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Fractal analysis of brain shape formation 
predicts age and genetic similarity in  
human newborns
 

Stephan Krohn    1,2  , Amy Romanello    1,2, Nina von Schwanenflug1,2, 
Jerod M. Rasmussen3,4, Claudia Buss    3,4,5,6,7, Sofie L. Valk    8,9,10, 
Christopher R. Madan    11 & Carsten Finke    1,2 

The neonatal period represents a critical phase of human brain development. 
During this time, the brain shows a dramatic increase in size, but how its 
morphology emerges in early life remains largely unknown. Here we show 
that human newborns undergo a rapid formation of brain shape, beyond 
the expected growth in brain size. Using fractal dimensionality (FD) analysis 
of structural neuroimaging data, we show that brain shape strongly reflects 
infant maturity beyond differences in brain size, significantly outperforms 
brain size in predicting infant age at scan (mean error approximately 4 days), 
detects signatures of premature birth that are not captured by brain size, 
is systematically more sensitive to genetic variability among infants and 
is superior in predicting which newborns are twin siblings, with up to 97% 
accuracy. Additionally, FD captures age and genetic information significantly 
better than earlier morphological measures, including cortical thickness, 
curvature, gyrification, sulcation, surface area and the T1-weighted/
T2-weighted ratio. These findings identify the formation of brain shape as a 
fundamental maturational process in human brain development and show 
that, biologically, FD should be interpreted as a developmental marker of 
early-life brain maturity, which is rooted in geometry rather than size.

The human brain undergoes profound morphological changes over the 
lifespan1–3, developing from a small and smooth structure in utero to the 
complex, highly convoluted structure that characterizes mature brains. 
Non-invasive studies with structural magnetic resonance imaging (MRI) 
have facilitated great progress in understanding these age-related 
morphological changes, aided by the increasing availability of large 
open-access datasets of human MRI recordings4,5.

These developments have recently led to the first normative tra-
jectories of human brain structure over the lifespan, similar to growth 
charts of body weight or height1. In a complementary approach, a 
recent framework uses structural neuroimaging data to predict brain 
age from modeled trajectories of healthy brain aging, revealing clini-
cally meaningful discrepancies between apparent brain age and true 
chronological age in a variety of developmental and adult disorders6.

Although these advances have yielded important insights into 
structural brain changes from childhood to senescence, large-scale 
investigations of perinatal brain development have remained limited, 
not least owing to the technical and ethical challenges of acquiring MRI 
data from human fetuses and newborns1,3,7. Such investigations are 
vital, however, as perinatal brain maturation is fundamental for the 
development of cognitive capacities, and, in turn, this period repre-
sents a critical window of vulnerability for later cognitive deficits and 
neurodevelopmental disorders3,8–10.

To overcome this gap, recent collaborative efforts such as the 
developing Human Connectome Project (dHCP) now provide the 
opportunity to study perinatal brain development in curated datasets 
of unprecedented size, quality and accessibility11. These resources are 
met by parallel advances in the processing of early-life neuroimaging 
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degrees of maturity, as defined by the age criteria of the World Health 
Organization (WHO)30 and the American College of Obstetricians and 
Gynecologists (ACOG)31.

To quantify these shape differences, we apply fractal analysis with 
a dilation algorithm that estimates the spatial scaling properties of a 
brain structure from its voxel-indexed three-dimensional segmentation 
mask (Methods and Extended Data Fig. 1). In brief, through iterative 
convolution of this mask with a set of spatial kernels, one estimates 
the power law relationship between the size of the scales and the count 
of scaled measurement units, where the FD estimate is given by the 
slope of this relationship in log−log space16–18. Figure 1b illustrates this 
procedure for the left parietal cortex of an exemplary infant scanned 
shortly after birth at 34 weeks of age and once again at 44 weeks. Over 
this 10-week interval, the morphological change that is visible from 
the surface renderings (left) is reflected by an increase in structural 
complexity from baseline to follow-up (right).

Brain shape reflects infant maturity beyond differences  
in brain size
First, we related cross-sectional differences in infant age to the 
structural complexity and the size of each brain region, measured 
by FD and volume, respectively. Therein, older infants showed sig-
nificantly higher FD across cortical GM and subcortical areas, paral-
leled by inverse age effects across several WM areas (Fig. 2a, left). This 
GM − WM difference was corroborated by the covariance across infants 
(Extended Data Fig. 2), where FD values covaried in the same direction 
for homologous regions across hemispheres but were inversely related 
in several GM and WM regions.

Conversely, age−volume associations were strictly positive 
(Fig. 2a, right), such that brain structures were universally larger in 
older neonates, as is expected from a continuous postnatal growth in 
brain size (see Extended Data Fig. 3a for analogous plots of the example 
regions). Although effect sizes were generally large for both measures, 
directly comparing age−FD and age−volume effects revealed a comple-
mentary spatial pattern, in which FD tracked infant age more strongly 
across most cortical GM and WM areas (Fig. 2b, left), whereas volume 
showed larger effect sizes in temporal, cingulate and some subcortical 
areas (Fig. 2b, right).

Furthermore, we investigated how neonatal brain shape is influ-
enced by infant sex and pregnancy status (singleton versus multi-fetal). 
Region-wise hierarchical regression confirmed strong age−FD effects 
across the entire brain (Extended Data Fig. 4a) but also revealed an 
additional impact of sex and pregnancy status on FD, albeit on a smaller 
scale (up to 5% additional variance explained). These effects were most 
pronounced in WM areas and showed spatial clusters, with infant sex 
primarily influencing parietal, occipital and insular WM, as well as the 
hippocampus, and pregnancy effects clustering in frontal, temporal 
and cingulate WM (Extended Data Fig. 4b,c).

FD outperforms surface-derived measures in capturing the 
age-related variability of the neonatal cortex
As both FD and volume are derived from a voxel-wise three-dimensional 
representation of the brain, the above findings raise the additional ques-
tion of how FD compares to morphological measures that are derived 
from surface modeling14,15,32. Therefore, we additionally compared FD 
against cortical thickness, curvature, gyrification, sulcation, surface 
area and the T1-weighted/T2-weighted (T1w/T2w) ratio and asked how 
closely each of these measures captures the age-related variability 
of the neonatal cortex. Specifically, we first employed region-wise 
linear models to estimate which measure yields the highest adjusted 
coefficient of determination (R2

adj) in each cortical area (Fig. 3a) and 
compared the highest-ranking model to the respective second-best 
model with a permutation approach. Therein, FD showed the strongest  
age associations in more cortical regions than all other measures com-
bined (highest-ranking: 15/26 regions (58%); univariate permutation 

data, including neonatal brain atlases12–14 and the adaptation of 
well-established processing pipelines to the specificities of the new-
born brain regarding size variability and tissue contrasts14,15.

Concurrently, powerful new methodologies have emerged that 
capture the shape characteristics of the human brain from structural 
MRI, moving beyond information reflected by measures of brain size 
such as volume.

To illustrate why shape-related measures can capture additional 
features of brain morphology, consider the example of a fictitious 
structure of 10,000 voxels. By definition, the volume estimate of this 
structure is given by the voxels it consists of (and yields 10 ml if voxels 
are 1-mm3 isotropic). Clearly, however, there are many ways in which 
these voxels could be arranged in space, resulting in different mor-
phological constellations or ‘shapes’ of the structure. In this regard, 
a recent line of research has shown that such shape characteristics 
are reliably captured by a structure’s fractal dimensionality (FD)16–18. 
In brief, FD stems from a branch of mathematics that investigates 
the spatial scaling properties of geometric objects, showing that the 
traditional notions of Euclidean dimensions (that is, 1 for a line, 2 for a 
plane and 3 for a cube) do not apply well to objects of the biophysical 
world19. Instead, natural objects often show a high degree of involved-
ness, yielding irregular shapes that exhibit non-Euclidean scaling 
properties (see Methods). Such irregular scaling is more adequately 
described by a non-integer fractal dimension (from Latin ‘fractus’: 
broken, fragmented or irregular), which expresses scaling properties 
that lie in between the idealized dimensions of Euclid and can be viewed 
as a measure of the object’s structural complexity16,19–22.

In neuroscience, fractal analysis of structural MRI has provided 
researchers with a new tool to study brain shape empirically, yielding 
FD as a highly age-sensitive neuroimaging phenotype16,17,21–23. On the 
technical side, previous studies showed that FD is robustly calculated 
from MRI segmentations of various modalities16,17, shows better test−
retest reliability than volumetric measures of brain morphology18 and 
is applicable to all tissue compartments of the brain—including cortical 
gray matter (GM), white matter (WM) and subcortical regions16,17,23,24—as 
FD can be estimated from any voxel-indexed segmentation mask. The 
latter also distinguishes FD from other shape-related measures such 
as gyrification, whose application is typically limited to the cortical 
sheet. Notably, FD has been shown to outperform both thickness and 
gyrification in capturing the age-related variance of cortex morphology 
in later life17, suggesting that FD maps unique morphological signatures 
beyond these earlier measures. Moreover, FD has not only proven sensi-
tive to age-related brain changes in healthy individuals17,23,25–27 but also 
detects morphological alterations in a variety of clinical conditions, 
including neurodevelopmental disorders28,29.

In the present work, we leverage these advances to study how 
the shape of the human brain develops in very early life. Specifically, 
we apply fractal analysis to the neonatal dHCP data and assess (1) the 
cross-sectional, longitudinal and predictive capacity of brain shape 
to reflect infant age; (2) the impact of key developmental factors on 
brain shape, including sex, singleton versus multi-fetal pregnancy 
and premature birth; and (3) the relationship between brain shape 
variability and genetic variability across individual newborns. Therein, 
we compare FD against both volume as a measure of brain size and 
common surface-derived measures of brain morphology, showing that 
fractal analysis systematically outperforms these earlier measures in 
capturing infant age, the morphological variability of individual brains 
and genetic information.

Results
Quantifying brain shape in human newborns
Here we analyze structural MRI scans from the third dHCP release11, 
which includes 782 human neonates and covers a wide range of 
infant maturity levels (27−45 weeks post-menstrual age). Figure 1a 
visualizes the differences in cortical morphology over these varying 
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test: 11/14 regions (79%); false discovery rate (FDR) adjusted: 8/11 
regions (73%)). Overall, FD thus showed the strongest and anatomi-
cally most comprehensive associations with age (Fig. 3a, middle), mak-
ing it the top-ranking measure, followed by surface area and volume 
(Fig. 3a, right). Similarly, when all cortical regions were considered 
together in a multiple linear regression approach, FD showed the 
lowest root mean square error and highest variance explained across 
all measures (PFDR < 0.001), followed by gyrification and surface area 
(Fig. 3b). Moreover, we studied how FD relates qualitatively to these 
other measures by estimating their ‘morphological covariance’ across 
the whole cortex. Overall, measures were strongly correlated with each 
other across infants of different ages (Fig. 3c, left), which is intuitive as 
all these features are expected to develop largely in parallel. However, 
age adjustment of these data revealed a suggestive qualitative pat-
tern (Fig. 3c, middle), in which measures are sorted into a ‘size’ cluster 
(including volume) on the one hand and a ‘shape’ cluster (including 
FD) on the other hand (Fig. 3c, right). Notably, FD’s closest neighbor 
in this tree was gyrification, arguably the most shape-sensitive among 
the alternative measures of cortex morphology.

Longitudinal development of brain shape in  
individual newborns
Next, we investigated how brain shape develops within individual new-
borns. To this end, we analyzed the longitudinal FD trajectories in all 
infants for whom repeated scans were available (n = 100). Figure 4a 
illustrates these trajectories for occipital GM and WM of the right hemi-
sphere. Therein, all infants showed a pronounced increase in FD for 
occipital GM (paired t-test: t99 = 25.9, P < 0.001), paralleled by a simulta-
neous decrease in the corresponding WM region (t99 = −22.6, P < 0.001; 
Fig. 4a), with large effect sizes for both (occipital GM: Cohen’s d = 3.2; 
WM: Cohen’s d = −2.2). Mapping these longitudinal developments 
across the whole brain revealed systematic FD increases in cortical 

GM and subcortical areas, with simultaneous decreases across several 
WM areas (Fig. 4b).

The spatial pattern of longitudinal age effects thus strongly resem-
bled the distribution of cross-sectional age effects (Fig. 2a). Indeed, 
explicitly comparing these estimates showed that the spatial pattern of 
age−FD associations was virtually identical across and within individual 
newborns (r = 0.97, P < 0.001; Fig. 4c).

To characterize the spatial specificity of these dynamics, we fur-
thermore estimated the speed of development as the relative change 
that a brain region exhibits per additional week of age. The upper-left 
inset of Fig. 4d illustrates this rate of change for the right occipital GM 
of individual infants, and the average speed per region is plotted in 
the brain map (Fig. 4d, right). Notably, the speed of shape develop-
ment showed significant differences across tissue classes (Kruskal−
Wallis: χ2

2 = 50.9, P < 0.001; Fig. 4d, lower-left inset), with cortical GM 
developing fastest, followed by an intermediate speed in subcortical 
areas and WM areas showing the slowest change with age (all pairwise 
comparisons PFDR ≤ 0.002).

Furthermore, we analyzed the total weekly brain change within 
each newborn to study how developmental factors influence individual 
longitudinal trajectories (Fig. 4e). Therein, we observed no differ-
ence in the speed of development between female and male neonates 
(t = 1.16, P = 0.25) nor between singleton and multi-fetal pregnancies 
(t = −1.91, P = 0.06). Interestingly, however, total weekly brain change 
was negatively associated with age at birth (r = −0.36, P < 0.001), such 
that the brains of more prematurely born infants showed a higher rate 
of change compared to infants who were born later (Fig. 4e, right).

Explaining the tissue-specific direction of age−FD effects
The above analyses thus revealed a consistent spatial pattern of age−FD 
effects, which was observed both cross-sectionally and longitudinally 
and in which more mature brains are characterized by higher GM−FD 
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Fig. 1 | Quantifying brain shape in human newborns. a, Differences in brain 
shape over infant age at the time of scanning, illustrated for cortical GM of the left 
hemisphere. Surface renderings correspond to the age-specific group averages 
of the dHCP data. Maturity levels follow the criteria by the WHO30 and the ACOG31. 
b, Quantifying neonatal brain shape with FD. The FD estimate is calculated from a 
dilation procedure of the voxel-indexed segmentation mask17,18, which measures 
the scaling properties of the structure through iterative convolution with varying 
spatial kernels (see Extended Data Fig. 1 for an illustration). Scaling behavior 

is assessed by the power law relationship between kernel size and the count 
of scaled measurement units after convolution. The slope of this relationship 
in log−log space then yields the structure’s FD estimate. This estimation is 
illustrated for the left parietal cortex of an exemplary infant born at 32.6 weeks 
and scanned at 34 weeks and 44 weeks post-menstrual age. Over this 10-week 
interval, the morphological change of the region (left) is reflected by an increase 
in the structural complexity estimate (right). exp, exponential; Vol, volume.
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and lower WM−FD. To explain this tissue-specific effect direction, we 
conducted six follow-up analyses. Here we summarize the main results, 
but see the Supplementary Information for details.

First, the direction of age−FD effects closely replicated in an  
independent validation cohort from the University of California, Irvine 
(UCI, n = 99 newborns; Extended Data Fig. 5)33,34.

Second, we conducted a morphological simulation study in which 
we gradually transformed a Euclidean plane (theoretical FD = 2) into 
a fully filled cube (theoretical FD = 3), illustrating how FD maps the 
geometric continuum between the idealized dimensions of Euclid 
(Extended Data Fig. 6). Additionally, this simulation showed a strong 
inverse relationship between the FD of the simulated objects and their 
surface-to-volume voxel ratios (SVRs), offering a geometric interpreta-
tion of FD as an index of how ‘space-filling’ an object is with regard to 
the embedding space.

Third, this theoretical association between FD and SVR in simu-
lated objects was closely corroborated in the empirical brain data, 
in both the main cohort (dHCP) and the replication cohort (UCI) 
(Extended Data Fig. 7).

Fourth, we tested the geometric interpretation of the simulation 
study in the empirical data, which suggested that GM develops from 
a more ‘plane-like’ geometry in younger infants (FD toward 2, SVR 
toward maximum, less space-filling) to a more ‘cube-like’ geometry in 
older infants (FD toward 3, SVR toward minimum, more space-filling), 
whereas the opposite development was observed for WM geometry 
(Extended Data Fig. 8).

Fifth, we thus hypothesized that the inverse age−FD in WM 
could be flipped by artificially imposing a more ‘plane-like’ geom-
etry on the WM segmentations through a hollowing procedure 
(and thereby making them more similar to cortical GM). This effect 
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Fig. 2 | Brain shape reflects infant maturity beyond differences in brain 
size. a, Cross-sectional correlations between infant age at scan and FD as a 
measure of brain shape (left) and volume (Vol) as a measure of brain size (right; 
two-tailed product−moment correlation tests). Correlation coefficients were 
Fisher z-transformed and thresholded to P < 0.05 after false discovery rate (FDR) 
adjustment. b, Region-wise comparison of age effects (two-tailed Williams’ 
test of absolute effect size; example regions: parietal GM left, PFDR = 2.3 × 10−10; 

parietal WM left, PFDR = 2.7 × 10−5; thalamus left: PFDR = 0.10). For color-coded 
regions, the null hypothesis that FD and Vol are equally strongly correlated with 
age was rejected at P < 0.05 after FDR adjustment. Higher age correlations for 
brain shape are shown on the left; higher age correlations for brain size are shown 
on the right. Note that, in some regions (for example, the thalamus), infant age 
was reflected equally strongly by both measures. NS, not significant.
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was indeed observed and again replicated in the validation data  
(Extended Data Fig. 9).

Finally, a further validation study showed that the T1w/T2w ratio 
as a biophysical proxy of WM microstructure related significantly more 
strongly to WM−FD than to volume (Extended Data Fig. 10).

Brain shape outperforms brain size in predicting infant age
Given these inferential age−FD effects, we next asked how closely 
infant age could be predicted from brain shape in unseen data. To 
this end, we employed a supervised age prediction scheme, resting 

on a combination of least squares splines, dimensionality reduction 
and relevance vector regression25,35. Herein, FD values constituted 
the predictor matrix, and the quality of age prediction was assessed 
as the mean absolute prediction error (MAE) in days and variance 
explained (R2) in unseen data, evaluated using a 10-fold cross-validation  
scheme (Fig. 5a).

Out-of-sample performance of age prediction yielded high accu-
racy, with a mean prediction error of 4.2 ± 0.3 days and a substan-
tial amount of variance explained in the test data (R2 = 0.95 ± 0.01) 
(Fig. 5b). Furthermore, shape-based age prediction with FD significantly 
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adj) from linear regression models against age at scan 
for each measure and cortical region (n = 609 infants; 26 regions based on 
the modified ALBERT atlas12; error bars: upper bound of bootstrapped 95% 
confidence intervals). For each region, the model with the highest R2

adj was 
statistically compared to the second-best model with a permutation test. 
Abbreviations indicate the measure with the highest-ranking R2

adj in each region, 
with asterisks reflecting the outcome of the permutation tests (***P < 0.001; 
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the spatial distribution of strongest (raw) effects across the entire cortex; the 
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measures, compared with a Kruskal−Wallis test (P = 6.3 × 10−28). b, Whole-cortex 
models of age−morphology associations. The plots show the root mean square 

error (RMSE) in weeks (left) and the R2
adj (right) obtained from multiple linear 

regression models including all cortical regions for the same n = 609 infants as 
above. Permutation tests showed lower RMSE and higher R2

adj for FD compared 
to all others measures at PFDR < 0.001. Error bars correspond to bootstrapped 
95% confidence intervals. c, Morphological covariance across cortical features. 
Here, measures were estimated for the whole (unparcelled) cortex and included 
the number of vertices from surface modeling (Vert) as a further control 
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The latter was subjected to hierarchical clustering (right), where the three  
main clusters were assessed with a Monte Carlo simulation (sigclust test; first 
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anterior temporal lobe; CING, cingulate; FRONT, frontal; MIT, medial-inferior 
temporal gyrus; OTG; occipitotemporal gyrus; PG, parahippocampal gyrus; 
STG, superior temporal gyrus.
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outperformed size-based age prediction with volume—both in terms 
of lower prediction errors (z = −2.8, P = 0.005) and more variance 
explained over individual folds (z = 2.8, P = 0.005) (Fig. 5b). Notably, 
volume-based prediction tended to overestimate age in very young 
infants (Extended Data Fig. 3b), which was not observed with FD.

Moreover, we repeated the cross-validation procedure over 
n = 500 random splits of the dataset into the 10 respective folds (that 
is, 5,000 unique test sets) and evaluated the resulting distributions 
of the performance metrics for differences in location and variance. 
This approach corroborated the superior performance of FD in terms 
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Fig. 4 | Longitudinal development of brain shape in individual newborns.  
a, Longitudinal changes in FD within individual infants, illustrated for occipital 
GM (P = 7.3 × 10−46) and WM (P = 7.8 × 10−41) of the right hemisphere. Repeated 
scans were available for n = 100 newborns. t-statistics were derived from paired 
t-tests (two-sided) between baseline and follow-up scans. b, Whole-brain 
distribution of longitudinal age effects. Cohen’s d was derived from the 
region-wise t-tests (two-sided), FDR adjustment over regions. c, Product−
moment correlation between cross-sectional age effects (Fisher’s z; Fig. 2) and 
longitudinal effect sizes over individual brain regions (two-sided, P = 7.7 × 10−41). 
d, Quantifying the speed of shape developments. The upper-left panel illustrates 
the change per additional week of age for right occipital GM, where the histogram 

reflects individual infants. The brain map displays the mean weekly change 
derived from these distributions for all brain regions. The lower-left image shows 
the distributions of weekly change over tissue classes. χ2 statistic from Kruskal−
Wallis test (P = 8.7 × 10−12). Pairwise comparisons between tissue classes with 
Dunn’s test are significant at PFDR ≤ 0.002. e, Total weekly change of brain shape 
in individual newborns (n = 100 as above), compared by sex, pregnancy status 
and age at birth (P = 2.2 × 10−4; error band: 95% confidence interval for predictions 
from a linear model). Boxes in a, d and e display the interquartile range (IQR; 
lower hinge: 25th percentile; upper hinge: 75th percentile; center line: median), 
and whiskers cover the furthest data points within 1.5× IQR.
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of both prediction errors (z = −61.2, P < 0.001) and variance explained 
(z = 61.1, P < 0.001) and yielded significantly lower variance of the per-
formance metrics (MAE: F = 277, P < 0.001; R2: F = 219, P < 0.001), sug-
gesting that age prediction from brain shape generalized substantially 
better over random fluctuations in the data (Fig. 5c).

Finally, we conducted three additional control analyses. First, age 
prediction from FD and volume together performed on par with age 
prediction from FD alone (MAE: 4.1 ± 0.4 days, ΔMAE = 0.15 ± 0.25 days 
versus FD; R2 = 0.95 ± 0.02, ΔR2 = 0.5 ± 0.6% versus FD). Second, the 
superior performance of age prediction from FD was confirmed in 
two alternative control models of lower model complexity (multiple 
linear regression and support vector regression), with virtually identi-
cal results (Supplementary Fig. 1). Third, FD predicted not only age at 
scan but also age at birth with high accuracy, even when infants were 
scanned up to 1 month after birth (Supplementary Fig. 2a). Similarly, 
FD significantly outperformed volume in a supervised binary classifica-
tion approach of preterm versus term birth from term window scans 
(Supplementary Fig. 2b).

Brain shape detects signatures of prematurity that are not 
captured by brain size
Next, we asked what normative brain shape is expected in infants of 
full-term maturity. To address this question, we estimated a full-term 
FD reference and quantified how much the brains of individual infants 
departed from this reference. For each brain region, we thus computed 
the average FD values over those infants who were both born and 
scanned within the full-term window, which applied to n = 116 neo-
nates (Fig. 6a; size reference calculated in analogy from volumes). 
This approach allowed us to compute a whole-brain ‘departure index’ 
as the spatial correlation distance between these reference values 
and an infant’s individual values. Figure 6b illustrates this procedure 
for one infant who was born and scanned at full term and shows low 
departure from reference (left) and another infant who was born and 
scanned preterm and shows higher departure from the normative 
reference (right). Furthermore, the distribution of departure indi-
ces over all scans (Fig. 6c) revealed that (1) departure from normative 
shape is significantly stronger than departure from normative size 
(rank-sum test: z = 28.2, P < 0.001); (2) departure indices across indi-
vidual scans are significantly more variable for shape than for size 
(F-test: F883,883 = 5.6, P< 0.001); and (3) both distributions show a local 
minimum around term age at scan, which is expected because this 
is the age window on which the respective references were defined. 
These distributions subsequently allowed for explicit comparisons 
among three infant groups: (1) those born preterm and scanned preterm 
(preterm−preterm, n = 161); (2) those born preterm but later scanned 
at term-equivalent age (preterm−term, n = 41); and (3) those born at 
term and scanned at term (that is, the reference group; term−term, 
n = 116). Consistent with the previously observed age effects, group 1  
(preterm−preterm) showed significantly higher departure from the 
normative reference than both group 2 (preterm−term) and group 3  
(term−term), and this held true for both FD and volume (Fig. 6d). 
By contrast, the comparison between group 2 (preterm−term) and 
group 3 (term−term) was significant only for FD but not for volume 
(Fig. 6d), showing that brain shape captured signatures of premature 
birth even when those infants were later scanned in the full-term age 
window, whereas such signatures of prematurity were not detected 
with brain size.

As an exploratory follow-up, we furthermore estimated which 
brain regions are most implicated in these shape differences by relat-
ing the regional FD values of individual infants to the distribution of FD 
values in the term−term reference (Supplementary Fig. 3a). Therein, 
we found strong deviations from reference in the preterm−preterm 
group across virtually all brain regions (Supplementary Fig. 3b), cor-
roborating both the strength and direction of the previously observed 
age effects. Interestingly, however, the preterm−term group showed a 

differentiated pattern of shape deviations, in which some brain regions 
were not significantly different from the term−term reference (for 
example, occipital cortex), other areas were still ‘lagging behind’ the 
reference (for example, brainstem) and yet other areas showed an 
‘overshoot’ of FD values compared to the reference (for example, 
frontal cortex) (Supplementary Fig. 3c).

Brain shape reflects genetic information
Next, we moved beyond group-level age effects and studied the 
relationship between genetic factors and brain shape on the level of 
individual newborns.

To this end, we computed the pairwise age differences for all 
infant-to-infant comparisons in the dataset and measured the ’shape 
difference’ of their brains as the dissimilarity of their whole-brain 
FD profiles (Fig. 7a). As expected from the group-level effects, the 
shape difference between any two infants strongly increased with the 
age difference between them (ρ = 0.83, P < 0.001; Fig. 7b). However, 
the granularity of individual brain-to-brain comparisons allowed us 
to threshold the pairwise age differences to obtain only those com-
parisons in which both infants were within 1 day of age at the time of 
scanning. The inset of Fig. 7b shows that, even within this subset of 
age-matched comparisons, there is considerable variance in the FD 
dissimilarity of individual brains. Notably, however, these shape differ-
ences are not attributable to age because the respective infants were 
the same age at the time of scanning, allowing us to evaluate if sharing 
genetic information—beyond sharing the same age—would be linked 
to a higher similarity in brain shape.

To test this idea, we first compared the brains of twin siblings to 
all matched infants who were the same age as these twins but biologi-
cally unrelated to them. Figure 7c illustrates the resulting dissimilar-
ity distribution for one of the 35 twin pairs for whom unrelated age 
matches were available. Here, the difference between the exemplary 
infant and its twin sibling was substantially lower than the difference 
to any of the unrelated children, such that the two twin brains were 
the most alike in shape. Critically, this observation generalized over 
all twin-to-unrelated comparisons—brain shapes of twin siblings were 
generally more similar to each other than to the brains of unrelated 
infants, with large effect size (one sample t-test: t69 = −17.1, P < 0.001, 
Cohen’s d = −2.1; Fig. 7d).

Consequently, we performed two additional analyses to 
test the idea that similarity in brain shape may reflect similarity in 
genetic information.

First, we stratified the dissimilarity scores by the sex of the 
compared infants (Supplementary Fig. 4). This revealed that infants 
of the same sex exhibit significantly more similar brain shapes than 
infants of different sexes, and this was true in both twin siblings 
and biologically unrelated infants. Interestingly, for infants of the 
same sex, brain shapes tended to be even more similar when both 
newborns were female compared to when both newborns were 
male (z = −6.2, PFDR < 0.001 for unrelated, tendency in twins), sug-
gesting an additional effect of homologous sex chromosomes that 
share the same genes (that is, an XX karyotype in both infants) com-
pared to heterologous sex chromosomes (that is, an XY karyotype)  
that do not.

Second, we hypothesized that, even among twins, sharing more 
genetic information would be reflected by yet more similar brain 
shapes. Accordingly, we stratified twins into dizygotic siblings (that 
is, fraternal twins with approximately 50% shared genes) and monozy-
gotic siblings (that is, identical twins with approximately 100% shared 
genes) and indeed observed that brain shapes are significantly more 
similar in identical twins than in fraternal twins (t29.5 = 6.6, P< 0.001, 
Cohen’s d = 2.3; Fig. 7e).

Notably, analogous control analyses with volume showed that 
genetically related infants exhibit stronger similarity in brain shape 
than in brain size (Supplementary Fig. 5).
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Identifying the brain of one twin from the brain of the other twin
Given these findings, we lastly asked if brain shape would enable the 
identification of twin siblings among age-matched unrelated infants 
(Fig. 7f). This approach pertains to the idea of ‘connectome finger-
printing’36, in which the unique variability of brain activity signatures 
(‘fingerprints’) enables the identification of single individuals with 
high accuracy. Notably, however, here we do not aim to identify the 
same individual but, rather, the individualʼs twin sibling. To this end, 

the dissimilarity scores of individual twin-to-unrelated comparisons 
were ranked, and the infant with the lowest-ranking shape difference 
was predicted to be the other twin. In the example of Fig. 7c, the twin 
sibling was thus correctly identified but not so in the analogous analysis 
with volume (Supplementary Fig. 5a). To assess the predictive power 
of this approach, we computed (1) the ‘rank loss’ over individual pre-
dictions, defined as the proportion of unrelated infants whose brain 
shapes were more similar to the target infant than its twin (that is, rank 
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loss = 0: correct identification; rank loss = 1: all unrelated more simi-
lar than twin; Fig. 7f, left); (2) the accuracy of twin predictions as the 
proportion of correct identifications; and (3) the null distribution of 
correct twin identifications that happen by chance. The latter was esti-
mated by randomly permuting the ranks within individual predictions, 
yielding the permuted P value (Pperm) on the prediction accuracy as the 
proportion of randomly obtained accuracies that surpass the empiri-
cally observed value (lower-right inset). On average, approximately 
11% of twin identifications were thus expected to happen by chance.

Critically, brain shape correctly identified the target twin in 77.1% 
over all predictions (Pperm < 0.001; Fig. 7f). Notably, however, predic-
tive power again mirrored the effect of genetic similarity on shape 
similarity: whereas the accuracy of identifying fraternal twins was 
considerably lower (46.4%), if still far from chance (Pperm < 0.001),  
prediction accuracy was near perfect in the case of identical twins 
(97.4%, Pperm < 0.001; Fig. 7f).

Here again, analogous analyses with volume showed that predic-
tive power of brain size was markedly lower, resulting in a consistent 
25−30% drop in identification accuracy (Supplementary Fig. 6).

Finally, we repeated the core analyses of brain-to-brain com-
parisons in the subset of newborns for whom surface-derived brain 
measures were available (n = 609), including cortical thickness, 
curvature, gyrification, sulcation, surface area and T1w/T2w ratio 
(Fig. 8a). Therein, we found that FD (1) significantly outperformed 
all other metrics in capturing age-related differences of individual 
brain morphology (Fig. 8b; PFDR < 0.001 for all comparisons); (2) 
was the most sensitive in discriminating genetically related from 
age-matched unrelated infants (Fig. 8c, left; all PFDR < 0.001); and (3) 
showed the highest power in predicting which newborns are twin 
siblings (Fig. 8c, right), both overall (accuracy 77%) and separately 
for fraternal twins (42%) and identical twins (97%) (Pperm < 0.001  
for all).
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values from a. Illustration for two infants with lower departure from reference 
(left; born term, scanned term) and higher departure from reference (right; 
born preterm, scanned preterm). Reference brain size was computed in analogy 
using regional volumes. c, Departure from reference over all n = 884 scans in 
the dataset for brain shape (top) and brain size (bottom). The shaded areas 
display the ACOG definitions of preterm age (<37 0/7 weeks = 259 days) and 
term age (273−286 days). Note the local minimum of both scatter clouds around 

the term window. Departure indices were significantly higher for FD than for 
volume (two-sided rank-sum test, P = 8.2 × 10−175). d, Departure from reference 
for three infant groups: (1) born preterm and scanned preterm (n = 161), (2) born 
preterm and scanned term (n = 41) and (3) born term and scanned term (n = 116). 
Boxes display the interquartile range (IQR; lower hinge: 25th percentile; upper 
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for both FD (χ2

2 = 197.2, P = 1.5 × 10−43) and volume (χ2
2 = 194.6, P = 5.5 × 10−43). 

Pairwise comparisons correspond to Dunn’s tests with FDR adjustment 
(FD: term−term versus preterm−term: PFDR = 0.007; term−term versus 
preterm−preterm: PFDR = 1.8 × 10−42; preterm−term versus preterm−preterm: 
PFDR = 2.0 × 10−12; Vol: term−term versus preterm−term: PFDR = 0.205; term−term 
versus preterm−preterm: PFDR = 2.6 × 10−39; preterm−term versus preterm−
preterm: PFDR = 8.1 × 10−17). NS, not significant; Vol, volume.

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 29 | January 2026 | 171–185 180

Article https://doi.org/10.1038/s41593-025-02107-w

C
um

ul
at

iv
e 

pr
op

or
tio

n 

Rank loss

Fraternal vs. identical twinse

Identical

Fraternal

Identifying twin A from twin B Twin predictions
(n = 70)

All

Successful
identification

97.4 % ***

46.4 % ***

77.1 % *** 

1

0.2

0

0.4

0.8

0.6

10.6 0.80.40 0.2

f

Twins
more similar

Unrelated
more similar

t69 = –17.1

***

***

Comparisons to
unrelated infants 

test against µ = 0:

Cohen's d = –2.1
P < 0.001

Infan
ts

Infants

Pairwise age
di�erence

FD
dissimilarity

a

0
0

10

20

0

30
C

ou
nt

z-score FD dissimilarity (twins)
2 4–4 –2

c d

b

∆ age (days)

FD
 d

is
si

m
ila

rit
y

* Threshold age di�erence Infants of the same age
(± 1 day)

Twin B
1

2

3

Unrelated
(same age)

FD
 d

is
si

m
ila

rit
y

Twins vs. unrelated infants

Accuracy

C
ou

nt

0

1,000

Null distribution

0 10.5

****** ***

*** Pperm < 0.001

n = 5,000 permutations

Chance level

Example infant (twin A) 
age at scan: 258 days

n = 12

Brain-to-brain comparisons

FD dissimilarity

C
ou

nt

Twin z-score = –2.25

0 5
0

1,000

FD dissimilarity ('shape di�erence') increases with age di�erence 

Age-matched
comparisons

∆ age (days) L1 norm

Collect twin
z-scores

n = 70

All comparisons

FD
 d

is
si

m
ila

rit
y

1

1.5

2

n = 14 n = 19

Identical twins
Fraternal twins

***

***
t29.5 = 6.6

Cohen's d = 2.3
P < 0.001

Genetic similarity

 = 0.83
P < 0.001

50 100
0

5

10

15

20 60 100 4 10 16
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all brain-to-brain comparisons (left; Spearman’s rank correlation, P ≈ 0 within 
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matches and collected for each twin-to-unrelated comparison (70 comparisons 
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Fig. 8 | FD outperforms earlier measures in capturing the morphological 
variability of individual brains, detecting genetic similarity and predicting 
which newborns are twin siblings. a, Assessing the morphological variability 
of individual brains through pairwise brain-to-brain comparisons, as in Fig. 7 
and illustrated here for two example neonates. The age difference between 
any two newborns is related to the morphological dissimilarity of their brains 
(as in Fig. 7b), computed as the L1 norm over regions for each of eight brain 
measures: cortical thickness (Thick), curvature (Curv), gyrification index (GI), 
sulcation (Sulc), surface area (Surf), T1w/T2w ratio (T1/T2), volume (Vol) and FD. 
Complete data were available for a subset of n = 609 newborns from the dHCP. 
b, The resulting dissimilarity matrices across all brain-to-brain comparisons 
(n = 185,136). The age-related dissimilarity of any two brains is captured most 
strongly by FD (descending effect strength from left to right). Correlations were 
statistically compared with a permutation test, showing that the age effect was 

significantly stronger for FD compared to all other metrics (PFDR< 0.001).  
c, Genetic analyses in age-matched newborns (compare to Fig. 7d–f). The left 
panel shows that FD most strongly discriminates between twin siblings and 
unrelated newborns of the same age (64 twins-to-unrelated comparisons across 
a total of n = 423 infants), and this effect was significant at PFDR < 0.001 compared 
to all other measures (two-sided paired t-tests versus FD: Curv: Cohen’s d = −0.49, 
PFDR = 2.1 × 10−4; Vol: Cohen’s d = −1.02, PFDR = 5.1 × 10−11; Thick: Cohen’s d = −0.78, 
PFDR = 6.0 × 10−8; Surf: Cohen’s d = −0.96, PFDR = 2.4 × 10−10; T1w/T2w: Cohen’s 
d = −0.73, PFDR = 2.6 × 10−7; GI: Cohen’s d = −1.03, PFDR = 4.2 × 10−11; Sulc: Cohen’s 
d = −1.16, PFDR = 1.4 × 10−12). The right panel shows the twin prediction accuracies 
over all twins and for fraternal and identical twins separately (60 twin predictions 
across a total of n = 401 infants, assessed by permutation tests; compare to 
Fig. 7f). For exact P values not listed here, see the Supplementary Information.
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Discussion
These findings show that the early-life formation of brain shape repre-
sents a fundamental maturational process in human brain development.

To study these shape developments, we analyze structural MRI 
data from the dHCP, one of the largest datasets of human newborns 
ever collected11. Therein, we describe brain shape with fractal dimen-
sionality, a geometric measure of structural complexity that comple-
mented and systematically outperformed purely size-based accounts 
of neonatal brain development. Specifically, we found that brain shape 
(1) strongly reflects infant maturity beyond size differences, both 
cross-sectionally and longitudinally; (2) consistently outperforms brain 
size in predicting infant age in unseen data, with high accuracy (mean 
error approximately 4 days); (3) detects signatures of prematurity 
that are not captured by brain size; (4) is consistently more sensitive 
to genetic similarity among newborns, assessed by comparing infant 
sex, related versus unrelated infants and fraternal versus identical 
twins; and (5) enables the identification of one twin from the brain 
of the other twin with high accuracy (approximately 77% overall, 97% 
in identical twins), again outperforming twin predictions from brain 
size. Additionally, FD was systematically better at capturing infant 
age, the morphological variability of individual brains and genetic 
information when compared to common surface-derived measures, 
including cortical thickness, curvature, gyrification, sulcation, surface 
area and the T1w/T2w ratio.

Below, we turn to the implications of these findings, which 
advance our understanding of early-life brain development along six 
key directions.

First, brain shape is inextricably linked to infant age, closely cap-
turing inter-individual and intra-individual differences in infant matu-
rity. Therein, age−FD associations showed a highly consistent spatial 
pattern, which was observed both cross-sectionally and longitudinally 
and in which more mature brains are characterized by higher GM−FD 
and lower WM−FD. Notably, these effects replicated in an external 
validation cohort and closely reflected a biophysical proxy of micro-
structural WM development. To derive a geometric interpretation of 
these effects, we implemented a morphological simulation study that 
produced objects of dimension 2 ≤ FD ≥ 3, spanning a continuum 
between a more ‘plane-like’ geometry (FD toward 2) and a more 
‘cube-like’ geometry (FD toward 3). The empirically observed age 
effects thus indicate that GM develops from a more ‘plane-like’ geom-
etry in younger infants to a more ‘cube-like’ geometry in more mature 
brains, whereas the opposite trend was observed for WM.

Of course, this is not to say that either tissue compartment looks 
like a plane or a cube visually. Rather, it is their geometric properties 
(and specifically their spatial scaling exponents) that exhibit a more 
plane-like or cube-like behavior. An intuitive interpretation of this can 
be invoked by the notion of how ‘space-filling’ an object is with regard 
to the embedding space, where the latter here corresponds to the 
three-dimensional matrix representing the MRI. Consequently, our 
findings suggest that cortical GM develops from a less space-filling 
to a more space-filling structure, whereas WM shows the opposite 
development. Notably, however, this relationship refers to the object’s 
dimension, which is independent of its absolute size (Methods). That is, 
even though both GM and WM are naturally larger in older infants due 
to brain growth, FD quantifies their space-filling properties relative to 
the embedding space.

Biologically, FD should thus be interpreted as a developmental 
marker of early-life brain maturity, which is rooted in geometry rather 
than size. Accordingly, a geometric account of our findings is that the 
cerebral cortex starts out as a relatively smooth sheet (FD closer to 2) 
and becomes gradually more space-filling with increasing convolution. 
By contrast, WM starts out as more of a solid block (FD closer to 3) and 
becomes less space-filling, possibly due to increasing sulcal indenta-
tion. Incidentally, in the oldest infants, GM−FD ultimately surpassed 
WM−FD numerically, which is also observed in adult brains16.

Second, this spatial pattern was paralleled by temporal differences 
in the developmental trajectories, in which cortical GM showed the 
most rapid change over time, whereas WM showed a more protracted 
evolution. These findings in neonates are consistent with early work on 
brain growth trajectories over the first 2 years of life, which reported 
slower WM development compared to cortical GM37. Here, we observe 
similar temporal differences in brain shape formation and show that 
such tissue-specific dynamics are already present at birth, beyond volu-
metric growth38. Notably, these perinatal dynamics also converge with 
a recent account of normative brain growth over the larger lifespan1, 
which suggested that developmental trajectories are steeper for GM 
than for WM around birth.

Third, it is particularly worth focusing on the development of 
cortical complexity, which constituted some of the strongest effects 
throughout our study. In general, our results suggest that the dynamic 
complexity increases in the cortex are an expression of early-life 
cortical folding. This folding process accelerates markedly around 
26 weeks of gestational age, when the brain begins a rapid change from 
a near-lissencephalic to a highly convoluted structure in utero39–41. 
Here, we show that this morphological development naturally extends 
into the neonatal period, where the increasing cortical convolution is 
reflected by a highly canonical increase in structural complexity. In this 
context, recent evidence from statistical physics suggests that cortical 
morphologies across a variety of primate species may be an approxi-
mation of an underlying archetypal fractal shape42. Given the shape 
developments observed here, the formation of cortical complexity may 
thus not only represent a key process in human brain development but 
may rather be the result of a more general, evolutionarily conserved 
mechanism of cortical expansion43–45, possibly related to latent scal-
ing rules. Although the precise biomechanics of this process are still 
being unraveled, a differential tangential growth of the outer cortex 
is thought to represent one key mechanism for cortical folding46–48, 
which raises the exciting possibility that future work may be able to 
bridge these microscale accounts of cortical development and the 
macroscale shape phenotypes studied here.

Fourth, we show that age differences do not only explain differ-
ences in brain shape but that this relationship can be inverted to predict 
the age of an infant from the shape of its brain with high accuracy. Here 
again, brain shape significantly outperformed brain size, and this was 
consistently observed across performance metrics, data splits and 
three different prediction models. Notably, prediction accuracy was 
homogeneously high across the whole age range in the dataset, from 
very premature to well after term, suggesting that brain shape closely 
reflects infant maturity over all stages of neonatal development. In 
this context, recent work has applied geometric deep learning (GDL) 
to show that shape characteristics of the human cortex are predictive 
of a person’s sex and age over the larger lifespan49, and GDL has also 
been used for neonatal age prediction from cortical features in the 
dHCP50,51. Notably, shape-based age prediction in our study generally 
performed at least on par with these reports, further highlighting FD as 
a promising new neuroimaging phenotype. In this context, the ‘ground 
truth’ ages as used here are commonly determined from self-reports 
of the mother’s last menstrual period, which represents a potential 
source of uncertainty. Therefore, our findings raise the question if 
brain shape can also predict fetal age in utero and how this compares 
to early-life ultrasound.

Fifth, brain shape captured morphological signatures of pre-
mature birth that remained undetected by brain size. Specifically, 
even when preterm-born infants were subsequently scanned in the 
term-equivalent age window, their brain shapes still deviated signifi-
cantly from a normative reference of term-born infants, whereas this 
was not the case for brain size. In this context, a recent study on cortical 
structure after preterm birth found prematurity-related alterations to 
be highly variable over individual neonates52. Notably, our modeling 
framework explicitly allows for such individual deviation patterns 
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because the departure index is agnostic to the direction of deviations 
and the particular regions involved in them, yielding an individualized 
new normative approach.

Besides these spatial alterations, we observed differences in indi-
vidual temporal trajectories, where the brains of more prematurely 
born infants showed a higher rate of change compared to term-born 
infants. Ultimately, longitudinal studies contrasting in utero versus ex 
utero development are necessary to understand if this effect represents 
the normal developmental dynamics or, possibly, an acceleration in 
response to premature birth. Here, exploratory analyses indeed sug-
gested that some brain regions show a developmental ‘overshoot’ in 
preterm-born infants, but more work is needed to unravel such spatial 
specificity comprehensively.

In sum, brain shape reflected altered developmental trajectories 
of preterm-born infants already within the first few postnatal weeks. 
Although this is, to our knowledge, the earliest account of altered 
shape development after preterm birth, one previous study applied 
fractal analysis in infants at 12 months and found that prematurely 
born infants with intra-uterine growth restriction showed persistent 
reductions in GM complexity that were related to language and motor 
scores53. Moreover, recent work reported persistent reductions of 
cortical complexity at adult age in participants who had been born 
prematurely, which was related to the degree of prematurity and cor-
related with reduced cognitive performance in adulthood54. These 
findings not only align well with the shape alterations observed here 
in newborns but also suggest such changes to carry functional signifi-
cance for neurocognitive development.

Importantly, about 11% of infants are born prematurely 
worldwide30, bearing an increased risk for early-life mortality30,55, later- 
life cognitive deficits8 and neuropsychiatric disorders56. Our findings 
thus call for long-term longitudinal efforts to assess the prognostic 
potential of FD and follow up neonates into infancy and adulthood 
when neurodevelopmental disorders become manifest.

Sixth, our study reveals a systematic link between brain shape and 
genetic information. Specifically, we found that (1) the brains of geneti-
cally related infants are more similar in shape than those of unrelated 
infants; (2) infants of the same sex show more similar brain shapes than 
infants of different sexes; (3) brain shapes are more similar in homologous 
than in heterologous sex chromosomes; and (4) brain shapes are more 
similar in identical twins (approximately 100% shared genes) than in 
fraternal twins (approximately 50% shared genes). Notably, all these com-
parisons were carried out in age-matched infants, such that these results 
are unlikely to be confounded by the strong age effects discussed above.

These findings complement the fast-growing literature link-
ing neuroimaging phenotypes to genetic factors in human brain 
development2,57–62. In this regard, one study showed that cortical mor-
phology at birth reflects spatiotemporal patterns of gene expression 
in the fetal brain63, suggesting that the shape developments observed 
here postpartum are a direct extension of intra-uterine genetic regu-
lation. Similarly, a recent study found that deviations from normative 
brain age in adulthood were best explained by congenital factors such 
as polygenetic risk, suggesting that early-life genetic factors exert a 
lifelong influence on brain structure64.

Finally, the strong link between genetic information and brain 
shape enabled us to predict which infants are twin siblings from their 
MRI data, identifying the brain of one twin from the brain of the other 
twin. Here again, FD showed the highest predictive power, outperform-
ing not only volume as a measure of brain size but also all other morpho-
logical measures, including cortical thickness, curvature, gyrification, 
sulcation, surface area and the T1w/T2w ratio. Overall, these findings 
suggest that brain shape similarity is a direct expression of genetic 
similarity and that the variability of individual brain shapes represents 
a genetically modulated and heritable phenotype in humans.

In sum, our study identifies the early-life formation of brain 
shape as a fundamental maturational process in human newborns, 

with several immediate implications for understanding normative 
brain development, the study of neurodevelopmental disorders and 
the relationship between individual brain morphology and genetics.
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Methods
Data and image processing
Neonatal data were obtained from the third release of the dHCP (https://
www.developingconnectome.org/), including cross-sectional data 
for n = 782 infants (360 females, 422 males). The dHCP protocol was 
approved by the United Kingdom Health Research Authority (Research 
Ethics Committee reference number 14/LO/1169), and written informed 
consent was obtained from the legal guardian/next of kin11. MRI of 
virtually all newborns was acquired during natural sleep11. Mean birth 
age was 37.89 ± 4.17 post-menstrual weeks (range, 23.0–43.57), and 
age at first scan was 39.81 ± 3.55 weeks (range, 26.71–45.14). Of these 
infants, 682 were born from singleton pregnancies, and 100 were 
born from multi-fetal pregnancies. Follow-up MRI scans for longi-
tudinal analyses were available for n = 100 infants. Note that, com-
pared to adult brains, tissue contrasts in neonatal brains are inverted 
due to immature myelination3,65, such that T2-weighted images pro-
vide better quality and were hence used for image processing in the 
dHCP15. To control for potential confounds in these data, the dHCP 
developed a series of advanced acquisition protocols and correction 
schemes for neonatal MRI15,66–68. Specifically, motion correction and 
super-resolution reconstruction were achieved by combining tech-
niques from Cordero-Grande et al.66 and Kuklisova-Murgasova et al.68, 
which rest on rigid-body motion estimation and motion-compensated 
reconstruction, resulting in isotropic volumes of 0.5-mm3 spatial res-
olution15. These images were subsequently passed to the neonatal 
processing pipeline, including correction for intensity inhomogene-
ity, brain extraction, tissue segmentation and surface modeling15. 
Therein, the segmentations of individual images were based on the 
DRAW-EM algorithm (Developing brain Region Annotation With 
Expectation-Maximization)13,15, where the assignment of individual 
voxels to regions of interest (ROIs) rests on the ALBERT atlases for 
neonatal brain anatomy (‘ALBERT: a label-based encephalic ROI tem-
plate’)12 as modified by Makropoulos et al.13. This atlas contains 87 
regions, including 16 cortical GM and WM regions for each hemisphere, 
nine bilateral subcortical regions, the brainstem and corpus callosum 
as unpaired regions as well as unlabeled tissue, background and cer-
ebrospinal fluid. Here, we combined some smaller and contiguous 
regions to harmonize spatial granularity across the brain. Specifically, 
we combined the medial and lateral part of the anterior temporal lobe, 
the anterior and posterior segments of the gyri parahippocampalis et 
ambiens, the anterior and posterior lateral occipitotemporal gyrus as 
well as high-intensity and low-intensity voxels of the thalamus, yielding 
a total of 70 ROIs assigned in each MRI.

Using these data, the main focus of our study was to compare FD 
as a measure of brain shape and volume as a measure of brain size in 
their ability to capture early-life brain development. However, both 
of these measures are derived from a voxel-wise three-dimensional 
representation of the brain, raising the additional question of how 
FD compares to morphological measures of the cerebral cortex that 
are derived from surface modeling14,15,32. Therefore, we furthermore 
assessed the utility of our framework against a set of six common 
surface-derived measures, including cortical thickness, curvature, 
sulcation, the T1w/T2w ratio as well as surface area and gyrification. 
Note that, whereas the former four measures were directly available 
with the dHCP release (https://biomedia.github.io/dHCP-release-
notes/structure.html#structural-pipeline), surface area and gyrifica-
tion index were computed with the additional package for the dHCP 
structural pipeline, given here: https://github.com/amakropoulos/
structural-pipeline-measures/tree/master. Complete morphological 
data were available for n = 609 infants and underlie the analyses in 
Figs. 3 and 8. Note that the same region labels as above were projected 
onto the cortical surface, such that surface measures were averaged 
within a parcel to obtain ROI-wise estimates. Therein, we averaged 
over the absolute values of sulcation and curvature, as these measures 
include positive and negative entries that equally carry important 

morphological information (for example, convexity and concavity). 
Finally, note that the dHCP provides age-specific normative templates 
by week of post-menstrual age to account for the rapid development 
of neonatal brains. These age-specific templates are openly available 
from https://brain-development.org (refs. 14,32,69), and the surface 
renderings of left cortical GM correspond to the week-wise averages 
displayed in Fig. 1a. For all visualizations of statistical tests, results were 
mapped onto the 40-week template.

A brief note on fractal geometry
Under the traditional framework of Euclidean geometry, a straight line 
is attributed with a dimension of 1, a plane has a dimension of 2 and a 
cube is characterized by a dimension of 3. Although still broadly taught 
as the standard geometry today, it has long been realized that natural 
objects of the physical world do not adhere well to these idealized 
Euclidean figures. The latter was famously illustrated by Benoit B. Man-
delbrot—widely regarded as the founding figure of fractal geometry—in 
a seminal 1967 article on the coastline paradox20. This paradox refers 
to the phenomenon that many real-world curves such as coastlines do 
not possess well-defined length although they represent finite physical 
objects. In effect, the length of the object depends on the spatial scale 
at which it is measured (but does not converge at increasingly smaller 
scales), leading to curious observations such as Portugal and Spain 
independently reporting the length of their shared border with a dif-
ference of several hundred kilometers70. At the core of this paradox lies 
the fact that the scaling properties of the natural object do not coincide 
with those expected from Euclidean geometry—or, more formally, that 
an object’s Hausdorff−Besicovitch dimension can exceed its topologi-
cal dimension19. To illustrate this, consider the simple scaling law

N(x) = x−D (1)

where x represents a scaling factor; N(x) represents the number of 
scaled measurement units needed to recover the original object; 
and D represents the dimension estimate. This relationship can be 
rewritten as

D = − logxN(x) = − logN(x)
log x

(2)

As an example, consider a straight line that is scaled by x = 1
2

. We 
now count the number of scaled measurement units (Mandelbrot calls 
these ‘yardsticks’) needed to recover the original object and obtain 
N(x) = 2. With the above equation, we see D = − log 2

log 1/2
= 1, as would be 

expected from the Euclidean notion of a line. Similarly, consider the 
case of a square that is covered with scaled squares of side length x. 
Here we obtain N(x) = 4  scaled units needed to retrieve the original 

square. Thus, D = − log 4
log 1/2

= 2, and the case of a cube follows in analogy 

to yield D = − log 8
log 1/2

= 3.

Importantly, however, many objects—both in pure mathematics 
and the real world—do not follow this behavior. One famous example 
is the so-called Koch curve71, which possesses infinite length and scales 
according to D = − log 4

log 1/3
≈ 1.26 . This object is thus described by a 

non-integer dimension D, for which Mandelbrot coined the term ‘fractal 
dimension’ from the Latin ‘fractus’: broken, fragmented or irregular19. 
Such curves can be said to possess scaling properties that lie in between 
those of a line and those of a plane and are an expression of the object’s 
higher structural complexity compared to the Euclidean line. Notably, 
the term ‘complexity’ carries different connotations depending on the 
field of study, which can lead to misunderstandings or interpretational 
issues. With regard to fractal analysis, we use the term in a purely techni-
cal way: structural complexity quantifies the non-Euclidean scaling 
properties of the object under study. However, we realize that a more 
intuitive interpretation may be helpful, and, within the present context, 
the FD estimate can be roughly interpreted as an index of how 
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‘space-filling’ an object is with regard to the embedding space (here, 
the three-dimensional matrix representing the brain MRI). For an 
illustration of this geometric intuition, see the morphological simula-
tion study below and in Extended Data Fig. 6.

In sum, the idealized dimensions of Euclid can be viewed as special 
cases of a more general geometry that allows for non-integer dimen-
sions and lends itself to the analysis of naturally occurring forms in 
the biophysical world.

Estimating FD from structural MRI
Although D can be computed in an exact fashion for objects like the 
Koch curve, it must be estimated empirically for real-world data (we 
here use the term ‘dimensionality’ instead of ‘dimension’ to reflect this 
distinction). To this end, the most common method is the box-counting 
algorithm16,21, in which boxes of side length ε are imposed on the object 
of interest, and N(ε) represents the minimum number of boxes needed 
to cover the object comprehensively. The FD estimate is then given by 
the box-counting dimension DBC as

DBC = limε→0
logN(ε)
log(1/ε) (3)

However, whereas theoretical fractal sets can be downscaled infi-
nitely, the zero limit typically does not apply to empirical data (and 
in neuroimaging, the smallest observable scale usually corresponds 
to the voxel resolution16). Therefore, the FD estimate is in practice 
computed over a finite set of physical scales and is given by the slope 
of the regression line of box count versus box size in log−log space16,17,21.

Here we use a modification of this classical three-dimensional 
box-counting method, in which each box is replaced with a cube of a 
given size through iterative convolution with a set of spatial kernels, 
amounting to a ‘dilation’ procedure that is mathematically equivalent 
to applying box counting with a sliding grid17,18. Previous validation 
studies showed that this dilation algorithm represents a more robust 
version of classical box counting in that it (1) fares better in bench-
marking studies of simulated objects17, (2) is less sensitive to object 
translation and rotation17 and (3) yields better test−retest reliability 
than classical box counting18. Computationally, this dilation procedure 
was implemented with the calcFD toolbox17,23 for MATLAB (MathWorks, 
Inc.), openly available from https://github.com/cMadan/calcFD.

To estimate the FD of brain structures from MRI data, voxels 
belonging to the ROI are first indexed through a segmentation proce-
dure (here we use the abovementioned dHCP segmentation), yielding 
a binary three-dimensional mask that is subsequently passed to the 
dilation algorithm. Therein, the physical scales over which the FD 
estimate is computed correspond to a range of voxel sizes16, typically 
expressed as 2k with k ∈ ℕ0. Here, we follow previous applications of 
the toolbox in applying the range of k = 0, 1, …, 4 for estimation with 
the dilation algorithm17,18,23,25. For each of these spatial scales, the 
three-dimensional convolution of the index mask is calculated, result-
ing in a volumetric count in relation to the spatial scale. Extended  
Data Fig. 1 illustrates how this dilation procedure is used to compute 
the FD estimate from the scaling properties of a voxel-indexed segmen-
tation mask. In this example, FD is estimated for global segmentations 
of cortical GM and WM in two recordings of a representative neonate. 
Note that we use global tissue segmentations for the analyses in 
Extended Data Figs. 5 and 7–10, whereas the analyses in the main text 
were carried out in the parcellated brain data as described above, yield-
ing one FD estimate per region and thus a 1 × 70 vector for every scan. 
This region-wise FD estimation follows the same procedure and  
is illustrated for the left parietal cortex of the same exemplary infant 
in Fig. 1b.

Inferential statistics and modeling
All directional tests were two-tailed. Simple two-group comparisons 
were tested with t-tests or rank-sum tests, depending on the 

distribution of the variables, and in analogy for correlational analyses 
with either product−moment or Spearman’s rank correlation. 
Two-sample tests were unpaired, unless stated otherwise (for example, 
the longitudinal analyses in Fig. 4a in which each newborn had a base-
line and a follow-up scan, representing paired samples). Effect sizes 
for parametric group tests were computed as Cohen’s d. Parametric 
correlation strengths were Fisher r-to-z-transformed to harmonize 
scales for visualization (for example, Fig. 2a). Multiple-group omnibus 
tests were implemented with Kruskal−Wallis tests, followed up by 
pairwise Dunn’s tests. Formal significance was considered at an α level 
of 0.05, and P values of multiple pairwise tests were corrected after 
Benjamini−Hochberg72 to control the FDR. For the statistical compari-
son of correlation coefficients in dependent groups (Fig. 2), the null 
hypothesis posits that two variables (for example, FD and volume) are 
equally correlated with a third variable (for example, age), all obtained 
from the same individuals, which is testable through Williams’ 
t-statistic73,74. For model comparisons across different brain measures 
(Figs. 3a,b and 8b), we implemented a permutation approach on the 
effect estimate given n empirical observations of m variables. The null 
hypothesis under this regime posits that there is no difference in the 
observed effect between two brain measures X and Y and that, conse-
quently, the effect attributed to observations of X can be equally attrib-
uted to the corresponding observations of Y. To test this hypothesis, 
we first standardize observations in X and Y to the same scale, using 
z-scores for parametric models and ranks for non-parametric models. 
Subsequently, we choose n

2
 observations of X at random and replace 

these data points with the corresponding observations in Y, yielding a 
new variable X̄ . We then estimate the statistic of interest on X̄  and 
repeat this process many times to obtain a null distribution of the 
statistic, which approximates the assumption that it does not matter 
if observations belong to X or Y. The empirical estimate is then com-
pared to this null distribution, where the ensuing P value is given by the 
proportion of permuted estimates equal to or greater than the empiri-
cal estimate over the number of permutation iterations (here, 
n = 10,000). This procedure equally applies to m = 1 (that is, X and Y are 
vectors) and m > 1 (that is, X and Y are matrices), where random replace-
ments are applied per column in the latter case.

Moreover, the hierarchical clustering grouping in Fig. 3c was tested 
with the sigclust package for R75. Furthermore, for the FD covariance 
network in Extended Data Fig. 2, the pairwise region-to-region cor-
relation matrix of FD values was constructed from the cross-sectional 
scans in Fig. 2, and this matrix was thresholded to the top and bottom 
first percentile to obtain the strongest positive and inverse covari-
ance across brain regions. Additionally, the hierarchical regression 
in Extended Data Fig. 4 compared a compact model in which the FD 
of a brain region was explained with infant age alone (FD~age) to two 
augmented models that incorporated sex (FD~age+sex) and preg-
nancy status (FD~age+pregnancy), respectively. To estimate in which 
brain regions these factors significantly explained additional variance 
beyond age differences, compact and augmented models were com-
pared with F-tests for nested models, using the lmSupport package for 
R (https://rdrr.io/cran/lmSupport).

Replication analyses
The replication analyses in Extended Data Figs. 5, 7 and 9 were carried 
out in an independent dataset of human newborns from the Univer-
sity of California, Irvine (UCI) (ethics approval no. 2009-7251)33,34. 
The UCI data comprised n = 99 newborns born to healthy pregnan-
cies with no known major complications. The sex distribution in the 
UCI sample was largely balanced (n = 48 females (48.5%); n = 51 males 
(51.5%)) and did not differ significantly from the dHCP sample (χ2 = 0.21, 
P= 0.65). However, infants in the UCI cohort were significantly older 
on average (42.87 ± 2.01 post-menstrual weeks (range, 39.57–48.57), 
z = 8.47, P< 0.001; Extended Data Fig. 5a). Besides the age range and 
geographic locations of the study sites (dHCP: United Kingdom; UCI: 
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United States), noteworthy differences include the scanner type (dHCP: 
3T Philips Achieva; UCI: 3T Siemens TIM Trio), acquisition parameters 
and processing software15,33,34, the post-reconstruction spatial resolu-
tion (dHCP: 0.5 mm3; UCI: 1 mm3) and the parcellation approaches14,15,33.

Replication analyses thus focused on global tissue segmenta-
tions of cortical GM and WM to ensure comparability and address the 
potential impact of arbitrary tissue cuts due to a particular parcellation 
template. Accordingly, we estimated the FD of these global segmenta-
tions and computed the product−moment correlation to age at scan 
for each tissue class and dataset separately (Extended Data Fig. 5b). 
The direction of age−FD effects was then assessed by the sign of the 
estimate, testing if it significantly differed from zero in both datasets. 
Furthermore, the magnitude of age−FD associations in the two cohorts 
was statistically compared through a z-statistic obtained from correla-
tion coefficients of independent groups74 and computed with the cocor 
package for R (http://comparingcorrelations.org/).

Morphological simulation study
Moreover, we implemented a morphological simulation study 
to illustrate the geometric interpretation of FD and help explain 
the tissue-specific direction of the empirical age−FD effects 
(Extended Data Fig. 6a). As detailed above, Euclidean geometry attrib-
utes a plane with a dimension of 2, whereas a cube is characterized by 
a dimension of 3. These idealized structures thus represent special 
cases of equation (2), where the exponent of the spatial scaling law 
resolves to a positive integer. Therefore, the rationale behind the simu-
lation study was to illustrate how FD maps the spectrum between these 
Euclidean special cases by gradually transforming one into the other. 
Specifically, the simulation starts from a plane (theoretical FD = 2) 
and slowly ‘grows’ into a cube (theoretical FD = 3) through a series of 
random additions. To this end, we first construct a binary matrix of 0s 
(100 × 100 × 100 voxels) into which we insert a plane of 1s (100 × 100) 
as the initial object. We then index all voxels that are on the surface of 
the object and randomly choose one surface voxel as the center of a 
5 × 5 × 5 cube that we set to 1. We then repeat this process over many 
iterations, gradually filling the matrix with 1s until we arrive at a vol-
ume of all 1s (that is, the cube). Here, we set the number of iterations 
to 30,000 and repeated the simulation 100 times. With this approach, 
all simulation runs started from the same plane and arrived at the 
same cube, but the objects in between varied. In each iteration, we 
computed the FD of the simulated object exactly as outlined for the 
empirical data. Furthermore, we hypothesized that the FD of the simu-
lated objects would show a principled link to their SVRs, computed as 
the sum of surface voxels over the sum of all voxels of the object. The 
idea behind this approach is that FD can be intuitively interpreted as 
an index of how ‘space-filling’ the object is relative to the embedding 
matrix. For illustration, the initial plane is the least space-filling object 
in the simulation, whereas its SVR is maximal because all voxels are 
surface voxels (that is, SVR = 1). By contrast, the final cube completely 
fills the embedding matrix, whereas its SVR is minimal because most 
voxels are inside the cube. Given the matrix dimensions, the number 
of unique surface voxels of the full cube amounts to 58,800, such that 
the expected SVR of the final cube yields 0.0588. All simulation runs 
returned the theoretically expected FD and SVR values, both for the 
plane and for the cube (Extended Data Fig. 6b). Finally, it is worth men-
tioning that Extended Data Fig. 6 shows the results of transforming the 
plane into the cube. As a further control analysis, we also implemented 
the opposite transformation (that is, transforming the cube into the 
plane), with virtually identical results (FD versus SVR for plane to cube: 
r = −0.994, P < 0.001; for cube to plane: r = −0.985, P < 0.001).

Further validation analyses
Given the results of the simulation study, we furthermore tested 
if the FD−SVR relationship would also be observed in the empiri-
cal brain data (Extended Data Fig. 7). Therefore, we ran a series of 

correlation tests between FD and SVR values in the dHCP regional 
parcellations (Extended Data Fig. 7a) as well as global tissue segmen-
tations for the dHCP and UCI data (Extended Data Fig. 7b, upper and 
lower row, respectively).

Moreover, we implemented an additional control analysis to test 
if the inverse age−FD in WM could be flipped by artificially manipulating 
the images to be more similar to the GM segmentations (Extended  
Data Fig. 9). To this end, we hollowed out the original segmentations 
and computed FD values from these hollowed images (Extended  
Data Fig. 9a). Notably, FD values from hollowed data were universally 
lower than those computed from the original segmentations, as 
expected from previous validation studies17,23. Moreover, given the 
geometric interpretation of the age−FD effects in GM and WM 
(Extended Data Figs. 6 and 8), we hypothesized that the impact of the 
hollowing procedure would depend on the age of the infants.  
Therefore, we computed the numerical effect of the procedure as 
ΔFD = FDoriginal − FDhollow  and correlated this difference with age at  
scan (rΔFD in Extended Data Fig. 9c,d).

Additionally, we conducted the analyses in Extended Data Fig. 10 
to validate WM volume and FD against a biophysical proxy of WM 
microstructure. To this end, we estimated the ratio of T1w/T2w data 
in all voxels of the WM border15,76. This estimation was based on the 
bias-corrected T1-weighted images, the bias-corrected T2-weighted 
images and the corresponding tissue segmentation (data available for 
n = 631 infants), which were all provided in T2-weighted space by the 
dHCP (Extended Data Fig. 10a). This approach allowed us to sample 
voxels inside the WM mask (amounting to 1 mm, panel a, right) and to 
extract the T1w/T2w intensities in the corresponding voxel locations. 
The respective ratio of these intensities then yielded a voxel-wise T1w/
T2w map (Extended Data Fig. 10b), and the median across all indexed 
voxels was computed as a summary proxy of WM microstructure for 
every infant (Extended Data Fig. 10c). Notably, the quantitative range 
of T1w/T2w ratios observed here is highly consistent with a recent 
study that used a similar approach to estimate the microstructural 
developments of WM bundles in the dHCP cohort77. The relationship 
between the T1w/T2w proxy and WM volume and WM−FD, respec-
tively, was then assessed by (1) statistically comparing the absolute 
effect sizes obtained from dependent groups (as described above; 
Extended Data Fig. 10d, left) and by (2) computing partial correlations 
across all three variables (Extended Data Fig. 10d, right) using the 
ppcor package in R78.

Predicting infant age
The age prediction pipeline in Fig. 5 rests on the openly available PRISM 
toolbox (https://github.com/cMadan/prism) for MATLAB, which was 
developed for age prediction from brain features and includes a combi-
nation of least squares splines, dimensionality reduction and relevance 
vector regression25,35. Here, the smoothing parameter for spline regres-
sion was set to zero, enforcing near least squares cubic spline to coun-
teract overfitting; all other parameters were left to default, including 
the application of principal component analysis and relevance vector 
regression within a sparse Bayesian framework79. The predictor matrix 
was of the form (observations × brain features) and contained either FD 
values, volumes or both. All predictors were standardized. To evaluate 
prediction performance, we applied a 10-fold cross-validation scheme, 
such that the model was trained on 90% of the data and predicted age 
at scan in the remaining 10% of the data in each iteration. Note that, 
here, we limited the dataset to the 782 unique baseline scans (that is, 
excluding the follow-up sessions) to ensure that every infant contrib-
uted exactly one scan to the data. Prediction quality for each iteration 
was then assessed as the MAE (|predicted age − true age|) and the vari-
ance explained in the test set (R2 = 1 − residual sum of squares / total 
sum of squares), as shown in Fig. 5b. For the random repetitions of 
the cross-validation procedure (Fig. 5c), we computed 500 unique 
permutations of the data that were subsequently split into 10 folds, 
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resulting in 5,000 predictions on unique test sets. Performance dif-
ferences between FD and volume were tested with signed-rank tests. 
Finally, to assess the impact of different model types, we applied the 
same prediction pipeline using simple multiple linear regression and 
support vector regression with a linear kernel with MATLAB-inbuilt 
functions (fitlm and fitrsvm), as shown in Supplementary Fig. 1.

Departure from normative reference
For the analyses in Fig. 6, we estimated reference values of brain shape 
and size in infants of full-term maturity. This approach is conceptually 
related to the hub disruption index80 in functional neuroimaging, in 
that data points from single individuals are compared to normative 
data points obtained from a reference population. Here, the reference 
population consisted of those infants who were both born and scanned 
within the full-term window (term−term), where the latter was defined 
based on the ACOG definitions (39 0/7 weeks to 40 6/7 weeks). This 
criterion was fulfilled by n = 116 newborns in the dataset. For each brain 
region, the full-term reference value was then computed as the average 
over those 116 infants, once for FD values (shape reference; Fig. 6a) 
and once for volumes (size reference). This approach subsequently 
allowed for a comparison between the reference values across all brain 
regions and the corresponding values computed from individual scans, 
as shown in the scatter plots of Fig. 6b. To estimate how much these 
individual scans deviated from the full-term reference, we computed a 
departure index defined as d = 1 − ϱ (that is, the non-parametric spatial 
correlation distance between the individual scan and the normative 
reference). Therein, Spearman’s rank correlation was chosen because 
(1) we aimed to obtain an estimate of the relative spatial organization 
across the whole brain and because (2) the speed of development varied 
over the different tissue classes (Fig. 4d), such that the deviations from 
reference were not uniform but showed clustering effects (for example, 
deviations cluster below the identity line in Fig. 6b). For each scan, we 
thus obtain one index of departure from full-term shape reference (FD) 
and another for the departure from full-term size reference (volume). 
These indices were subsequently compared across all scans (Fig. 6c) 
and among infants who were born preterm and scanned preterm (pre-
term−preterm) and those who were born preterm but scanned later at 
term-equivalent age (preterm−term) (Fig. 6d). Finally, note that infants 
who met the full-term criterion are expected to follow the reference 
closely because they formed part of the group on which this refer-
ence was defined, thus providing an estimate of variability within the 
full-term group itself. This close adherence to reference was indeed 
observed for both FD and volume in full-term infants (Fig. 6b–d).

The above framework thus implemented a normative account of 
morphological developments on the level of single infants, reflecting 
individual patterns of whole-brain deviations that are not easily cap-
tured by group-level analyses. However, we complemented this frame-
work by an exploratory approach on the FD features, which (1) explicitly 
captures the region-by-region variability within the term−term refer-
ence group and (2) quantifies the group-level deviation of individual 
brain features for preterm−preterm and preterm−term infants. These 
analyses are summarized in Supplementary Fig. 3. Therein, for any 
given brain region, we extract the distribution of FD values for the 
term−term group, which allows for an estimation of the variability 
within the norm as the standard deviation (s.d.) over the respective 
vector (Supplementary Fig. 3a, right). Furthermore, this approach 
allowed us to compute z-scores with respect to the reference as

zi, j =
xi, j−μj,term−term
σj,term−term

(4)

where xi,j represents the FD value of the i-th infant in the respective 
target group (preterm−preterm or preterm−term) and in the j-th brain 
region; μj,term−term represents the mean FD value in that brain region 
over the term−term reference group; and σj,term−term  represents the 
corresponding s.d. in the reference group. In Supplementary Fig. 3a 

(left), the computation of these norm-referenced z-scores is illustrated 
for the example region of left frontal GM. Here, we display one infant 
of the preterm−preterm group whose z-score corresponds to the left 
tail of the term−term distribution (blue) and one infant of the preterm−
term group whose z-score corresponds to the right tail of the reference 
distribution (red). This approach subsequently allowed us to collect 
the z-scores for all infants of the preterm−preterm and preterm− 
term group and test if the distribution of these z-scores was signifi-
cantly different from zero (one sample t-test). Panels b and c of 
Supplementary Fig. 3 show the results of these analyses across  
all brain regions for the preterm−preterm and preterm−term 
groups, respectively.

Comparing individual infant brains
To move beyond group-level inferences, we conducted comprehen-
sive pairwise ‘brain-to-brain’ comparisons of individual neonates 
(Figs. 7 and 8). For any two given infants, we thus quantified the overall 
‘shape difference’ of their brains by taking the vectors of their regional 
FD values and computing the dissimilarity between these two vec-
tors. To this end, we here apply the L1 norm (‘Manhattan distance’), 
as this measure weights all vector components equally and is less 
sensitive to single-dimension deviations compared to the Euclidean 
distance, because the individual terms are left unsquared. For every 
brain-to-brain comparison, this approach yields a scalar measure of 
overall dissimilarity (Fig. 7a), such that higher values indicate more pro-
nounced shape differences and lower values indicate that the compared 
brains are more similar in shape. Moreover, the identical approach 
was applied to regional volumes to compute the overall dissimilarity 
in size between any two brains (Supplementary Fig. 5) and likewise 
for the systematic comparisons to surface-derived measures in Fig. 8.

Genetic similarity
These brain-to-brain comparisons subsequently allowed us to relate 
the shape similarity of any two brains to the genetic similarity of the 
compared infants. The latter was formalized in three different sets of 
comparisons: (1) infants of the same sex versus infants of different sexes 
(as assigned at birth; Supplementary Fig. 4); (2) twin siblings versus 
unrelated infants (Figs. 7c,d and 8c); and (3) identical twins versus 
fraternal twins (Figs. 7e,f and 8c). Overall, there were 42 twin pairs in 
the dHCP dataset. For the age-matched analyses in Fig. 7, however, a 
total of seven twin pairs had to be discarded—one because no unre-
lated infants of the same age were available and six because the two 
twin siblings themselves were scanned more than 1 day apart—leaving 
n = 35 twin pairs. Moreover, the genetic similarity among those twin 
pairs was further assessed by stratifying them into identical twins 
(that is, monozygotic siblings) and fraternal twins (that is, dizygotic 
siblings). This information on twin status was provided by the dHCP 
consortium (Harriet Cullen, King’s College London) and was derived 
from single-nucleotide polymorphism array genotype data, which were 
used to confirm whether the twins were monozygotic, sharing 100% of 
their genetic variation (PI_HAT = 1), or dizygotic, sharing approximately 
50% of their genetic variation (PI_HAT ≈ 0.5)81. These data on twin sibling 
status were available for n = 33 twin pairs.

Twin predictions
Apart from the inferential analyses of sex and twin status, we further-
more predicted twin siblings out of the set of age-matched unrelated 
infants in a supervised approach (Figs. 7f and 8c). To this end, we iter-
ated over all individual twins-to-unrelated comparisons and predicted 
the lowest-ranking dissimilarity score (that is, the most similar brain 
in shape) to belong to the twin of the target infant, as detailed in Fig. 7c. 
Note that, although the set of unrelated matches was the same for a 
given twin pair, the dissimilarity scores between twin A and the unre-
lated infants and twin B and the unrelated infants naturally differed, as 
all these comparisons reflect individual pairwise brain-to-brain 
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measures. In consequence, every twin pair resulted in two predic-
tions—once identifying twin A from twin B and once identifying twin 
B from twin A—yielding 70 twin predictions in total. Furthermore, note 
that the number n of unrelated matches varied across the individual 
twin pairs, such that the chance level of individual twin predictions 
varied in parallel as 1 / n. For illustration, the example of Fig. 7c features 
13 age-matched infants (one of whom is the twin to be identified), 
resulting in a chance level of 1/13 ≈ 7.7% . As such, chance levels for 
individual predictions were higher if fewer unrelated matches were 
available in the dataset (maximum 50% if only one unrelated match 
was present). To account for this heterogeneity, we implemented a 
permutation approach, in which the rank structure within individual 
predictions was randomly shuffled 5,000 times and the proportion of 
chance identifications was recorded over all individual predictions. In 
consequence, we obtain a null distribution of correct twin identifica-
tions that happen by chance, which yields the P value of the empirically 
observed identification accuracy as the proportion of permuted accu-
racies that surpass the empirical value. The inset of Fig. 7f shows  
this null distribution, which yielded a mean accuracy of 11.4 ± 3.7% of 
correct twin identifications that are expected to happen by chance.

Finally, the identical approach was applied to twin prediction 
from brain volumes (Supplementary Fig. 6) as well as surface-derived 
measures (Fig. 8).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data used in the preparation of this paper were obtained from the 
National Institute of Mental Health (NIMH) Data Archive (NDA). The 
NDA is a collaborative informatics system created by the National 
Institutes of Health (NIH) to provide a national resource to support 
and accelerate research in mental health. Dataset identifiers are as 
follows: Collection ID 3955 (dHCP) and Collection ID 1890 (UCI). This 
paper reflects the views of the authors and may not reflect the opinions 
or views of the NIH or of those submitting original data to the NDA.
Please note that the direct sharing of raw data or derivatives by the 
authors is not permitted as per NDA policy. However, researchers can 
independently obtain data access at the NDA using the above Collec-
tion IDs or the corresponding study DOIs82,83. For further information, 
please see NDA study 3107 (https://doi.org/10.15154/jdep-kf48). Source 
data are provided with this paper.

Code availability
Analysis code supporting the findings of this study is available 
from the corresponding authors and the Open Science Framework  
(https://osf.io/6jck4/).
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Extended Data Fig. 1 | Illustration of the dilation algorithm to estimate 
fractal dimensionality (FD) from the scaling properties of a voxel-indexed 
segmentation mask. The left panel displays representative voxel-indexed 
slices of global tissue segmentations of T2-weighted data in the dHCP. These 
data correspond to the same exemplary infant of main Fig. 1b, scanned once 
at 34 and once at 44 weeks of age. The classes of cortical gray matter (red) 
and white matter (yellow) are contrasted for visualization. The middle panels 
display surface renderings of the respective 3D masks after convolution with 
spatial kernels of increasing size (‘dilation’), which represent the physical scales 

over which the FD estimate is computed (see Methods). The latter correspond 
to a range of voxel sizes expressed as 2k, with k = 0, 1, …, 4, following previous 
applications17,18,23,26. For each of these spatial scales, a 3D convolution of the 
tissue mask is calculated, resulting in a volumetric count in relation to the spatial 
scale. The FD estimate is then given by the slope of the relationship between 
these counts and the kernel sizes in log-log-space, which is illustrated for the 
example data in the right column. The FD changes from scan 1 to scan 2 thus 
correspond to changes in the scaling properties of the respective structures 
(independent of their absolute size).

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-025-02107-w

Extended Data Fig. 2 | Covariance network of fractal dimensionality (FD). 
The network displays the region-to-region covariance of fractal dimensionality 
values across individual newborns (n = 782, as in main Fig. 2a). The left-hand 
side displays the direction of how brain regions covary with each other, showing 
primarily positive associations within regions of the same tissue compartment 
as well as for cortical gray matter and subcortical areas, while several white 

matter regions show inverse associations to subcortical areas and cortical gray 
matter. The right-hand side shows this network in brain space, thresholded to 
the strongest 1% of positive and inverse associations, respectively. Here, the 
strongest positive associations (top) are observed between areas of the same 
tissue class and homologous areas, and the strongest inverse associations 
(bottom) between cortical gray matter and white matter areas.
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Extended Data Fig. 3 | Illustration of age analyses for volume. a, Illustration of 
cross-sectional age-volume associations for the same three example regions of 
main text Fig. 2a. b, Out-of-sample performance of age prediction from volumes, 
evaluated using a 10-fold cross-validation scheme in analogy to main text Fig. 5b. 

The red line represents the identity line (that is, perfect prediction). Note the shift 
towards overestimating age in very premature infants, which was not observed in 
age prediction from fractal dimensionality. MAE: mean absolute prediction error 
in days; R2: variance explained in the test data.
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Extended Data Fig. 4 | Explaining variance in brain shape with age, sex and 
pregnancy status. a, Variance in fractal dimensionality (FD) explained by age 
at scan in a compact linear regression model. b, Hierarchical regression results 
showing the additional variance explained (ΔR2) by including the sex of the infant 

in the model. c, Hierarchical regression results showing the additional variance 
explained by including pregnancy status (singleton or multifetal). P-values are 
derived from F-tests for linear models and FDR-adjusted over regions.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-025-02107-w

Extended Data Fig. 5 | The directionality of age-FD effects replicates in 
external validation data. a, Illustration of the datasets used for replication 
analyses. The dHCP data corresponds to the discovery dataset reported 
throughout the main manuscript, including 782 unique newborns. The validation 
dataset corresponds to a neonatal cohort from the University of California, Irvine 
(UCI), including 99 newborn infants. The sex ratio was not different between 
the two cohorts (χ2 test, P = 0.645), whereas UCI infants were significantly older 

(rank-sum test, P = 2.5*10−17). To harmonize comparisons, we analyzed  
global segmentations of cortical gray matter (GM) and white matter (WM) for the 
whole brain and left and right hemisphere respectively in both datasets.  
b, The directionality of age-FD associations replicated in the validation dataset 
(dHCP: n = 782, UCI: n = 99)–independent of study site, scanner type, acquisition 
protocol, spatial resolution, age range, and parcellation. Error bars: 95% 
confidence intervals; center: correlation coefficients.
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Extended Data Fig. 6 | Morphological simulation study of fractal 
dimensionality (FD) and surface-to-volume voxel ratios (SVR). a, Illustration of 
a simulation run. The simulation starts from a binary matrix of 0s (100x100x100 
voxels) filled with a plane of 1s (100x100x1) as the initial object (left panel). In 
every iteration, the FD and SVR of the simulated object are estimated as in the 
empirical data (see Methods). Subsequently, a surface voxel of the object is 
chosen at random and defined as the center of a 5x5x5 cube which is set to 1. 
Thus, the simulated object increasingly fills more of the embedding space, as 
it transforms from a Euclidean plane (theoretical FD = 2) into a fully filled cube 
(theoretical FD = 3, right panel). The simulation ran 100 times with 30,000 
iterations each, and all runs arrived at the cube. b, Results of the simulation study. 
The upper row shows the FD of the simulated objects as they transition from a 
‘plane-like’ to a ‘cube-like’ geometry, where the gray tile marks the numerical 

range observed empirically in neonatal brains. The inset on the right zooms 
in on this range. The lines mark the empirical group averages (dHCP data) for 
cortical gray matter and global white matter at 35 and 40 weeks, respectively. The 
simulation thus suggests that white matter (WM) starts out as a more ‘cube-like’ 
geometry in younger infants and develops into a more ‘plane-like’ geometry 
towards term maturity, while the opposite is true for cortical gray matter (GM). 
Furthermore, the simulation suggests that the geometric properties of GM and 
WM converge towards term maturity, reflected in a numerical convergence of 
GM- and WM-FD. The lower row shows the corresponding SVR of the simulated 
objects (left). The simulation suggests a strong inverse correlation between SVR 
and FD (right; two-tailed product-moment correlation test, P ≈ 0 within machine 
precision). These theoretical results from the simulation are tested empirically in 
Extended Data Figs. 7 and 8.
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Extended Data Fig. 7 | The theoretical relationship between fractal 
dimensionality (FD) and surface-to-volume voxel ratios (SVR) replicates in 
empirical data. a, Relating fractal dimensionality (FD) to surface-to-volume 
voxel ratios (SVR) in the parcellated brain data from the dHCP. The 
morphological simulation study (Extended Data Fig. 6) showed a principled 
inverse relationship between FD and SVR in simulated objects. The left panels 
show this relationship empirically for the three exemplary regions in main Fig. 2a. 

The right panel displays the brain-wide associations, showing that the inverse 
FD-SVR relationship is observed across all brain regions. Correlation values are 
z-transformed for visualization. b, The inverse relationship between FD and 
SVR replicates in global tissue segmentations (that is, independent of regional 
parcellation) and in the external validation data from the University of California, 
Irvine (UCI); see Extended Data Fig. 5 for details on this cohort.
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Extended Data Fig. 8 | Biological inferences from morphological simulation 
study. a, Empirical findings for fractal dimensionality (FD) in the dHCP 
data (n = 884 scans). The simulation study (Extended Data Fig. 6) suggested 
that FD values of cortical gray matter (GM) and global white matter (WM) in 
individual brains should numerically converge towards term maturity. The left 
panel shows the FD difference between GM and WM in individual infants and 
confirms this development, with a GM-WM equilibrium point around 40-42 
weeks. Furthermore, the simulation study revealed that the spatial properties 
of an object can be located on a continuous spectrum between a ‘plane-like’ 
geometry (FD towards 2) and a ‘cube-like’ geometry (FD towards 3). Accordingly, 
we compared scans in the preterm window to term-window scans (two-sided 
rank-sum tests with FDR adjustment) and found that GM develops from a more 
‘plane-like’ to a more ‘cube-like’ geometry (middle-left; PFDR = 4.2*10−45), while 
the opposite was true for WM (middle-right; PFDR = 6.8*10−43). Consequently, the 

absolute GM-WM difference in FD was significantly lower in more mature brains 
(right panel; PFDR = 4.2*10−45) b, Empirical findings for surface-to-volume voxel 
ratios (SVRs) in the dHCP data (n = 884 scans). The simulation study showed 
a strong inverse relationship between FD and SVR. Accordingly, the GM-WM 
convergence of FD values should be reflected by a similar convergence of SVR 
in more mature brains. The left panel confirms this development in individual 
brains. Similarly, the preterm vs term comparisons (two-sided rank-sum tests 
with FDR adjustment) again suggested that GM develops from a ‘plane-like’ (SVR 
towards 1) to a ‘cube-like’ geometry (SVR towards 0; middle-left; PFDR = 1.7*10−39), 
while the opposite was observed for WM (middle-right; PFDR = 3.5*10−44). As 
for FD, the absolute GM-WM difference in SVR was significantly lower in more 
mature brains (right panel; PFDR = 4.2*10−45). Boxes in panels (a) and (b) display the 
interquartile range (IQR; lower hinge: 25th percentile; upper hinge: 75th percentile; 
center line: median), and whiskers cover the furthest data points within 1.5*IQR.
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Extended Data Fig. 9 | Hollowing out tissue segmentations. a, Illustration of the 
image manipulation in exemplary slices from a dHCP infant. The original tissue 
segmentations are hollowed out, such that inside voxels of the segmentation 
mask are removed. The hollowed-out masks for cortical gray matter (GM) 
and global white matter (WM) are more similar to each other, as the GM-WM 
boundary closely follows the cortical ribbon. b, Regional segmentations (dHCP 
data). Computing FD from the hollowed-out regional segmentations results 
in uniformly positive age associations across all brain areas. The direction of 
age correlations thus remains unchanged for all cortical GM and subcortical 
areas, whereas it changes uniquely for those WM regions that show inverse age 
associations when the original segmentations are assessed (Fig. 2; Extended 
Data Figs. 1 and 5). c, Global tissue segmentations (dHCP data, n = 782). 
Effects of hollowing on volume (upper row) and FD (lower row) of global 
tissue segmentations. As voxels are removed by the hollowing procedure, 
volumes are naturally lower for both GM and WM. Notably, hollowed global 
segmentations yield uniformly positive age-FD associations, as for parcellated 
data. Additionally, FD values in hollowed segmentations are universally lower 
than in the original segmentations, closely corroborating previous studies17. 

With reference to the simulation results (Extended Data Fig. 6), the hollowing 
procedure can thus be interpreted to impose a more ‘plane-like’ geometry on 
the segmentations. Consequently, the effect of hollowing on FD is stronger in 
WM than in GM (cf. slopes in lower-right plots) because the latter already shows 
a more ‘plane-like’ behavior to begin with (Extended Data Figs. 6b and 8a). 
Similarly, the effect of hollowing was stronger in older infants for GM (because 
GM develops from a ‘plane-like’ to a ‘cube-like’ geometry), but stronger in 
younger infants for WM (because WM develops from a ‘cube-like’ to a ‘plane-like’ 
geometry; Extended Data Figs. 6b and 8a), as quantified by the rΔFD values 
(two-sided product-moment correlation test: GM: P = 2.6*10−188; WM: P ≈ 0 
within machine precision). d, Global tissue segmentations (UCI data, n = 99). 
These effects of hollowing were closely corroborated in the UCI validation data 
(two-sided product-moment correlation test: rΔFD GM: P = 2.9*10−11; rΔFD WM: 
P = 3.7*10−13), albeit with smaller effect sizes (two-sided Fisher’s z-test: GM: 
Δr=0.21 [0.09,0.35], z = 4.0, P = 5.2*10−5; WM: Δr = -0.29 [-0.43,-0.19], z = -9.3, P ≈ 0 
within machine precision). Boxes in panels (c) and (d) display the interquartile 
range (IQR; lower hinge: 25th percentile; upper hinge: 75th percentile; center line: 
median), and whiskers cover the furthest data points within 1.5*IQR.
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Extended Data Fig. 10 | Microstructural developments of neonatal white 
matter (WM) relate significantly more strongly to fractal dimensionality 
(FD) than to volume. a, Illustration of the data used to estimate the ratio 
of T1-weighted and T2-weighted data (T1w/T2w) as a biophysical proxy of 
microstructure in the neonatal white matter boundary (WMB). Representative 
slices of bias-corrected T1-weighted data, bias-corrected T2-weighted data, 
and the tissue segmentation, all in T2w space, as provided by the dHCP. The 
mask of the white matter boundary (WMB) is computed by finding the WM 
voxels bordering on cortical gray matter and sampling inside the WM mask 
to 1 mm depth. Data from an exemplary neonate. b, A microstructural proxy 
of the neonatal WMB is estimated as the voxel-wise ratio of T1-weighted 
and T2-weighted data15,79,80 and illustrated here for the slices from panel (a). 
Voxel-wise data of each infant were aggregated as the median T1w/T2w ratio over 

all WMB voxels (right inset). c, WMB T1w/T2w ratio is positively related to infant 
age (data available for n = 631 neonates; two-tailed product-moment correlation 
test, P = 7.7*10−91). d, Association between the microstructural proxy (T1w/T2w) 
and WM volume (Vol; upper left; P = 1.1*10−28) and WM fractal dimensionality (FD; 
upper right; P = 2.9*10−94; two-tailed product-moment correlation tests, n = 631). 
The T1w/T2w-FD association is significantly stronger than the T1w/T2w-volume 
relationship (lower left, error bars: 95% confidence intervals; center: absolute 
correlation coefficient; two-sided Williams’ test, P ≈ 0 within machine precision). 
Partial product-moment correlation tests between all three variables showed 
that the T1w/T2w-volume relationship vanishes when controlling for FD, whereas 
the T1w/T2w-FD relationship persists when controlling for volume (lower right; 
FD vs. T1w/T2w, P = 4.8*10−68; FD vs. Vol, P = 2.3*10−22; Vol vs. T1w/T2w, P = 0.057).

http://www.nature.com/natureneuroscience
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used for the collection of data

Data analysis Data analysis was implemented with R (versions 3.6.3 and 4.4.0) and MATLAB (versions 2017b, 2019b, and 2022b). For fractal analysis of 

structural brain segmentations, we used the openly available calcFD toolbox for MATLAB (https://github.com/cMadan/calcFD), modified to 

process neonatal neuroimaging data (see below for availability of custom code). Group-wise comparisons, correlation analyses, effect size 

calculations, cross-validation, random resampling, and multiple comparisons corrections were implemented with inbuilt facilities of R and 

MATLAB. For the statistical comparison of correlation coefficients, we used a MATLAB implementation of Williams' test (David M. Groppe, 

https://www.mathworks.com/matlabcentral/fileexchange/25984-r_test_paired) and the cocor package for R (version 1.1.4, http://

comparingcorrelations.org/). The lmSupport package for R (version 2.9.13, https://rdrr.io/cran/lmSupport) was used to assess the hierarchical 

regression approach with F-tests for nested models. For the statistical assessment of clustering results, we used the sigclust package for R 

(version 1.1.0.1, https://cran.r-project.org/web/packages/sigclust/sigclust.pdf). Partial correlations were computed with the ppcor package 

for R (version 1.1). For the prediction of infant age, we used the PRISM toolbox for MATLAB (https://github.com/cMadan/prism) as well as the 

MATLAB functions 'fitlm' for simple multiple linear regression and 'fitrsvm' for support vector regression with a linear kernel. Analysis code 

supporting the findings of this study are available from the corresponding authors and the Open Science Framework (https://osf.io/6jck4/). 

Data visualization rests on ggplot functionalities in R as well as SurfIce (https://www.nitrc.org/projects/surfice/) with full-term equivalent 

meshes for brain mapping (https://brain-development.org, subcortical meshes were custom-made). Single points correspond to scans, 

infants, or brain regions, as indicated. Box-plots correspond to standard quantile-based display, showing median (central line), Q1-Q3 (box), 

with whiskers indicating 1.5*IQR from lower and upper hinges, with remaining data points considered outliers (https://ggplot2.tidyverse.org/

reference/geom_boxplot.html).  

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data analyzed in the main text were obtained from the neonatal release of the developing Human Connectome Project (dHCP; Edwards et al., 2022; 

www.developingconnectome.org), publicly available through the NIMH data portal (https://nda.nih.gov/edit_collection.html?id=3955). Replication and validation 

analyses (Extended Data Fig. 5, 7, and 9) were implemented in a second external dataset from the University of California, Irvine (UCI; Rasmussen et al., 2022), 

publicly accessible through the NIMH Data Archive Collection #1890 (https://nda.nih.gov/edit_collection.html?id=1890).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The biological sex of the infants was recorded by the dHCP and explicitly analyzed in Figure 4 and Extended Data Figures 4 

and 14.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

An analysis of socially relevant groupings was outside the scope of the current study.

Population characteristics Population characteristics of the dHCP data (discovery) and the UCI data (validation) are reported in the Methods. In brief, 

there were n=782 infants in the dHCP data (360 females, 422 males). Mean birth age in the dHCP was 37.89 ± 4.17 

postmenstrual weeks [range: 23.0 – 43.57], and age at first scan was 39.81 ± 3.55 weeks [range: 26.71 – 45.14]. Of these 

dHCP infants, 682 were born from singleton pregnancies, while 100 were born from multifetal pregnancies. Genetic analyses 

were based on single nucleotide polymorphisms array genotype data. In the UCI data, there were n=99 infants (48 females, 

51 males) with age at scan 42.87 ± 2.01 weeks [range: 39.57 – 48.57].

Recruitment Recruitment of dHCP infants was conducted at St Thomas’ Hospital, London (Edwards et al., 2022); families received 

reimbursement of travel expenses. Recruitment of UCI infants was conducted at the University of California, Irvine 

(Rasmussen et al., 2022); families received 100 USD for participating in the MRI session. 

Ethics oversight dHCP: United Kingdom Health Research Authority (Research Ethics Committee reference number: 14/LO/1169); UCI: 

Institutional Review Board IRB #2009-7251.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size A-priori sample size calculation was not implemented; however, we here analyze the dHCP data which constitutes one of the largest neonatal 

cohorts ever collected (n=782 infants), greatly exceeding typical sample sizes in perinatal neuroimaging. Furthermore, we analyze a second 

dataset for validation (UCI) with n=99 additional infants.

Data exclusions No primary data were excluded. For the twin analyses, seven twin pairs had to be discarded for a subset of the analyses, one because no age 

matches of unrelated infants were available, and six because the two twin siblings themselves were scanned more than one day apart, as 

detailed in the Methods. 

Replication All findings here are based on computational analysis, not experimental intervention, such that experimental replication is not applicable. 

However, we implement several replication and validation analyses in an indepdent external dataset (UCI), as shown in Extended Data Figures 

5, 7, and 9. Moreover, we applied cross-validation, random resampling, and different model types to ensure replication across variations in 

input data and analytical approaches. Reproducibility is also supported by the OSF repository. 

Randomization Randomization is not applicable, as participants were not assigned to experimental groups. Group comparisons rest on demographic, 

developmental, and genetic factors intrinsic to the participants. 
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Blinding Blinding to group assignment was not possible, but also not applicable to the current study. For spatial analysis, however, the lead researcher 

(SK) was initially blinded to the ROI indices (i.e., which number corresponds to which brain region).   

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 

off-target gene editing) were examined.

Plants

Magnetic resonance imaging

Experimental design

Design type Structural MRI

Design specifications Anatomical acqusition, no task design

Behavioral performance measures Not studied here

Acquisition

Imaging type(s) Structural T2-weighted images

Field strength 3T

Sequence & imaging parameters dHCP after Edwards et al. (2022): T2-weighted images were acquired using a Fast Spin Echo sequence in sagittal and 

axial slice stacks with in-plane resolution 0.8×0.8mm^2 and 1.6mm slices, overlapped by 0.8mm; TR/TE = 12000/156ms; 

UCI after Rasmussen et al. (2022): T2-weighted images acquired using a Turbo Spin Echo sequence with TR/

TE=3200/255ms, matrix=256x256x160, resolution=1x1x1mm^3.

Area of acquisition Whole-brain acquisition

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Preprocessed data were included as provided by the dHCP standardized preprocessing pipelines, following the minimal 

processing pipeline for neonatal cortical surface reconstruction (Makropoulos et al., 2018). Brain segmentations in the dHCP 

rest on the DrawEM algorithm (https://github.com/MIRTK/DrawEM). UCI preprocessing was implemented with custom 

modifications of the Human Connectome Project anatomical pipeline (Rasmussen et al., 2022). 
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Normalization Images were transformed using age-specific normative templates (see below).

Normalization template Age-specific week-wise templates as provided with the dHCP (https://brain-development.org); age-specific NIH pediatric 

templates for UCI.

Noise and artifact removal dHCP: Motion correction  after Cordero-Grande et al., 2018; Makropoulos et al., 2018; UCI: prospective motion correction 

with volumetric navigators; ANT DenoiseImage and N4BiasFieldCorrection (Rasmussen et al., 2022).

Volume censoring None

Statistical modeling & inference

Model type and settings ROI-wise analyses are univariate group comparisons or continuous models; predictive models for age are different types of 

regression models (relevance vector, simple multiple linear, support vector). 

Effect(s) tested No task or stimulus conditions applicable. Effects tested include group differences, age associations, prediction accuracy 

(mean absolute error for continuous prediction, accuracy for categorical predictions). Effect sizes of correlational analyses 

were statistially compared with tests for dependent or independent groups, as applicable, using the cocor package for R.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)
Anatomical locations are based on the modified ALBERT atlas for neonatal brain anatomy (Gousias et al., 

2012; Makropoulos et al., 2014).

Statistic type for inference

(See Eklund et al. 2016)

ROI-wise inference

Correction FDR / permutation

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis Independent variables for predictive analyses included ROI-wise fractal dimensionality values (observations x 

regions), volumes, or both. Dimensionality reduction in the main analyses was implemented with Principal 

Component Analysis. Cross-validation was implemented with a 10-fold cross-validation scheme with random 

repetitions. Evaluation metrics were mean absolute prediction error and variance explained in unseen data. 

Evaluation of twin predictions was based on a custom rank loss measure, prediction accuracy, and null 

distribution testing through permutation, as detailed in the Methods. The identical approach was applied for 

the comparative analyses using surface-derived morphological measures (e.g., Fig. 8).  
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