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When and how motor cortical output directly influences limb muscle
activity through descending projections remain poorly resolved, impeding
amechanistic understanding of motor control. Here we addressed this in
mice performing an ethologically inspired climbing behavior. We quantified
the direct influence of forelimb primary motor cortex (caudal forelimb area)

onmuscles across the muscle activity states expressed during climbing.

We found that the caudal forelimb areainstructs muscle activity pattern by
selectively activating certain muscles, while less frequently activating or
suppressing their antagonists. From Neuropixels recordings, we identified
linear combinations (components) of motor cortical activity that covary
with these effects. These components differ partially from those that covary
with muscle activity and differ almost completely from those that covary
with kinematics. Collectively, our results reveal an instructive direct motor
cortical influence onlimb muscles that is selective within a motor behavior
andreliant on adistinct neural activity subspace.

Motor cortex andits descending projections have expanded in certain
mammalian lineages, seemingly because of the fitness conferred by
the motor performance that they support' . Without normal motor
cortical output, certain types of movement cannot be executed* . Many
other types are slower, less agile and less effective, especially when
dexterity is challenged or movements must adapt during execution’ ",
Yet, when and how motor cortical output directly influences muscle
activity through its descending projections to mediate this influence
remains poorly resolved. The consequent ambiguity of direct motor
cortical influence on muscles has stymied the development of more
mechanistic models of descending motor control®.

Deficits from lesions and other inactivation of the motor cortex
have not clearly resolved its involvement in movement execution.
As the motor cortex is involved in motor learning" and movement
preparation or initiation'*", deficits could reflect disturbance to these
processes on which execution depends, rather than on the execution

itself. Moreover, recent results indicate that motor cortical influence
onmuscle activity at the shortest latencies (10-20 ms in mice) differs
fromits influence on even slightly longer timescales (-50 ms)s.
During tasks requiring the motor cortex, existing results leave
openseveral basic possibilities for the form that direct motor cortical
influence on muscles could take. First, the motor cortex could drive the
entirety of limb muscle activity patterns, with substantial compensa-
tion provided by other motor system regions after motor cortical
disturbance. For example, when motor cortex needs to generate some
muscle activity patterns that cannot be achieved by other regions', it
may assume all of the pattern-generating burden®. Second, the motor
cortex could participate together with the rest of the motor systemin
generating motor output, without playingarole necessary to determin-
ingits pattern. Here loss of direct motor cortical influence on muscles
would cause, at most, a nonspecific, fractional attenuation of motor
output. Third, the motor cortex could selectively influence particular
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Fig.1|Head-fixed climbing paradigm. a, Bird’s eye view of wheel apparatus

for climbing. A shaft encoder measures the wheel’s angular position. Actuators
randomize the position of each right handhold when they reach a point 180° away
from the mouse. A ratchet ensures that the wheel rotates in only one direction.
Aslip ring commutes voltage signals to and from the actuators. b, A head-fixed
mouse climbinginthe paradigm. ¢, Frame of side-view video of a mouse climbing,
with line plots connecting points tracked on the right forelimb and hindlimb
from 50 sequential images (100 Hz) that have been overlaid. Line plot color
reflects the time in the sequence. The points tracked were on the shoulder, elbow,
wrist, last digit of the hand, hip, knee, ankle and edge of the foot.d, Same asc,

but showing only the last frame in the sequence. e, Example sequence of right
handhold positions over time, illustrating randomization. f, Autocorrelation of
right handhold positions. g-i, Median (black dots, n = 9 mice) and first and third

quartiles (whiskers) for the fraction of time spent climbing (g), median climbing
velocity (h) and median climbing bout distance (i) across sessions. Gray lines in
g-mare for individual mice. Session lindicates the first session after the mice
had learned the pairing between climbing and reward, when reward dispensation
switched from experimenter to computer control.j,k, Median (black dots,
n=9mice) and firstand third quartiles (whiskers) for the first (j) and second (k)
principal angles between electromyographic time series collected during the
twentieth climbing session and each of the first 20 climbing sessions.l,m, Median
(black dots, n =9 mice) and first and third quartiles (whiskers) for the sample
entropy of muscle activity (I) and limb kinematics (m) time series across sessions.
For each session, we took the mean across-sample entropy values for each

muscle or for the xandy positions of each tracked limb point. The sample entropy
measures the regularity in the time series*’.

components of muscle activity, such thatitinforms (‘instructs’) ongo-
ing muscle activity patterns and actsinadistinctly different way from
therest of the motor system. The loss of direct motor cortical influence
would then cause changes in muscle activity that themselves vary as
the state of muscle activity changes.

This ambiguity about the form of direct motor cortical influence
on muscles has prevented resolution of other key issues related to the
mechanisms of this influence. It remains unclear whether, on balance,
motor cortical outputonlyactivatesindividual limbmuscles or at timesalso
suppresses theiractivity. The motor cortexis thought todrive online move-
ment correctionsand the adaptation of movementsbased on context®”;
such arole could involve the activation and deactivation of individual
muscles at different times to steer movement as the context requires.

Italso remains unclear what components of motor cortical output
drive muscle activity. Previous descriptions of motor cortical activity
have focused on components that covary with limb muscle activity>*
or movement parameters like joint angles or reach direction (kinemat-
ics)??%. However, if motor cortical output does not contribute to all
muscle activity patterns, but instead selectively alters them, we might
expect that the components of motor cortical output driving muscle
activity may not reflect muscle activity in total, but only some fraction
of it. Moreover, motor cortical activity that covaries with muscle activity

orkinematicsintotal may be aconsequence of monitoring or predicting
thebody state”, perhaps to subserve aspects of motor control apart from
directly driving muscle activation®. Inline with this, muscle activity can
be decoded frommotor cortical activity during movements where this
activity does not directly drive muscles™. Thus, the components of motor
corticalactivity responsible for its direct influence may differ from those
to which functional roles have previously been attributed .

Below we address these basic questions about direct motor corti-
cal influence on limb muscles® using mice. The three possible forms
that direct motor cortical influence on muscles could take make dif-
ferent predictions about how the influence will vary across different
muscle activity states during a given motor behavior. Thus, we meas-
ured this influence across muscle activity states during a behavior
expected to depend on motor cortical output. Our characterization
of this influence includes identification of states where motor corti-
cal output activates and deactivates muscles. Finally, we describe
components of motor cortical output that could be responsible for
itsinfluence on muscle activity.

A naturalistic climbing paradigm
Asprevious studies have implicated the motor cortex inadaptive limb
movements in response to unpredictable sensory information'*>*

’
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we developed abehavioral paradigm that emphasizes such movements.
Inspired by the natural movement repertoire of mice, we developed
aparadigm in which head-fixed mice climbed across a series of hand-
holds that extend radially from a wheel, thereby rotating the wheel
(Fig.1a-d, Extended DataFig.1and Supplementary Video1). After each
handhold accessible to theright limbs has rotated 180° past the mouse,
alinear actuator embedded within the wheel moves the handhold to
anew, randomly chosen, mediolateral position; the left handholds
remain fixed (Fig. 1e and Extended Data Fig. 1b-d). This ensures that
the sequence of right handholds across which the mouse climbs is
unpredictable (Fig. 1f), so sensory information must be used in real
time to steer right limb movement. In this paradigm, water-restricted
mice earn water rewards by climbingintermittently inbouts throughout
hour-long daily sessions. The variation in the mediolateral position of
the right handholds leads to a variation in the direction in which the
right forelimb reaches (Supplementary Video 1). Abroad range of body
postures is expressed (Extended Data Fig. 1e).

Asitmay berelevant to motor cortical involvement’, we assessed
how the performance of climbing mice varied across daily sessions.
Tolook for progressive improvementin a performance, we examined
the measures of bout length and climbing speed, because the reward
scheme depends onthem. We found that, after mice are acclimated to
head fixation (two sessions) and taught the pairing between climbing
andreward (oneto three sessions), there was little change, on average,
in the time spent climbing (Fig. 1g), the velocity of climbing (Fig. 1h)
and the distance of climbing bouts (Fig. 1i). To assess whether forelimb
muscle activity patterns change progressively across sessions, we
computed the principal angles between the first two principal com-
ponents (PCs) for the activity of four muscles in the right forelimb®
during eachsession (two PCs by Ttime points; Extended DataFig. 1f-h).
Comparing each of the first 20 daily sessions to the twentieth ses-
sion, we found that the first principal angle was generally low, averag-
ing <2° (Fig. 1j,k). Although adjacent sessions appeared more similar
(see the lower angles for session 19), there was little indication that
increasingly distant sessions were increasingly more dissimilar, which
would be expected for a progressive change in muscle activity. We also
found that the stereotypy inboth muscle activity and limb kinematics
did not show clear signs of increasing across sessions*’ (Fig. 11,m and
Extended Data Fig.1i). Thus, after beginning to climb for rewards, mice
donotappear to progressively develop climbing skills specific to our
paradigm nor does muscle activity appear to change progressively
across sessions. These results indicate that our climbing paradigm
differs from those in which participants learn new tasks and become
increasingly skillful and stereotyped with repeated training'*..

t38

Quantifying direct motor cortical influence
during climbing

We next sought to quantify direct motor cortical influence on con-
tralateral forelimb muscles across the range of muscle activity states
expressed during climbing. Such an influence is not seen during
treadmill walking™ and mice can still learn new stereotyped locomo-
tor behaviors during split-belt treadmill adaptation after a bilateral
motor cortical lesion*2. However, lesion and pharmacological inactiva-
tion of the motor cortex does affect the execution of new locomotor
adaptations in mice'**>*, Given the different form and predictability
of the movements elicited in our climbing paradigm, motor cortical
influence was unclear a priori.

While mice (n = 8) were actively climbing, we sporadically and
brieflyinactivated the left caudal forelimb area (CFA, forelimb primary
motor cortex + primary somatosensory cortex (M1+S1)) atrandom. We
used transgenic mice that express Channelrhodopsin-2 in all cortical
inhibitory interneurons, applying occasional 25-ms blue light pulses
that covered the surface of CFA (10 mW mm Fig. 2a). This yields an
~50%activity reductionacross cortical layers within7 ms, which reaches
90-95% in <20 ms (refs. 18,44). Light pulses were always >4 s apart to

allowrecovery of neural activity between events; on average, ~-100-200
trials were collected during each daily session (11-37 sessions per ani-
mal). Equivalent events without blue light were notated inrecordings to
serve as control trials. Random trial timing ensured broad coverage of
the muscle activity states that each mouse expressed during climbing.
We found thatinactivation and control trial averages diverged ~-10 ms
afterlight onset, whichreflects the shortest latency at which CFA output
influences muscles'® (Fig. 2a-c and Extended Data Fig. 2a-d). We also
foundthatinactivation effects were similar in formacross mice (Fig. 2a
and Extended Data Fig. 2b) and strikingly consistent both within and
across sessions (Extended Data Fig. 2e-g). Thus, CFA directly influences
muscle activity during climbing, as we previously observed in mice
performing a trained forelimb reaching task®.

To initially gauge whether direct motor cortical influence varies
throughout climbing, we examined the effects of CFA inactivation
during three stereotypical features of climbing: pulling a handhold
down with the right forelimb, reaching the right forelimb up and pal-
pation of the right handhold while grasping it (Extended Data Fig. 3).
We assembled trial averages for muscle activity and limb kinematic
time series aligned on trial onsets that occurred during each feature.
The effect magnitude appeared to be vary across features. The effects
were also more prominent in trial-averaged muscle activity than limb
kinematics across all three features, which we explore further below.

We thus proceeded to more comprehensively assess CFA influence
at different muscle activity states during climbing. We first sought
ameans for collecting together inactivation and control trials that
beganat similar muscle activity states, so that we could average across
them. Plotting trials according to linear functions of muscle activ-
ity at trial onset led to an uneven distribution of trials across plots
(Extended DataFig. 3d,e). This was suboptimal for efficiently utilizing
the statistical power afforded by our trials to differentiate CFA influ-
ence across states (Methods). We also suspected that this statistical
power would be improved if trials were grouped together based on
the time-varying pattern of muscle activity right before trial onset,
because CFA influence could depend on this pattern.

We thus defined states using the activity of all four muscles over
50-ms epochs, rather than individual time points, and used Uniform
Manifold Approximation and Projection (UMAP)* to generate a
two-dimensional (2D) map of the states expressed by each mouse,
where similar states are close together. To ensure proximity on maps
among states visited that are close in time, we defined epochs that
overlappedintime. The muscle activity traces surrounding each trial,
together with their corresponding first derivatives, were subsampled
in 5-ms increments and divided into overlapping 50-ms epochs that
began every 10 ms (Fig. 2d). For each 50-ms epoch, the muscle activity
and first derivative trace segments were concatenated into a single
vector (8 segments x 10 time bins = 80 elements). UMAP was then
applied to map vectors onto two dimensions (Fig. 2e). On the resulting
maps, embedded state vectors (points) from successive epochs form
trajectories that reflect the sequence of states surrounding control
and inactivation trials.

Tomeasure direct CFAinfluence at different muscle activity states,
we quantified theimmediate inactivation effects for trials starting from
states withinlocal neighborhoods on the maps. We first defined agrid
over eachmap (Fig. 2f). For each muscle, we computedits trial-averaged
activity ateach grid point, separately, for inactivation and control trials.
Forthese averages, we used all trials, but we weighted each by a Gauss-
ianfunction of the Euclidean distance between the given grid pointand
the point for the epoch just before an inactivation effect could begin
on the given trial (40 ms to +10 ms from trial onset: ‘weight epoch’;
Fig.2d). Trial weights are hence not influenced by inactivation effects.
As a consequence, weight epoch states from control and inactivation
trials are similarly distributed across maps (Fig. 2f). We set the Gauss-
ian s.d. as roughly 10% of the map width, so trial averages are heavily
weighted toward trials beginning at states close to the givengrid point.
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Fig. 2| Comprehensive assessment of CFA influence across muscle activity
states. a, Control (n =1,671trials) and inactivation (795 trials) trial averages
(mean ts.e.m.) for 4 muscles in1mouse. The inset showing the brain schematic
isadapted fromref. 18. Vertical cyan barsina-d, g and k indicate the 25-ms epoch
ofblue light applied to the CFA and gray dotted lines are 10 ms after light onset.
As we z-scored muscle activity measurements using the mean and s.d. from each
given session, here and throughout we express measurements in s.d. values
oftherecorded signal. b, Control (18,397 trials) and inactivation (9,029 trials)
trial averages for all 8 mice. ¢, Mean absolute difference between inactivation
and control trial averages across all four muscles. Light-gray lines are individual
animals and the solid black line is the mean across animals. For baseline
subtraction, control trials were resampled to estimate the baseline difference
expected by chance. d, Example of muscle activities and their corresponding first
derivatives surrounding trials that were used for creating muscle activity state
maps. The weight epochimmediately precedes the start of effects. e, Example

of muscle activity state map from one animal. Larger, connected dots show
examples of states for sequential overlapping epochs from individual trials. Pairs
were chosen based on their similarity during the weight epoch. f, Grid overlaying
amap, including only points from the weight epochs used for weighting trials in
grid point trial averages. g, Schematic of the calculation of the inactivation effect
ateach grid point from the control (black) and inactivation (cyan) trial-averaged
muscle activity. Ac and 4, reflect the slopes of lines connecting the average

UMAP2

UMAP1

activity just before tojust after the inactivation effect begins, for control trials
and light trials, respectively. h, Schematicillustration of the effect size on a plot
of A, versus Ac. Their difference is proportional to the distance from the identity
line.i, Map in which each grid point colored by the mean distance, in the full

80 dimensional space, between all pairs of embedded state vectors, with each
individual distance weighted by a Gaussian function of the pair’'s mean distance
from the grid point on the 2D map. The Gaussian function is the same as that
used for inactivation maps. j, Inactivation effect maps for the four recorded
muscles. The color scale maximum and minimum reflect the maximum and
minimum effect sizes across all four muscles collectively. j-m, Representative
results from one mouse. k, Grid point-averaged muscle activity from control
(gray, mean + s.e.m.) and inactivation (cyan, mean) trials, for three example grid
points from the mapsinj. 1, Maps of Pvalues computed for inactivation effects at
each grid point. The g values (gray overlay) reflect the expected false discovery
rate below the corresponding Pvalue*. m, Maps showing the average activity
for the four recorded muscles at each grid point. The color scale maximumand
minimum reflect the maximum and minimum activity level for each muscle
separately. The darker blue regions reflect states where the given muscle is
inactive. The darker red regions reflect states where the given muscle is highly
active, up tobetween 2.7 s.d. and 5.5 s.d. values above the mean. dist., distance;
max., maximum; min., minimum.
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Only grid points close to a substantial number of weight epoch states
were subsequently considered (‘valid grid points’; Methods). For each
muscle, we measured separately the size of the inactivation effect at
each valid grid point as the difference between the rate of change in
inactivation and the control trial averages from O ms to 20 ms after
trial onset (Fig. 2g,h). We then plotted the resulting effect sizes at each
valid grid point across the map, producing an ‘inactivation effect map’
(Fig. 2j and Extended Data Fig. 4a-d). Maps for different musclesina
givenmouse show wide variationin the magnitude and sign of inactiva-
tion effects across grid points (Fig. 2j,k). We resampled from control
trials to compute a P value for each grid point’s effect size (Fig. 2l and
Extended Data Fig. 4a-c). The map structure was not strongly depend-
ent on the choice of key parameters (Extended Data Fig. 4f-i).

AsUMAP isnonlinear, itis not clear how the distance across maps
will correspond to differences in muscle activity state. To address this
and clarify muscle activity levels at different map locations, we plotted
the average activity of each individual muscle at each grid point using
the same Gaussian weighting method as above (Fig. 2m). These plots
showed smooth and gradual variation across grid points. We also plot-
ted the average similarity between nearby state vectors across maps
(Fig. 2i and Extended Data Fig. 4e). The only prominent variation that
we observed was agradualincrease in pairwise distance fromthe map
center to the edges; there was noindication of abrupt changes in pair-
wise distance. Thus muscle activity state varies smoothly across state
maps at the resolution of our inactivation effect maps.

The CFA acts primarily by selectively exciting
physiological flexors

Todistinguishamongthe three possible forms that direct motor corti-
calinfluence on muscles could take, we then analyzed the inactivation
effect maps. We first generated histograms of the Pvalues computed for
effects oneach muscle at all valid grid points. These histograms consist-
ently showed a skew toward zero, reflecting asubstantial fraction of grid
points where the null hypothesis of no effect was false (Fig. 3a,b). From
these distributions, we estimated the fraction of grid points showing
effects*® (Fig. 3c). The mean estimated fractions were 0.62,0.22,0.73
and 0.37 for elbow flexor, elbow extensor, wrist extensor and wrist
flexor muscles, respectively. These estimates were significantly above
zero for all four muscles. Control maps generated from comparisons
between separate sets of control trials yielded uniform distributions,
as expected under the null hypothesis (Extended Data Fig. 5a). These
results show that the direct influence of CFA on muscles is specific to
asubset of muscle activity states. This is not consistent with either
the CFA driving the entirety of limb muscle activity or the CFA having
anonspecific effect on muscles. Rather, CFA appears to selectively
influence particular components of muscle activity.

To better characterize this selective influence, we next assessed
whether CFA influence varies in magnitude across muscle activity
states. If this were true, then the 2D autocorrelation of inactivation
effect maps should be significantly above what is expected by chance.
We computed the 2D autocorrelation of bothinactivation effect maps
and control maps, observing substantially heightened autocorrela-
tion in the former (Fig. 3d). To assess whether these differences were
significant, we computed the mean difference between inactivation
effect map autocorrelation and that of control maps, averaged over
spatiallags up to 20 grid points (Fig. 3e). These differences were signifi-
cantly >0 for all four muscles. We also found that the magnitude of CFA
influence across muscle activity states differed significantly between
muscles in six out of eight mice. The magnitude of CFA influence was
not simply proportional to the magnitude of the muscle activity; the
coefficient of determination (R?) for linear fits to effect size versus mus-
cleactivity magnitude was low (Fig. 3f,g and Extended Data Fig. 5b—e)
and the residuals were significantly nonuniform.

Anumber of previous observationsindirectly suggest that primary
motor cortex may preferentially control certain muscle groups more
so than their antagonists**, We thus compared the distributions of
effect sizesacross grid points for each muscle. We found larger devia-
tions from control effect sizes for the elbow flexor and wrist extensor
(Fig. 3h). The estimated fraction of grid points showing effects (false
null hypotheses, Fig. 3¢) was significantly greater for the elbow flexor
(61% higher) and wrist extensor (43% higher), compared with their
respective antagonists. This indicates that CFA output preferentially
influences elbow flexors and wrist extensors, which can be grouped
together as physiological flexors because of their coactivation during
both locomotion and the flexion reflex®.

We also assessed whether these differences in effects on muscles
might extend to the direction of effects. Reduction or elevation of
muscle activity after inactivation indicates that CFA output activates
or suppresses muscle activity, respectively. We examined the effect
sizes that were significantly different from zero, finding that, for the
physiological flexors, effects were always a reduction in muscle activ-
ity (Fig. 3i-k). However, the elbow extensor exhibited both reduction
and elevation and the wrist flexor showed elevationinasmall fraction
of states as well (Fig. 3k). This canbe seenin the trial-averaged muscle
activity forindividual grid points frominactivation effect maps (Fig. 31).
We also observed that inactivation effect maps for the physiological
flexors were more highly correlated compared to those for all other
pairs of muscles (Fig. 3m), suggesting a greater degree of coordinated
control of these muscles. Collectively, these results indicate that the
CFA influences muscles to varying degrees and only at some muscle
activity states (that is, the influence is selective). CFA’s influence is
therefore primarily an activation of physiological flexors; only the

Fig. 3| The CFA selectively excites physiological flexors. a,b, Distributions of
Pvalues for inactivation effects on each muscle for all grid points in one mouse (a)
and across all eight mice (b). Left: elbow flexor (first), elbow extensor (second).
Right: wrist extensor (second) and wrist flexor (first). The error barsinbindicate
thes.e.m.c, Estimated fraction of grid points at which the null hypothesis of no
effectis false, calculated from distributions of Pvalues for eight individual mice
(black circles) and the mean across mice (red bars). Values were significantly
above O for all muscles (P=0.008 or P= 0.016, two-sided Wilcoxon’s signed-rank
test). The estimated fraction of grid points yielding false null hypotheses was
significantly greater for the elbow flexor (P = 0.007, two-sided Wilcoxon’s rank-sum
test) and wrist extensor (P=0.015), compared with their respective antagonists.
d, For one mouse, the 2D autocorrelation (autocorr.) for inactivation effect maps
and control maps generated with only control trials (top) and scatterplots of
correlation values versus their spatial offset (lag from zero offset). pts., points.

e, Difference betweeninactivation effect maps and control maps in their mean
autocorrelation over spatial offsets from O grid points to 20 grid points for 8
individual mice (black circles) and the mean across mice (red bars). Differences
were significantly >0 for all four muscles (P=0.008, two-sided Wilcoxon'’s

signed-rank test). The magnitude of CFA influence across states differed
significantly between musclesin six of eight mice (P < 0.004,P=0.19and P=0.83in
two other mice, Kruskal-Wallis test). f, For one animal, scatterplots of inactivation
effect size versus muscle activity at trial onset (averaged from —40 ms to +10 ms
relative to onset). Each point reflects a different grid point. The R*is for a linear fit
(red). g, R*for linear fits to scatterplots of inactivation effect size versus muscle
activity at trial onset for eight individual mice (black circles) and the mean across
mice (red bars). The residuals were significantly nonuniform (P <107 for all mice,
two-sided Kolmogorov-Smirnov test). h, Effect size distributions for all grid points
across all eight mice, separately for inactivation effect maps and control maps.

ij, Effect size distributions for all significant grid points from all eight mice (i) and
onemouse (j). Left: elbow; right: wrist. k, Same as i, but zoomed in to clarify rarer
effects. 1, Grid point-averaged muscle activity (mean * s.e.m.) from control and
inactivation trials, for four example grid points where inactivation significantly
increased muscle activity in four different mice. The three onthe left are for the
elbow extensor and the one on therightis for the wrist flexor.m, The 2D correlation
between inactivation effect maps for different muscles for one mouse (top) and the
means across all eight mice (bottom).
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elbow extensor, where influence was relatively infrequent, shows a
balance of activation and suppression.

Weak covariation between CFA influence and
gross kinematic state of the forelimb

A number of previous observations suggest that the motor cortex
may, to some extent, control the limb via commands that dictate its

kinematics rather than muscle activation®*?, although this remains
controversial®>*, If the CFA were dictating contralateral forelimb kin-
ematics, wereasoned that direct CFA influence on muscles should cor-
relate with the orientation of the contralateral forelimb. We therefore
probed for this correlation.

Here we mimicked the approach that we took to assess how CFA
influence covaries with muscle activity state. We computed new state
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Fig. 4| Gross forelimb kinematics capture CFA influence worse than muscle
activity. a, Time series of tracked forelimb sites and their corresponding

first derivatives surrounding inactivation and control trials windowed into
overlapping segments. The segments are used to create 2D embedding via
UMAP. b, Image showing the locations of the eight sites tracked on the forelimb,
according to the color code ina. ¢, Example map of forelimb orientation states
from one mouse, along with the trial-averaged positions of the forelimb sites
atselected grid points within the map (red circles). As the video was captured
at100 Hz, time series segments used here had 10-ms spacing between points
instead of 5 ms, asin Fig. 2. d-g, Distributions of the sizes of inactivation effects
onmuscles (d), P-value distributions for inactivation effects on muscles

(e), distributions of the sizes of inactivation effects on four main forelimb sites
(f) and P-value distributions for inactivation effects on four main forelimb sites
(g), calculated using forelimb orientation maps, across all grid points and all

Limb orientation

=

Pearson's corr. = 0.038

N
o

Pairwise distance on
limb orientation map

o

Limb orientation o 45
Pairwise distance on
muscle activity map

Muscle activity

eight mice. The error bars in e and g indicate the s.e.m. h, Histograms of Pearson’s
correlation between muscle activity and four forelimb site positions (shoulder,
elbow, wrist and finger), aggregated over all eight mice and all four sites.

ij, Maps of muscle activity states (left: orange) and limb orientation states

(right: green) from one animal. Black circles in each panel mark corresponding
sets of embedded vectors on the two maps (that is, those coming from the same
set of epochs). The marked sets are clustered based on muscle activity state (i)

or limb orientation state (j). Both map types used the same time point spacing
(10 ms) and equivalent amounts of data. k, For the embedded vectors from

200 randomly selected epochs, the Euclidean distance between all possible

pairs of those vectors on the muscle activity map iniandj plotted against the
distance between their corresponding vectors on the limb orientation map.
corr., correlation; ES1and ES2, first and second sites between elbow and shoulder
joints; WEland WE2, first and second sites between wrist and elbow joints.

maps with UMAP using vectors composed of the horizontal and vertical
positions of sites on the right forelimb tracked from avideo (Fig. 4a,b
and Extended DataFig. 6a-c). Nearby points on these maps thus reflect
50-msepochs of limb kinematics that are similar. The resulting 2D maps
separated states that correspond to different limb orientations into dif-
ferent map regions (Fig. 4c), with the cyclic changesin limb orientation
duringiterative climbing ordered around the map. Using these maps,
we quantified the effects of CFA inactivation on each forelimb muscle at
grid points covering the maps as above. Histograms of the inactivation
effectsizesacrossall grid points showed deviations from the controls
(Fig.4d). However, the P-value distributions for effects on each muscle
showed very limited skew toward zero, indicating discernible effects

ononlyasmallfraction of grid points (Fig. 4e). Thus, CFA influence on
muscles does not covary with forelimb orientation nearly as well as it
does with muscle activity state.

If CFA output dictates forelimb kinematics, we might expect CFA
inactivation to perturb the limb kinematics themselves. We there-
fore quantified the effect of inactivation on the position of the sites
tracked at the shoulder, elbow, wrist and finger. Inactivation effects
were computed as above, but using trial-averaged site positionin place
of trial-averaged muscle activity. Again, histograms of inactivation
effect sizes did show deviation from controls (Fig. 4f), but P-value
distributions showed very limited skew toward zero. This indicates
that there are discernible effects on only asmall fraction of grid points
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Fig. 5| CFA firing patterns vary in their sparsity across muscle activity states.
a, Histogram of the depth below pia of recorded neurons across all 3 mice
(366-684 single units met selection criteria). Inset: a schematic coronal section
showing placement of the Neuropixels in the CFA. b, Fractions of neurons
assigned to narrow-waveform (87-189 per mouse) and wide-waveform (279-495
per mouse) subsets in each of 3 mice (black circles) and the mean across mice
(red bars). ¢, Normalized absolute activity change from baseline summed across
the top three PCs for recorded CFA neurons and the top PC for muscle activity,
forindividual mice (thin gray) and the mean across mice (black). d, Scatterplot
ofthe mean firing rate for neurons during periods of no muscle activity (rest)
and periods of muscle activity, across all three mice. e, Fraction of neuronsin
different layers with firing rate time series significantly correlated (corr.) with
the activity time series for at least one forelimb muscle. The results are shown
for three mice (black circles), except one mouse that had very few neurons

assigned to layer 6, preventing areliable calculation in that case. The red bars
indicate the mean across mice. f, Schematic of the calculation of an activity

map for each recorded neuron across 180 Neuropixels channels (ch) that is
registered to inactivation effect maps. g, Example neural activity maps exhibiting
somewhat sparse firing (black values) for 11 neurons from1mouse, along with
their maximum firing rates (red). h, Neural maps with sparsity values reflecting
the quartiles of the sparsity distribution for the given mouse. i, Cumulative
histograms of sparsity values for all neurons in each of three mice. j, Scatterplot
of sparsity versus mean firing rate during climbing for neurons in all three mice.
The R%isfor alinear fit (red). k, Mean 2D correlation of activity maps for neurons
assigned to different layers (red), compared to a null distribution computed by
repeating the calculation 100x after randomly permuting neuronal layer labels
(gray) and the means thereof (black bars).

(Fig. 4g). Collectively, these results suggest that CFA output directly
specifies muscle activity and not limb orientation.

Given an expectation that muscle activity and limb kinematics
should covary, these results may seem surprising. However, we note
that, duringadaptive, nonstereotyped motor behaviors like climbing
inour paradigm, linear covariation between muscle activity and limb
orientationwill not necessarily be consistent, due to the complex causal
interrelationship of these variables. To illustrate this, we measured
their correlation over 150-ms epochs (Fig. 4h). Correlation values
were broadly distributed from -1to 1in all cases. We verified that this
was not because changes in muscle activity were somehow not associ-
ated with the changes in joint angles that they are expected to cause
(Extended Data Fig. 6d-g). Next, we made state maps using muscle
activity or limb orientation from the same set of recording epochs.
We found that the proximity of muscle activity states on maps only
weakly predicted the proximity of the corresponding limb orienta-
tion states and vice versa (Fig. 4i-k). Subsets of states close together
onone map type corresponded to states that were widely distributed
on the other map type. This decoupling between muscle activity and
limb kinematics may have helped reveal that CFA influence is not well
organized by limb orientation.

CFA firing patterns during climbing

To assess what components of CFA output might drive the direct
influence that we have identified, we next sought to determine how
CFA firing patterns covary with CFA influence on muscles. We used
Neuropixels to measure the firing of CFA neurons across cortical lay-
ers in three mice for which inactivation effect maps were computed
(Fig. 5a-c). After completing the collection of inactivation trials for
mappinginfluence, werecorded neural activity in the CFA withacutely
implanted Neuropixels during the next three to four daily behavioral
sessions. The majority of both wide-waveform and narrow-waveform
units had higher firing rates during forelimb muscle activity compared
with periods when allrecorded muscles were quiescent (Fig. 5d). Over
80% of recorded units had firing rate time series that were significantly
correlated with the activity of at least one muscle (Fig. 5e). Fitting mus-
cleactivity time series with neuronal firing rates using ridge regression
and Weiner’s cascade models yielded similar accuracy across muscles
(Extended DataFig. 7a).

Toenablealignment with CFAinfluence, we measured the variation
inthe firing of neurons across the muscle activity state maps used for
quantifying inactivation effects (Fig. 5f). Muscle activity state vectors
for 50-ms epochs during Neuropixels recordings were embedded on
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the same state maps used for quantifying inactivation effects in the
givenanimal. For each neuron, its average firing rate was estimated at
each grid point, producing a ‘neural activity map’. This aligns neural
activity during muscle activity states with inactivation effects which
immediately follow similar muscle activity states.

Neuralactivitymapsshowed awidearray of musclestate-dependent
firing patterns. In particular, we found many neurons with firing
that was somewhat sparse across maps; firing was heavily concen-
trated in subregions of the maps and mostly or completely absent in
others (Fig. 5g). To quantify this sparsity, we used an index that was
originally developed to measure the place-dependent firing of hip-
pocampal neurons®. Ordering neurons by this sparsity index revealed
that even the neurons with a median level of sparsity had firing that
was heavily concentrated in subregions of the maps (Fig. 5h,i and
Extended Data Fig. 7b). Sparsity was only weakly dependent on the
mean firing rate during climbing (Fig. 5j). Neural activity maps did
not vary substantially across cortical layers, because the average 2D
correlation between maps for neurons assigned to different layers was
similar to that expected, assuming no variation across layers (Fig. 5k).
Thus, a substantial fraction of CFA neurons across cortical layers each
fire primarily at alimited range of muscle activity states during climb-
ing. These results indicate that CFA neuron firing carries information
about muscle activity states organized by their similarity.

CFA activity components that align with
inactivation effects

We then used neural activity maps to identify components of CFA
firing that align with CFA influence on muscles. We did so by combin-
ing singular value decomposition (SVD) and canonical correlation
analysis (CCA) to align neural activity maps with the inactivation effect
maps computed for the same animals®. The neural activity map for
eachwide-waveform neuron with overallmeanfiring rate >0.1 Hzwas
convertedto avector by concatenatingits columns. For each mouse,
these vectors were combined into grid points by neurons matrix, which
was then replaced with a dimensionally reduced grid points by 20
neural singular vectors matrix computed with SVD (Fig. 6a,b). These
dimensionally reduced matrices were then aligned through CCA with
grid points by muscles matrices formed similarly by concatenating
the columns of inactivation effect maps for the four recorded muscles
(Fig. 6a-d).

Theresulting canonical variables reflect the components of CFA
firing patterns that maximally correlate with components of inac-
tivation effects but are mutually uncorrelated with each other. For
all three animals, neural and inactivation effect canonical variables
were highly correlated and the inactivation effect variables captured
substantial fractions of inactivation effect variance (Fig. 6e,f; mean
correlation =0.99, 0.97, 0.92 and 0.86 for canonical variables 1-4;
mean effect variance capture = 0.29, 0.26, 0.18 and 0.11). Plots of the
cumulative variance captured across orthonormalized canonical
vectors indicated that each inactivation effect variable captured a
substantial amount of additional inactivation effect variance (Fig. 6g).
Although CCA attempts to maximize correlation between canonical
variables, it is not fated that each inactivation effect variable will
account foragreatdeal of the variance in effect maps, as they do here.
Repeating CCA using the inactivation effect map of each individual
muscle found a CFA activity component that highly correlated with
theinactivation effects for the given muscleinall cases (median cor-
relation = 0.97, range = 0.89-0.99, total of 12 muscles in 3 animals).
This indicates that CFA activity aligns well with the effects on each
individual muscle.

To validate our results, we repeated the CCA calculations after
randomly permuting the map locations of muscle activity states from
neural recordings. The resulting correlation between canonical vari-
ables was significantly lower than for the original data (Fig. 6e). We
alsorepeated CCA calculations 300x using separate, randomly chosen

halves of trials for computing the inactivation effect maps. The canoni-
cal variables identified with each half of the trials were highly simi-
lar (Extended Data Fig. 8a), as were the 4D neural activity subspaces
spanned by the neural canonical vectors (Extended Data Fig. 8b). In
addition, we found that CCA results were not highly dependent on the
number of singular vectors used for neural dimensionality reduction
(Extended Data Fig. 8c-f), nor did they depend on the choice of key
inactivation map parameters (Extended Data Fig. 8g). Thus, neural
canonical vectors span aneural activity subspace where activity aligns
closely and nontrivially withinactivation effects. Below we refer to this
as the ‘influence subspace’.

We also assessed whether subsets of neurons contributed dis-
proportionately to these influence subspaces. To compute the rela-
tive contribution of each neuron to each canonical vector, we used
the weight of each neuron in the singular vectors and the weights of
these singular vectors in the neural canonical vectors. However, we
found no evidence that neurons cluster in terms of their contribution
sizes (Extended Data Fig. 9a-d). Contributions to canonical vectors
were substantially overlapping for neurons localized to different lay-
ers, although they were significantly higher for neurons localized
to layers 5 and 6 compared to those localized to superficial layers
(Extended DataFig. 9e,f).

Influence subspace differs from muscle activity
and limb kinematic equivalents

Finally, we sought totest the hypothesis that CFA's direct influence on mus-
clesis mediated viathe CFA activity components that correlate with mus-
cleactivity or limb kinematics in total. If this were true, we would expect
that the influence subspace would be similar to subspaces aligned with
muscle activity or limb kinematics (Fig. 7a). To find a subspace in which
CFA activity aligns with muscle activity, average muscle activity maps
(Fig.2m) for each mouse were converted to vectors, assembled into agrid
points by muscles matrix and aligned via CCA with the matrix of dimen-
sionally reduced neural activity (Fig. 7b,c and Extended Data Fig.10a,b).
To find a subspace in which CFA activity aligns with limb kinematics, we
used the limb kinematic state maps generated for inactivation sessions
(Fig.4). Weembedded vectors, composed of limb site positions and their
corresponding first derivatives fromneural recording sessions, into these
existing limb kinematic state maps. We then made maps of the average
horizontal and vertical positions of each site at grid points defined on
the limb kinematic state maps (Extended Data Fig. 10c). We assembled
neural activity maps for each neuron using segments of their firing rate
time series that correspond to embedded limb kinematic state vectors
(Extended DataFig.10d). These ite position and neural maps were aligned
viaSVD and CCA (Fig. 7d e and Extended Data Fig.10e). Substantial frac-
tions of both muscle activity and kinematics variance were captured by
canonical variables that were highly correlated with their corresponding
neural canonical variables (Fig. 7f-i). Thus, the resulting neural canonical
vectors span neural activity subspaces where activity aligns with either
muscle activity or limb kinematics.

To evaluate the similarity among the influence, muscle activity
and limb kinematics subspaces, we compared themin two ways. First,
we asked whether they were more similar than would be expected by
chance for different subspaces. We measured the overlap between
pairs of subspaces and compared this to the overlap when one was
replaced by arandom subspace that captured the same amount of neu-
ral activity variance (Methods). On ascale from 0 (no) to1(complete)
overlap, the overlap of the influence subspace with the muscle activity
subspace ranged from 0.423 to 0.740 across the 3 mice, substantially
above chance (Fig. 7j). However, the overlap between influence and
limb kinematics subspaces ranged only from 0.018 to 0.030 and the
overlap between muscle activity and limb kinematics subspaces ranged
only from 0.025 to 0.060; these overlaps were on a par with those
expected by chance. The same relationships between subspaces were
reflected in their principal angles as well (Fig. 7k-m). Overlap values
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Fig. 6 | A CFA activity subspace that aligns with CFA influence. a, Schematic
for computing the influence subspace. b, Cumulative neural activity variance
captured for singular vectors ordered by their singular values, for each of
three mice. Each connected set of dotsin b and e-gis from a separate mouse.
c,d, Canonical variables for the inactivation effects (c) and neural activity (d)
for one mouse. Max., maximum; min., minimum. e, Correlation coefficients
of canonical variables for each mouse. Correlations were significantly higher

canonical variable

than null distributions generated by randomly permuting the map locations of
muscle activity states from neural recordings (for canonical variables 1-4, mean
null correlation=0.74,0.72,0.69 and 0.65; P= 0.001in all cases). f, Fractional
inactivation effect variance captured by canonical variables for each mouse.

g, Cumulative fraction of inactivation effect variance captured by canonical
variables after orthogonalizing their corresponding vectors, for each mouse.

were not strongly sensitive to the precise choice of key map parameters
(Extended DataFig. 10f).

Second, we asked whether these three subspaces were less simi-
lar than would be expected by chance for two subspaces of the same
type. We measured the overlaps between subspaces of the same type
or different types, each computed from separate sets of time series
segments (Fig. 7n). In all cases, the overlap for subspaces of different
types was much lower than that for the same type. Thus, the influence
subspace overlaps partially, but not completely, with the muscle activ-
ity subspace, yet the influence subspace has no appreciable overlap
with the limb kinematics subspace.

Discussion

Here we have assessed the direct influence of motor cortical output
on muscle activity during naturalistic climbing in mice. By quantify-
ing this influence across the full range of muscle activity states that
occur during climbing, we have shown that the CFA acts selectively,
instructing motor output patterns. CFA activates physiological flexor
musclesto varying degrees and only at asubset of muscle activity states,
while activating or suppressing their antagonists less frequently. We
have also shown that many CFA neurons are primarily active at subsets
of similar muscle activity states. Finally, our approach enabled us to
distinguish aneural activity subspace aligned with CFA influence from
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Fig.7 | Divergence between neural activity subspaces aligned with
inactivation effects, muscle activity and limb kinematics. a, Schematic of
different scenarios for the overlap between neural activity subspaces. Dim,
dimension. b,c, Canonical variables for muscle activity (b) and neural activity
(c) for one mouse. Max., maximum; min., minimum. d,e, Canonical variables

for limb kinematics (d) and neural activity (e) for the mouse used inband c.

f, Correlation coefficient (black) and fractional muscle activity variance captured
(red) for canonical variables. Each set of connected dots in f-nis from one
mouse. g, Cumulative fraction of muscle activity variance captured by canonical
variables after orthogonalizing their corresponding vectors. h, Correlation
coefficient (black) and fractional limb kinematics variance captured (red) for

canonical variables. i, Cumulative fraction of limb kinematics variance captured
by canonical variables after orthogonalizing their corresponding vectors.

j, Overlap of different activity subspaces (black circles) compared to 100
estimates of the overlap expected by chance for each animal (gray dots).

k-m, Principal angles for different activity subspaces (black circles) compared
to 100 estimates of the principal angles expected by chance for each animal
(gray dots). k, Effect versus muscle. I, Effect versus limb. m, Muscle versus limb.
n, Mean overlap (black circles) between subspaces defined from two maps
made with separate halves of time series segments, for 300 different segment
parcellations (gray dots).

those aligned with muscle activity or limb kinematics. These results
suggest that, during an ethologically relevant motor behavior, mouse
motor cortex appears to selectively direct muscle activity through a
neural activity subspace distinct from those previously thought to
contribute directly to motor output®,

The motor cortex has activity components that predict muscle
activity and movement kinematics® 2%, This could reflect a cortical
role in generating all limb muscle commands during motor cortically
dependentbehaviors. Atthe same time, disturbance to motor cortical
output often causes hypometric limb movements®****°%%, suggesting
that the motor cortex contributes to driving muscle activity, but does
not play a necessary role in determining its pattern in many cases. In
either of these scenarios, we would have observed inactivation effects
that were pervasive across all muscle activity states. Instead, we have
found that, duringa cortically dependent task in mice, the influence of
the primary motor cortex on forelimb muscle activity is selective and
instructive. This is supported by our observations that inactivation
effects on individual muscles are present only at a subset of muscle
activity states, these effects vary in magnitude across that subset, and
the pattern of effect magnitudes across states itself varies across mus-
cles. To focus on the CFA’s direct influence on muscles, we measured

inactivation effects at the shortest latency CFA output that can affect
forelimb muscles in mice'®. Effects at this latency are not seen during
allmotor behaviors.

The motor cortex may confer an added level of muscle control
that improves movement efficacy by generating muscle activity
patterns that cannot be achieved by other motor system regions™.
Our results suggest that this role may be mediated by a selective
modulation of ongoing motor output, one that differs categorically
between muscles of different functional types. We were surprised to
observe that direct motor cortical influence on physiological flexors
was always activating. Although influence on their respective antago-
nists did involve amix of activation and suppression, the prevalence
of activation and suppression was similar only for the elbow extensor
where its influence was relatively infrequent overall. Thus, the CFA
acts primarily by selectively exciting physiological flexors. Given the
nonstereotyped and adaptive nature of the movements that mice
performin our paradigm, during an otherwise rhythmic locomotion,
we had expected the CFA output to both activate and suppress each
muscle at different states. For example, if the motor cortex served
only tointroduce corrections to reduce the deviation from a target
movement, as predicted by the current theory***°, we would expect
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bothactivation and suppressionif errors were symmetrical around
the target.

It remains unclear how well our basic results here generalize
to other mammals, including primates. Despite substantial homol-
ogy between rodent and primate motor circuits>*°, functionally
salient differences exist, especially in the circuits that govern finger
movements™*, That said, atleast for nonhuman primates, broad swaths
ofthe motor behavioral repertoire recover after motor cortical lesions,
including walking, climbing, jumping and even goal-oriented manual
tasks, although performance efficacy isreduced in all cases®*****, These
results could reflect that, aside from individuated finger movements,
the motor cortex does not generate the entirety of limb muscle activity
patterns, butinstead selectively modulates muscle activity patterns to
improve movement efficacy.

We found that some CFA neurons fire preferentially for different
subsets of similar muscle activity states. This does not align with the
view that M1 activity is well described as a low-dimensional, linear,
dynamic system®**. In this view, the activity of each M1 neuronreflects
alinear combination of a small number of latent variables. Neurons
active during distinct subsets of muscle activity states would require
distinctlatent variables to capture their activity, increasing the dimen-
sionality of the population activity asawhole. A small number of linear
latent variables might still capture much of the variance in our activity
measurements, but they would not explain the highly state-specific
firing patterns of some neurons. As these firing patterns carry infor-
mation about motor output, they may play animportant rolein motor
control. The high state specificity of many neuronsis also not predicted
by previous characterizations of M1 neurons as broadly tuned for
muscle activity or movement kinematics******. Here again, however,
this aspect of our results may not generalize to other species or to the
ballistic reaching tasks used in many previous studies. That said, it does
align with recent demonstrations of reproducible, high-dimensional
activity in the monkey M1%,

Our observations also have important implications for the func-
tionalinterpretation of kinematics-related neural activity. By focusing
on a context in which muscle activity and gross limb kinematics are
substantially uncoupled, we found that the neural activity subspace
where activity aligns with these kinematics is essentially orthogonal
to the one that aligns with direct CFA influence. However, we cannot
rule out that there are other, perhaps finer, kinematic features that
more substantially covary with direct CFA influence. Despite this, our
observations remain a substantial revelation given the contemporary
prevalence of video-based kinematic tracking for measuring nervous
system output. Prominent kinematic features can correlate substan-
tially with activity in a neuronal population, but correlate negligibly
with the functional influence of that activity.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41593-025-02093-z.
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Methods

All experiments and procedures were performed according to the
US National Institutes of Health (NIH) guidelines and approved by
the Institutional Animal Care and Use Committee of Northwestern
University (protocol no. ISO0009077). No statistical methods were
used to predetermine sample sizes but our sample sizes were similar to
those reported in previous publications'>*®, No parametric statistical
tests were used for data analysis, sowe did not test whether data were
normally distributed.

Experimental animals

Atotal of 50 adult male mice were used, including those in early experi-
mental stages to establish methodology. Strain details and number of
animals in each group are as follows: 44 VGAT-ChR2-EYFP line 8 mice
(B6.Cg-Tg(SIc32a1-COP4*H134R/EYFP) 8Gfng/J; Jackson Laboratories,
stock no. 014548) and 6 C57BL/6) mice (Jackson Laboratories, stock
no.000664). All experiments were performed using VGAT-ChR2-EYFP
line 8 mice.

Allmice used in experiments were individually housed undera12-h
light:dark cycle ina temperature-controlled and humidity-controlled
room with free access to food and water, except during experiments.
At the time of the measurements reported, animals were 12-18 weeks
old and weighed 24-30 g. All animals were being used in scientific
experiments for the first time, including no previous exposure to
pharmacological substances or altered diets.

Climbing apparatus

The climbing apparatus (Extended Data Fig. 1) was housed inside a
sound-attenuating chamber (Coulbourn, cat.no. H10-24A). Experimen-
tal control was performed using the MATLAB Data Acquisition Toolbox,
the NIPCl-e-6323 DAQ and two Arduino Duos. The climbing apparatus
itself consisted of a3D printed cylindrical wheel with alternating hand-
holds positioned 12° apart from each other. The right handholds were
affixed tolinear actuators (Actuonix, cat. no. L-12-30-50-12-I), whereas
the left handholds were statically positioned. A ratchet mechanism was
used to ensure that the climbing wheel could rotate only downward
from the mouse. One end of the wheel was supported by ashaft angular
encoder (US Digital, cat. no. A2-A-B-D-M-D). Angular position signals
were sent tothe Arduinos to track thelocation of each handhold. When
each right handhold reached a position 180° away from the mouse,
the linear actuator moved the handhold to a new, randomly chosen,
mediolateral position. The other end of the wheel was supported by
a slip ring (Michigan Scientific, cat. no. SR20M-LT) that commuted
voltage signals to and from the actuators embedded in the wheel.
Water rewards were dispensed with a solenoid valve (NResearch, cat.
no.161T012) attached to alick tube (Thermo Fisher Scientific, cat. no.
01-290-12) and this dispensation was controlled by MATLAB through
the NI PCl-e-6323 DAQ. A speaker was used to play a 5-kHz tone for
200 ms whenever rewards were dispensed.

Training

Under anesthesiainduced with isoflurane (1-3%), mice were fitted out
with titanium or plastic head plates affixed to the skull using dental
cement (Metabond, Parkell). Headplates had an open center that ena-
bled subsequent access to the skull, which was covered with dental
cement. During headplate implantation, the position of bregmarelative
tothe marks on either side of the headplate was measured to facilitate
the positioning of craniotomies during later surgeries. After recovery
from headplate implantation surgery, mice were placed on a water
schedule inwhich they received 1 ml of water per day.

At least 4 d after the start of the water schedule, the mice were
acclimated to handling by the experimenter following established
procedures®®. After acclimation to handling, the mice were accli-
mated to head fixation over two daily sessions during which they
were placed in a 3D printed hutch positioned directly in front of the

climbingwheel apparatus and provided water rewards (3 pl per reward)
atregularintervals.

After acclimation, the mice underwent daily hour-long training
sessions on the wheel apparatus. Training involved aninitial stage (one
to three sessions) aimed at training mice to grab for and pull at the
handholds to rotate the wheel downward and receive a water reward.
The mice were head fixed in an upright position, facing the front of
the wheel so that all four limbs could easily grab on to the handholds,
and the right handholds remained fixed. Rewards were triggered by
an experimenter’s key press whenever a mouse performed any slight
rotation of the wheel downward toward its body and longer or faster
bouts wererewarded with additional rewards. Over the course of these
sessions, the mice generally learned to associate rotating the wheel with
awater reward and began iteratively rotating the wheel.

During the next stage of training (four to ten sessions, median
five), right handholds were kept fixed and the mice were encouraged
to rotate the wheel for increasingly long bouts. Here rewards were
dispensed for continuous climbing bouts above a threshold distance
after the bout ended, using an automated experimental control script
written in MATLAB. The first ten times during a training session that
the threshold distance was met, the mice automatically received a
water reward. Subsequently, the total distance traveled was compared
to those from the previous ten bouts. If the time was above the 25th
percentile value for those ten bouts, the mouse received one water
reward, if it was above the 60th percentile value, the mouse received
two water rewards and, if it was above the 90th percentile value, the
mouse received four water rewards. Otherwise, the mouse received
no water reward. The threshold distance was adaptively adjusted to
maintain thereward rate such that the mouse received approximately
1mlofwater duringeach hour-longtraining session. Thus, if the recent
reward rate was too low, the threshold distance was lowered and, if the
recent reward rate was too high, the threshold distance was raised.
Duringall subsequent training sessions, the right handhold positions
were randomly repositioned along the horizontal axis after rotating
past the mouse, although the same reward scheme was used.

Inthis paradigm, the mice performed asophisticated locomotion
that deviated from a rhythmic pattern to negotiate unpredictable
variationinthe ‘terrain’ presented by the handholds. The consistency
of climbing form and performance across sessions (Fig. 1), together
with the natural climbing ability that mice possess, obviated the need
for extensive training. In fact, some mice exhibited long, continuous
bouts of climbing over the first session during which they were taught
the climbing-reward pairing.

EMG recording

Electromyographic (EMG) electrode sets were fabricated for forelimb
muscle recording using established procedures'®*’., Briefly, each set
consisted of four pairs of electrodes. Each pair comprised two 0.001”
braided steel wires (A-M Systems, cat.no.793200) knotted together.On
one wire of each pair, insulation was removed from1 mmto 1.5 mmaway
fromtheknot; onthe other wire, insulation was removed from2 mmto
2.5 mmaway from the knot. The ends of the wires on the opposite side
oftheknotwere soldered to an eight-pin miniature connector (Newark,
cat.no.11P3828). Different lengths of wire were left between the knot
and the connector, depending on the muscle within which a given
pair of electrodes would be implanted: 3.5 cm for biceps and triceps,
4.5 cmfor extensor carpiradialis and palmaris longus. The ends of the
wires with bared regions had their tips stripped of insulation and then
were twisted together and crimped inside a27G needle that facilitated
insertion into the muscle.

Mice were implanted with EMG electrodes during the surgery in
which headplates were attached. The neck and right forelimb of the
mouse were shaved and incisions were made above the muscle to be
implanted. Electrode pairs were led under the skin from the incision on
the scalp to the incision at the site of implantation. Using the needle,
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electrodes wereinserted through the muscle and the distal portion of
the electrodes was knotted to secure both 0.5-mm bared-wire regions
withinthe muscle. The needle and excess wire were then cut away. Inci-
sions were sutured and the connector was affixed with dental cement
to the posterior edge of the headplate.

EMG recordings were amplified and digitized using a 16-channel
bipolar amplifying headstage (Intan Technologies, cat. no. C3313). Data
were acquired at4 kHz using the USB interface board (Intan Technolo-
gies, cat.no. RHD2000).

Optogeneticinactivation

After a VGAT-ChR2-EYFP mouse completed a few climbing sessions
with randomly positioned handholds, dental cement above the skull
was removed and a 2-mm-diameter craniotomy was made above the
left caudal forelimb area centered at1.5 mmlateral and 0.25 mm rostral
of bregma. A thin layer of Kwik-Sil (World Precision Instruments) was
applied over the duraand a3-mm-diameter no.1thickness cover glass
(Warner Instruments) was placed on the Kwik-Sil before it cured. The
gap between the skull and the cover glass was then sealed with dental
cementaround the circumference of the glass. A customized stainless
steel ferrule guide (Ziggy’s Tubes and Wires) was then cemented to
the headplate a certain distance above the surface of the brain. This
distance was set to ensure that the cone of light emanating from a
400-pm core, 0.50 numerical aperture optical patch cable, terminat-
ing in a 2.5-mm ceramic ferrule (Thorlabs, cat. no. M128L01), would
project aspot of light 2 mm in diameter on to the surface of the brain
(Fig. 2a). The ferrule guide enabled quick and reliable positioning of
the ferrule above the brain surface, so that a large expanse of cortex
could be illuminated. In previous experiments using this method for
inactivation, control experiments in wild-type mice showed no dis-
cernible muscle activity perturbation in response to light'®. Moreover,
the short latency at which we measured effects here would preclude
visually driven responses.

To attenuate firing throughout motor cortical layers, we used a
450-nm laser (Opto Engine, cat. no. MDL-11I-450) to sporadically apply
25-ms light pulses at an intensity of 10 mW mm™to the brain surface.
During each session that involved inactivation of the motor cortex,
trials were initiated after the distance climbed on the current bout
exceeded arandom threshold between 0° and 20° and a mouse was
actively climbing. Light was applied on a random third of trials. This
ensured that inactivation and control (no light) trials were broadly
distributed across the muscle activity states that occurred during
climbing. Inactivation trials were never triggered <5 s apart. A total
of 2,292-5,115 trials (median = 2,715) was collected in each mouse
(roughly one-third inactivation and two-thirds control), spanning 11-37
(median =18.5) climbing sessions. Inclusion of twice as many control
trials asinactivation trials enabled comparisons between separate sets
of control trials to aid statistical testing.

Neuralrecording

For some mice, optogenetic inactivation sessions were followed by
three to four daily neural recording sessions that typically lasted an
hour each. One day before the first neural recording session, the cover
glass and Kwik-Sil were removed, a small durotomy was made in the
craniotomy center and a Pt or Ir reference wire was implanted to a
depth of 1.5 mm in the left posterior parietal cortex. Opaque silicone
elastomer (Kwik-Cast, World Precision Instruments) was used to cover
the craniotomy after the surgery and between recording sessions. At
the time of recording, the exposed brain surface was covered with aga-
rose and silicone oil or liquid paraffin oil. ANeuropixels 1.0 (IMEC) was
subsequently inserted to adepth of 1.5 mminto the brain (Fig. 5a) ata
rate of 3-5 pum s using a motorized micromanipulator (Sutter Instru-
ment, cat. no. MP-225A). Electrode voltages were acquired at 30 kHz
and bandpassfiltered at 0.3-10 kHz using SpikeGLX (Bill Karsh, https://
github.com/billkarsh/SpikeGLX) and then sorted with Kilosort 2.0

(https://github.com/MouselLand/Kilosort2).Sorted units were assigned
toseparate cortical layers based on the depth below the piaassigned to
the waveform centroid inKilosort and the laminar depths reportedin
ref. 68.To be conservative, units near laminar boundaries were ignored
when analyzing neural responses by layer. To classify units as either
wide-waveform, putative pyramidal neurons or narrow-waveform,
putative interneurons, we pooled the spike widths of all sorted single
units, obtaining abimodal distribution'®*°. Neurons with spike widths
>450 ps were classified as putative pyramidal neurons and the remain-
der were classified as putative interneurons. The proportion of units
classified as wide waveform and narrow waveform was in line with
previously observed proportions™**,

EMG preprocessing

Forboth optogeneticinactivation and Neuropixels recording sessions,
EMG measurements were downsampled to 1 kHz, high-pass filtered at
250 Hz, rectified and convolved withamodified Gaussian filter kernel.
We used causalffiltering to enable precise assessment of perturbation
latencies and, hence, used a Gaussian filter kernel that was initially
defined with a10-ms s.d., but then had amplitudes for times <O (its
‘backwards-in-time’side) set uniformly to zero. EMG traces were then
z-scored across all time points during the given session.

Video recording and analysis

A high-speed, high-resolution monochrome camera (Blackfly S USB
3.0,1.6 MP, 226 FPS, Sony IMX273 Mono; Teledyne FLIR) with a12-mm
fixed focal length lens (C-Mount, Edmund Optics) was positioned tothe
right of the head-fixed mouse duringinactivation and neural recording
sessions and videos were acquired under a near-infrared light source
at100 frames s with aresolution of 400 x 400 pixels® During optoge-
neticinactivation sessions, the camerawas triggered to start recording
using StreamPix software (NorPix, Inc.) 20 ms before eachinactivation
or controltrial. Each recordinglasted 500 ms beyond the 25-mslight or
control command pulse that marked the trial. Annotation of behavior
was accomplished using DeepLabCut™. To enable better markerless
tracking, the right forelimbs of mice were shaved and tattooed (Black
tattoo paste, Ketchum Manufacturing) at eight different sites along
therightarm. All videos were also adjusted with ffmpeg (ffmpeg.org)
toimprove brightness and contrast. DeepLabCut using the ResNet-50
neural network with an Adam optimizer was trained on the annotated
images for 1,030,000 iterations; on ~4,000 randomly sampled video
frames across mice and sessions, we provided manually labeled loca-
tions of the 8 forelimb sites for training: shoulder, two sites between
the shoulder and elbow, elbow, two sites between the elbow and wrist
and wrist and tip of the last digit (Fig. 4b). The training set comprised
80% of the labeled frames.

All DeepLabCut-tracked forelimb site trajectories were then
exported to MATLAB for further postprocessing to remove outliers
(Extended Data Fig. 6a-c). First, sites in each video time series that
were assigned, by DeepLabCut, alikelihood (that s, its confidence that
asite was correctly labeled) <0.75 were replaced with aninterpolated
value using the median of the ten previous and ten following values
(MATLAB function fillmissing). Next, outliers insite position time series
were identified using the median absolute deviation (m.a.d.): shoulder
coordinates were constrained to lie within1.5 m.a.d. from their median,
digit coordinates tobe within3 m.a.d. from their medianand all other
jointstobewithin2 m.a.d.fromtheir respective medians. Outliers were
replaced with aninterpolated value using amoving median of window
length 10. Last, limits were imposed on the pairwise distances and
angles between neighboring joints (the shoulder-elbow, elbow-wrist
and wrist-digit tip) such that the angle between shoulder-elbow and
elbow-wrist could not exceed 180° and the distances between each of
these joints were within 2 m.a.d. of their medians. Site positions not
meeting these criteria were also replaced with an interpolated value
using amoving median of window length 10.
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To verify that extracted forelimb orientation had the expected
relationship with muscle activity, we compared changes in muscle
activity to the corresponding changes in joint angle. For each control
trial, we extracted muscle activity and forelimb site time series from
750-ms epochs that began 250 ms before each trial onset. The elbow
angle was calculated as the inverse tangent of the position vectors
connecting the shoulder site to the elbow site and the elbow site to
the wrist site. The wrist angle was similarly calculated using vectors
connectingthe elbow and wrist sites and the wrist and finger sites. We
also computed the difference in activity between elbow flexors and
extensors and between wrist flexors and extensors. Time series were
segmented into overlapping epochs beginning every 10 ms. For elbow
angle and elbow flexor or extensor activity, we used 100-ms epochs. For
wristangle and wrist flexor or extensor activity, we used 50-ms epochs.
Within each epoch, we computed the slope of alinear fit to the differ-
enceinflexor or extensor activity. Slopes were aggregated for each ses-
sion, and epochs correspondingto the bottom and top 5% of the slope
distribution were identified and combined across sessions. Epochsin
the bottom 5% reflected increasing flexor bias, whereas those in the
top 5% reflected increasing extensor bias (Extended Data Fig. 6d-g).

For the extracted muscle activity and forelimb site time series,
Pearson’s correlation was computed over nonoverlapping 150-ms
epochs. For each epoch, we calculated the mean correlation across
shoulder, elbow, wrist and finger sites for each muscle. Correlation
values were aggregated across all epochs and sessions (Fig. 4h).

We note that our findings here applied only to the kinematic fea-
tures that our measurements captured, primarily the right forelimb
joint angles in the sagittal plane. Our measurements did not account
for forelimb orientation in the mediolateral dimension. However,
the elbow and wrist muscles from which we have recorded primarily
governthe angles of the elbow and wrist, which our measurements did
capture. Mediolateral forelimb orientation was primarily determined
by shoulder muscles. Moreover, asillustrated in Supplementary Video
1, therange of limb motionin the two dimensions that we did examine
was much larger than the range in the mediolateral dimension. Thus,
inclusion of the mediolateral dimensionin measurements was not likely
to have changed our results substantially.

Behavioral analysis

For each animal, we computed the principal angles between muscle
activity time series for each of the first 20 climbing sessions that used
the automated control script, compared to the twentieth session.
Principal component analysis was first performed on the muscle activ-
ity time series for the four recorded muscles. The top two PCs were
used for the subsequent calculations, because they captured >90%
of activity variance. The principal angles were then computed using a
standard approach: the cross-covariance matrix was computed for the
two PCtimeseries from the given session and those from the twentieth
session and SVD was applied to the result. The principal angles were
then computed as the real part of the inverse cosine of the resulting
singular values.

Sample entropy* was computed for the muscle activity time series
for the four recorded muscles using the ‘sampen’ function downloaded
from the MATLARB file exchange, with the embedding dimension set
to 10. Sample entropy has previously been used to measure regular-
ity in electrocardiography, electroencephalography and functional
magnetic resonance imaging blood oxygenation level dependent
signalimaging.

Inactivation effects during stereotypical climbing features

Weidentified three recurring kinematic features that are stereotypical
in our observations of climbing behavior: pulling a handhold down
with the right forelimb, reaching the right forelimb up for a handhold
and palpationwith the right hand when grasping for ahandhold. Limb
movement during each of these features was best reflected along the

yaxis of video frames. Pulling down was accompanied by an increase
inaveraged y coordinates as measured in pixels (valuesincrease as you
move downward in the video frame), which corresponds to a positive
slope. The opposite was true for reaching up. Handhold palpations
were associated with an oscillatory increase, decrease and increase,
or vice versa, of y coordinates. Both of these patterns correspond to
aminimum of two sign changes in slopes over a brief time window.
Toidentify instances of each feature during climbing, we thus looked
at changes in the y coordinates of the four tracked forelimb joints
(shoulder, elbow, wrist and finger) across video recordings spanning
100 ms before and after the trial onset. We first fit a line of best fit to
they coordinates averaged over the 4 tracked joints across the entire
200-ms window to obtainaslope.

Then, we calculated slopes from overlapping 50-ms sliding win-
dows that began every 10 ms, starting from 100 ms before trial onset.
From these slope measurements, we detected changes in the slope
across time. A trial was assigned as pulling down if the overall slope
was positive withamagnitude of >2 and no sign changesin slope were
detected. Conversely, a segment was assigned as reaching up if the
overall slope was negative with a magnitude of <-2 and no sign changes
were detected. Segments with >3 slope sign changes were assigned as
handhold palpation. After this, for verification purposes, we randomly
selected aquarter of trials assigned to each of the three features. Using
visualinspection of video data, we confirmed that the kinematics asso-
ciated with each trial matched the assigned feature in all cases. This
validated the criteria that we imposed for assignment. Trial averages
of the muscle activity and limb kinematic time series aligned by trial
onset were then assembled for each behavioral feature.

Muscle activity state maps

We explored organizing inactivation and control trials based on
the forelimb muscle activity immediately preceding trial onset. For
example, we plotted trials along axes defined by the relative activity of
antagonist muscles at each joint (Extended Data Fig. 3d) or along the
top two PCs for the activity of all four muscles (Extended Data Fig. 3e).
However, the density of trials across these plots varied greatly, with
subsets of trials clustered closely together. Thus, these plots were not
conducive to collecting together trials in similarly sized groups that
would afford a similar degree of statistical power in distinguishing
effects between groups; dividing trials based on these plots would
concentrate trials, and statistical power, around certain states. To
more effectively distribute the statistical power afforded by our trials,
we explored the use of dimensionality reduction methods that organ-
ize states according to their n nearest neighbors. Recognizing that
CFAinactivation effects may also depend on the time-varying pattern
of muscle activity immediately before trial onset, we reasoned that
capturing this history in our definition of muscle activity state could
furtherincrease our statistical power.

We ultimately used UMAP to obtain 2D muscle activity state maps
onwhich nearby states are highly similar. We applied UMAP to segments
extracted from the EMG time series collected during the optogenetic
inactivation sessions and their corresponding first derivatives. For each
control or inactivation trial, we defined 13 overlapping 50-ms epochs
centered every 10 msfrom -55 msto +75 ms from command pulse onset
(Fig.2c). Then, for each 50-ms epoch, we averaged the EMG traces for
each muscle over 5-msbins and concatenated the resulting values for
the four muscles and their corresponding first derivatives, yielding
one 80 x 1 vector. Thus, in these vectors, the first 40 values reflected
the EMG signals from 4 muscles and the last 40 values reflected their
first derivatives (Fig. 2c). UMAP (MATLAB function run_umap, from
the MATLAB File Exchange, with the following parameters: n_neigh-
bors =30, n_components =2, min_dist = 0.3, metric = Euclidean) was
applied to embed all resulting vectors from both inactivation and
control trials, generating the 2D muscle activity state maps (Fig. 2d).
Using two dimensions here simplified subsequent quantification of
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inactivation effects across muscle activity states. Using overlapping
epochs ensured that embedded state vectors from individual trials
formed continuous trajectories across the resulting maps (Fig. 2d).

Inactivation effect maps
To quantify the influence of CFA inactivation on muscles across the
muscleactivity state maps, we first excluded outlying embedded state
vectors. For each embedded vector on a given map, we computed its
mean Euclidean distance on the map from all other vectors. A vector
was deemed an outlier ifits mean distance was >3 s.d. values above the
mean for all other vectors. Some mice had noembedded vectors classi-
fied as outliers and the percentage classified as such was, overall, <1%.
Wethen defined uniformly spaced grid points across each map at
which we would calculate the effects of CFA inactivation. As the number
of grid points of afixed spacing across amap would depend on the scale
of the map, which could vary between maps, we rescaled the coor-

dinates of each 2D map rd to rdescateq = "1‘;’::3’)") x 10 + weightPara x 2,

where PDis the set of all Euclidean distances between embedded vec-
torsand weightParais thes.d. of the Gaussian function used to weight
trials in computing the inactivation effect size at each grid point (see
below and ‘spatial filter width’ in Extended Data Figs. 4, 8 and 10). For
allmaps, we used weightPara = 5.

We then sought to compute the inactivation effect at each grid
point, based on trials that began from muscle activity states close to
each given grid point. Our approach was to compute effects for each
grid point from inactivation and control trial averages made from all
trials of agiventype, but where trials were weighted by the distance on
the 2D map from the given grid point to the weight epoch state vector
for the given trial. The weight epoch state vector was defined as the
embedded vector from the epoch spanning -40 ms to +10 ms from
command pulse onset on the given trial (that is, the epoch just before
any direct effect could begin; Fig. 2c,e). However, the density of these
vectors varied across maps, meaning that the summed weight of trials
contributing to trial averages would vary across grid points as well.
Giventhis, toignore grid points around which the weight epoch state
vectors were too sparse for reliable trial averaging, a grid point was
designated as ‘valid’ only if 3, W,; > a threshold.W,; was in essence a

2
. . . Loc,—Loc; .
Gaussian function, defined as W,; = exp (—Lo%loc) y \where iis the
? 2xweightPara

weight epoch state index (one per trial), g is the grid point index and
Loc, — Loc; is the Euclidean distance between the weight epoch state
andthegrid point on the 2D map. We used a threshold of 10, which led
tonearly all grid points falling withina convex hull surrounding embed-
ded vectors being classified as valid, whereas nearly all grid points
falling outside this hull were not. Grid points not designated as valid
wereignoredinsubsequent calculations. Allembedded muscle activity
state vectors (those not deemed outliers) were close to valid grid points
and so this criterion did not prevent an appreciable contribution from
any vectors. Together with the very small fraction of embedded vectors
ignored as outliers, this implies that our analysis involved practically
all the muscle activity states that occur during climbing.

Next, we calculated the trial-averaged activity for each muscle at
eachvalid grid point, separately for the inactivation and control trials.
Foreachmuscle and trial type, we extracted segments of their activity
time series from —10 ms to +30 ms relative to command pulse onset.
We then took a weighted average of these segments across each trial
type, where each segment was weighted by W, ;. Ateach grid point, this
produced controlandinactivation trial averages for each muscle, where
each trial is weighted by the distance from the grid point to the mus-
cle activity state just before any direct inactivation effect during the
trial. Use of weightPara = 5 here (roughly 10% of the width of the map)
reflected a trade-off between differentiating effects across distinct
map regions and the statistical power gained from combining trials.

Finally, we quantified the size of the CFA inactivation effect at
each valid grid point by comparing the rates of change (slopes) in

inactivation and control trial averages 0 ms to +20 ms from command
pulse onset (Fig. 2f). Muscle activity at time O ms was defined as the
mean from -10 ms to +10 ms and, likewise, activity at +20 ms was
defined as the mean from +10 ms to +30 ms. Quantifying the inactiva-
tion effect by taking the ratio or difference between the control and
inactivation slopes returned qualitatively similar results. We used the
difference because it was more easily interpretable (Fig. 2h).

We also sought to assess the similarity between nearby state
vectors embedded in local neighborhoods across maps and thus the
similarity of states from which trials contributing strongly to given
grid point trial averages began. To do this, we computed the aver-
age Euclidean distance in the full 80D space between state vectors
embedded near each grid point on the 2D maps. We first calculated the
Euclidean distances between all possible pairs of embedded vectors
inthe full 80D space. For each grid point, we then computed a locally
weighted average of these distances. In these averages, each distance
dwas weighted by a Gaussian function of the distance on the 2D map
between the grid point and the midpoint between the corresponding
two embedded vectors (that is, those separated by d), using the same
Gaussian function as above (weightPara =5).

There are a number of important caveats in evaluating inactiva-
tion effect maps. Collapsing 80D muscle activity state vectors on to
a 2D map eliminates substantial information about those states. The
smoothing that we have applied in computing trial averages will also
mask fine structure. UMAP organizes states according to similarity and
soignores other features potentially relevant to cortical influence. As a
consequence, these maps do not reflect all the structure that may exist
intherelationship between muscle activity state and CFA influence.

Analysis of inactivation effect maps
To determine whichmuscle activity states were significantly influenced
by CFAinactivation, we performed a two-tailed nonparametric permu-
tationtest ateach grid point by computing the probability of obtaining
the observed inactivation effect size by chance. For each animal, and
each grid point, 300 permutations were performed by first randomly
splitting control trials into two groups, each with a number of trials
equaltothe number of inactivation trials. The number of trialsin both
the control (N niro) and inactivation (Nip,cevaiion) trial groups was such that,
if Ntotal_control/2 > Ntotal_inactivations , WE would set Ncontrol = Ntotal_inactivations ;
otherwise, Ninactivation = Neotal control/2- AS OUT experiments were designed
to collect twice as many control trials as inactivation trials, control
trials could be sampled without replacement during the splitting pro-
cess. Foreachgrid point, and for each permutation, we calculated the
inactivation effect size using the control trial average, computed as
above, for onerandomly selected group of control trials and the inac-
tivationtrial average, also computed as above. For each permutation,
and at each grid point, we also calculated the effect size expected by
chance (‘null’) using trial averages for the two control trial groups.
Then, ateach valid grid point, we randomly picked linactivation effect
size from the 300 permutations and compared that with all 300 null
effectsizes. To calculate the Pvalue, we compared the 300 null effects
with therandomly choseninactivation effect, calculated the fractions
of the null effects where the null effects were smaller than or greater
than the inactivation effect and multiplied the smaller fraction by 2.
To correct for multiple comparisons, the Benjamini-Hochberg method
was used to control the false discovery rate (FDR; MATLAB function
fdr_bh). The effect size at each grid point was considered to be statisti-
cally significantifthe FDR-corrected Pvalue was 0.05 (thatis, the likeli-
hood of false discovery was <5%). We also used Pvalues across all grid
points to estimate the fraction of null hypotheses that were false for
each mouse (MATLAB function mafdr) and used this as the fraction of
grid points exhibiting inactivation effects.

The 2D autocorrelation for inactivation effect maps was computed
using the MATLAB function xcorr2 and normalized by the maximum
value for the given map. For controls, maps were generated using null
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effect sizes at each grid point from 1 of the 300 comparisons of effect
sizescomputed with 2 separate sets of control trials described above. To
test thatinactivation effect maps differ across muscles for each animal
using the Kruskal-Wallis test, we first removed inactivation effect sizes
from the maps until the minimum distance between the grid points for
remaining effect sizes was >3x s.d. of the Gaussian function used for
computing grid point trial averages. This ensured that the remaining
effect sizes were effectively computed from separate trials. Roughly
~15-20 inactivation effect sizes remained after this removal. Linear
models were fit to scatter plots using the MATLAB function fitlm. The
2D correlation betweeninactivation effect maps was computed using
the MATLAB function corr.

Maps of average muscle activity

For eachmuscle, we first calculated its mean activity during the 50-ms
epochreflected in each state vector. Then, for each grid point, we cal-
culated a weighted average of these values, where the mean for each
epoch was weighted by a Gaussian function of the Euclidean distance
on the 2D map between the epoch’s embedded muscle activity state
vector and the given grid point. Here we set the s.d. of the Gaussian
function to be the same as that used for the inactivation effect maps.
Theresulting plots clarify the activity of muscles at each grid point and
how this activity varies across grid points.

Neural activity maps

To compare firing patternsin the CFA toinactivation effects, we gener-
ated maps of average firing rate across grid points for each recorded
CFAneuron. As neural recordings and optogeneticinactivations were
carried out in separate sessions, the first step was to align muscle
activity states from the neural recording sessions with those from
the optogenetic inactivation sessions by embedding the former set
of states on the same 2D map used to make inactivation effect maps.
To do this, we identified a large number of 50-ms epochs during
active climbing from the neural recording sessions. To identify these
epochs, peaksin the activity summed across all four muscles were first
detected using the MATLAB function findpeaks, where apeak wasiden-
tified if asamplein the time series surpassed a threshold equal to the
mean + 12 x s.d. Based on visual inspection, this identified many peaks
that always fell during active climbing. Next, two time points (‘onset
points’) were randomly selected on either side of the peak, such that
the expectedinterval from the peak to each point was 50 ms. Then, any
onset point was eliminated if it was <50 ms from either the previous or
the subsequent onset point. This ensured that 50-ms epochs defined
around onset points would not overlap. For each remaining onset
point, EMG time series segments from the epoch spanning —45 ms
to +5 msrelative to the onset point were extracted. Each recording
session typically yielded upward of 30,000 epochs. Of these, 10,000
were randomly selected for each session to limit compute time for
subsequent calculations. State vectors (80 x 1) were assembled for
eachepochasabove.

We then embedded the resulting 10,000 state vectors from each
neural recording session onto the muscle activity state maps previously
defined viaUMAP to make inactivation effect maps for the given mouse.
We next extracted the segments of each neuron’s firing rate time series
correspondingto each state vector. For each neuron and at each valid
grid point, the firing rate segments were averaged as above, weighting
each segment by a Gaussian function of the distance on the map from
their corresponding state vector to the grid point (weightPara =5).
Theresulting segment-averaged firing rates were then averaged across
time, yielding a single scalar firing rate value for each neuron at each
grid point (Fig. 5f,g).

For the analysis described below, only putative pyramidal neurons
wereincluded. To estimate the number of neurons that showed behav-
iorally dependent firing across muscle activity states, we first generated
anempirical null distribution for the degree of variation across neural

activity maps separately for each neuron. To do this, we reassigned
each state vector from neural recording sessions to the location of a
different, randomly selected vector on the map and recomputed the
neural activity maps. We repeated this 500x to yield 500 permuted
maps for each neuron. To assess behaviorally dependent variation, the
skewness of the original neural activity map values and those on the
500 permuted neural activity maps was calculated (MATLAB function
kurtosis)as k = M, wherexisthesetof firingrates atall grid points,
pis the mean of xo,qo isthe s.d. of x and E(-) represents the expected
value. Significance was assessed using a Pvalue, defined as the fraction
of nulldistribution skewness values greater than the original. From the
Pvalues for all neurons in agiven mouse, we estimated the fraction of
false null hypotheses (MATLAB function mafdr) and used this as the
fraction of cells with behaviorally dependent firing.

The sparsity for neural activity maps was computed using the for-
mulagiveninref. 54. Here the sparsity is the mean of the firing rates
at each grid point on the map, squared and divided by the mean of
the squares of the firing rates at each grid point. Note that, asin the
original reference, this minimizes the dependence of sparsity values
on the frequency at which each state on the map is visited. The 2D
correlation between neural maps was computed using the MATLAB
function corr.

Neural subspace for inactivation effects

Separately for each animal (n = 3 mice), neural subspaces were identi-
fied using singular vector CCA (SVCCA*) applied to the inactivation
effect and neural activity maps. An SVD-based approach was taken
herebecause the number of recorded neurons was much larger than
the number of recorded muscles. Neurons with mean firing rates
<0.1 Hz over the 10,000 epochs were excluded. Two matrices were
generated for alignment with SVCCA. One matrix had a column for
each neuron generated by vertically concatenating the successive
columns of that neuron’s neural activity map. The resulting matrix
had dimensions of Ngg X Nyeyron, Where Ny is the number of neurons
recorded inagiven mouse across recording sessions (putative pyrami-
dal, mean firing rate >0.1 Hz), whereas N,4is the number of valid grid
points. The second matrix was made in a similar fashion by vertically
concatenating the successive columns of the inactivation effect map
foreachmuscle. This matrix had dimensions of N4 x 4 because four
muscles were recorded.

SVCCA was conducted in two steps: neural activities were first
soft normalized” using a soft normalization constant of 5 Hz. SVD
was performed using numpy.linalg.svd in Python to decompose the
neural data into left singular vectors, a diagonal matrix containing
singular values and right singular vectors. Next, the diagonal matrix,
truncated to just the top 20 singular values, was multiplied with the
corresponding top 20 right singular vectors, resulting in 20 neural
activity components. CCAwas applied to the N, x 20 matrix of these
components and the N4 x 4 matrix of inactivation effects. Then 20
dimensions were retained here because the amount of variance cap-
tured and CCA alignment quality saturated at around 20 dimensions.
CCAwasalsorepeated with individual columns of the matrix of inacti-
vation effect sizesin place of the full 4D matrix, to show that there were
CFA activity components that correlated with the inactivation effects
for eachindividual muscle.

To compute the additional variance captured by each successive
canonical vector, canonical vectors were orthogonalized using the
Gram-Schmidtprocess. Inaddition, we randomly shuffled the neuronal
firing rate segments relative to the embedded vectors on the maps to
generate shuffled neural activity maps and performed SVCCA again
asanegative control. The highest correlations between the canonical
neural and effect vectors for all animals were <0.75. To further verify
the effectiveness of SVCCA, for each mouse separately we split the
inactivation and control trials frominactivation experiments randomly
into two groups, calculated separate inactivation effect maps for each
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group, used SVCCA to find subspaces where CFA activity aligns with
each of them and calculated the principal angles between the two
resulting neural activity subspaces. This procedure was repeated 300x
(Extended DataFig. 8b).

Using the CCAresults for individual columns of the matrix of inac-
tivation effect sizes (that s, results for effects onindividual muscles),
we computed the effective weight of each neuron’s activity in each
canonical variable by matrix, multiplying the neuron to singular vector
coefficients and the singular vector to canonical vector coefficients.
The four individual muscle effect size vectors yielded four effective
weights for each neuron. To compare across animals in which we had
recorded different numbers of neurons, we normalized these weights
to have amedian of1for each animal (Extended Data Fig. 9). To measure
the relative contribution of neurons across all four muscles, we com-
puted the norm of the four-element vector composed of the weights
for eachmuscle foragiven neuron and again normalized these so that
the median for each animal was 1.

Overlap between subspaces

To find a neural activity subspace that aligned with muscle activity
itself, we again performed SVCCA using the N4 X Nyeyron Matrix of
mean firing rates. However, in place of the matrix of inactivation
effectsizes, an N4 x 4 matrix was used where each column reflected
the average activity at each grid point for one of the four muscles,
computedjustas was done for the neural activity maps, except muscle
activity from inactivation sessions was used. Similar methods were
used to find aneural activity subspace that aligned with limb kinemat-
ics. Here, instead of 4 columns, we began with 16—the horizontal
and vertical coordinates for the 8 positions tracked along the right
forelimb. As the 16 kinematic variables were highly correlated, SVD
was also used on this matrix to reduce its dimensionality to 7 before
performing CCA.

To compute principal angles between two neural activity sub-
spaces, we orthonormalized the neural canonical vectors defining each
subspace, computed the cross-covariance matrix for the two sets of
vectors, computed the SVD of the matrix and calculated the inverse
cosine of the singular valuesin degrees. We also measured the degree
of overlap between neural activity subspaces using the metric
oL = 2 C>Mey) \here M is the original matrix of neural activity and
> var(Myro;)
C, and C,, are matrices comprising coefficient vectors that define the
two subspaces, My = Cs X M and Myepro) = CL X My

To verify the significance of the overlap, we permuted the order
of coefficients in the columns of C;, to get C,,. We used ¢,, only when
the total variance of C,, x M was in between 0.8 and 1.2x the total vari-
ance of C,, x M. We then repeated subspace overlap calculations for
100 different C,, values meeting this criterion. This ensured that the
resulting null'distribution of overlap values did not differ from the
actual value simply because the C,, value captured much less variance
than C,,. We also calculated subspace overlap for subspaces that were
each computed usingjust one half of the total epochs from the neural
recording, repeating this for 300 different random parcellations of
theepochs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datathat support the findings of this study are posted to figshare
at https://doi.org/10.6084/m9.figshare.29965298 (ref. 72).

Code availability

All MATLAB code used for data analyses and CAD files for 3D printed
wheel components are available on GitHub at https://github.com/
nataliekoh/ClimbingControlSpace.
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Extended Data Fig. 1| Head-fixed climbing paradigm. a, 3D illustration of the
climbing apparatus, including the lick tube manipulator with lick tube, mounts
for head fixation, and cameras. b, 3D exploded illustration of the wheel with the
separate components visible, showing the slip ring, actuators, and 3D printed
parts. ¢, Same as b, but without actuators and handholds. d, The two types

of 3D printed handholds. Actuated handholds slide onto actuators. Static
handholds attach to the wheel body between actuators. e, Seven video frames
illustrating the range of different postures mice express during climbing.

f, Flow chartillustrating data acquisition and experimental control. Blue arrows
indicate command output signals. Black arrows indicate measured signals.

g, Example time series during climbing: solenoid command for dispensing
reward, wheel angle from optical encoder, and four channels of EMG.
h,iMedian (black dots, n =9 mice) and 1** and 3" quartiles (whiskers) for the
variance captured by principal components of muscle activity time series (h)
and kinematic time series (i, x- and y-coordinates for eight tracked points) from
onesession for each mouse. Gray lines are for individual mice. Three principal
components captured the vast majority of the variance for both muscle
activity and limb kinematic time series. Limb orientation is charted using
video-based tracking.

Nature Neuroscience


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-025-02093-z

a . ) . C
25 Al 0 MaSE9gg RGNS b ouse DC25 mouse DC36 mouse DC44 0.25+ o
e | ! f Elbow | i i ? 8 o
23 44 ‘ 7 flexor | 1 1 23 o
° - i 5o
2. 1 | ] { B = ? [¢]
32 4 [ 7 ' i ) Rz ° ol
w o f i i ! ! j So - o
El : 1 ! 1 ! i i | c 2 = o
[ [ ‘ | control | | 30 8 °
s 07 i 357 i 357 ) ! inactivation ! ! =2
&5 4 | 1 ] Elbow | } ; ©
38 ‘ 1 : b | extensor ! ! (I e
RN =\ 1A 25 50 100
8 ; - ; 4 | ‘ =%‘ ; Q ) .
Wog5- i -1 i 1] | ! : : Time from light onset (ms)
L 1A | 0.5 : 15 | 3 0.25 3 3 d 0.5-
g_p i 1AM ‘ o st dev ; ; control
s z ! : : Wrist 3 ms 3 3 g i (s_epar?tett_nals)
@E | 1 I 1 : extensor i | i % Inactivation
K7} L f - : . | . g o
£ | i | \ ) S
25 } 15 : -05- ] | i %3
: ‘ ! i ] co |
0 ! 0— ! 0 : I i S o
- | | ' : ! B
$s : : \/\/\,\/ﬂ\\ : : £
bR W 1\ n AL : :
Gy ‘ ] ! ‘
§3 } | ! ﬁ 0 T T T T
-1 I -1 I -1 — | i | 1 Control trial 4
-50 100 -50 100 -50 100 i i principal components
f

Last 10 trials from
each session

First 10 trials from
each session

Elbow i i i

| all 8 mice | 1

Elbow
extensor | 1
} 0.25 i :

; 25 st dev ! !

| ms ‘ ‘

Wrist I | i
extensor | | i

—— —t—.

Wrist 3
figor A

Extended Data Fig. 2 | Effect of CFA inactivation on muscle activity. a, Muscle
activity times series surrounding three inactivation trialsin one mouse. The
activity of each muscle was z-scored, so units are standard deviations of the
original recorded signal. Vertical cyan barsin a, b, e-gindicate the 25 ms epoch
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and the mean across mice (red bars). The mean was significantly greater than
0at25,50and 100 ms following light onset (p = 0.004 in each case, two-sided
Wilcoxon signed-rank test). Despite this, we found that the covariance of muscle
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Extended Data Fig. 3| CFA inactivation effects during stereotypical features
of climbingbehavior. a, Extracted video framesiillustrating three common
behavioral features during climbing from one example animal. b, Trial-averaged
(mean + sem) muscle activity for control (gray) and inactivation (cyan) trials for
forelimb muscles in the example animal. Vertical cyan bars indicate the 25 ms
epoch of blue light applied to CFA. Gray dotted lines are 10 ms after light onset,
the shortest latency at which effects can be observed. Note thatinb and c the
time series for palpation appear largely flat because the oscillations in muscle
activity and limb position during palpation were not aligned across trials,

and so much of the structure of individual trials averaged out in trial averages.

¢, Trial-averaged (mean + sem) time series of four tracked joints for control (gray)
and inactivation (cyan) trials in the example animal. d, For all control (black)

and inactivation (cyan) trials from one representative mouse, the difference
between the activation of the two wrist muscles averaged over the 50 ms prior to
trial onset plotted against the corresponding difference in activation of elbow
muscles. Red ellipses ind and e indicate regions where trials are highly clustered,
challenging our ability to divide theminto groups. e, For all control (black) and
inactivation (cyan) trials from the same mouse used ind, a scatterplot of the
mean projection of muscle activity over the 50 ms prior to trial onset onto the top
two principal components for the activity of all four muscles.
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d, eSame asFig. 3f (d) and 3g (e), except only including grid points where effect
size was significantly different from zero. Note that the y-axis scale in e differs
from thatin Fig. 3g. As was true when using all effect sizes, residuals from linear
fits for these subsets were significantly different from uniform (p < 0.004 for all
mice, two-sided K-S test).
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to each laminar group (those within dotted boundaries). Data from three mice
are combined. The distributions of weight vector norms for neurons localized
tolayers 5 (p =3 %107, two-sided Wilcoxon’s rank-sum test) and 6 (p =7 x107*)
were significantly higher than those localized to superficial layers. f, Same as

e, but weight vector norms are scaled by each neuron’s mean firing rate during
climbing. The distributions of weight vector norms for neurons localized to
layers 5 (p =5x107", two-sided Wilcoxon'’s rank-sum test) and 6 (p = 3 x107) were
significantly higher than those localized to superficial layers.
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Extended Data Fig. 10 | Extracting neural activity subspaces aligned with neural activity maps. e, The mapsin c can be collapsed into a grid points by
muscle activity and limb kinematics. a, Grid point-averaged muscle activity position variables matrix which is then dimensionally reduced to a grid points by
maps for an example animal. b, Grid point-averaged muscle activity maps are 7 position singular vectors matrix using SVD. This matrix and the grid points by
used to create a grid points by muscles matrix that, together with a grid points 20 neural singular vectors matrix obtained from the neural activity maps serve
by 20 neural singular vectors matrix, serve as inputs to CCA. CCA thenyields asinputto CCA. CCA thenidentifies the canonical variables showninFig. 7d, e.
the canonical variablesillustrated in Fig. 7b, c. ¢, Grid point-averaged position f, Overlap between the influence and muscle activity subspaces (black circles)
maps for the eight tracked sites along the right forelimb for an example animal. compared to 300 estimates of the overlap expected by chance (gray dots) for
d, 50 ms segments of the site positions tracked during neural recording sessions each animal calculated after slight changes to the parameters used for map
areembedded into the 2D limb orientation state map, and the neural activity calculations (red text).

corresponding to the embedded vectors is used to calculate grid point-averaged
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Sample size No predetermined sample size criteria was used in this study. The number of animals and recording sessions were chosen to match those of
other motor control studies using mice in which similar effects were described.

Data exclusions  No data was excluded. All datasets with a sufficient number of observations for the given analysis were included (e.g. those with 20 sessions
of climbing recordings for behavioral analysis in Fig. 1).

Replication Data was collected from multiple mice for behavioral, inactivation effect mapping and neural subspace analyses across several sessions. All
attempts at replication were successful.

Randomization  Randomization was not performed in this study as there are no applicable experimental groups in this study.

Blinding Blinding was not relevant to this study as there are no applicable experimental groups in this study.
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals
Reporting on sex
Field-collected samples

Ethics oversight

44 VGAT-ChR2-EYFP line 8 mice (B6.Cg-Tg(SIc32a1-COP4*H134R/EYFP) 8Gfng/J; Jackson Laboratories stock # 014548); and 6
C57BL/6J mice (Jackson Laboratories stock #000664) were used in this study. All experiments were performed using VGAT-ChR2-EYFP
line 8 mice. Wild type C57BL/6J mice were used in early experimental stages to establish methodology.

Wild animals were not used in this study.
Only male mice were used in this study.
This study did not involve field-collected samples.

All mouse experiments were conducted with IACUC approval at Northwestern (Protocol #1SO0009077).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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