance capture = 0.29, 0.26, 0.18 and 0.11). Plots of the 
cumulative variance captured across orthonormalized canonical 
vectors indicated that each inactivation effect variable captured a 
substantial amount of additional inactivation effect variance (Fig. 6g). 
Although CCA attempts to maximize correlation between canonical 
variables, it is not fated that each inactivation effect variable will 
account for a great deal of the variance in effect maps, as they do here. 
Repeating CCA using the inactivation effect map of each individual 
muscle found a CFA activity component that highly correlated with 
the inactivation effects for the given muscle in all cases (median cor-
relation = 0.97, range = 0.89–0.99, total of 12 muscles in 3 animals). 
This indicates that CFA activity aligns well with the effects on each 
individual muscle.

To validate our results, we repeated the CCA calculations after 
randomly permuting the map locations of muscle activity states from 
neural recordings. The resulting correlation between canonical vari-
ables was significantly lower than for the original data (Fig. 6e). We 
also repeated CCA calculations 300× using separate, randomly chosen 

halves of trials for computing the inactivation effect maps. The canoni-
cal variables identified with each half of the trials were highly simi-
lar (Extended Data Fig. 8a), as were the 4D neural activity subspaces 
spanned by the neural canonical vectors (Extended Data Fig. 8b). In 
addition, we found that CCA results were not highly dependent on the 
number of singular vectors used for neural dimensionality reduction 
(Extended Data Fig. 8c–f), nor did they depend on the choice of key 
inactivation map parameters (Extended Data Fig. 8g). Thus, neural 
canonical vectors span a neural activity subspace where activity aligns 
closely and nontrivially with inactivation effects. Below we refer to this 
as the ‘influence subspace’.

We also assessed whether subsets of neurons contributed dis-
proportionately to these influence subspaces. To compute the rela-
tive contribution of each neuron to each canonical vector, we used 
the weight of each neuron in the singular vectors and the weights of 
these singular vectors in the neural canonical vectors. However, we 
found no evidence that neurons cluster in terms of their contribution 
sizes (Extended Data Fig. 9a–d). Contributions to canonical vectors 
were substantially overlapping for neurons localized to different lay-
ers, although they were significantly higher for neurons localized 
to layers 5 and 6 compared to those localized to superficial layers 
(Extended Data Fig. 9e,f).

Influence subspace differs from muscle activity 
and limb kinematic equivalents
Finally, we sought to test the hypothesis that CFA’s direct influence on mus-
cles is mediated via the CFA activity components that correlate with mus-
cle activity or limb kinematics in total. If this were true, we would expect 
that the influence subspace would be similar to subspaces aligned with 
muscle activity or limb kinematics (Fig. 7a). To find a subspace in which 
CFA activity aligns with muscle activity, average muscle activity maps 
(Fig. 2m) for each mouse were converted to vectors, assembled into a grid 
points by muscles matrix and aligned via CCA with the matrix of dimen-
sionally reduced neural activity (Fig. 7b,c and Extended Data Fig. 10a,b). 
To find a subspace in which CFA activity aligns with limb kinematics, we 
used the limb kinematic state maps generated for inactivation sessions 
(Fig. 4). We embedded vectors, composed of limb site positions and their 
corresponding first derivatives from neural recording sessions, into these 
existing limb kinematic state maps. We then made maps of the average 
horizontal and vertical positions of each site at grid points defined on 
the limb kinematic state maps (Extended Data Fig. 10c). We assembled 
neural activity maps for each neuron using segments of their firing rate 
time series that correspond to embedded limb kinematic state vectors 
(Extended Data Fig. 10d). These site position and neural maps were aligned 
via SVD and CCA (Fig. 7d,e and Extended Data Fig. 10e). Substantial frac-
tions of both muscle activity and kinematics variance were captured by 
canonical variables that were highly correlated with their corresponding 
neural canonical variables (Fig. 7f–i). Thus, the resulting neural canonical 
vectors span neural activity subspaces where activity aligns with either 
muscle activity or limb kinematics.

To evaluate the similarity among the influence, muscle activity 
and limb kinematics subspaces, we compared them in two ways. First, 
we asked whether they were more similar than would be expected by 
chance for different subspaces. We measured the overlap between 
pairs of subspaces and compared this to the overlap when one was 
replaced by a random subspace that captured the same amount of neu-
ral activity variance (Methods). On a scale from 0 (no) to 1 (complete) 
overlap, the overlap of the influence subspace with the muscle activity 
subspace ranged from 0.423 to 0.740 across the 3 mice, substantially 
above chance (Fig. 7j). However, the overlap between influence and 
limb kinematics subspaces ranged only from 0.018 to 0.030 and the 
overlap between muscle activity and limb kinematics subspaces ranged 
only from 0.025 to 0.060; these overlaps were on a par with those 
expected by chance. The same relationships between subspaces were 
reflected in their principal angles as well (Fig. 7k–m). Overlap values 
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were not strongly sensitive to the precise choice of key map parameters 
(Extended Data Fig. 10f).

Second, we asked whether these three subspaces were less simi-
lar than would be expected by chance for two subspaces of the same 
type. We measured the overlaps between subspaces of the same type 
or different types, each computed from separate sets of time series 
segments (Fig. 7n). In all cases, the overlap for subspaces of different 
types was much lower than that for the same type. Thus, the influence 
subspace overlaps partially, but not completely, with the muscle activ-
ity subspace, yet the influence subspace has no appreciable overlap 
with the limb kinematics subspace.

Discussion
Here we have assessed the direct influence of motor cortical output 
on muscle activity during naturalistic climbing in mice. By quantify-
ing this influence across the full range of muscle activity states that 
occur during climbing, we have shown that the CFA acts selectively, 
instructing motor output patterns. CFA activates physiological flexor 
muscles to varying degrees and only at a subset of muscle activity states, 
while activating or suppressing their antagonists less frequently. We 
have also shown that many CFA neurons are primarily active at subsets 
of similar muscle activity states. Finally, our approach enabled us to 
distinguish a neural activity subspace aligned with CFA influence from 
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those aligned with muscle activity or limb kinematics. These results 
suggest that, during an ethologically relevant motor behavior, mouse 
motor cortex appears to selectively direct muscle activity through a 
neural activity subspace distinct from those previously thought to 
contribute directly to motor output31–35.

The motor cortex has activity components that predict muscle 
activity and movement kinematics25–28. This could reflect a cortical 
role in generating all limb muscle commands during motor cortically 
dependent behaviors. At the same time, disturbance to motor cortical 
output often causes hypometric limb movements9,24,43,56,57, suggesting 
that the motor cortex contributes to driving muscle activity, but does 
not play a necessary role in determining its pattern in many cases. In 
either of these scenarios, we would have observed inactivation effects 
that were pervasive across all muscle activity states. Instead, we have 
found that, during a cortically dependent task in mice, the influence of 
the primary motor cortex on forelimb muscle activity is selective and 
instructive. This is supported by our observations that inactivation 
effects on individual muscles are present only at a subset of muscle 
activity states, these effects vary in magnitude across that subset, and 
the pattern of effect magnitudes across states itself varies across mus-
cles. To focus on the CFA’s direct influence on muscles, we measured 

inactivation effects at the shortest latency CFA output that can affect 
forelimb muscles in mice18. Effects at this latency are not seen during 
all motor behaviors.

The motor cortex may confer an added level of muscle control 
that improves movement efficacy by generating muscle activity 
patterns that cannot be achieved by other motor system regions19. 
Our results suggest that this role may be mediated by a selective 
modulation of ongoing motor output, one that differs categorically 
between muscles of different functional types. We were surprised to 
observe that direct motor cortical influence on physiological flexors 
was always activating. Although influence on their respective antago-
nists did involve a mix of activation and suppression, the prevalence 
of activation and suppression was similar only for the elbow extensor 
where its influence was relatively infrequent overall. Thus, the CFA 
acts primarily by selectively exciting physiological flexors. Given the 
nonstereotyped and adaptive nature of the movements that mice 
perform in our paradigm, during an otherwise rhythmic locomotion, 
we had expected the CFA output to both activate and suppress each 
muscle at different states. For example, if the motor cortex served 
only to introduce corrections to reduce the deviation from a target 
movement, as predicted by the current theory58,59, we would expect 
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both activation and suppression if errors were symmetrical around 
the target.

It remains unclear how well our basic results here generalize 
to other mammals, including primates. Despite substantial homol-
ogy between rodent and primate motor circuits2,60, functionally 
salient differences exist, especially in the circuits that govern finger 
movements13,61. That said, at least for nonhuman primates, broad swaths 
of the motor behavioral repertoire recover after motor cortical lesions, 
including walking, climbing, jumping and even goal-oriented manual 
tasks, although performance efficacy is reduced in all cases8,62,63. These 
results could reflect that, aside from individuated finger movements, 
the motor cortex does not generate the entirety of limb muscle activity 
patterns, but instead selectively modulates muscle activity patterns to 
improve movement efficacy.

We found that some CFA neurons fire preferentially for different 
subsets of similar muscle activity states. This does not align with the 
view that M1 activity is well described as a low-dimensional, linear, 
dynamic system34,53. In this view, the activity of each M1 neuron reflects 
a linear combination of a small number of latent variables. Neurons 
active during distinct subsets of muscle activity states would require 
distinct latent variables to capture their activity, increasing the dimen-
sionality of the population activity as a whole. A small number of linear 
latent variables might still capture much of the variance in our activity 
measurements, but they would not explain the highly state-specific 
firing patterns of some neurons. As these firing patterns carry infor-
mation about motor output, they may play an important role in motor 
control. The high state specificity of many neurons is also not predicted 
by previous characterizations of M1 neurons as broadly tuned for 
muscle activity or movement kinematics27,28,64. Here again, however, 
this aspect of our results may not generalize to other species or to the 
ballistic reaching tasks used in many previous studies. That said, it does 
align with recent demonstrations of reproducible, high-dimensional 
activity in the monkey M165.

Our observations also have important implications for the func-
tional interpretation of kinematics-related neural activity. By focusing 
on a context in which muscle activity and gross limb kinematics are 
substantially uncoupled, we found that the neural activity subspace 
where activity aligns with these kinematics is essentially orthogonal 
to the one that aligns with direct CFA influence. However, we cannot 
rule out that there are other, perhaps finer, kinematic features that 
more substantially covary with direct CFA influence. Despite this, our 
observations remain a substantial revelation given the contemporary 
prevalence of video-based kinematic tracking for measuring nervous 
system output. Prominent kinematic features can correlate substan-
tially with activity in a neuronal population, but correlate negligibly 
with the functional influence of that activity.

Online content
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maries, source data, extended data, supplementary information, 
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Methods
All experiments and procedures were performed according to the 
US National Institutes of Health (NIH) guidelines and approved by 
the Institutional Animal Care and Use Committee of Northwestern 
University (protocol no. IS00009077). No statistical methods were 
used to predetermine sample sizes but our sample sizes were similar to 
those reported in previous publications10,14,18. No parametric statistical 
tests were used for data analysis, so we did not test whether data were 
normally distributed.

Experimental animals
A total of 50 adult male mice were used, including those in early experi-
mental stages to establish methodology. Strain details and number of 
animals in each group are as follows: 44 VGAT-ChR2-EYFP line 8 mice 
(B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP) 8Gfng/J; Jackson Laboratories, 
stock no. 014548) and 6 C57BL/6J mice ( Jackson Laboratories, stock 
no. 000664). All experiments were performed using VGAT-ChR2-EYFP 
line 8 mice.

All mice used in experiments were individually housed under a 12-h 
light:dark cycle in a temperature-controlled and humidity-controlled 
room with free access to food and water, except during experiments. 
At the time of the measurements reported, animals were 12–18 weeks 
old and weighed 24–30 g. All animals were being used in scientific 
experiments for the first time, including no previous exposure to 
pharmacological substances or altered diets.

Climbing apparatus
The climbing apparatus (Extended Data Fig. 1) was housed inside a 
sound-attenuating chamber (Coulbourn, cat. no. H10-24A). Experimen-
tal control was performed using the MATLAB Data Acquisition Toolbox, 
the NI PCI-e-6323 DAQ and two Arduino Duos. The climbing apparatus 
itself consisted of a 3D printed cylindrical wheel with alternating hand-
holds positioned 12° apart from each other. The right handholds were 
affixed to linear actuators (Actuonix, cat. no. L-12-30-50-12-I), whereas 
the left handholds were statically positioned. A ratchet mechanism was 
used to ensure that the climbing wheel could rotate only downward 
from the mouse. One end of the wheel was supported by a shaft angular 
encoder (US Digital, cat. no. A2-A-B-D-M-D). Angular position signals 
were sent to the Arduinos to track the location of each handhold. When 
each right handhold reached a position 180° away from the mouse, 
the linear actuator moved the handhold to a new, randomly chosen, 
mediolateral position. The other end of the wheel was supported by 
a slip ring (Michigan Scientific, cat. no. SR20M-LT) that commuted 
voltage signals to and from the actuators embedded in the wheel. 
Water rewards were dispensed with a solenoid valve (NResearch, cat. 
no. 161T012) attached to a lick tube (Thermo Fisher Scientific, cat. no. 
01-290-12) and this dispensation was controlled by MATLAB through 
the NI PCI-e-6323 DAQ. A speaker was used to play a 5-kHz tone for 
200 ms whenever rewards were dispensed.

Training
Under anesthesia induced with isoflurane (1–3%), mice were fitted out 
with titanium or plastic head plates affixed to the skull using dental 
cement (Metabond, Parkell). Headplates had an open center that ena-
bled subsequent access to the skull, which was covered with dental 
cement. During headplate implantation, the position of bregma relative 
to the marks on either side of the headplate was measured to facilitate 
the positioning of craniotomies during later surgeries. After recovery 
from headplate implantation surgery, mice were placed on a water 
schedule in which they received 1 ml of water per day.

At least 4 d after the start of the water schedule, the mice were 
acclimated to handling by the experimenter following established 
procedures66. After acclimation to handling, the mice were accli-
mated to head fixation over two daily sessions during which they 
were placed in a 3D printed hutch positioned directly in front of the 

climbing wheel apparatus and provided water rewards (3 μl per reward) 
at regular intervals.

After acclimation, the mice underwent daily hour-long training 
sessions on the wheel apparatus. Training involved an initial stage (one 
to three sessions) aimed at training mice to grab for and pull at the 
handholds to rotate the wheel downward and receive a water reward. 
The mice were head fixed in an upright position, facing the front of 
the wheel so that all four limbs could easily grab on to the handholds, 
and the right handholds remained fixed. Rewards were triggered by 
an experimenter’s key press whenever a mouse performed any slight 
rotation of the wheel downward toward its body and longer or faster 
bouts were rewarded with additional rewards. Over the course of these 
sessions, the mice generally learned to associate rotating the wheel with 
a water reward and began iteratively rotating the wheel.

During the next stage of training (four to ten sessions, median 
five), right handholds were kept fixed and the mice were encouraged 
to rotate the wheel for increasingly long bouts. Here rewards were 
dispensed for continuous climbing bouts above a threshold distance 
after the bout ended, using an automated experimental control script 
written in MATLAB. The first ten times during a training session that 
the threshold distance was met, the mice automatically received a 
water reward. Subsequently, the total distance traveled was compared 
to those from the previous ten bouts. If the time was above the 25th 
percentile value for those ten bouts, the mouse received one water 
reward, if it was above the 60th percentile value, the mouse received 
two water rewards and, if it was above the 90th percentile value, the 
mouse received four water rewards. Otherwise, the mouse received 
no water reward. The threshold distance was adaptively adjusted to 
maintain the reward rate such that the mouse received approximately 
1 ml of water during each hour-long training session. Thus, if the recent 
reward rate was too low, the threshold distance was lowered and, if the 
recent reward rate was too high, the threshold distance was raised. 
During all subsequent training sessions, the right handhold positions 
were randomly repositioned along the horizontal axis after rotating 
past the mouse, although the same reward scheme was used.

In this paradigm, the mice performed a sophisticated locomotion 
that deviated from a rhythmic pattern to negotiate unpredictable 
variation in the ‘terrain’ presented by the handholds. The consistency 
of climbing form and performance across sessions (Fig. 1), together 
with the natural climbing ability that mice possess, obviated the need 
for extensive training. In fact, some mice exhibited long, continuous 
bouts of climbing over the first session during which they were taught 
the climbing–reward pairing.

EMG recording
Electromyographic (EMG) electrode sets were fabricated for forelimb 
muscle recording using established procedures18,39. Briefly, each set 
consisted of four pairs of electrodes. Each pair comprised two 0.001″ 
braided steel wires (A-M Systems, cat. no. 793200) knotted together. On 
one wire of each pair, insulation was removed from 1 mm to 1.5 mm away 
from the knot; on the other wire, insulation was removed from 2 mm to 
2.5 mm away from the knot. The ends of the wires on the opposite side 
of the knot were soldered to an eight-pin miniature connector (Newark, 
cat. no. 11P3828). Different lengths of wire were left between the knot 
and the connector, depending on the muscle within which a given 
pair of electrodes would be implanted: 3.5 cm for biceps and triceps, 
4.5 cm for extensor carpi radialis and palmaris longus. The ends of the 
wires with bared regions had their tips stripped of insulation and then 
were twisted together and crimped inside a 27G needle that facilitated 
insertion into the muscle.

Mice were implanted with EMG electrodes during the surgery in 
which headplates were attached. The neck and right forelimb of the 
mouse were shaved and incisions were made above the muscle to be 
implanted. Electrode pairs were led under the skin from the incision on 
the scalp to the incision at the site of implantation. Using the needle, 
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electrodes were inserted through the muscle and the distal portion of 
the electrodes was knotted to secure both 0.5-mm bared-wire regions 
within the muscle. The needle and excess wire were then cut away. Inci-
sions were sutured and the connector was affixed with dental cement 
to the posterior edge of the headplate.

EMG recordings were amplified and digitized using a 16-channel 
bipolar amplifying headstage (Intan Technologies, cat. no. C3313). Data 
were acquired at 4 kHz using the USB interface board (Intan Technolo-
gies, cat. no. RHD2000).

Optogenetic inactivation
After a VGAT-ChR2-EYFP mouse completed a few climbing sessions 
with randomly positioned handholds, dental cement above the skull 
was removed and a 2-mm-diameter craniotomy was made above the 
left caudal forelimb area centered at 1.5 mm lateral and 0.25 mm rostral 
of bregma. A thin layer of Kwik-Sil (World Precision Instruments) was 
applied over the dura and a 3-mm-diameter no. 1 thickness cover glass 
(Warner Instruments) was placed on the Kwik-Sil before it cured. The 
gap between the skull and the cover glass was then sealed with dental 
cement around the circumference of the glass. A customized stainless 
steel ferrule guide (Ziggy’s Tubes and Wires) was then cemented to 
the headplate a certain distance above the surface of the brain. This 
distance was set to ensure that the cone of light emanating from a 
400-μm core, 0.50 numerical aperture optical patch cable, terminat-
ing in a 2.5-mm ceramic ferrule (Thorlabs, cat. no. M128L01), would 
project a spot of light 2 mm in diameter on to the surface of the brain 
(Fig. 2a). The ferrule guide enabled quick and reliable positioning of 
the ferrule above the brain surface, so that a large expanse of cortex 
could be illuminated. In previous experiments using this method for 
inactivation, control experiments in wild-type mice showed no dis-
cernible muscle activity perturbation in response to light18. Moreover, 
the short latency at which we measured effects here would preclude 
visually driven responses.

To attenuate firing throughout motor cortical layers, we used a 
450-nm laser (Opto Engine, cat. no. MDL-III-450) to sporadically apply 
25-ms light pulses at an intensity of 10 mW mm−2 to the brain surface. 
During each session that involved inactivation of the motor cortex, 
trials were initiated after the distance climbed on the current bout 
exceeded a random threshold between 0° and 20° and a mouse was 
actively climbing. Light was applied on a random third of trials. This 
ensured that inactivation and control (no light) trials were broadly 
distributed across the muscle activity states that occurred during 
climbing. Inactivation trials were never triggered <5 s apart. A total 
of 2,292–5,115 trials (median = 2,715) was collected in each mouse 
(roughly one-third inactivation and two-thirds control), spanning 11–37 
(median = 18.5) climbing sessions. Inclusion of twice as many control 
trials as inactivation trials enabled comparisons between separate sets 
of control trials to aid statistical testing.

Neural recording
For some mice, optogenetic inactivation sessions were followed by 
three to four daily neural recording sessions that typically lasted an 
hour each. One day before the first neural recording session, the cover 
glass and Kwik-Sil were removed, a small durotomy was made in the 
craniotomy center and a Pt or Ir reference wire was implanted to a 
depth of 1.5 mm in the left posterior parietal cortex. Opaque silicone 
elastomer (Kwik-Cast, World Precision Instruments) was used to cover 
the craniotomy after the surgery and between recording sessions. At 
the time of recording, the exposed brain surface was covered with aga-
rose and silicone oil or liquid paraffin oil. A Neuropixels 1.0 (IMEC) was 
subsequently inserted to a depth of 1.5 mm into the brain (Fig. 5a) at a 
rate of 3–5 μm s−1 using a motorized micromanipulator (Sutter Instru-
ment, cat. no. MP-225A). Electrode voltages were acquired at 30 kHz 
and bandpass filtered at 0.3–10 kHz using SpikeGLX (Bill Karsh, https://
github.com/billkarsh/SpikeGLX) and then sorted with Kilosort 2.067  

(https://github.com/MouseLand/Kilosort2). Sorted units were assigned  
to separate cortical layers based on the depth below the pia assigned to 
the waveform centroid in Kilosort and the laminar depths reported in 
ref. 68. To be conservative, units near laminar boundaries were ignored 
when analyzing neural responses by layer. To classify units as either 
wide-waveform, putative pyramidal neurons or narrow-waveform, 
putative interneurons, we pooled the spike widths of all sorted single 
units, obtaining a bimodal distribution18,69. Neurons with spike widths 
>450 µs were classified as putative pyramidal neurons and the remain-
der were classified as putative interneurons. The proportion of units 
classified as wide waveform and narrow waveform was in line with 
previously observed proportions13,44.

EMG preprocessing
For both optogenetic inactivation and Neuropixels recording sessions, 
EMG measurements were downsampled to 1 kHz, high-pass filtered at 
250 Hz, rectified and convolved with a modified Gaussian filter kernel. 
We used causal filtering to enable precise assessment of perturbation 
latencies and, hence, used a Gaussian filter kernel that was initially 
defined with a 10-ms s.d., but then had amplitudes for times <0 (its 
‘backwards-in-time’ side) set uniformly to zero. EMG traces were then 
z-scored across all time points during the given session.

Video recording and analysis
A high-speed, high-resolution monochrome camera (Blackfly S USB 
3.0, 1.6 MP, 226 FPS, Sony IMX273 Mono; Teledyne FLIR) with a 12-mm 
fixed focal length lens (C-Mount, Edmund Optics) was positioned to the 
right of the head-fixed mouse during inactivation and neural recording 
sessions and videos were acquired under a near-infrared light source 
at 100 frames s−1 with a resolution of 400 × 400 pixels2. During optoge-
netic inactivation sessions, the camera was triggered to start recording 
using StreamPix software (NorPix, Inc.) 20 ms before each inactivation 
or control trial. Each recording lasted 500 ms beyond the 25-ms light or 
control command pulse that marked the trial. Annotation of behavior 
was accomplished using DeepLabCut70. To enable better markerless 
tracking, the right forelimbs of mice were shaved and tattooed (Black 
tattoo paste, Ketchum Manufacturing) at eight different sites along 
the right arm. All videos were also adjusted with ffmpeg (ffmpeg.org) 
to improve brightness and contrast. DeepLabCut using the ResNet-50 
neural network with an Adam optimizer was trained on the annotated 
images for 1,030,000 iterations; on ~4,000 randomly sampled video 
frames across mice and sessions, we provided manually labeled loca-
tions of the 8 forelimb sites for training: shoulder, two sites between 
the shoulder and elbow, elbow, two sites between the elbow and wrist 
and wrist and tip of the last digit (Fig. 4b). The training set comprised 
80% of the labeled frames.

All DeepLabCut-tracked forelimb site trajectories were then 
exported to MATLAB for further postprocessing to remove outliers 
(Extended Data Fig. 6a–c). First, sites in each video time series that 
were assigned, by DeepLabCut, a likelihood (that is, its confidence that 
a site was correctly labeled) <0.75 were replaced with an interpolated 
value using the median of the ten previous and ten following values 
(MATLAB function fillmissing). Next, outliers in site position time series 
were identified using the median absolute deviation (m.a.d.): shoulder 
coordinates were constrained to lie within 1.5 m.a.d. from their median, 
digit coordinates to be within 3 m.a.d. from their median and all other 
joints to be within 2 m.a.d. from their respective medians. Outliers were 
replaced with an interpolated value using a moving median of window 
length 10. Last, limits were imposed on the pairwise distances and 
angles between neighboring joints (the shoulder–elbow, elbow–wrist 
and wrist–digit tip) such that the angle between shoulder–elbow and 
elbow–wrist could not exceed 180° and the distances between each of 
these joints were within 2 m.a.d. of their medians. Site positions not 
meeting these criteria were also replaced with an interpolated value 
using a moving median of window length 10.
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To verify that extracted forelimb orientation had the expected 
relationship with muscle activity, we compared changes in muscle 
activity to the corresponding changes in joint angle. For each control 
trial, we extracted muscle activity and forelimb site time series from 
750-ms epochs that began 250 ms before each trial onset. The elbow 
angle was calculated as the inverse tangent of the position vectors 
connecting the shoulder site to the elbow site and the elbow site to 
the wrist site. The wrist angle was similarly calculated using vectors 
connecting the elbow and wrist sites and the wrist and finger sites. We 
also computed the difference in activity between elbow flexors and 
extensors and between wrist flexors and extensors. Time series were 
segmented into overlapping epochs beginning every 10 ms. For elbow 
angle and elbow flexor or extensor activity, we used 100-ms epochs. For 
wrist angle and wrist flexor or extensor activity, we used 50-ms epochs. 
Within each epoch, we computed the slope of a linear fit to the differ-
ence in flexor or extensor activity. Slopes were aggregated for each ses-
sion, and epochs corresponding to the bottom and top 5% of the slope 
distribution were identified and combined across sessions. Epochs in 
the bottom 5% reflected increasing flexor bias, whereas those in the 
top 5% reflected increasing extensor bias (Extended Data Fig. 6d–g).

For the extracted muscle activity and forelimb site time series, 
Pearson’s correlation was computed over nonoverlapping 150-ms 
epochs. For each epoch, we calculated the mean correlation across 
shoulder, elbow, wrist and finger sites for each muscle. Correlation 
values were aggregated across all epochs and sessions (Fig. 4h).

We note that our findings here applied only to the kinematic fea-
tures that our measurements captured, primarily the right forelimb 
joint angles in the sagittal plane. Our measurements did not account 
for forelimb orientation in the mediolateral dimension. However, 
the elbow and wrist muscles from which we have recorded primarily 
govern the angles of the elbow and wrist, which our measurements did 
capture. Mediolateral forelimb orientation was primarily determined 
by shoulder muscles. Moreover, as illustrated in Supplementary Video 
1, the range of limb motion in the two dimensions that we did examine 
was much larger than the range in the mediolateral dimension. Thus, 
inclusion of the mediolateral dimension in measurements was not likely 
to have changed our results substantially.

Behavioral analysis
For each animal, we computed the principal angles between muscle 
activity time series for each of the first 20 climbing sessions that used 
the automated control script, compared to the twentieth session. 
Principal component analysis was first performed on the muscle activ-
ity time series for the four recorded muscles. The top two PCs were 
used for the subsequent calculations, because they captured >90% 
of activity variance. The principal angles were then computed using a 
standard approach: the cross-covariance matrix was computed for the 
two PC time series from the given session and those from the twentieth 
session and SVD was applied to the result. The principal angles were 
then computed as the real part of the inverse cosine of the resulting 
singular values.

Sample entropy41 was computed for the muscle activity time series 
for the four recorded muscles using the ‘sampen’ function downloaded 
from the MATLAB file exchange, with the embedding dimension set 
to 10. Sample entropy has previously been used to measure regular-
ity in electrocardiography, electroencephalography and functional 
magnetic resonance imaging blood oxygenation level dependent 
signal imaging.

Inactivation effects during stereotypical climbing features
We identified three recurring kinematic features that are stereotypical 
in our observations of climbing behavior: pulling a handhold down 
with the right forelimb, reaching the right forelimb up for a handhold 
and palpation with the right hand when grasping for a handhold. Limb 
movement during each of these features was best reflected along the  

y axis of video frames. Pulling down was accompanied by an increase 
in averaged y coordinates as measured in pixels (values increase as you 
move downward in the video frame), which corresponds to a positive 
slope. The opposite was true for reaching up. Handhold palpations 
were associated with an oscillatory increase, decrease and increase, 
or vice versa, of y coordinates. Both of these patterns correspond to 
a minimum of two sign changes in slopes over a brief time window. 
To identify instances of each feature during climbing, we thus looked 
at changes in the y coordinates of the four tracked forelimb joints 
(shoulder, elbow, wrist and finger) across video recordings spanning 
100 ms before and after the trial onset. We first fit a line of best fit to 
the y coordinates averaged over the 4 tracked joints across the entire 
200-ms window to obtain a slope.

Then, we calculated slopes from overlapping 50-ms sliding win-
dows that began every 10 ms, starting from 100 ms before trial onset. 
From these slope measurements, we detected changes in the slope 
across time. A trial was assigned as pulling down if the overall slope 
was positive with a magnitude of ≥2 and no sign changes in slope were 
detected. Conversely, a segment was assigned as reaching up if the 
overall slope was negative with a magnitude of ≤−2 and no sign changes 
were detected. Segments with ≥3 slope sign changes were assigned as 
handhold palpation. After this, for verification purposes, we randomly 
selected a quarter of trials assigned to each of the three features. Using 
visual inspection of video data, we confirmed that the kinematics asso-
ciated with each trial matched the assigned feature in all cases. This 
validated the criteria that we imposed for assignment. Trial averages 
of the muscle activity and limb kinematic time series aligned by trial 
onset were then assembled for each behavioral feature.

Muscle activity state maps
We explored organizing inactivation and control trials based on 
the forelimb muscle activity immediately preceding trial onset. For 
example, we plotted trials along axes defined by the relative activity of 
antagonist muscles at each joint (Extended Data Fig. 3d) or along the 
top two PCs for the activity of all four muscles (Extended Data Fig. 3e). 
However, the density of trials across these plots varied greatly, with 
subsets of trials clustered closely together. Thus, these plots were not 
conducive to collecting together trials in similarly sized groups that 
would afford a similar degree of statistical power in distinguishing 
effects between groups; dividing trials based on these plots would 
concentrate trials, and statistical power, around certain states. To 
more effectively distribute the statistical power afforded by our trials, 
we explored the use of dimensionality reduction methods that organ-
ize states according to their n nearest neighbors. Recognizing that 
CFA inactivation effects may also depend on the time-varying pattern 
of muscle activity immediately before trial onset, we reasoned that 
capturing this history in our definition of muscle activity state could 
further increase our statistical power.

We ultimately used UMAP to obtain 2D muscle activity state maps 
on which nearby states are highly similar. We applied UMAP to segments 
extracted from the EMG time series collected during the optogenetic 
inactivation sessions and their corresponding first derivatives. For each 
control or inactivation trial, we defined 13 overlapping 50-ms epochs 
centered every 10 ms from −55 ms to +75 ms from command pulse onset 
(Fig. 2c). Then, for each 50-ms epoch, we averaged the EMG traces for 
each muscle over 5-ms bins and concatenated the resulting values for 
the four muscles and their corresponding first derivatives, yielding 
one 80 × 1 vector. Thus, in these vectors, the first 40 values reflected 
the EMG signals from 4 muscles and the last 40 values reflected their 
first derivatives (Fig. 2c). UMAP (MATLAB function run_umap, from 
the MATLAB File Exchange, with the following parameters: n_neigh-
bors = 30, n_components = 2, min_dist = 0.3, metric = Euclidean) was 
applied to embed all resulting vectors from both inactivation and 
control trials, generating the 2D muscle activity state maps (Fig. 2d). 
Using two dimensions here simplified subsequent quantification of 
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inactivation effects across muscle activity states. Using overlapping 
epochs ensured that embedded state vectors from individual trials 
formed continuous trajectories across the resulting maps (Fig. 2d).

Inactivation effect maps
To quantify the influence of CFA inactivation on muscles across the 
muscle activity state maps, we first excluded outlying embedded state 
vectors. For each embedded vector on a given map, we computed its 
mean Euclidean distance on the map from all other vectors. A vector 
was deemed an outlier if its mean distance was >3 s.d. values above the 
mean for all other vectors. Some mice had no embedded vectors classi-
fied as outliers and the percentage classified as such was, overall, <1%.

We then defined uniformly spaced grid points across each map at 
which we would calculate the effects of CFA inactivation. As the number 
of grid points of a fixed spacing across a map would depend on the scale 
of the map, which could vary between maps, we rescaled the coor
dinates of each 2D map rd to rdrescaled =

rd−min(rd)
s.d.(PD)

× 10 +weightPara × 2, 

where PD is the set of all Euclidean distances between embedded vec-
tors and weightPara is the s.d. of the Gaussian function used to weight 
trials in computing the inactivation effect size at each grid point (see 
below and ‘spatial filter width’ in Extended Data Figs. 4, 8 and 10). For 
all maps, we used weightPara = 5.

We then sought to compute the inactivation effect at each grid 
point, based on trials that began from muscle activity states close to 
each given grid point. Our approach was to compute effects for each 
grid point from inactivation and control trial averages made from all 
trials of a given type, but where trials were weighted by the distance on 
the 2D map from the given grid point to the weight epoch state vector 
for the given trial. The weight epoch state vector was defined as the 
embedded vector from the epoch spanning −40 ms to +10 ms from 
command pulse onset on the given trial (that is, the epoch just before 
any direct effect could begin; Fig. 2c,e). However, the density of these 
vectors varied across maps, meaning that the summed weight of trials 
contributing to trial averages would vary across grid points as well. 
Given this, to ignore grid points around which the weight epoch state 
vectors were too sparse for reliable trial averaging, a grid point was 
designated as ‘valid’ only if ∑iWg,i  > a threshold.Wg,i was in essence a 

Gaussian function, defined as Wg,i = exp (−
(Locg−Loci)

2

2×weightPara2
) , where i is the 

weight epoch state index (one per trial), g  is the grid point index and 
Locg − Loci  is the Euclidean distance between the weight epoch state 
and the grid point on the 2D map. We used a threshold of 10, which led 
to nearly all grid points falling within a convex hull surrounding embed-
ded vectors being classified as valid, whereas nearly all grid points 
falling outside this hull were not. Grid points not designated as valid 
were ignored in subsequent calculations. All embedded muscle activity 
state vectors (those not deemed outliers) were close to valid grid points 
and so this criterion did not prevent an appreciable contribution from 
any vectors. Together with the very small fraction of embedded vectors 
ignored as outliers, this implies that our analysis involved practically 
all the muscle activity states that occur during climbing.

Next, we calculated the trial-averaged activity for each muscle at 
each valid grid point, separately for the inactivation and control trials. 
For each muscle and trial type, we extracted segments of their activity 
time series from −10 ms to +30 ms relative to command pulse onset. 
We then took a weighted average of these segments across each trial 
type, where each segment was weighted by Wg,i. At each grid point, this 
produced control and inactivation trial averages for each muscle, where 
each trial is weighted by the distance from the grid point to the mus-
cle activity state just before any direct inactivation effect during the 
trial. Use of weightPara = 5 here (roughly 10% of the width of the map) 
reflected a trade-off between differentiating effects across distinct 
map regions and the statistical power gained from combining trials.

Finally, we quantified the size of the CFA inactivation effect at 
each valid grid point by comparing the rates of change (slopes) in 

inactivation and control trial averages 0 ms to +20 ms from command 
pulse onset (Fig. 2f). Muscle activity at time 0 ms was defined as the 
mean from −10 ms to +10 ms and, likewise, activity at +20 ms was 
defined as the mean from +10 ms to +30 ms. Quantifying the inactiva-
tion effect by taking the ratio or difference between the control and 
inactivation slopes returned qualitatively similar results. We used the 
difference because it was more easily interpretable (Fig. 2h).

We also sought to assess the similarity between nearby state 
vectors embedded in local neighborhoods across maps and thus the 
similarity of states from which trials contributing strongly to given 
grid point trial averages began. To do this, we computed the aver-
age Euclidean distance in the full 80D space between state vectors 
embedded near each grid point on the 2D maps. We first calculated the 
Euclidean distances between all possible pairs of embedded vectors 
in the full 80D space. For each grid point, we then computed a locally 
weighted average of these distances. In these averages, each distance 
d was weighted by a Gaussian function of the distance on the 2D map 
between the grid point and the midpoint between the corresponding 
two embedded vectors (that is, those separated by d), using the same 
Gaussian function as above (weightPara = 5).

There are a number of important caveats in evaluating inactiva-
tion effect maps. Collapsing 80D muscle activity state vectors on to 
a 2D map eliminates substantial information about those states. The 
smoothing that we have applied in computing trial averages will also 
mask fine structure. UMAP organizes states according to similarity and 
so ignores other features potentially relevant to cortical influence. As a 
consequence, these maps do not reflect all the structure that may exist 
in the relationship between muscle activity state and CFA influence.

Analysis of inactivation effect maps
To determine which muscle activity states were significantly influenced 
by CFA inactivation, we performed a two-tailed nonparametric permu-
tation test at each grid point by computing the probability of obtaining 
the observed inactivation effect size by chance. For each animal, and 
each grid point, 300 permutations were performed by first randomly 
splitting control trials into two groups, each with a number of trials 
equal to the number of inactivation trials. The number of trials in both 
the control (Ncontrol) and inactivation (Ninactivation) trial groups was such that, 
if Ntotal_control/2 > Ntotal_inactivations , we would set Ncontrol = Ntotal_inactivations ;  
otherwise, Ninactivation = Ntotal_control/2. As our experiments were designed 
to collect twice as many control trials as inactivation trials, control 
trials could be sampled without replacement during the splitting pro-
cess. For each grid point, and for each permutation, we calculated the 
inactivation effect size using the control trial average, computed as 
above, for one randomly selected group of control trials and the inac-
tivation trial average, also computed as above. For each permutation, 
and at each grid point, we also calculated the effect size expected by 
chance (‘null’) using trial averages for the two control trial groups. 
Then, at each valid grid point, we randomly picked 1 inactivation effect 
size from the 300 permutations and compared that with all 300 null 
effect sizes. To calculate the P value, we compared the 300 null effects 
with the randomly chosen inactivation effect, calculated the fractions 
of the null effects where the null effects were smaller than or greater 
than the inactivation effect and multiplied the smaller fraction by 2. 
To correct for multiple comparisons, the Benjamini–Hochberg method 
was used to control the false discovery rate (FDR; MATLAB function 
fdr_bh). The effect size at each grid point was considered to be statisti-
cally significant if the FDR-corrected P value was 0.05 (that is, the likeli-
hood of false discovery was ≤5%). We also used P values across all grid 
points to estimate the fraction of null hypotheses that were false for 
each mouse (MATLAB function mafdr) and used this as the fraction of 
grid points exhibiting inactivation effects.

The 2D autocorrelation for inactivation effect maps was computed 
using the MATLAB function xcorr2 and normalized by the maximum 
value for the given map. For controls, maps were generated using null 
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effect sizes at each grid point from 1 of the 300 comparisons of effect 
sizes computed with 2 separate sets of control trials described above. To 
test that inactivation effect maps differ across muscles for each animal 
using the Kruskal–Wallis test, we first removed inactivation effect sizes 
from the maps until the minimum distance between the grid points for 
remaining effect sizes was >3× s.d. of the Gaussian function used for 
computing grid point trial averages. This ensured that the remaining 
effect sizes were effectively computed from separate trials. Roughly 
~15–20 inactivation effect sizes remained after this removal. Linear 
models were fit to scatter plots using the MATLAB function fitlm. The 
2D correlation between inactivation effect maps was computed using 
the MATLAB function corr.

Maps of average muscle activity
For each muscle, we first calculated its mean activity during the 50-ms 
epoch reflected in each state vector. Then, for each grid point, we cal-
culated a weighted average of these values, where the mean for each 
epoch was weighted by a Gaussian function of the Euclidean distance 
on the 2D map between the epoch’s embedded muscle activity state 
vector and the given grid point. Here we set the s.d. of the Gaussian 
function to be the same as that used for the inactivation effect maps. 
The resulting plots clarify the activity of muscles at each grid point and 
how this activity varies across grid points.

Neural activity maps
To compare firing patterns in the CFA to inactivation effects, we gener-
ated maps of average firing rate across grid points for each recorded 
CFA neuron. As neural recordings and optogenetic inactivations were 
carried out in separate sessions, the first step was to align muscle 
activity states from the neural recording sessions with those from 
the optogenetic inactivation sessions by embedding the former set 
of states on the same 2D map used to make inactivation effect maps. 
To do this, we identified a large number of 50-ms epochs during 
active climbing from the neural recording sessions. To identify these 
epochs, peaks in the activity summed across all four muscles were first 
detected using the MATLAB function findpeaks, where a peak was iden-
tified if a sample in the time series surpassed a threshold equal to the 
mean + ½ × s.d. Based on visual inspection, this identified many peaks 
that always fell during active climbing. Next, two time points (‘onset 
points’) were randomly selected on either side of the peak, such that 
the expected interval from the peak to each point was 50 ms. Then, any 
onset point was eliminated if it was <50 ms from either the previous or 
the subsequent onset point. This ensured that 50-ms epochs defined 
around onset points would not overlap. For each remaining onset 
point, EMG time series segments from the epoch spanning −45 ms 
to +5 ms relative to the onset point were extracted. Each recording 
session typically yielded upward of 30,000 epochs. Of these, 10,000 
were randomly selected for each session to limit compute time for 
subsequent calculations. State vectors (80 × 1) were assembled for 
each epoch as above.

We then embedded the resulting 10,000 state vectors from each 
neural recording session on to the muscle activity state maps previously 
defined via UMAP to make inactivation effect maps for the given mouse. 
We next extracted the segments of each neuron’s firing rate time series 
corresponding to each state vector. For each neuron and at each valid 
grid point, the firing rate segments were averaged as above, weighting 
each segment by a Gaussian function of the distance on the map from 
their corresponding state vector to the grid point (weightPara = 5). 
The resulting segment-averaged firing rates were then averaged across 
time, yielding a single scalar firing rate value for each neuron at each 
grid point (Fig. 5f,g).

For the analysis described below, only putative pyramidal neurons 
were included. To estimate the number of neurons that showed behav-
iorally dependent firing across muscle activity states, we first generated 
an empirical null distribution for the degree of variation across neural 

activity maps separately for each neuron. To do this, we reassigned 
each state vector from neural recording sessions to the location of a 
different, randomly selected vector on the map and recomputed the 
neural activity maps. We repeated this 500× to yield 500 permuted 
maps for each neuron. To assess behaviorally dependent variation, the 
skewness of the original neural activity map values and those on the 
500 permuted neural activity maps was calculated (MATLAB function 
kurtosis) as k = E(x−μ)4

σ4
, where x is the set of firing rates at all grid points, 

μ is the mean of x, σ  is the s.d. of x  and E(⋅) represents the expected 
value. Significance was assessed using a P value, defined as the fraction 
of null distribution skewness values greater than the original. From the 
P values for all neurons in a given mouse, we estimated the fraction of 
false null hypotheses (MATLAB function mafdr) and used this as the 
fraction of cells with behaviorally dependent firing.

The sparsity for neural activity maps was computed using the for-
mula given in ref. 54. Here the sparsity is the mean of the firing rates  
at each grid point on the map, squared and divided by the mean of 
the squares of the firing rates at each grid point. Note that, as in the 
original reference, this minimizes the dependence of sparsity values 
on the frequency at which each state on the map is visited. The 2D 
correlation between neural maps was computed using the MATLAB 
function corr.

Neural subspace for inactivation effects
Separately for each animal (n = 3 mice), neural subspaces were identi-
fied using singular vector CCA (SVCCA55) applied to the inactivation 
effect and neural activity maps. An SVD-based approach was taken 
here because the number of recorded neurons was much larger than 
the number of recorded muscles. Neurons with mean firing rates 
<0.1 Hz over the 10,000 epochs were excluded. Two matrices were 
generated for alignment with SVCCA. One matrix had a column for 
each neuron generated by vertically concatenating the successive 
columns of that neuron’s neural activity map. The resulting matrix 
had dimensions of Ngrid × Nneuron, where Nneuron is the number of neurons 
recorded in a given mouse across recording sessions (putative pyrami-
dal, mean firing rate >0.1 Hz), whereas Ngridis the number of valid grid 
points. The second matrix was made in a similar fashion by vertically 
concatenating the successive columns of the inactivation effect map 
for each muscle. This matrix had dimensions of Ngrid × 4 because four  
muscles were recorded.

SVCCA was conducted in two steps: neural activities were first 
soft normalized71 using a soft normalization constant of 5 Hz. SVD 
was performed using numpy.linalg.svd in Python to decompose the 
neural data into left singular vectors, a diagonal matrix containing 
singular values and right singular vectors. Next, the diagonal matrix, 
truncated to just the top 20 singular values, was multiplied with the 
corresponding top 20 right singular vectors, resulting in 20 neural 
activity components. CCA was applied to the Ngrid × 20 matrix of these 
components and the Ngrid × 4 matrix of inactivation effects. Then 20 
dimensions were retained here because the amount of variance cap-
tured and CCA alignment quality saturated at around 20 dimensions. 
CCA was also repeated with individual columns of the matrix of inacti-
vation effect sizes in place of the full 4D matrix, to show that there were 
CFA activity components that correlated with the inactivation effects 
for each individual muscle.

To compute the additional variance captured by each successive 
canonical vector, canonical vectors were orthogonalized using the 
Gram–Schmidt process. In addition, we randomly shuffled the neuronal 
firing rate segments relative to the embedded vectors on the maps to 
generate shuffled neural activity maps and performed SVCCA again 
as a negative control. The highest correlations between the canonical 
neural and effect vectors for all animals were <0.75. To further verify 
the effectiveness of SVCCA, for each mouse separately we split the 
inactivation and control trials from inactivation experiments randomly 
into two groups, calculated separate inactivation effect maps for each 
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group, used SVCCA to find subspaces where CFA activity aligns with 
each of them and calculated the principal angles between the two 
resulting neural activity subspaces. This procedure was repeated 300× 
(Extended Data Fig. 8b).

Using the CCA results for individual columns of the matrix of inac-
tivation effect sizes (that is, results for effects on individual muscles), 
we computed the effective weight of each neuron’s activity in each 
canonical variable by matrix, multiplying the neuron to singular vector 
coefficients and the singular vector to canonical vector coefficients. 
The four individual muscle effect size vectors yielded four effective 
weights for each neuron. To compare across animals in which we had 
recorded different numbers of neurons, we normalized these weights 
to have a median of 1 for each animal (Extended Data Fig. 9). To measure 
the relative contribution of neurons across all four muscles, we com-
puted the norm of the four-element vector composed of the weights 
for each muscle for a given neuron and again normalized these so that 
the median for each animal was 1.

Overlap between subspaces
To find a neural activity subspace that aligned with muscle activity 
itself, we again performed SVCCA using the Ngrid × Nneuron matrix of 
mean firing rates. However, in place of the matrix of inactivation 
effect sizes, an Ngrid × 4 matrix was used where each column reflected 
the average activity at each grid point for one of the four muscles, 
computed just as was done for the neural activity maps, except muscle 
activity from inactivation sessions was used. Similar methods were 
used to find a neural activity subspace that aligned with limb kinemat-
ics. Here, instead of 4 columns, we began with 16—the horizontal 
and vertical coordinates for the 8 positions tracked along the right 
forelimb. As the 16 kinematic variables were highly correlated, SVD 
was also used on this matrix to reduce its dimensionality to 7 before 
performing CCA.

To compute principal angles between two neural activity sub-
spaces, we orthonormalized the neural canonical vectors defining each 
subspace, computed the cross-covariance matrix for the two sets of 
vectors, computed the SVD of the matrix and calculated the inverse 
cosine of the singular values in degrees. We also measured the degree 
of overlap between neural activity subspaces using the metric 

OL = ∑ var(Cs2×Mreproj)
∑ var(Mproj)

, where M  is the original matrix of neural activity and 

Cs1 and Cs2 are matrices comprising coefficient vectors that define the 
two subspaces, Mproj = Cs1 ×M  and Mreproj = CT

s1 ×Mproj.

To verify the significance of the overlap, we permuted the order 
of coefficients in the columns of Cs2 to get Cs2 . We used Cs2  only when 
the total variance of Cs2 ×M  was in between 0.8 and 1.2× the total vari-
ance of Cs2 ×M . We then repeated subspace overlap calculations for 
100 different Cs2  values meeting this criterion. This ensured that the 
resulting null distribution of overlap values did not differ from the 
actual value simply because the Cs2  value captured much less variance 
than Cs2. We also calculated subspace overlap for subspaces that were 
each computed using just one half of the total epochs from the neural 
recording, repeating this for 300 different random parcellations of 
the epochs.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are posted to figshare 
at https://doi.org/10.6084/m9.figshare.29965298 (ref. 72).

Code availability
All MATLAB code used for data analyses and CAD files for 3D printed  
wheel components are available on GitHub at https://github.com/ 
nataliekoh/ClimbingControlSpace.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Head-fixed climbing paradigm. a, 3D illustration of the 
climbing apparatus, including the lick tube manipulator with lick tube, mounts 
for head fixation, and cameras. b, 3D exploded illustration of the wheel with the 
separate components visible, showing the slip ring, actuators, and 3D printed 
parts. c, Same as b, but without actuators and handholds. d, The two types  
of 3D printed handholds. Actuated handholds slide onto actuators. Static 
handholds attach to the wheel body between actuators. e, Seven video frames 
illustrating the range of different postures mice express during climbing.  
f, Flow chart illustrating data acquisition and experimental control. Blue arrows 
indicate command output signals. Black arrows indicate measured signals.  

g, Example time series during climbing: solenoid command for dispensing 
reward, wheel angle from optical encoder, and four channels of EMG.  
h, i Median (black dots, n = 9 mice) and 1st and 3rd quartiles (whiskers) for the 
variance captured by principal components of muscle activity time series (h) 
and kinematic time series (i, x- and y-coordinates for eight tracked points) from 
one session for each mouse. Gray lines are for individual mice. Three principal 
components captured the vast majority of the variance for both muscle  
activity and limb kinematic time series. Limb orientation is charted using  
video-based tracking.
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Extended Data Fig. 2 | Effect of CFA inactivation on muscle activity. a, Muscle 
activity times series surrounding three inactivation trials in one mouse. The 
activity of each muscle was z-scored, so units are standard deviations of the 
original recorded signal. Vertical cyan bars in a, b, e–g indicate the 25 ms epoch 
of blue light applied to CFA. Gray dotted lines are 10 ms after light onset, the 
shortest latency at which effects can be observed. b, Mean ± sem muscle activity 
for control (gray) and inactivation (cyan) trials for the recorded forelimb muscles 
in three additional mice. c, Absolute difference between inactivation and control 
trials at 25, 50, and 100 ms after trial onset for 8 individual mice (black circles) 
and the mean across mice (red bars). The mean was significantly greater than 
0 at 25, 50 and 100 ms following light onset (p = 0.004 in each case, two-sided 
Wilcoxon signed-rank test). Despite this, we found that the covariance of muscle 
activity patterns was not substantially different in the 50 ms following control 

and inactivation trial onsets d, Mean ± sem (n = 8 mice) variance capture of 
muscle activity during inactivation trials and one half of control trials using 
principal components computed from the other half of control trials. Only time 
series during the 50 ms following trial onset were used here to focus on the 
period when inactivation effects were most apparent. The covariance of muscle 
activity patterns was not substantially different in the 50 ms following control 
and inactivation trial onsets. e–g, Mean ± sem muscle activity for control (gray) 
and inactivation (cyan) trials using the first 10 and last 10 trials of each type 
from each session (e), the first 13 and next 13 sessions for each mouse (f, n = 5 
mice), and the first 500/1000 inactivation/control trials and the next 500/1000 
inactivation/control trials for each mouse (g, n = 6 mice). Average inactivation 
effects on muscle activity show remarkable consistency, both within and  
across sessions.
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Extended Data Fig. 3 | See next page for caption.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-025-02093-z

Extended Data Fig. 3 | CFA inactivation effects during stereotypical features 
of climbing behavior. a, Extracted video frames illustrating three common 
behavioral features during climbing from one example animal. b, Trial-averaged 
(mean ± sem) muscle activity for control (gray) and inactivation (cyan) trials for 
forelimb muscles in the example animal. Vertical cyan bars indicate the 25 ms 
epoch of blue light applied to CFA. Gray dotted lines are 10 ms after light onset, 
the shortest latency at which effects can be observed. Note that in b and c the 
time series for palpation appear largely flat because the oscillations in muscle 
activity and limb position during palpation were not aligned across trials,  
and so much of the structure of individual trials averaged out in trial averages.  

c, Trial-averaged (mean ± sem) time series of four tracked joints for control (gray) 
and inactivation (cyan) trials in the example animal. d, For all control (black) 
and inactivation (cyan) trials from one representative mouse, the difference 
between the activation of the two wrist muscles averaged over the 50 ms prior to 
trial onset plotted against the corresponding difference in activation of elbow 
muscles. Red ellipses in d and e indicate regions where trials are highly clustered, 
challenging our ability to divide them into groups. e, For all control (black) and 
inactivation (cyan) trials from the same mouse used in d, a scatterplot of the 
mean projection of muscle activity over the 50 ms prior to trial onset onto the top 
two principal components for the activity of all four muscles.
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Extended Data Fig. 4 | CFA inactivation effects across muscle activity state 
space. a–c, Inactivation effect maps and corresponding p-value maps for each 
of the four muscles in three additional mice. Q-values (gray overlay) reflect the 
expected rate of false discovery below the corresponding p-value46. For the effect 
sizes, color scale max and min reflect the maximum and minimum effect sizes 
across all four muscles. Thus, the maps for muscles with smaller effect sizes do 
not use the full range of colors. d, Alternate versions of the inactivation effect 

maps shown in Fig. 2j in which the color scale applies separately to each map, so 
the same colors correspond to the different maximum and minimum values on 
each map. e, For three additional mice, maps in which each grid point is colored 
by the mean distance (in 80D) between all pairs of embedded states, with each 
distance weighted by a Gaussian function of the pair’s mean distance from the 
grid point on the 2D map. f–i, Same as c, but following calculation with slightly 
different parameters (red text).
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Extended Data Fig. 5 | CFA selectively excites physiological flexors. a, P-value 
distributions for inactivation effects on each muscle when calculated by 
comparing control trials to a separate set of control trials, for all grid points 
across all 8 mice. Error bars indicate the sem. b, c, For two additional mice  
(b shows mouse DC50, c shows mouse DC44), scatterplots of inactivation effect 
size versus muscle activity at trial onset (averaged from -40 to +10 ms relative to 

onset). Each point reflects a different grid point. R2 is for a linear fit (red).  
d, e Same as Fig. 3f (d) and 3g (e), except only including grid points where effect 
size was significantly different from zero. Note that the y-axis scale in e differs 
from that in Fig. 3g. As was true when using all effect sizes, residuals from linear 
fits for these subsets were significantly different from uniform (p < 0.004 for all 
mice, two-sided K-S test).
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Extended Data Fig. 6 | Verifying video-based limb tracking. a, Example time 
series for the point on the finger, illustrating post-hoc processing to correct 
outliers. Raw is the time series output by DeepLabCut before correction.  
b, Scatter plot of X and Y coordinates of the finger site tracked in a, showing 
fewer outliers after correction. c, Example X and Y coordinate traces for site 
positions (defined in Fig. 4) after post-hoc processing. d, For one animal, 
averages (mean ± sem) of the elbow angle and the difference in elbow extensor 
and flexor activity. Values were computed over 100 ms epochs, and averages were 

assembled using the bottom (increasing flexor bias) and top (increasing extensor 
bias) 5% of epochs in each session based on the change in muscle activity 
difference over the epoch (n = 1340 total epochs in each group). e, As in d, but for 
wrist angle and the difference in wrist extensor and flexor activity (n = 1441  
total epochs in each group). f, Same as in d, but for all animals (n = 3010 total 
epochs in each group). g, Same as in e, but for all animals (n = 3238 total epochs in 
each group).
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Extended Data Fig. 7 | Analysis of neural recordings. a, For each mouse, 
mean ± sem (n = 10 folds) R2 for a Weiner cascade ridge regression model73 fit 
to muscle activity without (top) or with (bottom) a cubic nonlinearity using the 
top principal components (PCs) capturing at least 99% of variance in neuronal 
firing rates. Retaining 99% of variance resulted in between 52 and 203 PCs 
being included across sessions (median 92 PCs). Muscle activity averaged in 
10 ms bins was fit using the neural PCs over the preceding 100 ms (10 bins). The 
middle 50% of each recording was used to reduce compute time. This segment 

was divided into 1-second epochs, and a random 10% of epochs were held out 
for performance measurement. The first 100 ms of these epochs were omitted 
from testing to avoid overlap with training data. The mean ± sem R2 values across 
sessions and muscles were 0.310 ± 0.051 (ridge) and 0.546 ± 0.051 (with cubic). 
b, Neural activity maps for 48 neurons from one mouse. To illustrate varying 
sparsity, neurons shown have values equally spaced along the full distribution of 
sparsity values for the given mouse. Black text is sparsity, red text is each map’s 
maximum firing rate.
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Extended Data Fig. 8 | Finding a CFA activity subspace that aligns with CFA 
influence. a, Canonical variables for inactivation effect maps resulting from 
CCA with neural activity maps, using effect maps computed with separate 
halves of trials. b, Mean ± standard deviation for principal angles between 
subspaces spanned by the neural canonical vectors from CCA that used effect 
maps computed with separate, randomly-chosen halves of trials, over 300 
iterations. c, d Correlation coefficient (black) and fractional inactivation effect 
variance captured (red) for canonical variables (c), and cumulative fraction 

of effect variance captured by canonical variables after orthogonalizing 
their corresponding vectors (d) when SVD is used to reduce neural activity 
dimensionality to 10 instead of 20 before applying CCA. Each set of connected 
dots in c–g is from one animal. e, f, Same as c, d, but when SVD is used to reduce 
neural activity dimensionality to 30. g, Correlation coefficients from CCA 
aligning neural activity maps and inactivation effect maps for individual muscles, 
calculated after changing key inactivation map parameters (red text).
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Extended Data Fig. 9 | Influence subspace contributions across neurons. 
Here used the canonical vectors defined using the inactivation effect maps of 
individual muscles. a, Cumulative distributions of weights for the activity of 
individual neurons in canonical vectors defined by CCA using the inactivation 
effect maps of individual muscles. Weights were normalized so the median value 
for each mouse is 1 to enable comparison across mice, as different numbers 
of neurons were recorded in each mouse. Tests for multimodality were not 
significant for all distributions (p-values ranged from 0.64 to 0.99, Hartigan’s dip 
test). Results indicate a broad distribution of neuronal weights for each muscle 
in each mouse. b, Cumulative distribution of norms of the four-element vectors 
composed of each given neuron’s canonical vector weight from alignment with 
the inactivation effect maps of individual muscles. Tests for multimodality were 
not significant for all distributions (p-values ranged from 0.34 to 0.99, Hartigan’s 
dip test). Results again indicate a broad distribution of neuronal weights for 

each muscle in each mouse. c, d Same as a, b, but weights (c) and weight vector 
norms (d) are scaled by each neuron’s mean firing rate during climbing. Tests for 
multimodality were not significant for all distributions (p-values ranged from 
0.90 to 0.99, Hartigan’s dip test). e, Scatterplot of weight vector norms as in b 
versus the depth below pia assigned to the waveform centroid of each neuron. 
Red whisker plots span from the first to the third quartile for all neurons assigned 
to each laminar group (those within dotted boundaries). Data from three mice 
are combined. The distributions of weight vector norms for neurons localized 
to layers 5 (p = 3 × 10−5, two-sided Wilcoxon’s rank-sum test) and 6 (p = 7 × 10−4) 
were significantly higher than those localized to superficial layers. f, Same as 
e, but weight vector norms are scaled by each neuron’s mean firing rate during 
climbing. The distributions of weight vector norms for neurons localized to 
layers 5 (p = 5 × 10−14, two-sided Wilcoxon’s rank-sum test) and 6 (p = 3 × 10−7) were 
significantly higher than those localized to superficial layers.
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Extended Data Fig. 10 | Extracting neural activity subspaces aligned with 
muscle activity and limb kinematics. a, Grid point-averaged muscle activity 
maps for an example animal. b, Grid point-averaged muscle activity maps are 
used to create a grid points by muscles matrix that, together with a grid points 
by 20 neural singular vectors matrix, serve as inputs to CCA. CCA then yields 
the canonical variables illustrated in Fig. 7b, c. c, Grid point-averaged position 
maps for the eight tracked sites along the right forelimb for an example animal. 
d, 50 ms segments of the site positions tracked during neural recording sessions 
are embedded into the 2D limb orientation state map, and the neural activity 
corresponding to the embedded vectors is used to calculate grid point-averaged 

neural activity maps. e, The maps in c can be collapsed into a grid points by 
position variables matrix which is then dimensionally reduced to a grid points by 
7 position singular vectors matrix using SVD. This matrix and the grid points by 
20 neural singular vectors matrix obtained from the neural activity maps serve 
as input to CCA. CCA then identifies the canonical variables shown in Fig. 7d, e. 
f, Overlap between the influence and muscle activity subspaces (black circles) 
compared to 300 estimates of the overlap expected by chance (gray dots) for 
each animal calculated after slight changes to the parameters used for map 
calculations (red text).
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Custom scripts written in Matlab (version 8.5 and later) were used to collect data related to the mouse climbing task. StreamPix was used for 

triggered video recordings.

Data analysis All data analysis code will be deposited on GitHub at https://github.com/nataliekoh/ClimbingControlSpace

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data that support the findings of this study are posted to Figshare at https://doi.org/10.6084/m9.figshare.29965298.
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender n/a

Reporting on race, ethnicity, or 

other socially relevant 

groupings

n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No predetermined sample size criteria was used in this study. The number of animals and recording sessions were chosen to match those of 

other motor control studies using mice in which similar effects were described. 

Data exclusions No data was excluded. All datasets with a sufficient number of observations for the given analysis were included (e.g. those with 20 sessions 

of climbing recordings for behavioral analysis in FIg. 1).

Replication Data was collected from multiple mice for behavioral, inactivation effect mapping and neural subspace analyses across several sessions. All 

attempts at replication were successful.

Randomization Randomization was not performed in this study as there are no applicable experimental groups in this study.

Blinding Blinding was not relevant to this study as there are no applicable experimental groups in this study. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals 44 VGAT-ChR2-EYFP line 8 mice (B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP) 8Gfng/J; Jackson Laboratories stock # 014548); and 6 

C57BL/6J mice (Jackson Laboratories stock #000664) were used in this study. All experiments were performed using VGAT-ChR2-EYFP 

line 8 mice. Wild type C57BL/6J mice were used in early experimental stages to establish methodology.

Wild animals Wild animals were not used in this study.

Reporting on sex Only male mice were used in this study.

Field-collected samples This study did not involve field-collected samples.

Ethics oversight All mouse experiments were conducted with IACUC approval at Northwestern (Protocol #IS00009077).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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