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The neonatal period represents a critical phase of human brain development.

During this time, the brain shows a dramaticincrease in size, but how its
morphology emergesin early life remains largely unknown. Here we show
that human newborns undergo arapid formation of brain shape, beyond

the expected growth in brain size. Using fractal dimensionality (FD) analysis
of structural neuroimaging data, we show that brain shape strongly reflects
infant maturity beyond differences in brain size, significantly outperforms
brainsize in predicting infant age at scan (mean error approximately 4 days),
detects signatures of premature birth that are not captured by brain size,

is systematically more sensitive to genetic variability among infants and

is superior in predicting which newborns are twin siblings, with up to 97%
accuracy. Additionally, FD captures age and genetic information significantly
better than earlier morphological measures, including cortical thickness,
curvature, gyrification, sulcation, surface area and the T1-weighted/
T2-weighted ratio. These findings identify the formation of brain shape asa
fundamental maturational process in human brain development and show
that, biologically, FD should be interpreted as a developmental marker of
early-life brain maturity, which isrooted in geometry rather thansize.

The human brainundergoes profound morphological changes over the
lifespan'~, developing fromasmall and smooth structure in utero to the
complex, highly convoluted structure that characterizes mature brains.
Non-invasive studies with structural magnetic resonanceimaging (MRI)
have facilitated great progress in understanding these age-related
morphological changes, aided by the increasing availability of large
open-access datasets of human MRI recordings*”.

These developments have recently led to the first normative tra-
jectories of human brain structure over the lifespan, similar to growth
charts of body weight or height'. In a complementary approach, a
recent framework uses structural neuroimaging datato predict brain
age from modeled trajectories of healthy brain aging, revealing clini-
cally meaningful discrepancies between apparent brain age and true
chronological age in avariety of developmental and adult disorders®.

Although these advances have yielded important insights into
structural brain changes from childhood to senescence, large-scale
investigations of perinatal brain development have remained limited,
notleast owing tothe technical and ethical challenges of acquiring MRI
data from human fetuses and newborns'*’. Such investigations are
vital, however, as perinatal brain maturation is fundamental for the
development of cognitive capacities, and, in turn, this period repre-
sents a critical window of vulnerability for later cognitive deficits and
neurodevelopmental disorders®* ™,

To overcome this gap, recent collaborative efforts such as the
developing Human Connectome Project ({HCP) now provide the
opportunity to study perinatal brain developmentin curated datasets
of unprecedented size, quality and accessibility". These resources are
met by parallel advances in the processing of early-life neuroimaging
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data, including neonatal brain atlases”™ and the adaptation of
well-established processing pipelines to the specificities of the new-
born brain regarding size variability and tissue contrasts'*".

Concurrently, powerful new methodologies have emerged that
capture the shape characteristics of the human brain from structural
MRI, moving beyond information reflected by measures of brain size
such as volume.

Toillustrate why shape-related measures can capture additional
features of brain morphology, consider the example of a fictitious
structure of 10,000 voxels. By definition, the volume estimate of this
structureis given by the voxels it consists of (and yields 10 mlif voxels
are 1-mm?isotropic). Clearly, however, there are many ways in which
these voxels could be arranged in space, resulting in different mor-
phological constellations or ‘shapes’ of the structure. In this regard,
arecent line of research has shown that such shape characteristics
are reliably captured by a structure’s fractal dimensionality (FD)"™'®,
In brief, FD stems from a branch of mathematics that investigates
the spatial scaling properties of geometric objects, showing that the
traditional notions of Euclidean dimensions (thatis, 1foraline, 2 fora
plane and 3 for a cube) do not apply well to objects of the biophysical
world". Instead, natural objects often show a high degree of involved-
ness, yielding irregular shapes that exhibit non-Euclidean scaling
properties (see Methods). Such irregular scaling is more adequately
described by a non-integer fractal dimension (from Latin “fractus”:
broken, fragmented or irregular), which expresses scaling properties
thatliein between the idealized dimensions of Euclid and can be viewed
asameasure of the object’s structural complexity'®'* %,

In neuroscience, fractal analysis of structural MRI has provided
researchers with anew tool to study brain shape empirically, yielding
FD as a highly age-sensitive neuroimaging phenotype'®”* 23, On the
technical side, previous studies showed that FD is robustly calculated
from MRI segmentations of various modalities'", shows better test—
retestreliability than volumetric measures of brainmorphology™ and
isapplicable toall tissue compartments of the brain—including cortical
gray matter (GM), white matter (WM) and subcortical regions'®"***'—as
FD canbe estimated from any voxel-indexed segmentation mask. The
latter also distinguishes FD from other shape-related measures such
as gyrification, whose application is typically limited to the cortical
sheet. Notably, FD has been shown to outperform both thickness and
gyrificationin capturing the age-related variance of cortex morphology
inlater life”, suggesting that FD maps unique morphological signatures
beyond these earlier measures. Moreover, FD has not only proven sensi-
tive to age-related brain changesin healthy individuals”*** % but also
detects morphological alterations in a variety of clinical conditions,
including neurodevelopmental disorders®”.

In the present work, we leverage these advances to study how
the shape of the human brain develops in very early life. Specifically,
we apply fractal analysis to the neonatal dHCP data and assess (1) the
cross-sectional, longitudinal and predictive capacity of brain shape
to reflect infant age; (2) the impact of key developmental factors on
brain shape, including sex, singleton versus multi-fetal pregnancy
and premature birth; and (3) the relationship between brain shape
variability and genetic variability acrossindividual newborns. Therein,
we compare FD against both volume as a measure of brain size and
common surface-derived measures of brain morphology, showing that
fractal analysis systematically outperforms these earlier measures in
capturinginfant age, the morphological variability of individual brains
and genetic information.

Results

Quantifying brain shape in human newborns

Here we analyze structural MRI scans from the third dHCP release”,
which includes 782 human neonates and covers a wide range of
infant maturity levels (27-45 weeks post-menstrual age). Figure 1a
visualizes the differences in cortical morphology over these varying

degrees of maturity, as defined by the age criteria of the World Health
Organization (WHO)** and the American College of Obstetricians and
Gynecologists (ACOG)?'.

To quantify these shape differences, we apply fractal analysis with
adilation algorithm that estimates the spatial scaling properties of a
brainstructure fromits voxel-indexed three-dimensional segmentation
mask (Methods and Extended Data Fig. 1). In brief, through iterative
convolution of this mask with a set of spatial kernels, one estimates
the power law relationship between the size of the scales and the count
of scaled measurement units, where the FD estimate is given by the
slope of this relationship in log-log space'**®. Figure 1b illustrates this
procedure for the left parietal cortex of an exemplary infant scanned
shortly after birth at 34 weeks of age and once again at 44 weeks. Over
this 10-week interval, the morphological change that is visible from
the surface renderings (left) is reflected by an increase in structural
complexity from baseline to follow-up (right).

Brain shape reflects infant maturity beyond differences
inbrainsize

First, we related cross-sectional differences in infant age to the
structural complexity and the size of each brain region, measured
by FD and volume, respectively. Therein, older infants showed sig-
nificantly higher FD across cortical GM and subcortical areas, paral-
leled by inverse age effects across several WM areas (Fig. 2a, left). This
GM - WM difference was corroborated by the covariance across infants
(Extended Data Fig.2), where FD values covaried in the same direction
forhomologous regions across hemispheres but were inversely related
inseveral GM and WM regions.

Conversely, age-volume associations were strictly positive
(Fig. 2a, right), such that brain structures were universally larger in
older neonates, as is expected from a continuous postnatal growthin
brainsize (see Extended Data Fig. 3afor analogous plots of the example
regions). Although effect sizes were generally large for both measures,
directly comparing age-FD and age-volume effects revealed acomple-
mentary spatial pattern, in which FD tracked infant age more strongly
across most cortical GM and WM areas (Fig. 2b, left), whereas volume
showed larger effect sizes intemporal, cingulate and some subcortical
areas (Fig. 2b, right).

Furthermore, we investigated how neonatal brain shape is influ-
enced by infant sex and pregnancy status (singleton versus multi-fetal).
Region-wise hierarchical regression confirmed strong age—FD effects
across the entire brain (Extended Data Fig. 4a) but also revealed an
additionalimpact of sexand pregnancy status on FD, albeit on asmaller
scale (up to 5% additional variance explained). These effects were most
pronounced in WM areas and showed spatial clusters, with infant sex
primarily influencing parietal, occipital and insular WM, as well as the
hippocampus, and pregnancy effects clustering in frontal, temporal
and cingulate WM (Extended Data Fig. 4b,c).

FD outperforms surface-derived measures in capturing the
age-related variability of the neonatal cortex

AsbothFD and volume are derived from a voxel-wise three-dimensional
representation of thebrain, the above findings raise the additional ques-
tion of how FD compares to morphological measures that are derived
fromsurface modeling'*">*2, Therefore, we additionally compared FD
against cortical thickness, curvature, gyrification, sulcation, surface
areaand the T1-weighted/T2-weighted (T1w/T2w) ratio and asked how
closely each of these measures captures the age-related variability
of the neonatal cortex. Specifically, we first employed region-wise
linear models to estimate which measure yields the highest adjusted
coefficient of determination (R?,4;) in each cortical area (Fig. 3a) and
compared the highest-ranking model to the respective second-best
model with apermutationapproach. Therein, FD showed the strongest
age associationsin more cortical regions than all other measures com-
bined (highest-ranking: 15/26 regions (58%); univariate permutation

Nature Neuroscience | Volume 29 | January 2026 | 171-185

172


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-025-02107-w

@ Brain shape over infant age at the time of scanning

Week 28 Week 30 Week 32

Very preterm
1

Week 34

Moderately preterm

Week 36 Week 38 Week 40
£ />/" 72 /"“ 7a
vy 287/ &Y
AL } Al b
— '
Late preterm Early term Full term

b Quantifying neonatal brain shape with fractal analysis

Scan 2

Scan1

] Parietal cortex (left)

Dilation
algorithm*

Week 34 Week 44 *See Extended Data

Fig. 1| Quantifying brain shape in human newborns. a, Differences in brain
shape over infant age at the time of scanning, illustrated for cortical GM of the left
hemisphere. Surface renderings correspond to the age-specific group averages
of the dHCP data. Maturity levels follow the criteria by the WHO* and the ACOG>..
b, Quantifying neonatal brain shape with FD. The FD estimate is calculated froma
dilation procedure of the voxel-indexed segmentation mask'”', which measures
the scaling properties of the structure through iterative convolution with varying
spatial kernels (see Extended Data Fig. 1for anillustration). Scaling behavior
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of scaled measurement units after convolution. The slope of this relationship
inlog-log space thenyields the structure’s FD estimate. This estimation is
illustrated for the left parietal cortex of an exemplary infant born at 32.6 weeks
and scanned at 34 weeks and 44 weeks post-menstrual age. Over this 10-week
interval, the morphological change of the region (left) is reflected by anincrease
inthe structural complexity estimate (right). exp, exponential; Vol, volume.

test: 11/14 regions (79%); false discovery rate (FDR) adjusted: 8/11
regions (73%)). Overall, FD thus showed the strongest and anatomi-
cally most comprehensive associations with age (Fig. 3a, middle), mak-
ing it the top-ranking measure, followed by surface area and volume
(Fig. 3a, right). Similarly, when all cortical regions were considered
together in a multiple linear regression approach, FD showed the
lowest root mean square error and highest variance explained across
all measures (Pqpr < 0.001), followed by gyrification and surface area
(Fig. 3b). Moreover, we studied how FD relates qualitatively to these
other measures by estimating their ‘morphological covariance’ across
the whole cortex. Overall, measures were strongly correlated with each
other acrossinfants of different ages (Fig. 3c, left), whichis intuitive as
allthese features are expected to develop largely in parallel. However,
age adjustment of these data revealed a suggestive qualitative pat-
tern (Fig.3c, middle), inwhichmeasures are sorted into a ‘size’ cluster
(including volume) on the one hand and a ‘shape’ cluster (including
FD) on the other hand (Fig. 3¢, right). Notably, FD’s closest neighbor
inthis tree was gyrification, arguably the most shape-sensitive among
the alternative measures of cortex morphology.

Longitudinal development of brain shape in

individual newborns

Next, weinvestigated how brainshape develops withinindividual new-
borns. To this end, we analyzed the longitudinal FD trajectories in all
infants for whom repeated scans were available (n =100). Figure 4a
illustrates these trajectories for occipital GM and WM of the right hemi-
sphere. Therein, all infants showed a pronounced increase in FD for
occipital GM (paired t-test: t,, = 25.9, P < 0.001), paralleled by a simulta-
neous decrease in the corresponding WM region (¢,, = —22.6, P < 0.001;
Fig.4a), with large effect sizes for both (occipital GM: Cohen’sd =3.2;
WM: Cohen’s d = -2.2). Mapping these longitudinal developments
across the whole brain revealed systematic FD increases in cortical

GMand subcortical areas, with simultaneous decreases across several
WM areas (Fig. 4b).

The spatial pattern of longitudinal age effects thus strongly resem-
bled the distribution of cross-sectional age effects (Fig. 2a). Indeed,
explicitly comparing these estimates showed that the spatial pattern of
age—FD associations was virtually identical across and within individual
newborns (r=0.97, P<0.001; Fig. 4c).

To characterize the spatial specificity of these dynamics, we fur-
thermore estimated the speed of development as the relative change
thatabrain region exhibits per additional week of age. The upper-left
inset of Fig. 4d illustrates this rate of change for the right occipital GM
of individual infants, and the average speed per region is plotted in
the brain map (Fig. 4d, right). Notably, the speed of shape develop-
ment showed significant differences across tissue classes (Kruskal-
Wallis: x%,=50.9, P < 0.001; Fig. 4d, lower-left inset), with cortical GM
developing fastest, followed by an intermediate speed in subcortical
areasand WM areas showing the slowest change with age (all pairwise
comparisons P < 0.002).

Furthermore, we analyzed the total weekly brain change within
eachnewbornto study how developmental factors influence individual
longitudinal trajectories (Fig. 4e). Therein, we observed no differ-
enceinthe speed of development between female and male neonates
(t=1.16, P=0.25) nor between singleton and multi-fetal pregnancies
(t=-1.91, P=0.06). Interestingly, however, total weekly brain change
was negatively associated with age at birth (r=-0.36, P < 0.001), such
that the brains of more prematurely borninfants showed a higher rate
of change compared to infants who were born later (Fig. 4€, right).

Explaining the tissue-specific direction of age—FD effects

The above analyses thusrevealed a consistent spatial pattern of age-FD
effects, which was observed both cross-sectionally and longitudinally
and in which more mature brains are characterized by higher GM-FD
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@ Brain shape and brain size differentially reflect age at scan across newborns
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Fig. 2| Brain shape reflects infant maturity beyond differences in brain

size. a, Cross-sectional correlations between infant age at scanand FD as a
measure of brain shape (left) and volume (Vol) as a measure of brain size (right;
two-tailed product-moment correlation tests). Correlation coefficients were
Fisher z-transformed and thresholded to P < 0.05 after false discovery rate (FDR)
adjustment. b, Region-wise comparison of age effects (two-tailed Williams’

test of absolute effect size; example regions: parietal GM left, Prpr = 2.3 107%;

parietal WM left, Pepg = 2.7 x 107%; thalamus left: Py,r = 0.10). For color-coded
regions, the null hypothesis that FD and Vol are equally strongly correlated with
age wasrejected at P< 0.05 after FDR adjustment. Higher age correlations for
brain shape are shown on the left; higher age correlations for brain size are shown
on theright. Note that, in some regions (for example, the thalamus), infant age
was reflected equally strongly by both measures. NS, not significant.

and lower WM-FD. To explain this tissue-specific effect direction, we
conducted six follow-up analyses. Here we summarize the mainresults,
but see the Supplementary Information for details.

First, the direction of age—FD effects closely replicated in an
independent validation cohort from the University of California, Irvine
(UCI, n=99 newborns; Extended Data Fig. 5)****,

Second, we conducted amorphological simulation study in which
we gradually transformed a Euclidean plane (theoretical FD = 2) into
afully filled cube (theoretical FD = 3), illustrating how FD maps the
geometric continuum between the idealized dimensions of Euclid
(Extended Data Fig. 6). Additionally, this simulation showed a strong
inverserelationship between the FD of the simulated objects and their
surface-to-volume voxel ratios (SVRs), offering ageometricinterpreta-
tion of FD as an index of how ‘space-filling’ an object is with regard to
the embedding space.

Third, this theoretical association between FD and SVR in simu-
lated objects was closely corroborated in the empirical brain data,
in both the main cohort (dHCP) and the replication cohort (UCI)
(Extended Data Fig. 7).

Fourth, we tested the geometric interpretation of the simulation
study in the empirical data, which suggested that GM develops from
amore ‘plane-like’ geometry in younger infants (FD toward 2, SVR
toward maximum, less space-filling) to amore ‘cube-like’ geometryin
older infants (FD toward 3, SVR toward minimum, more space-filling),
whereas the opposite development was observed for WM geometry
(Extended DataFig. 8).

Fifth, we thus hypothesized that the inverse age-FD in WM
could be flipped by artificially imposing a more ‘plane-like’ geom-
etry on the WM segmentations through a hollowing procedure
(and thereby making them more similar to cortical GM). This effect
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@ Age-morphology associations of the neonatal cortex | region-wise linear models across eight measures of cortical morphology
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Fig.3 | FD outperforms earlier morphological measures in capturing

the age-related variability of the neonatal cortex. a, Age-morphology
associations of the neonatal cortex across eight measures: cortical thickness
(Thick), curvature (Curv), gyrification index (Gl), sulcation (Sulc), surface

area (Surf), Tlw/T2wratio (T1/T2), volume (Vol) and FD. The left panels show
the adjusted R?values (R?,;) from linear regression models against age at scan
for each measure and cortical region (n = 609 infants; 26 regions based on

the modified ALBERT atlas'’; error bars: upper bound of bootstrapped 95%
confidence intervals). For each region, the model with the highest R%,;was
statistically compared to the second-best model with a permutation test.
Abbreviations indicate the measure with the highest-ranking R?,;in each region,
with asterisks reflecting the outcome of the permutation tests (***P < 0.001;

**P < 0.01;*P < 0.05; red: Prpr < 0.05 over all regions). The middle panel maps
the spatial distribution of strongest (raw) effects across the entire cortex; the
right panel visualizes the relative ranking of age effects across all regions and
measures, compared with a Kruskal-Wallis test (P= 6.3 x 10). b, Whole-cortex
models of age-morphology associations. The plots show the root mean square
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error (RMSE) in weeks (left) and the R?,4; (right) obtained from multiple linear
regression models including all cortical regions for the same n = 609 infants as
above. Permutation tests showed lower RMSE and higher R?,; for FD compared
to all others measures at Pype < 0.001. Error bars correspond to bootstrapped
95% confidence intervals. ¢, Morphological covariance across cortical features.
Here, measures were estimated for the whole (unparcelled) cortex and included
the number of vertices from surface modeling (Vert) as a further control
measure, as the latter is expected to correlate perfectly with Surf. The matrices
show raw (left) and age-adjusted (middle) correlations across measures.

The latter was subjected to hierarchical clustering (right), where the three

main clusters were assessed with aMonte Carlo simulation (sigclust test; first
branch: P=3.0 x 1073, second branch: P=4.2 x 10~°). For exact Pvalues not listed
here, see the Supplementary Information. Region labels are as follows: ATL,
anterior temporal lobe; CING, cingulate; FRONT, frontal; MIT, medial-inferior
temporal gyrus; OTG; occipitotemporal gyrus; PG, parahippocampal gyrus;
STG, superior temporal gyrus.

was indeed observed and again replicated in the validation data
(Extended DataFig.9).

Finally, afurther validation study showed that the Tlw/T2w ratio
asabiophysical proxy of WM microstructure related significantly more
strongly to WM-FD than to volume (Extended Data Fig. 10).

Brain shape outperforms brain size in predicting infant age

Given these inferential age—FD effects, we next asked how closely
infant age could be predicted from brain shape in unseen data. To
this end, we employed a supervised age prediction scheme, resting

on a combination of least squares splines, dimensionality reduction
and relevance vector regression®>, Herein, FD values constituted
the predictor matrix, and the quality of age prediction was assessed
as the mean absolute prediction error (MAE) in days and variance
explained (R?) inunseen data, evaluated using a10-fold cross-validation
scheme (Fig. 5a).

Out-of-sample performance of age predictionyielded high accu-
racy, with a mean prediction error of 4.2 + 0.3 days and a substan-
tial amount of variance explained in the test data (R*=0.95 + 0.01)
(Fig.5b). Furthermore, shape-based age prediction with FD significantly
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Fig. 4 |Longitudinal development of brain shape inindividual newborns.

a, Longitudinal changes in FD within individual infants, illustrated for occipital
GM (P=7.3x107*) and WM (P=7.8 x10™*) of the right hemisphere. Repeated
scans were available for n=100 newborns. ¢-statistics were derived from paired
t-tests (two-sided) between baseline and follow-up scans. b, Whole-brain
distribution of longitudinal age effects. Cohen’s d was derived from the
region-wise t-tests (two-sided), FDR adjustment over regions. ¢, Product—
moment correlation between cross-sectional age effects (Fisher’s z; Fig. 2) and
longitudinal effect sizes over individual brain regions (two-sided, P=7.7 x 10™*).
d, Quantifying the speed of shape developments. The upper-left panelillustrates
the change per additional week of age for right occipital GM, where the histogram

reflects individual infants. The brain map displays the mean weekly change
derived from these distributions for all brain regions. The lower-left image shows
the distributions of weekly change over tissue classes. x*statistic from Kruskal—
Wallis test (P=8.7 x 1072). Pairwise comparisons between tissue classes with
Dunn’s test are significant at Pipe < 0.002. e, Total weekly change of brain shape
inindividual newborns (n =100 as above), compared by sex, pregnancy status
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lower hinge: 25th percentile; upper hinge: 75th percentile; center line: median),
and whiskers cover the furthest data points within 1.5x IQR.

outperformed size-based age prediction with volume—bothin terms
of lower prediction errors (z=-2.8, P=0.005) and more variance
explained over individual folds (z=2.8, P= 0.005) (Fig. 5b). Notably,
volume-based prediction tended to overestimate age in very young
infants (Extended Data Fig. 3b), which was not observed with FD.

Moreover, we repeated the cross-validation procedure over
n=500random splits of the dataset into the 10 respective folds (that
is, 5,000 unique test sets) and evaluated the resulting distributions
of the performance metrics for differences in location and variance.
This approach corroborated the superior performance of FDinterms
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ofboth predictionerrors (z=-61.2, P < 0.001) and variance explained
(z=61.1,P<0.001) andyielded significantly lower variance of the per-
formance metrics (MAE: F=277, P< 0.001; R%: F=219, P< 0.001), sug-
gesting thatage prediction frombrain shape generalized substantially
better over random fluctuations in the data (Fig. 5¢).

Finally, we conducted three additional control analyses. First, age
prediction from FD and volume together performed on par with age
predictionfrom FD alone (MAE: 4.1 + 0.4 days, AMAE = 0.15 + 0.25 days
versus FD; R*=0.95 + 0.02, AR?= 0.5 + 0.6% versus FD). Second, the
superior performance of age prediction from FD was confirmed in
two alternative control models of lower model complexity (multiple
linear regression and support vector regression), with virtually identi-
calresults (Supplementary Fig.1). Third, FD predicted not only age at
scan but also age at birth with high accuracy, even when infants were
scanned up to 1 month after birth (Supplementary Fig. 2a). Similarly,
FDsignificantly outperformed volumeinasupervised binary classifica-
tion approach of preterm versus term birth from term window scans
(Supplementary Fig. 2b).

Brain shape detects signatures of prematurity that are not
captured by brainsize

Next, we asked what normative brain shape is expected in infants of
full-term maturity. To address this question, we estimated a full-term
FDreference and quantified how much the brains of individual infants
departed fromthis reference. For eachbrainregion, we thus computed
the average FD values over those infants who were both born and
scanned within the full-term window, which applied to n =116 neo-
nates (Fig. 6a; size reference calculated in analogy from volumes).
This approach allowed us to compute awhole-brain ‘departureindex’
as the spatial correlation distance between these reference values
and an infant’s individual values. Figure 6b illustrates this procedure
for one infant who was born and scanned at full term and shows low
departure from reference (left) and another infant who was born and
scanned preterm and shows higher departure from the normative
reference (right). Furthermore, the distribution of departure indi-
cesover all scans (Fig. 6¢) revealed that (1) departure from normative
shape is significantly stronger than departure from normative size
(rank-sum test: z=28.2, P< 0.001); (2) departure indices across indi-
vidual scans are significantly more variable for shape than for size
(F-test: Fgg3 553 = 5.6, P< 0.001); and (3) both distributions show a local
minimum around term age at scan, which is expected because this
is the age window on which the respective references were defined.
These distributions subsequently allowed for explicit comparisons
amongthreeinfantgroups: (1) thosebornpretermand scanned preterm
(preterm—preterm, n=161); (2) those born preterm but later scanned
at term-equivalent age (preterm-term, n = 41); and (3) those born at
term and scanned at term (that is, the reference group; term-term,
n=116). Consistent with the previously observed age effects, group 1
(preterm-preterm) showed significantly higher departure from the
normative reference than both group 2 (preterm-term) and group 3
(term-term), and this held true for both FD and volume (Fig. 6d).
By contrast, the comparison between group 2 (preterm-term) and
group 3 (term—term) was significant only for FD but not for volume
(Fig. 6d), showing that brain shape captured signatures of premature
birth even when those infants were later scanned in the full-term age
window, whereas such signatures of prematurity were not detected
with brain size.

As an exploratory follow-up, we furthermore estimated which
brain regions are most implicated in these shape differences by relat-
ingtheregional FD values of individual infants to the distribution of FD
values in the term-term reference (Supplementary Fig. 3a). Therein,
we found strong deviations from reference in the preterm-preterm
group across virtually all brain regions (Supplementary Fig. 3b), cor-
roborating both the strength and direction of the previously observed
age effects. Interestingly, however, the preterm-termgroup showed a

differentiated pattern of shape deviations, in which some brainregions
were not significantly different from the term-term reference (for
example, occipital cortex), other areas were still ‘lagging behind’ the
reference (for example, brainstem) and yet other areas showed an
‘overshoot’ of FD values compared to the reference (for example,
frontal cortex) (Supplementary Fig. 3c).

Brain shape reflects genetic information

Next, we moved beyond group-level age effects and studied the
relationship between genetic factors and brain shape on the level of
individual newborns.

To this end, we computed the pairwise age differences for all
infant-to-infant comparisons in the dataset and measured the 'shape
difference’ of their brains as the dissimilarity of their whole-brain
FD profiles (Fig. 7a). As expected from the group-level effects, the
shape difference between any two infants strongly increased with the
age difference between them (p = 0.83, P< 0.001; Fig. 7b). However,
the granularity of individual brain-to-brain comparisons allowed us
to threshold the pairwise age differences to obtain only those com-
parisons in which both infants were within 1 day of age at the time of
scanning. The inset of Fig. 7b shows that, even within this subset of
age-matched comparisons, there is considerable variance in the FD
dissimilarity of individual brains. Notably, however, these shape differ-
ences are not attributable to age because the respective infants were
thesame age at the time of scanning, allowing us to evaluateif sharing
genetic information—beyond sharing the same age—would be linked
to a higher similarity in brain shape.

To test this idea, we first compared the brains of twin siblings to
all matched infants who were the same age as these twins but biologi-
cally unrelated to them. Figure 7c illustrates the resulting dissimilar-
ity distribution for one of the 35 twin pairs for whom unrelated age
matches were available. Here, the difference between the exemplary
infant and its twin sibling was substantially lower than the difference
to any of the unrelated children, such that the two twin brains were
the most alike in shape. Critically, this observation generalized over
alltwin-to-unrelated comparisons—brain shapes of twin siblings were
generally more similar to each other than to the brains of unrelated
infants, with large effect size (one sample ¢-test: ¢, =-17.1, P< 0.001,
Cohen’sd=-2.1; Fig. 7d).

Consequently, we performed two additional analyses to
test the idea that similarity in brain shape may reflect similarity in
genetic information.

First, we stratified the dissimilarity scores by the sex of the
compared infants (Supplementary Fig. 4). This revealed that infants
of the same sex exhibit significantly more similar brain shapes than
infants of different sexes, and this was true in both twin siblings
and biologically unrelated infants. Interestingly, for infants of the
same sex, brain shapes tended to be even more similar when both
newborns were female compared to when both newborns were
male (z=-6.2, Pipr < 0.001 for unrelated, tendency in twins), sug-
gesting an additional effect of homologous sex chromosomes that
share the same genes (thatis, an XX karyotype in bothinfants) com-
pared to heterologous sex chromosomes (that is, an XY karyotype)
that do not.

Second, we hypothesized that, even among twins, sharing more
genetic information would be reflected by yet more similar brain
shapes. Accordingly, we stratified twins into dizygotic siblings (that
is, fraternal twins with approximately 50% shared genes) and monozy-
goticsiblings (thatis, identical twins with approximately 100% shared
genes) and indeed observed that brain shapes are significantly more
similar in identical twins than in fraternal twins (¢, 5 = 6.6, P< 0.001,
Cohen’sd=2.3;Fig.7e).

Notably, analogous control analyses with volume showed that
genetically related infants exhibit stronger similarity in brain shape
thaninbrain size (Supplementary Fig. 5).
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Fig. 5| Brain shape outperforms brainsize in predicting infant age.

a, Schematic of the age prediction pipeline, resting on acombination of least
squares splines, principal component analysis (PCA) and relevance vector
regression (RVR). Model performance in unseen data was evaluated by mean
absolute error (MAE) of age prediction in days and variance explained in test data
(R?), employing a10-fold cross-validation scheme. b, Out-of-sample performance
of predicting infant age from FD (left) and fold-wise comparisons between
FD-based and volume-based age prediction (right) using two-sided signed-rank

tests (n =10 folds; P= 0.005 for both MAE and R?). ¢, Repetitions of the
cross-validation procedure over random data splits to estimate the distribution
of performance metrics with respect to variance and location. Differences in
location between FD-based and volume-based prediction were assessed with
two-sided signed-rank tests (P~ 0 within machine precision for both MAE and R?);
differencesin variance were assessed with Levene’s test (MAE: P=9.4 x 107}, R%:
P=5.6x10"*).Vol, volume.

Identifying the brain of one twin from the brain of the other twin
Given these findings, we lastly asked if brain shape would enable the
identification of twin siblings among age-matched unrelated infants
(Fig. 7f). This approach pertains to the idea of ‘connectome finger-
printing”®, in which the unique variability of brain activity signatures
(‘fingerprints’) enables the identification of single individuals with
high accuracy. Notably, however, here we do not aim to identify the
same individual but, rather, the individual’s twin sibling. To this end,

the dissimilarity scores of individual twin-to-unrelated comparisons
were ranked, and the infant with the lowest-ranking shape difference
was predicted to be the other twin. In the example of Fig. 7c, the twin
sibling was thus correctly identified but not soin the analogous analysis
with volume (Supplementary Fig. 5a). To assess the predictive power
of this approach, we computed (1) the ‘rank loss’ over individual pre-
dictions, defined as the proportion of unrelated infants whose brain
shapes were more similar to the target infant thanits twin (thatis, rank
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Fig. 6 | Brainshape detects signatures of prematurity that are not captured
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allinfants who were both born and scanned at full term (n =116, defined as

39 0/7 weeks to 40 6/7 weeks, following the ACOG criteria®). Regions are based
on the modified ALBERT parcellation'*"* (Methods). b, Quantifying the departure
from this reference with adeparture index ‘d’, computed as the spatial rank
correlation distance between each infant’s individual values and the reference
values from a. Illustration for two infants with lower departure from reference
(left; born term, scanned term) and higher departure from reference (right;
born preterm, scanned preterm). Reference brain size was computed in analogy
using regional volumes. ¢, Departure from reference over all n = 884 scans in
the dataset for brain shape (top) and brain size (bottom). The shaded areas
display the ACOG definitions of preterm age (<37 0/7 weeks = 259 days) and
termage (273-286 days). Note the local minimum of both scatter clouds around
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the term window. Departure indices were significantly higher for FD than for
volume (two-sided rank-sum test, P= 8.2 x 10%). d, Departure from reference
for three infant groups: (1) born preterm and scanned preterm (n =161), (2) born
preterm and scanned term (n = 41) and (3) born term and scanned term (n =116).
Boxes display the interquartile range (IQR; lower hinge: 25th percentile; upper
hinge: 75th percentile; center line: median), and whiskers cover the furthest data
points within1.5x IQR. Kruskal-Wallis omnibus tests yielded significant results
forboth FD (x?,=197.2, P=1.5 x10) and volume (x>, = 194.6, P=5.5x 10™).
Pairwise comparisons correspond to Dunn’s tests with FDR adjustment

(FD: term~-term versus preterm—-term: Py, = 0.007; term—term versus
preterm—preterm: P, = 1.8 X 1072 preterm—term versus preterm—preterm:
Pepr = 2.0 x1072; Vol: term—term versus preterm—term: Pepg = 0.205; term—term
versus preterm—preterm: Py, = 2.6 x 107%; preterm—-term versus preterm-
preterm: Py = 8.1 x1077). NS, not significant; Vol, volume.

loss = 0: correct identification; rank loss = 1: all unrelated more simi-
lar than twin; Fig. 7f, left); (2) the accuracy of twin predictions as the
proportion of correct identifications; and (3) the null distribution of
correcttwinidentifications that happen by chance. The latter was esti-
mated by randomly permuting the ranks within individual predictions,
yielding the permuted Pvalue (P,.,,) onthe predictionaccuracy asthe
proportion of randomly obtained accuracies that surpass the empiri-
cally observed value (lower-right inset). On average, approximately
11% of twin identifications were thus expected to happen by chance.

Critically, brainshape correctly identified the target twinin 77.1%
over all predictions (P, < 0.001; Fig. 7f). Notably, however, predic-
tive power again mirrored the effect of genetic similarity on shape
similarity: whereas the accuracy of identifying fraternal twins was
considerably lower (46.4%), if still far from chance (P, < 0.001),
prediction accuracy was near perfect in the case of identical twins
(97.4%, P,y < 0.001; Fig. 7f).

Here again, analogous analyses with volume showed that predic-
tive power of brain size was markedly lower, resulting in a consistent
25-30%drop inidentification accuracy (Supplementary Fig. 6).

Finally, we repeated the core analyses of brain-to-brain com-
parisons in the subset of newborns for whom surface-derived brain
measures were available (n=609), including cortical thickness,
curvature, gyrification, sulcation, surface area and T1w/T2w ratio
(Fig. 8a). Therein, we found that FD (1) significantly outperformed
all other metrics in capturing age-related differences of individual
brain morphology (Fig. 8b; Pypr < 0.001 for all comparisons); (2)
was the most sensitive in discriminating genetically related from
age-matched unrelated infants (Fig. 8c, left; all Pipg < 0.001); and (3)
showed the highest power in predicting which newborns are twin
siblings (Fig. 8c, right), both overall (accuracy 77%) and separately
for fraternal twins (42%) and identical twins (97%) (P,erm < 0.001
for all).
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Fig. 7| Brain shape reflects genetic similarity among newborns and enables
theidentification of one twin from the brain of the other twin. a, Pairwise
brain-to-brain comparisons across the dHCP dataset. The matrices display the
age differences of the compared infants (left) and the overall ‘shape difference’
of their brains (right), computed as the dissimilarity of their FD values across all
brainregions. b, Correlation between age differences and FD dissimilarity for
all brain-to-brain comparisons (left; Spearman’s rank correlation, P = O within
machine precision). Age-matched dissimilarity distribution after thresholding
the age difference to +1 day (right). ¢, Dissimilarity scores between an exemplary
infant and its twin sibling (left) and all unrelated infants of the same age

(right). The dissimilarity of the twin sibling was z-scored with regard to all age
matches and collected for each twin-to-unrelated comparison (70 comparisons
across n =470 infants). d, Distribution of twin dissimilarities from c over all
twin-to-unrelated comparisons. One-sample ¢-test against zero (two-sided,

P=1.4x107%). e, Dissimilarity scores across fraternal and identical twin pairs
(Welch’s t-test, P=3.2 x 107). Boxes display the interquartile range (IQR; lower
hinge: 25th percentile; upper hinge: 75th percentile; center line: median), and
whiskers cover the furthest data points within 1.5x IQR. f, Predicting twin siblings
from brain shape. For each twin-to-unrelated comparison (see ¢), the infant with
the lowest-ranking dissimilarity was predicted to be the target twin. The ROC-like
curve shows the proportion of infants over increasing rank loss (O: correct
identification; 1: all unrelated infants more similar than target twin). The null
distribution of twin predictions was estimated by randomly permuting the rank
structure and recording the correct twin identifications that happen by chance.
Pvalues of the permutation test are given by the number of permuted accuracies
that surpass the empirically observed accuracy, divided by the number of
permutations (n =5,000; all zero here). ROC, receiver operating characteristic.
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significantly stronger for FD compared to all other metrics (Pqpr< 0.001).

¢, Genetic analyses in age-matched newborns (compare to Fig. 7d-f). The left
panel shows that FD most strongly discriminates between twin siblings and
unrelated newborns of the same age (64 twins-to-unrelated comparisons across
atotal of n = 423 infants), and this effect was significant at P, < 0.001 compared
toall other measures (two-sided paired t-tests versus FD: Curv: Cohen’sd =-0.49,
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d=-0.73, Pepr =2.6 x107; Gl: Cohen’s d = -1.03, Pepr = 4.2 x 107™; Sulc: Cohen'’s
d=-1.16, Prpr =1.4 x 10?). The right panel shows the twin prediction accuracies
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Fig. 7f). For exact Pvalues not listed here, see the Supplementary Information.
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Discussion
These findings show that the early-life formation of brain shaperepre-
sentsafundamental maturational processinhumanbraindevelopment.

To study these shape developments, we analyze structural MRI
data from the dHCP, one of the largest datasets of human newborns
ever collected”. Therein, we describe brain shape with fractal dimen-
sionality, ageometric measure of structural complexity that comple-
mented and systematically outperformed purely size-based accounts
of neonatal brain development. Specifically, we found that brainshape
(1) strongly reflects infant maturity beyond size differences, both
cross-sectionally and longitudinally; (2) consistently outperforms brain
sizein predictinginfantage in unseen data, with high accuracy (mean
error approximately 4 days); (3) detects signatures of prematurity
that are not captured by brain size; (4) is consistently more sensitive
to genetic similarity among newborns, assessed by comparing infant
sex, related versus unrelated infants and fraternal versus identical
twins; and (5) enables the identification of one twin from the brain
of the other twin with high accuracy (approximately 77% overall, 97%
inidentical twins), again outperforming twin predictions from brain
size. Additionally, FD was systematically better at capturing infant
age, the morphological variability of individual brains and genetic
information when compared to common surface-derived measures,
including cortical thickness, curvature, gyrification, sulcation, surface
areaand the Tlw/T2w ratio.

Below, we turn to the implications of these findings, which
advance our understanding of early-life brain development along six
key directions.

First, brain shape isinextricably linked to infant age, closely cap-
turinginter-individualand intra-individual differencesininfant matu-
rity. Therein, age—FD associations showed a highly consistent spatial
pattern, which was observed both cross-sectionally and longitudinally
and in which more mature brains are characterized by higher GM-FD
and lower WM-FD. Notably, these effects replicated in an external
validation cohort and closely reflected a biophysical proxy of micro-
structural WM development. To derive a geometric interpretation of
these effects, we implemented a morphological simulation study that
produced objects of dimension 2 < FD > 3, spanning a continuum
between a more ‘plane-like’ geometry (FD toward 2) and a more
‘cube-like’ geometry (FD toward 3). The empirically observed age
effects thusindicate that GM develops from a more ‘plane-like’ geom-
etry inyounger infants to amore ‘cube-like’ geometry in more mature
brains, whereas the opposite trend was observed for WM.

Of course, thisis not to say that either tissue compartment looks
like a plane or a cube visually. Rather, it is their geometric properties
(and specifically their spatial scaling exponents) that exhibit a more
plane-like or cube-like behavior. Anintuitive interpretation of this can
beinvoked by the notion of how ‘space-filling” an object is with regard
to the embedding space, where the latter here corresponds to the
three-dimensional matrix representing the MRI. Consequently, our
findings suggest that cortical GM develops from a less space-filling
to a more space-filling structure, whereas WM shows the opposite
development. Notably, however, this relationship refersto the object’s
dimension, whichisindependent of its absolute size (Methods). That s,
eventhoughboth GM and WM are naturally larger in older infants due
tobrain growth, FD quantifies their space-filling properties relative to
the embedding space.

Biologically, FD should thus be interpreted as a developmental
marker of early-life brain maturity, whichis rooted ingeometry rather
than size. Accordingly, ageometric account of our findings is that the
cerebral cortex starts out as arelatively smooth sheet (FD closer to 2)
and becomes gradually more space-filling with increasing convolution.
By contrast, WM starts out as more of asolid block (FD closer to 3) and
becomes less space-filling, possibly due to increasing sulcal indenta-
tion. Incidentally, in the oldest infants, GM—FD ultimately surpassed
WM-FD numerically, which is also observed in adult brains’.

Second, this spatial pattern was paralleled by temporal differences
in the developmental trajectories, in which cortical GM showed the
most rapid change over time, whereas WM showed a more protracted
evolution. These findings in neonates are consistent with early work on
brain growth trajectories over the first 2 years of life, which reported
slower WM development compared to cortical GM*. Here, we observe
similar temporal differences in brain shape formation and show that
such tissue-specific dynamics are already present at birth, beyond volu-
metricgrowth’. Notably, these perinatal dynamics also converge with
arecent account of normative brain growth over the larger lifespan’,
which suggested that developmental trajectories are steeper for GM
than for WM around birth.

Third, it is particularly worth focusing on the development of
cortical complexity, which constituted some of the strongest effects
throughout our study. Ingeneral, our results suggest that the dynamic
complexity increases in the cortex are an expression of early-life
cortical folding. This folding process accelerates markedly around
26 weeks of gestational age, when the brain begins arapid change from
anear-lissencephalic to a highly convoluted structure in utero®*.
Here, we show that this morphological development naturally extends
into the neonatal period, where the increasing cortical convolution s
reflected by a highly canonical increase in structural complexity. In this
context, recent evidence from statistical physics suggests that cortical
morphologies across a variety of primate species may be an approxi-
mation of an underlying archetypal fractal shape*. Given the shape
developments observed here, the formation of cortical complexity may
thusnot only represent akey processin humanbrain development but
may rather be the result of a more general, evolutionarily conserved
mechanism of cortical expansion***, possibly related to latent scal-
ing rules. Although the precise biomechanics of this process are still
being unraveled, a differential tangential growth of the outer cortex
is thought to represent one key mechanism for cortical folding*®*$,
which raises the exciting possibility that future work may be able to
bridge these microscale accounts of cortical development and the
macroscale shape phenotypes studied here.

Fourth, we show that age differences do not only explain differ-
encesinbrainshapebutthatthisrelationship canbeinverted to predict
the age of aninfant from the shape of its brain with high accuracy. Here
again, brainshapessignificantly outperformed brain size, and this was
consistently observed across performance metrics, data splits and
three different prediction models. Notably, prediction accuracy was
homogeneously high across the whole age range in the dataset, from
very premature to well after term, suggesting that brain shape closely
reflects infant maturity over all stages of neonatal development. In
this context, recent work has applied geometric deep learning (GDL)
to show that shape characteristics of the human cortex are predictive
of a person’s sex and age over the larger lifespan*’, and GDL has also
been used for neonatal age prediction from cortical features in the
dHCP*°*', Notably, shape-based age prediction in our study generally
performed atleast on par withthese reports, further highlighting FD as
apromising new neuroimaging phenotype. In this context, the ‘ground
truth’ ages as used here are commonly determined from self-reports
of the mother’s last menstrual period, which represents a potential
source of uncertainty. Therefore, our findings raise the question if
brain shape can also predict fetal age in utero and how this compares
to early-life ultrasound.

Fifth, brain shape captured morphological signatures of pre-
mature birth that remained undetected by brain size. Specifically,
even when preterm-born infants were subsequently scanned in the
term-equivalent age window, their brain shapes still deviated signifi-
cantly from a normative reference of term-born infants, whereas this
was not the case for brainsize. In this context, arecent study on cortical
structure after preterm birth found prematurity-related alterations to
be highly variable over individual neonates*’. Notably, our modeling
framework explicitly allows for such individual deviation patterns
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because the departureindexis agnostic to the direction of deviations
andthe particular regionsinvolved inthem, yielding anindividualized
new normative approach.

Besides these spatial alterations, we observed differences inindi-
vidual temporal trajectories, where the brains of more prematurely
borninfants showed a higher rate of change compared to term-born
infants. Ultimately, longitudinal studies contrasting in utero versus ex
utero development are necessary to understand ifthis effect represents
the normal developmental dynamics or, possibly, an acceleration in
response to premature birth. Here, exploratory analyses indeed sug-
gested that some brain regions show a developmental ‘overshoot’ in
preterm-borninfants, but more work is needed to unravel such spatial
specificity comprehensively.

Insum, brain shape reflected altered developmental trajectories
of preterm-born infants already within the first few postnatal weeks.
Although this is, to our knowledge, the earliest account of altered
shape development after preterm birth, one previous study applied
fractal analysis in infants at 12 months and found that prematurely
born infants with intra-uterine growth restriction showed persistent
reductionsin GM complexity that were related to language and motor
scores™. Moreover, recent work reported persistent reductions of
cortical complexity at adult age in participants who had been born
prematurely, which was related to the degree of prematurity and cor-
related with reduced cognitive performance in adulthood**. These
findings not only align well with the shape alterations observed here
innewbornsbut also suggest such changes to carry functional signifi-
cance for neurocognitive development.

Importantly, about 11% of infants are born prematurely
worldwide®®, bearing an increased risk for early-life mortality®>, later-
life cognitive deficits® and neuropsychiatric disorders*. Our findings
thus call for long-term longitudinal efforts to assess the prognostic
potential of FD and follow up neonates into infancy and adulthood
when neurodevelopmental disorders become manifest.

Sixth, our study reveals a systematic link between brain shape and
geneticinformation. Specifically, we found that (1) the brains of geneti-
cally related infants are more similar in shape than those of unrelated
infants; (2) infants of the same sex show more similar brain shapes than
infants of different sexes; (3) brainshapes are more similarinhomologous
than in heterologous sex chromosomes; and (4) brain shapes are more
similar in identical twins (approximately 100% shared genes) than in
fraternal twins (approximately 50% shared genes). Notably, all these com-
parisons were carried outin age-matchedinfants, such that theseresults
are unlikely tobe confounded by the strong age effects discussed above.

These findings complement the fast-growing literature link-
ing neuroimaging phenotypes to genetic factors in human brain
development® 2, In this regard, one study showed that cortical mor-
phology at birth reflects spatiotemporal patterns of gene expression
inthe fetal brain®, suggesting that the shape developments observed
here postpartum are a direct extension of intra-uterine genetic regu-
lation. Similarly, arecent study found that deviations from normative
brainageinadulthood were best explained by congenital factors such
as polygenetic risk, suggesting that early-life genetic factors exert a
lifelong influence on brain structure®*.

Finally, the strong link between genetic information and brain
shape enabled us to predict which infants are twin siblings from their
MRI data, identifying the brain of one twin from the brain of the other
twin. Here again, FD showed the highest predictive power, outperform-
ingnotonly volume as ameasure of brain size but also all other morpho-
logical measures, including cortical thickness, curvature, gyrification,
sulcation, surface area and the T1w/T2w ratio. Overall, these findings
suggest that brain shape similarity is a direct expression of genetic
similarity and that the variability of individual brain shapes represents
agenetically modulated and heritable phenotype in humans.

In sum, our study identifies the early-life formation of brain
shape as a fundamental maturational process in human newborns,

with several immediate implications for understanding normative
brain development, the study of neurodevelopmental disorders and
the relationship between individual brain morphology and genetics.
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Methods

Data and image processing

Neonatal datawere obtained fromthe third release of the dHCP (https://
www.developingconnectome.org/), including cross-sectional data
for n =782 infants (360 females, 422 males). The dHCP protocol was
approved by the United Kingdom Health Research Authority (Research
Ethics Committee reference number14/L0/1169), and writteninformed
consent was obtained from the legal guardian/next of kin*. MRI of
virtually all newborns was acquired during natural sleep”. Mean birth
age was 37.89 +4.17 post-menstrual weeks (range, 23.0-43.57), and
age at first scan was 39.81 + 3.55 weeks (range, 26.71-45.14). Of these
infants, 682 were born from singleton pregnancies, and 100 were
born from multi-fetal pregnancies. Follow-up MRI scans for longi-
tudinal analyses were available for n =100 infants. Note that, com-
pared to adult brains, tissue contrasts in neonatal brains are inverted
due to immature myelination®*, such that T2-weighted images pro-
vide better quality and were hence used for image processing in the
dHCP®. To control for potential confounds in these data, the dHCP
developed a series of advanced acquisition protocols and correction
schemes for neonatal MRI"**¢%%, Specifically, motion correction and
super-resolution reconstruction were achieved by combining tech-
niques from Cordero-Grande et al.®® and Kuklisova-Murgasova et al.®,
whichrest onrigid-body motion estimation and motion-compensated
reconstruction, resulting inisotropic volumes of 0.5-mm?spatial res-
olution”. These images were subsequently passed to the neonatal
processing pipeline, including correction for intensity inhomogene-
ity, brain extraction, tissue segmentation and surface modeling®.
Therein, the segmentations of individual images were based on the
DRAW-EM algorithm (Developing brain Region Annotation With
Expectation-Maximization)™", where the assignment of individual
voxels to regions of interest (ROIs) rests on the ALBERT atlases for
neonatal brain anatomy (‘ALBERT: a label-based encephalic ROI tem-
plate’)' as modified by Makropoulos et al.". This atlas contains 87
regions, including 16 cortical GM and WMregions for each hemisphere,
nine bilateral subcortical regions, the brainstem and corpus callosum
as unpaired regions as well as unlabeled tissue, background and cer-
ebrospinal fluid. Here, we combined some smaller and contiguous
regions to harmonize spatial granularity across the brain. Specifically,
we combined the medial and lateral part of the anterior temporallobe,
the anterior and posterior segments of the gyri parahippocampalis et
ambiens, the anterior and posterior lateral occipitotemporal gyrus as
well as high-intensity and low-intensity voxels of the thalamus, yielding
atotal of 70 ROIs assigned in each MRI.

Using these data, the main focus of our study was to compare FD
as a measure of brain shape and volume as a measure of brain size in
their ability to capture early-life brain development. However, both
of these measures are derived from a voxel-wise three-dimensional
representation of the brain, raising the additional question of how
FD compares to morphological measures of the cerebral cortex that
are derived from surface modeling'*">**. Therefore, we furthermore
assessed the utility of our framework against a set of six common
surface-derived measures, including cortical thickness, curvature,
sulcation, the T1w/T2w ratio as well as surface area and gyrification.
Note that, whereas the former four measures were directly available
with the dHCP release (https://biomedia.github.io/dHCP-release-
notes/structure.html#structural-pipeline), surface area and gyrifica-
tion index were computed with the additional package for the dHCP
structural pipeline, given here: https://github.com/amakropoulos/
structural-pipeline-measures/tree/master. Complete morphological
data were available for n = 609 infants and underlie the analyses in
Figs.3 and 8. Note that the same region labels as above were projected
onto the cortical surface, such that surface measures were averaged
within a parcel to obtain ROI-wise estimates. Therein, we averaged
over the absolute values of sulcation and curvature, as these measures
include positive and negative entries that equally carry important

morphological information (for example, convexity and concavity).
Finally, note that the dHCP provides age-specific normative templates
by week of post-menstrual age to account for the rapid development
of neonatal brains. These age-specific templates are openly available
from https://brain-development.org (refs. 14,32,69), and the surface
renderings of left cortical GM correspond to the week-wise averages
displayedinFig. 1a. For all visualizations of statistical tests, results were
mapped onto the 40-week template.

Abrief note onfractal geometry

Under the traditional framework of Euclidean geometry, astraight line
is attributed with a dimension of 1, a plane has a dimension of 2and a
cubeis characterized by adimension of 3. Althoughstill broadly taught
asthe standard geometry today, it has long been realized that natural
objects of the physical world do not adhere well to these idealized
Euclidean figures. The latter was famously illustrated by Benoit B. Man-
delbrot—widely regarded as the founding figure of fractal geometry—in
aseminal 1967 article on the coastline paradox®. This paradox refers
tothe phenomenon that many real-world curves such as coastlines do
not possess well-defined length although they represent finite physical
objects. Ineffect, thelength of the object depends on the spatial scale
atwhichitis measured (but does not converge atincreasingly smaller
scales), leading to curious observations such as Portugal and Spain
independently reporting the length of their shared border with a dif-
ference of several hundred kilometers™. At the core of this paradox lies
thefact thatthe scaling properties of the natural object do not coincide
withthose expected from Euclidean geometry—or, more formally, that
anobject’s Hausdorff-Besicovitch dimension can exceed its topologi-
cal dimension”. Toiillustrate this, consider the simple scaling law

N(x) =x7P 1)

where x represents a scaling factor; N(x) represents the number of
scaled measurement units needed to recover the original object;
and D represents the dimension estimate. This relationship can be
rewrittenas

D = ~log,N(x) = —=Ex2 ©)

As an example, consider a straight line that is scaled by x = % We
now count the number of scaled measurement units (Mandelbrot calls
these ‘yardsticks’) needed to recover the original object and obtain

. . log2

N(x) = 2. With the above equation, we see D = g1z = 1, as would be
expected from the Euclidean notion of a line. Similarly, consider the
case of a square that is covered with scaled squares of side length x.
Here we obtain N(x) = 4 scaled units needed to retrieve the original

square. Thus, D = — 11,0:172 =2, and the case of a cube follows in analogy
toyield p = — 1228 _
log1/2

Importantly, however, many objects—both in pure mathematics
and the real world—do not follow this behavior. One famous example
is the so-called Koch curve”, which possesses infinite length and scales
according to D= —k]:;iljs ~ 126 This object is thus described by a
non-integer dimension D, for which Mandelbrot coined the term ‘fractal
dimension’ from the Latin ‘fractus’: broken, fragmented or irregular”.
Such curves canbe said to possess scaling properties that liein between
those of aline and those of a plane and are an expression of the object’s
higher structural complexity compared to the Euclideanline. Notably,
the term ‘complexity’ carries different connotations depending on the
field of study, which canlead to misunderstandings or interpretational
issues. With regard to fractal analysis, we use the terminapurely techni-
cal way: structural complexity quantifies the non-Euclidean scaling
properties of the object under study. However, we realize that amore
intuitive interpretation may be helpful, and, within the present context,
the FD estimate can be roughly interpreted as an index of how
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‘space-filling’ an object is with regard to the embedding space (here,
the three-dimensional matrix representing the brain MRI). For an
illustration of this geometric intuition, see the morphological simula-
tion study below and in Extended Data Fig. 6.

Insum, theidealized dimensions of Euclid can be viewed as special
cases of a more general geometry that allows for non-integer dimen-
sions and lends itself to the analysis of naturally occurring forms in
the biophysical world.

Estimating FD from structural MRI

Although D can be computed in an exact fashion for objects like the
Koch curve, it must be estimated empirically for real-world data (we
here use the term ‘dimensionality’ instead of ‘dimension’ to reflect this
distinction). To this end, the most common method is the box-counting
algorithm™?, inwhich boxes of side length £ are imposed on the object
ofinterest, and N(¢) represents the minimum number of boxes needed
to cover the object comprehensively. The FD estimate is then given by
the box-counting dimension Dy as

Dac = lim 2003 ®

However, whereas theoretical fractal sets can be downscaled infi-
nitely, the zero limit typically does not apply to empirical data (and
in neuroimaging, the smallest observable scale usually corresponds
to the voxel resolution’). Therefore, the FD estimate is in practice
computed over a finite set of physical scales and is given by the slope
of the regression line of box count versus box size inlog-log space'*""*',

Here we use a modification of this classical three-dimensional
box-counting method, in which each box is replaced with a cube of a
given size through iterative convolution with a set of spatial kernels,
amounting toa‘dilation’ procedure that is mathematically equivalent
to applying box counting with a sliding grid”*®. Previous validation
studies showed that this dilation algorithm represents a more robust
version of classical box counting in that it (1) fares better in bench-
marking studies of simulated objects”, (2) is less sensitive to object
translation and rotation" and (3) yields better test-retest reliability
than classical box counting'®. Computationally, this dilation procedure
was implemented with the calcFD toolbox”* for MATLAB (MathWorks,
Inc.), openly available from https://github.com/cMadan/calcFD.

To estimate the FD of brain structures from MRI data, voxels
belongingto the ROl are firstindexed through a segmentation proce-
dure (here we use the abovementioned dHCP segmentation), yielding
abinary three-dimensional mask that is subsequently passed to the
dilation algorithm. Therein, the physical scales over which the FD
estimate is computed correspond to a range of voxel sizes', typically
expressed as 2X with k e Ny. Here, we follow previous applications of
the toolbox in applying the range of k=0, 1, ..., 4 for estimation with
the dilation algorithm''?*%_For each of these spatial scales, the
three-dimensional convolution of theindex mask s calculated, result-
ing in a volumetric count in relation to the spatial scale. Extended
Data Fig. 1illustrates how this dilation procedure is used to compute
the FD estimate from the scaling properties of a voxel-indexed segmen-
tation mask. In this example, FD is estimated for global segmentations
of cortical GM and WM in two recordings of a representative neonate.
Note that we use global tissue segmentations for the analyses in
Extended Data Figs. 5 and 7-10, whereas the analyses in the main text
were carried outinthe parcellated brain dataas described above, yield-
ing one FD estimate per region and thus al x 70 vector for every scan.
This region-wise FD estimation follows the same procedure and
isillustrated for the left parietal cortex of the same exemplary infant
inFig.1b.

Inferential statistics and modeling
All directional tests were two-tailed. Simple two-group comparisons
were tested with t-tests or rank-sum tests, depending on the

distribution of the variables, and in analogy for correlational analyses
with either product-moment or Spearman’s rank correlation.
Two-sample tests were unpaired, unless stated otherwise (for example,
thelongitudinal analyses in Fig. 4ain which each newborn had a base-
line and a follow-up scan, representing paired samples). Effect sizes
for parametric group tests were computed as Cohen’s d. Parametric
correlation strengths were Fisher r-to-z-transformed to harmonize
scales for visualization (for example, Fig. 2a). Multiple-group omnibus
tests were implemented with Kruskal-Wallis tests, followed up by
pairwise Dunn'’s tests. Formal significance was considered at analevel
of 0.05, and P values of multiple pairwise tests were corrected after
Benjamini-Hochberg’*to control the FDR. For the statistical compari-
son of correlation coefficients in dependent groups (Fig. 2), the null
hypothesis posits that two variables (for example, FD and volume) are
equally correlated with a third variable (for example, age), all obtained
from the same individuals, which is testable through Williams’
t-statistic’>”*. For model comparisons across different brain measures
(Figs. 3a,b and 8b), we implemented a permutation approach on the
effect estimate given nempirical observations of mvariables. The null
hypothesis under this regime posits that there is no difference in the
observed effect between two brain measures X and Y and that, conse-
quently, the effect attributed to observations of X can be equally attrib-
uted to the corresponding observations of Y. To test this hypothesis,
we first standardize observations in X and Y to the same scale, using
z-scores for parametric models and ranks for non-parametric models.
Subsequently, we choose g observations of X at random and replace
these data points with the corresponding observationsinY, yielding a
new variable X. We then estimate the statistic of interest on X and
repeat this process many times to obtain a null distribution of the
statistic, which approximates the assumption that it does not matter
if observations belong to X or Y. The empirical estimate is then com-
paredto thisnulldistribution, where the ensuing Pvalueis given by the
proportion of permuted estimates equal to or greater than the empiri-
cal estimate over the number of permutation iterations (here,
n=10,000). This procedure equally appliestom =1(thatis,Xand Y are
vectors)and m >1(thatis, Xand Yare matrices), where random replace-
ments are applied per columnin the latter case.

Moreover, the hierarchical clustering grouping in Fig. 3c was tested
with the sigclust package for R, Furthermore, for the FD covariance
network in Extended Data Fig. 2, the pairwise region-to-region cor-
relation matrix of FD values was constructed from the cross-sectional
scansin Fig. 2, and this matrix was thresholded to the top and bottom
first percentile to obtain the strongest positive and inverse covari-
ance across brain regions. Additionally, the hierarchical regression
in Extended Data Fig. 4 compared a compact model in which the FD
of abrain region was explained with infant age alone (FD~age) to two
augmented models that incorporated sex (FD~age+sex) and preg-
nancy status (FD-age+pregnancy), respectively. To estimate in which
brainregions these factorssignificantly explained additional variance
beyond age differences, compact and augmented models were com-
pared with F-tests for nested models, using the ImSupport package for
R (https://rdrr.io/cran/ImSupport).

Replication analyses

Thereplicationanalyses in Extended Data Figs. 5,7 and 9 were carried
out in an independent dataset of human newborns from the Univer-
sity of California, Irvine (UCI) (ethics approval no. 2009-7251)****,
The UCl data comprised n =99 newborns born to healthy pregnan-
cies with no known major complications. The sex distribution in the
UClI sample was largely balanced (n = 48 females (48.5%); n = 51 males
(51.5%)) and did not differ significantly from the dHCP sample (x*= 0.21,
P=0.65). However, infants in the UCI cohort were significantly older
on average (42.87 +2.01 post-menstrual weeks (range, 39.57-48.57),
z=8.47, P<0.001; Extended Data Fig. 5a). Besides the age range and
geographic locations of the study sites (dHCP: United Kingdom; UCI:
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United States), noteworthy differencesinclude the scanner type (AHCP:
3T Philips Achieva; UCI: 3T Siemens TIM Trio), acquisition parameters
and processing software'>**** the post-reconstruction spatial resolu-
tion (dHCP: 0.5 mm?; UCI:1 mm?) and the parcellation approaches'>*,

Replication analyses thus focused on global tissue segmenta-
tions of cortical GM and WM to ensure comparability and address the
potentialimpactof arbitrary tissue cuts due to a particular parcellation
template. Accordingly, we estimated the FD of these global segmenta-
tions and computed the product—-moment correlation to age at scan
for each tissue class and dataset separately (Extended Data Fig. 5b).
The direction of age—FD effects was then assessed by the sign of the
estimate, testing ifit significantly differed from zero inboth datasets.
Furthermore, the magnitude of age-FD associations inthe two cohorts
was statistically compared through a z-statistic obtained from correla-
tion coefficients of independent groups™ and computed with the cocor
package for R (http://comparingcorrelations.org/).

Morphological simulation study

Moreover, we implemented a morphological simulation study
to illustrate the geometric interpretation of FD and help explain
the tissue-specific direction of the empirical age-FD effects
(Extended DataFig. 6a). As detailed above, Euclidean geometry attrib-
utes a plane with a dimension of 2, whereas a cube is characterized by
a dimension of 3. These idealized structures thus represent special
cases of equation (2), where the exponent of the spatial scaling law
resolvestoa positiveinteger. Therefore, the rationale behind the simu-
lation study was toillustrate how FD maps the spectrumbetween these
Euclidean special cases by gradually transforming one into the other.
Specifically, the simulation starts from a plane (theoretical FD = 2)
and slowly ‘grows’ into a cube (theoretical FD = 3) through a series of
random additions. To this end, we first construct a binary matrix of Os
(100 x 100 x 100 voxels) into which we insert a plane of 1s (100 x 100)
astheinitial object. We then index all voxels that are on the surface of
the object and randomly choose one surface voxel as the center of a
5x5x 5 cube that we set to 1. We then repeat this process over many
iterations, gradually filling the matrix with 1s until we arrive at a vol-
ume of all 1s (that is, the cube). Here, we set the number of iterations
t0 30,000 andrepeated the simulation100 times. With this approach,
all simulation runs started from the same plane and arrived at the
same cube, but the objects in between varied. In each iteration, we
computed the FD of the simulated object exactly as outlined for the
empirical data. Furthermore, we hypothesized that the FD of the simu-
lated objects would show a principled link to their SVRs, computed as
the sum of surface voxels over the sum of all voxels of the object. The
idea behind this approach is that FD can be intuitively interpreted as
an index of how ‘space-filling’ the object is relative to the embedding
matrix. Forillustration, theinitial planeis the least space-filling object
in the simulation, whereas its SVR is maximal because all voxels are
surface voxels (thatis, SVR = 1). By contrast, the final cube completely
fills the embedding matrix, whereas its SVR is minimal because most
voxels are inside the cube. Given the matrix dimensions, the number
of unique surface voxels of the full cube amounts to 58,800, such that
the expected SVR of the final cube yields 0.0588. All simulation runs
returned the theoretically expected FD and SVR values, both for the
plane and for the cube (Extended Data Fig. 6b). Finally, it is worth men-
tioning that Extended Data Fig. 6 shows the results of transforming the
planeintothe cube. Asafurther control analysis, we alsoimplemented
the opposite transformation (that is, transforming the cube into the
plane), withvirtually identical results (FD versus SVR for plane to cube:
r=-0.994, P<0.001; for cube to plane: r=-0.985, P<0.001).

Further validation analyses

Given the results of the simulation study, we furthermore tested
if the FD-SVR relationship would also be observed in the empiri-
cal brain data (Extended Data Fig. 7). Therefore, we ran a series of

correlation tests between FD and SVR values in the dHCP regional
parcellations (Extended Data Fig. 7a) as well as global tissue segmen-
tations for the dHCP and UCI data (Extended Data Fig. 7b, upper and
lower row, respectively).

Moreover, weimplemented an additional control analysis to test
iftheinverse age-FDin WM could be flipped by artificially manipulating
the images to be more similar to the GM segmentations (Extended
Data Fig. 9). To this end, we hollowed out the original segmentations
and computed FD values from these hollowed images (Extended
Data Fig. 9a). Notably, FD values from hollowed data were universally
lower than those computed from the original segmentations, as
expected from previous validation studies”*. Moreover, given the
geometric interpretation of the age-FD effects in GM and WM
(Extended DataFigs. 6 and 8), we hypothesized that the impact of the
hollowing procedure would depend on the age of the infants.
Therefore, we computed the numerical effect of the procedure as
AFD = FDyyiginal — FDnoiiow and correlated this difference with age at
scan (rapp in Extended Data Fig. 9¢,d).

Additionally, we conducted the analyses in Extended Data Fig. 10
to validate WM volume and FD against a biophysical proxy of WM
microstructure. To this end, we estimated the ratio of Tlw/T2w data
in all voxels of the WM border™>’¢. This estimation was based on the
bias-corrected T1-weighted images, the bias-corrected T2-weighted
images and the corresponding tissue segmentation (data available for
n=631infants), which were all provided in T2-weighted space by the
dHCP (Extended Data Fig. 10a). This approach allowed us to sample
voxels inside the WM mask (amounting to1 mm, panel a, right) and to
extract the Tiw/T2w intensities in the corresponding voxel locations.
Therespectiveratio of these intensities thenyielded a voxel-wise T1w/
T2w map (Extended Data Fig. 10b), and the median across all indexed
voxels was computed as a summary proxy of WM microstructure for
every infant (Extended Data Fig.10c). Notably, the quantitative range
of TIw/T2w ratios observed here is highly consistent with a recent
study that used a similar approach to estimate the microstructural
developments of WM bundles in the dHCP cohort”. The relationship
between the T1w/T2w proxy and WM volume and WM-FD, respec-
tively, was then assessed by (1) statistically comparing the absolute
effect sizes obtained from dependent groups (as described above;
Extended Data Fig.10d, left) and by (2) computing partial correlations
across all three variables (Extended Data Fig. 10d, right) using the
ppcor package in R,

Predicting infant age

The age prediction pipelinein Fig. 5 rests on the openly available PRISM
toolbox (https://github.com/cMadan/prism) for MATLAB, which was
developed for age prediction from brain features and includes acombi-
nation ofleast squares splines, dimensionality reductionand relevance
vector regression”*, Here, the smoothing parameter for spline regres-
sionwas set to zero, enforcing near least squares cubic spline to coun-
teract overfitting; all other parameters were left to default, including
the application of principal component analysis and relevance vector
regressionwithin asparse Bayesian framework”. The predictor matrix
was of the form (observations x brain features) and contained either FD
values, volumes or both. All predictors were standardized. To evaluate
prediction performance, we applied a10-fold cross-validation scheme,
such that the model was trained on 90% of the data and predicted age
at scan in the remaining 10% of the data in each iteration. Note that,
here, we limited the dataset to the 782 unique baseline scans (that is,
excluding the follow-up sessions) to ensure that every infant contrib-
uted exactly one scanto the data. Prediction quality for eachiteration
was then assessed as the MAE (|predicted age — true agel) and the vari-
ance explained in the test set (R?=1- residual sum of squares / total
sum of squares), as shown in Fig. 5b. For the random repetitions of
the cross-validation procedure (Fig. 5c), we computed 500 unique
permutations of the data that were subsequently split into 10 folds,

Nature Neuroscience


http://www.nature.com/natureneuroscience
http://comparingcorrelations.org/
https://github.com/cMadan/prism

Article

https://doi.org/10.1038/s41593-025-02107-w

resulting in 5,000 predictions on unique test sets. Performance dif-
ferences between FD and volume were tested with signed-rank tests.
Finally, to assess the impact of different model types, we applied the
same prediction pipeline using simple multiple linear regression and
support vector regression with a linear kernel with MATLAB-inbuilt
functions (fitlm and fitrsvm), as shown in Supplementary Fig. 1.

Departure from normative reference
Forthe analysesinFig. 6, we estimated reference values of brain shape
andsizeininfants of full-term maturity. This approachis conceptually
related to the hub disruption index*° in functional neuroimaging, in
that data points from single individuals are compared to normative
data points obtained from areference population. Here, the reference
population consisted of those infants who were both born and scanned
withinthe full-term window (term-term), where the latter was defined
based on the ACOG definitions (39 0/7 weeks to 40 6/7 weeks). This
criterionwas fulfilled by n =116 newbornsin the dataset. For each brain
region, the full-termreference value was then computed asthe average
over those 116 infants, once for FD values (shape reference; Fig. 6a)
and once for volumes (size reference). This approach subsequently
allowed for acomparison between the reference values across all brain
regions and the corresponding values computed fromindividual scans,
as shown in the scatter plots of Fig. 6b. To estimate how much these
individual scans deviated from the full-term reference, we computed a
departureindex defined asd =1- ¢ (thatis, the non-parametric spatial
correlation distance between the individual scan and the normative
reference). Therein, Spearman’s rank correlation was chosen because
(1) we aimed to obtain an estimate of the relative spatial organization
across thewhole brainand because (2) the speed of development varied
over the different tissue classes (Fig. 4d), such that the deviations from
reference were not uniformbut showed clustering effects (for example,
deviations cluster below the identity linein Fig. 6b). For each scan, we
thus obtain oneindex of departure from full-term shape reference (FD)
and another for the departure from full-term size reference (volume).
These indices were subsequently compared across all scans (Fig. 6¢)
and among infants who were born preterm and scanned preterm (pre-
term-preterm) and those who were born pretermbut scanned later at
term-equivalent age (preterm-term) (Fig. 6d). Finally, note thatinfants
who met the full-term criterion are expected to follow the reference
closely because they formed part of the group on which this refer-
ence was defined, thus providing an estimate of variability within the
full-term group itself. This close adherence to reference was indeed
observed for both FD and volume in full-term infants (Fig. 6b-d).
The above framework thusimplemented a normative account of
morphological developments onthe level of single infants, reflecting
individual patterns of whole-brain deviations that are not easily cap-
tured by group-level analyses. However, we complemented this frame-
work by an exploratory approach onthe FD features, which (1) explicitly
captures the region-by-region variability within the term-term refer-
ence group and (2) quantifies the group-level deviation of individual
brainfeatures for preterm—preterm and preterm-terminfants. These
analyses are summarized in Supplementary Fig. 3. Therein, for any
given brain region, we extract the distribution of FD values for the
term—term group, which allows for an estimation of the variability
within the norm as the standard deviation (s.d.) over the respective
vector (Supplementary Fig. 3a, right). Furthermore, this approach
allowed us to compute z-scores with respect to the reference as

z;= Xioj~Hjterm—term @

0j term—term

where x;; represents the FD value of the i-th infant in the respective
targetgroup (preterm-pretermor preterm-term) and in the-th brain
region; g cerm—cerm represents the mean FD value in that brain region
over the term-term reference group; and 0;erm_cerm re€presents the
corresponding s.d. in the reference group. In Supplementary Fig. 3a

(left), the computation of these norm-referenced z-scoresisillustrated
for the example region of left frontal GM. Here, we display one infant
of the preterm—preterm group whose z-score corresponds to the left
tail of the term-term distribution (blue) and one infant of the preterm-
termgroup whose z-score corresponds to the right tail of the reference
distribution (red). This approach subsequently allowed us to collect
the z-scores for all infants of the preterm-preterm and preterm—
term group and test if the distribution of these z-scores was signifi-
cantly different from zero (one sample ¢-test). Panels b and c of
Supplementary Fig. 3 show the results of these analyses across
all brain regions for the preterm-preterm and preterm-term
groups, respectively.

Comparing individual infant brains

To move beyond group-level inferences, we conducted comprehen-
sive pairwise ‘brain-to-brain’ comparisons of individual neonates
(Figs.7and 8).For any two given infants, we thus quantified the overall
‘shape difference’ of their brains by taking the vectors of their regional
FD values and computing the dissimilarity between these two vec-
tors. To this end, we here apply the L1 norm (‘Manhattan distance’),
as this measure weights all vector components equally and is less
sensitive to single-dimension deviations compared to the Euclidean
distance, because the individual terms are left unsquared. For every
brain-to-brain comparison, this approach yields a scalar measure of
overall dissimilarity (Fig. 7a), such that higher valuesindicate more pro-
nounced shape differences and lower valuesindicate that the compared
brains are more similar in shape. Moreover, the identical approach
was applied to regional volumes to compute the overall dissimilarity
in size between any two brains (Supplementary Fig. 5) and likewise
for the systematic comparisons to surface-derived measuresin Fig. 8.

Genetic similarity

These brain-to-brain comparisons subsequently allowed us to relate
the shape similarity of any two brains to the genetic similarity of the
compared infants. The latter was formalized in three different sets of
comparisons: (1) infants of the same sex versus infants of different sexes
(as assigned at birth; Supplementary Fig. 4); (2) twin siblings versus
unrelated infants (Figs. 7c,d and 8c); and (3) identical twins versus
fraternal twins (Figs. 7e,f and 8c). Overall, there were 42 twin pairs in
the dHCP dataset. For the age-matched analyses in Fig. 7, however, a
total of seven twin pairs had to be discarded—one because no unre-
lated infants of the same age were available and six because the two
twin siblings themselves were scanned more than1day apart—leaving
n =35 twin pairs. Moreover, the genetic similarity among those twin
pairs was further assessed by stratifying them into identical twins
(that is, monozygotic siblings) and fraternal twins (that is, dizygotic
siblings). This information on twin status was provided by the dHCP
consortium (Harriet Cullen, King’s College London) and was derived
fromsingle-nucleotide polymorphism array genotype data, whichwere
used to confirm whether the twins were monozygotic, sharing 100% of
their genetic variation (PI_HAT =1), or dizygotic, sharing approximately
50% of their genetic variation (PI_HAT = 0.5)*. These dataon twinsibling
status were available for n =33 twin pairs.

Twin predictions

Apart from the inferential analyses of sex and twin status, we further-
more predicted twin siblings out of the set of age-matched unrelated
infantsinasupervised approach (Figs. 7f and 8c). To this end, we iter-
ated over allindividual twins-to-unrelated comparisons and predicted
the lowest-ranking dissimilarity score (that is, the most similar brain
inshape) tobelongto the twin of the targetinfant, as detailed in Fig. 7c.
Note that, although the set of unrelated matches was the same for a
given twin pair, the dissimilarity scores between twin A and the unre-
lated infants and twin B and the unrelated infants naturally differed, as
all these comparisons reflect individual pairwise brain-to-brain
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measures. In consequence, every twin pair resulted in two predic-
tions—once identifying twin A from twin B and once identifying twin
Bfromtwin A—yielding 70 twin predictionsin total. Furthermore, note
that the number n of unrelated matches varied across the individual
twin pairs, such that the chance level of individual twin predictions
variedin parallelas1/ n.Forillustration, the example of Fig. 7c features
13 age-matched infants (one of whom is the twin to be identified),
resulting in a chance level of 1/13 = 7.7%. As such, chance levels for
individual predictions were higher if fewer unrelated matches were
available in the dataset (maximum 50% if only one unrelated match
was present). To account for this heterogeneity, we implemented a
permutation approach, in which the rank structure within individual
predictions was randomly shuffled 5,000 times and the proportion of
chanceidentifications was recorded over allindividual predictions. In
consequence, we obtain a null distribution of correct twin identifica-
tions that happen by chance, whichyields the Pvalue of the empirically
observed identificationaccuracy as the proportion of permuted accu-
racies that surpass the empirical value. The inset of Fig. 7f shows
this null distribution, which yielded a mean accuracy of 11.4 + 3.7% of
correct twin identifications that are expected to happen by chance.

Finally, the identical approach was applied to twin prediction
frombrain volumes (Supplementary Fig. 6) as well as surface-derived
measures (Fig. 8).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Data used in the preparation of this paper were obtained from the
National Institute of Mental Health (NIMH) Data Archive (NDA). The
NDA is a collaborative informatics system created by the National
Institutes of Health (NIH) to provide a national resource to support
and accelerate research in mental health. Dataset identifiers are as
follows: Collection ID 3955 (dHCP) and Collection ID 1890 (UCI). This
paper reflects the views of the authors and may not reflect the opinions
or views of the NIH or of those submitting original data to the NDA.
Please note that the direct sharing of raw data or derivatives by the
authorsis not permitted as per NDA policy. However, researchers can
independently obtain data access at the NDA using the above Collec-
tionIDs or the corresponding study DOIs®>®, For further information,
please see NDA study 3107 (https://doi.org/10.15154/jdep-kf48). Source
dataare provided with this paper.

Code availability
Analysis code supporting the findings of this study is available
from the corresponding authors and the Open Science Framework
(https://osf.io/6jck4/).
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3D convolution - kernel size 2°=1

Example infant
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Extended DataFig. 1| Illustration of the dilation algorithm to estimate
fractal dimensionality (FD) from the scaling properties of a voxel-indexed
segmentation mask. The left panel displays representative voxel-indexed
slices of global tissue segmentations of T2-weighted data in the dHCP. These
data correspond to the same exemplary infant of main Fig. 1b, scanned once

at 34 and once at 44 weeks of age. The classes of cortical gray matter (red)

and white matter (yellow) are contrasted for visualization. The middle panels
display surface renderings of the respective 3D masks after convolution with
spatial kernels of increasing size (‘dilation’), which represent the physical scales

log,(count)

-10
Y FD =2.55
36 421 1080 -20

0o 1 2

e log,(size)
over which the FD estimate is computed (see Methods). The latter correspond
to arange of voxel sizes expressed as 2%, with k=0, 1, ..., 4, following previous
applications”'®**?°_For each of these spatial scales, a 3D convolution of the
tissue mask is calculated, resulting in a volumetric count in relation to the spatial
scale. The FD estimate is then given by the slope of the relationship between
these counts and the kernel sizes in log-log-space, which s illustrated for the
example datain the right column. The FD changes from scan1to scan 2 thus
correspond to changes in the scaling properties of the respective structures
(independent of their absolute size).

0 1 2 3 4
3 4
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Covariance of fractal dimensionality (FD) strongest positive association (top 1%)

29

@ gray matter region

@ white matter region

strongest inverse association (bottom 1%)

Extended DataFig. 2 | Covariance network of fractal dimensionality (FD). matter regions show inverse associations to subcortical areas and cortical gray
The network displays the region-to-region covariance of fractal dimensionality matter. The right-hand side shows this network in brain space, thresholded to
values across individual newborns (n =782, as in main Fig. 2a). The left-hand the strongest 1% of positive and inverse associations, respectively. Here, the
side displays the direction of how brain regions covary with each other, showing strongest positive associations (top) are observed between areas of the same
primarily positive associations within regions of the same tissue compartment tissue class and homologous areas, and the strongest inverse associations
aswell as for cortical gray matter and subcortical areas, while several white (bottom) between cortical gray matter and white matter areas.
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a b
cross-sectional age associations for example regions (cf. Fig. 2a) age prediction (cf. Fig. 5b)
parietal parietal thalamus (left) out-of-sample performance
gray matter (left) white matter (left) MAE = 5.48 0.5 days
g Q@
— 3 2 o 6 ©
o r=0.94 & | r=073 & 5 r=0.92 % 300
Z o Z ° Z o >
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=) 21 3 b e
S o E > E . 5 |«
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0 a
20 50 20 50 20 50 200 300
age at scan (weeks) O infants true age (days)
Extended DataFig. 3 | Illustration of age analyses for volume. a, Illustration of Theredline represents the identity line (that is, perfect prediction). Note the shift
cross-sectional age-volume associations for the same three example regions of towards overestimating age in very premature infants, which was not observed in
main text Fig. 2a. b, Out-of-sample performance of age prediction from volumes, age prediction from fractal dimensionality. MAE: mean absolute prediction error
evaluated using a10-fold cross-validation scheme in analogy to main text Fig. 5b. in days; R* variance explained in the test data.
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Variance in fractal dimensionality (FD) explained by age

model: FD ~ age [days]

®080 21

gray matter
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white matter subcortical Peor < 0.05

Additional variance explained by sex assigned at birth
model: FD ~ age +
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Extended Data Fig. 4 | Explaining variance in brain shape with age, sexand inthe model. ¢, Hierarchical regression results showing the additional variance
pregnancy status. a, Variance in fractal dimensionality (FD) explained by age explained by including pregnancy status (singleton or multifetal). P-values are
atscaninacompact linear regression model. b, Hierarchical regression results derived from F-tests for linear models and FDR-adjusted over regions.

showing the additional variance explained (AR?) by including the sex of the infant
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validating fractal dimensionality (FD) in an independent neonatal dataset (UCI)

B dHCP (discovery, n = 782 infants)

age distribution
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Extended DataFig. 5| The directionality of age-FD effects replicatesin
external validation data. a, Illustration of the datasets used for replication
analyses. The dHCP data corresponds to the discovery dataset reported
throughout the main manuscript, including 782 unique newborns. The validation
dataset corresponds to a neonatal cohort from the University of California, Irvine
(UCI), including 99 newborn infants. The sex ratio was not different between

the two cohorts (y*test, P= 0.645), whereas UCl infants were significantly older

(rank-sum test, P=2.5*10""). To harmonize comparisons, we analyzed

global segmentations of cortical gray matter (GM) and white matter (WM) for the
whole brain and left and right hemisphere respectively in both datasets.

b, The directionality of age-FD associations replicated in the validation dataset
(dHCP:n =782, UCI: n=99)-independent of study site, scanner type, acquisition
protocol, spatial resolution, age range, and parcellation. Error bars: 95%
confidence intervals; center: correlation coefficients.
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morphological simulation study of fractal dimensionality (FD) and surface-to-volume ratios (SVR)
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Extended Data Fig. 6 | Morphological simulation study of fractal
dimensionality (FD) and surface-to-volume voxel ratios (SVR). a, lllustration of
asimulation run. The simulation starts froma binary matrix of Os (100x100x100
voxels) filled with a plane of 1s (100x100x1) as the initial object (left panel). In
every iteration, the FD and SVR of the simulated object are estimated as in the
empirical data (see Methods). Subsequently, a surface voxel of the object is
chosen at random and defined as the center of a 5x5x5 cube whichis set to 1.
Thus, the simulated object increasingly fills more of the embedding space, as
ittransforms from a Euclidean plane (theoretical FD = 2) into a fully filled cube
(theoretical FD = 3, right panel). The simulation ran 100 times with 30,000
iterations each, and all runs arrived at the cube. b, Results of the simulation study.
The upper row shows the FD of the simulated objects as they transition froma
‘plane-like’ to a ‘cube-like’ geometry, where the gray tile marks the numerical

range observed empirically in neonatal brains. The inset on the right zooms
inonthis range. The lines mark the empirical group averages (dHCP data) for
cortical gray matter and global white matter at 35 and 40 weeks, respectively. The
simulation thus suggests that white matter (WM) starts out as a more ‘cube-like’
geometry in younger infants and develops into a more ‘plane-like’ geometry
towards term maturity, while the opposite is true for cortical gray matter (GM).
Furthermore, the simulation suggests that the geometric properties of GM and
WM converge towards term maturity, reflected in anumerical convergence of
GM-and WM-FD. The lower row shows the corresponding SVR of the simulated
objects (left). The simulation suggests a strong inverse correlation between SVR
and FD (right; two-tailed product-moment correlation test, P = O within machine
precision). These theoretical results from the simulation are tested empirically in
Extended Data Figs.7 and 8.
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Extended DataFig. 7| The theoretical relationship between fractal
dimensionality (FD) and surface-to-volume voxel ratios (SVR) replicates in
empirical data. a, Relating fractal dimensionality (FD) to surface-to-volume
voxel ratios (SVR) in the parcellated brain data from the dHCP. The
morphological simulation study (Extended Data Fig. 6) showed a principled
inverse relationship between FD and SVR in simulated objects. The left panels

Theright panel displays the brain-wide associations, showing that the inverse
FD-SVRrelationship is observed across all brain regions. Correlation values are
z-transformed for visualization. b, The inverse relationship between FD and
SVRreplicates in global tissue segmentations (that is, independent of regional
parcellation) and in the external validation data from the University of California,

Irvine (UCI); see Extended Data Fig. 5 for details on this cohort.

show this relationship empirically for the three exemplary regions in main Fig. 2a.
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a fractal dimensionality (FD) of cortical gray matter (GM) and global white matter (WM)
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Extended Data Fig. 8 | Biological inferences from morphological simulation
study. a, Empirical findings for fractal dimensionality (FD) in the dHCP

data (n =884 scans). The simulation study (Extended Data Fig. 6) suggested
that FD values of cortical gray matter (GM) and global white matter (WM) in
individual brains should numerically converge towards term maturity. The left
panel shows the FD difference between GM and WM in individual infants and
confirms this development, with a GM-WM equilibrium point around 40-42
weeks. Furthermore, the simulation study revealed that the spatial properties
of an object can be located on a continuous spectrum between a ‘plane-like’
geometry (FD towards 2) and a ‘cube-like’ geometry (FD towards 3). Accordingly,
we compared scans in the preterm window to term-window scans (two-sided
rank-sum tests with FDR adjustment) and found that GM develops from a more
‘plane-like’ to amore ‘cube-like’ geometry (middle-left; Py, = 4.2*107%), while
the opposite was true for WM (middle-right; Py, = 6.8*10~*). Consequently, the

25

preterm term

preterm term preterm term

absolute GM-WM difference in FD was significantly lower in more mature brains
(right panel; Py, = 4.2*10™%) b, Empirical findings for surface-to-volume voxel
ratios (SVRs) in the dHCP data (n = 884 scans). The simulation study showed
astronginverse relationship between FD and SVR. Accordingly, the GM-WM
convergence of FD values should be reflected by a similar convergence of SVR
inmore mature brains. The left panel confirms this developmentin individual
brains. Similarly, the preterm vs term comparisons (two-sided rank-sum tests
with FDR adjustment) again suggested that GM develops from a ‘plane-like’ (SVR
towards1) to a‘cube-like’ geometry (SVR towards 0; middle-left; Py, =1.7*107%),
while the opposite was observed for WM (middle-right; Py, = 3.5*10™*). As

for FD, the absolute GM-WM difference in SVR was significantly lower in more
mature brains (right panel; Py, = 4.2*10%). Boxes in panels (a) and (b) display the
interquartile range (IQR; lower hinge: 25" percentile; upper hinge: 75™ percentile;
center line: median), and whiskers cover the furthest data points within 1.5*IQR.
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a lllustration of the image manipulation procedure: hollowing out global tissue segmentations b Fractal dil (FD) in gi parcels shows uniformly positive age effects
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Extended Data Fig. 9| Hollowing out tissue segmentations. a, Illustration of the
image manipulation in exemplary slices from a dHCP infant. The original tissue
segmentations are hollowed out, such that inside voxels of the segmentation
mask are removed. The hollowed-out masks for cortical gray matter (GM)

and global white matter (WM) are more similar to each other, as the GM-WM
boundary closely follows the cortical ribbon. b, Regional segmentations (dHCP
data). Computing FD from the hollowed-out regional segmentations results
inuniformly positive age associations across all brain areas. The direction of
age correlations thus remains unchanged for all cortical GM and subcortical
areas, whereas it changes uniquely for those WM regions that show inverse age
associations when the original segmentations are assessed (Fig. 2; Extended
DataFigs.1and 5).c, Global tissue segmentations (AHCP data, n = 782).

Effects of hollowing on volume (upper row) and FD (lower row) of global

tissue segmentations. As voxels are removed by the hollowing procedure,
volumes are naturally lower for both GM and WM. Notably, hollowed global
segmentations yield uniformly positive age-FD associations, as for parcellated
data. Additionally, FD values in hollowed segmentations are universally lower
than in the original segmentations, closely corroborating previous studies.

With reference to the simulation results (Extended Data Fig. 6), the hollowing
procedure can thus be interpreted to impose amore ‘plane-like’ geometry on
the segmentations. Consequently, the effect of hollowing on FD is stronger in
WM thanin GM (cf. slopes in lower-right plots) because the latter already shows
amore ‘plane-like’ behavior to begin with (Extended Data Figs. 6b and 8a).
Similarly, the effect of hollowing was stronger in older infants for GM (because
GM develops from a ‘plane-like’ to a ‘cube-like’ geometry), but stronger in
younger infants for WM (because WM develops from a ‘cube-like’ to a ‘plane-like’
geometry; Extended Data Figs. 6b and 8a), as quantified by the r,q, values
(two-sided product-moment correlation test: GM: P=2.6*107%5; WM: P~ 0
within machine precision). d, Global tissue segmentations (UCI data, n = 99).
These effects of hollowing were closely corroborated in the UCI validation data
(two-sided product-moment correlation test: ryz, GM: P=2.9*10""%; ry.y WM:
P=3.7*10""), albeit with smaller effect sizes (two-sided Fisher’s z-test: GM:
Ar=0.21[0.09,0.35],z=4.0, P=5.2*10"5; WM: Ar =-0.29[-0.43,-0.19],z=-9.3,P= 0
within machine precision). Boxes in panels (c) and (d) display the interquartile
range (IQR; lower hinge: 25" percentile; upper hinge: 75" percentile; center line:
median), and whiskers cover the furthest data points within 1.5*IQR.
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estimating a proxy of microstructure in the neonatal white matter boundary (WMB)
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Extended Data Fig. 10 | Microstructural developments of neonatal white
matter (WM) relate significantly more strongly to fractal dimensionality
(FD) than to volume. a, lllustration of the data used to estimate the ratio

of T1-weighted and T2-weighted data (T1w/T2w) as a biophysical proxy of
microstructure in the neonatal white matter boundary (WMB). Representative
slices of bias-corrected T1-weighted data, bias-corrected T2-weighted data,
and the tissue segmentation, all in T2w space, as provided by the dHCP. The
mask of the white matter boundary (WMB) is computed by finding the WM
voxels bordering on cortical gray matter and sampling inside the WM mask
to1mm depth. Data from an exemplary neonate. b, A microstructural proxy
ofthe neonatal WMB is estimated as the voxel-wise ratio of T1-weighted

and T2-weighted data™’**° and illustrated here for the slices from panel (a).
Voxel-wise data of each infant were aggregated as the median Tlw/T2w ratio over

all WMB voxels (right inset). ¢, WMB T1w/T2w ratio is positively related to infant
age (dataavailable for n = 631 neonates; two-tailed product-moment correlation
test, P=7.7*10""").d, Association between the microstructural proxy (T1w/T2w)
and WM volume (Vol; upper left; P=1.1*10") and WM fractal dimensionality (FD;
upper right; P=2.9*10"%; two-tailed product-moment correlation tests, n = 631).
The T1w/T2w-FD association is significantly stronger than the Tlw/T2w-volume
relationship (lower left, error bars: 95% confidence intervals; center: absolute
correlation coefficient; two-sided Williams’ test, P = O within machine precision).
Partial product-moment correlation tests between all three variables showed
that the Tiw/T2w-volume relationship vanishes when controlling for FD, whereas
the T1w/T2w-FD relationship persists when controlling for volume (lower right;
FD vs. TIw/T2w, P=4.8*10"%; FD vs. Vol, P= 2.3*10%; Vol vs. TIw/T2w, P= 0.057).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a | Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

X X

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

X

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

O O OO0 0O 00
X X

XKL X K

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

IO X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for the collection of data

Data analysis Data analysis was implemented with R (versions 3.6.3 and 4.4.0) and MATLAB (versions 2017b, 2019b, and 2022b). For fractal analysis of
structural brain segmentations, we used the openly available calcFD toolbox for MATLAB (https://github.com/cMadan/calcFD), modified to
process neonatal neuroimaging data (see below for availability of custom code). Group-wise comparisons, correlation analyses, effect size
calculations, cross-validation, random resampling, and multiple comparisons corrections were implemented with inbuilt facilities of R and
MATLAB. For the statistical comparison of correlation coefficients, we used a MATLAB implementation of Williams' test (David M. Groppe,
https://www.mathworks.com/matlabcentral/fileexchange/25984-r_test_paired) and the cocor package for R (version 1.1.4, http://
comparingcorrelations.org/). The ImSupport package for R (version 2.9.13, https://rdrr.io/cran/ImSupport) was used to assess the hierarchical
regression approach with F-tests for nested models. For the statistical assessment of clustering results, we used the sigclust package for R
(version 1.1.0.1, https://cran.r-project.org/web/packages/sigclust/sigclust.pdf). Partial correlations were computed with the ppcor package
for R (version 1.1). For the prediction of infant age, we used the PRISM toolbox for MATLAB (https://github.com/cMadan/prism) as well as the
MATLAB functions 'fitim' for simple multiple linear regression and 'fitrsvm' for support vector regression with a linear kernel. Analysis code
supporting the findings of this study are available from the corresponding authors and the Open Science Framework (https://osf.io/6jck4/).
Data visualization rests on ggplot functionalities in R as well as Surflce (https://www.nitrc.org/projects/surfice/) with full-term equivalent
meshes for brain mapping (https://brain-development.org, subcortical meshes were custom-made). Single points correspond to scans,
infants, or brain regions, as indicated. Box-plots correspond to standard quantile-based display, showing median (central line), Q1-Q3 (box),
with whiskers indicating 1.5*IQR from lower and upper hinges, with remaining data points considered outliers (https://ggplot2.tidyverse.org/
reference/geom_boxplot.html).
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data analyzed in the main text were obtained from the neonatal release of the developing Human Connectome Project (dHCP; Edwards et al., 2022;
www.developingconnectome.org), publicly available through the NIMH data portal (https://nda.nih.gov/edit_collection.html|?id=3955). Replication and validation
analyses (Extended Data Fig. 5, 7, and 9) were implemented in a second external dataset from the University of California, Irvine (UCI; Rasmussen et al., 2022),
publicly accessible through the NIMH Data Archive Collection #1890 (https://nda.nih.gov/edit_collection.htmlI?id=1890).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The biological sex of the infants was recorded by the dHCP and explicitly analyzed in Figure 4 and Extended Data Figures 4
and 14.

Reporting on race, ethnicity, or An analysis of socially relevant groupings was outside the scope of the current study.
other socially relevant
groupings

Population characteristics Population characteristics of the dHCP data (discovery) and the UCI data (validation) are reported in the Methods. In brief,
there were n=782 infants in the dHCP data (360 females, 422 males). Mean birth age in the dHCP was 37.89 + 4.17
postmenstrual weeks [range: 23.0 — 43.57], and age at first scan was 39.81 + 3.55 weeks [range: 26.71 — 45.14]. Of these
dHCP infants, 682 were born from singleton pregnancies, while 100 were born from multifetal pregnancies. Genetic analyses
were based on single nucleotide polymorphisms array genotype data. In the UCI data, there were n=99 infants (48 females,
51 males) with age at scan 42.87 + 2.01 weeks [range: 39.57 — 48.57].

Recruitment Recruitment of dHCP infants was conducted at St Thomas’ Hospital, London (Edwards et al., 2022); families received
reimbursement of travel expenses. Recruitment of UCI infants was conducted at the University of California, Irvine

(Rasmussen et al., 2022); families received 100 USD for participating in the MRI session.

Ethics oversight dHCP: United Kingdom Health Research Authority (Research Ethics Committee reference number: 14/L0/1169); UCI:
Institutional Review Board IRB #2009-7251.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

E Life sciences D Behavioural & social sciences D Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size A-priori sample size calculation was not implemented; however, we here analyze the dHCP data which constitutes one of the largest neonatal
cohorts ever collected (n=782 infants), greatly exceeding typical sample sizes in perinatal neuroimaging. Furthermore, we analyze a second
dataset for validation (UCI) with n=99 additional infants.

Data exclusions  No primary data were excluded. For the twin analyses, seven twin pairs had to be discarded for a subset of the analyses, one because no age
matches of unrelated infants were available, and six because the two twin siblings themselves were scanned more than one day apart, as
detailed in the Methods.

Replication All findings here are based on computational analysis, not experimental intervention, such that experimental replication is not applicable.
However, we implement several replication and validation analyses in an indepdent external dataset (UCI), as shown in Extended Data Figures
5,7,and 9. Moreover, we applied cross-validation, random resampling, and different model types to ensure replication across variations in
input data and analytical approaches. Reproducibility is also supported by the OSF repository.

Randomization  Randomization is not applicable, as participants were not assigned to experimental groups. Group comparisons rest on demographic,
developmental, and genetic factors intrinsic to the participants.
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Blinding Blinding to group assignment was not possible, but also not applicable to the current study. For spatial analysis, however, the lead researcher
(SK) was initially blinded to the ROl indices (i.e., which number corresponds to which brain region).

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| |X| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

XNXXNXNXXNX s
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Plants

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

Authentication gg;rtrj//f)/é”gﬁy authentication-procedures for-each seed stock tised-or novel-genotype generated. Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Magnetic resonance imaging

Experimental design

Design type Structural MRI
Design specifications Anatomical acqusition, no task design

Behavioral performance measures  Not studied here

Acquisition

Imaging type(s) Structural T2-weighted images

Field strength 3T

Sequence & imaging parameters dHCP after Edwards et al. (2022): T2-weighted images were acquired using a Fast Spin Echo sequence in sagittal and
axial slice stacks with in-plane resolution 0.8x0.8mm?”2 and 1.6mm slices, overlapped by 0.8mm; TR/TE = 12000/156ms;
UCI after Rasmussen et al. (2022): T2-weighted images acquired using a Turbo Spin Echo sequence with TR/
TE=3200/255ms, matrix=256x256x160, resolution=1x1x1mm~"3.

Area of acquisition Whole-brain acquisition

T N
Diffusion MRI |:| Used Not used

Preprocessing

Preprocessing software Preprocessed data were included as provided by the dHCP standardized preprocessing pipelines, following the minimal
processing pipeline for neonatal cortical surface reconstruction (Makropoulos et al., 2018). Brain segmentations in the dHCP
rest on the DrawEM algorithm (https://github.com/MIRTK/DrawEM). UCI preprocessing was implemented with custom
modifications of the Human Connectome Project anatomical pipeline (Rasmussen et al., 2022).
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Normalization Images were transformed using age-specific normative templates (see below).

Normalization template Age-specific week-wise templates as provided with the dHCP (https://brain-development.org); age-specific NIH pediatric
templates for UCI.

Noise and artifact removal dHCP: Motion correction after Cordero-Grande et al., 2018; Makropoulos et al., 2018; UCI: prospective motion correction
with volumetric navigators; ANT Denoiselmage and N4BiasFieldCorrection (Rasmussen et al., 2022).

Volume censoring None

Statistical modeling & inference

Model type and settings ROI-wise analyses are univariate group comparisons or continuous models; predictive models for age are different types of
regression models (relevance vector, simple multiple linear, support vector).

Effect(s) tested No task or stimulus conditions applicable. Effects tested include group differences, age associations, prediction accuracy
(mean absolute error for continuous prediction, accuracy for categorical predictions). Effect sizes of correlational analyses
were statistially compared with tests for dependent or independent groups, as applicable, using the cocor package for R.
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Specify type of analysis: [ | whole brain  [X| ROI-based [ | Both

Anatomical locations are based on the modified ALBERT atlas for neonatal brain anatomy (Gousias et al.,

Anatomical location(s) 2012; Makropoulos et al., 2014).

Statistic type for inference ROI-wise inference

(See Eklund et al. 2016)
Correction FDR / permutation

Models & analysis

n/a | Involved in the study
E D Functional and/or effective connectivity

E D Graph analysis

D E Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis Independent variables for predictive analyses included ROI-wise fractal dimensionality values (observations x
regions), volumes, or both. Dimensionality reduction in the main analyses was implemented with Principal
Component Analysis. Cross-validation was implemented with a 10-fold cross-validation scheme with random
repetitions. Evaluation metrics were mean absolute prediction error and variance explained in unseen data.
Evaluation of twin predictions was based on a custom rank loss measure, prediction accuracy, and null
distribution testing through permutation, as detailed in the Methods. The identical approach was applied for
the comparative analyses using surface-derived morphological measures (e.g., Fig. 8).
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