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Brain-wide analysis reveals movement 
encoding structured across and within  
brain areas
 

Ziyue Aiden Wang1,6, Balint Kurgyis    1,6, Susu Chen    2, Byungwoo Kang    1, 
Feng Chen    1, Yi Liu1, Dave Liu3, Karel Svoboda    4, Nuo Li    3,5 & 
Shaul Druckmann    1 

Movement-related activity has been detected across much of the brain, 
including sensory and motor regions. However, much remains unknown 
regarding the distribution of movement-related activity across brain 
regions, and how this activity relates to neural computation. Here we 
analyzed movement-related activity in brain-wide recordings of more 
than 50,000 neurons in mice performing a decision-making task. We 
used multiple machine learning methods to predict neural activity from 
videography and found that movement-related signals differed across 
areas, with stronger movement signals close to the motor periphery and in 
motor-associated subregions. Delineating activity that predicts or follows 
movement revealed fine-scale structure of sensory and motor encoding 
across and within brain areas. Through single-trial video-based predictions 
of behavior, we identified activity modulation by uninstructed movements 
and their impact on choice-related activity analysis. Our work provides a 
map of movement encoding across the brain and approaches for linking 
neural activity, uninstructed movements and decision-making.

A standard view of the function of the nervous system is the transla-
tion of sensory inputs into action1–3. According to this view, the brain 
is parcellated into sensory and motor areas, with association areas in 
between4. On the other hand, decades of neurophysiological record-
ings have found activity related to movement throughout sensory and 
motor regions of the brain. For example, neurons in visual cortical areas 
are modulated by eye movement in primates5,6 and mice7; neurons 
in the barrel cortex are modulated by movement of the whiskers in 
rodents8–10; and activity related to licking, locomotion and other motor 
behaviors causes modulation of neural activity across multiple cortical 
regions11–16. Recent studies suggest that movement-related signals can 
account for a substantial proportion of ongoing neural activity across 
both sensory and motor areas17–21, with differing degrees across brain 
areas. However, these studies have examined a few brain areas at a 
time and different studies relied on diverse behaviors and recording 

methods. There has not been a comprehensive characterization of 
movement-related activity across many relevant brain areas in a single 
behavior. It thus remains unclear how movement-related activity is 
distributed across the brain and whether there are systematic differ-
ences between brain areas.

Multiple statistical methods have been proposed to relate ongo-
ing movements and neural activity at the level of single neurons or 
neural populations22–24. Yet, existing methods do not distinguish 
between different types of movement-related encoding. For exam-
ple, movement-related activity could reflect motor commands, effer-
ence copies, reafferent signals from sensory organs or mixtures of 
these signals25.

The presence of motor signals also raises the question of how these 
signals influence neural computations. In sensory cortical regions, 
movement-related activity can modulate sensory coding to enable 
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time-series of the marker positions (Fig. 1e, left). Second, in the embed-
ding approach, we used autoencoders22 to learn a low-dimensional 
embedding of the videos. The autoencoders reconstructed each 
frame through a low-dimensional bottleneck (Fig. 1e, middle). The 
encoder was a convolutional neural network, and the decoder was 
linear (Methods). In this architecture each frame was transformed 
into a 16-dimensional vector and the time-series of this 16-dimensional 
vector was then used to predict neural activity. Third, in the end-to-end 
learning approach we trained neural networks to directly predict neural 
activity from video (Fig. 1e, right, and Methods). The marker-based 
approach was the least expressive, as we manually selected a small 
number of features. The embedding approach was more expressive 
in that the nonlinear encoder network could learn a richer, if still 
low-dimensional, representation. The end-to-end approach was the 
most expressive as it could make full use of the high-dimensional 
dynamics in the video to explain activity.

Our analysis recapitulated the finding that movement-related 
activity is widely distributed across the brain (Fig. 2a,b). However, 
our analysis also revealed clear differences across brain regions in the 
ability of the video recordings to predict neural activity (Fig. 2a,b). 
For example, explained variance was especially high in the medulla 
(Fig. 2a). Variance explained in the medulla was significantly larger than 
midbrain (medulla explained variance from the embedding method 
0.176 ± 0.06 s.e.m., n = 36 insertions compared with 0.104 ± 0.004, 
n = 79 of midbrain, P < 0.001, Mann–Whitney test, note insertions 
rather than sessions were used since in some sessions recordings were 
performed for a given brain area simultaneously across two hemi-
spheres). Explained variance followed a logical progression, with 
greater explained variance in areas closer to the sensory or motor 
periphery (Fig. 2b).

The ordering of brain areas in terms of predictive power was pre-
served across approaches, despite the greater predictive power of the 
more expressive models (Fig. 2c–e, improvement in explained vari-
ance for embedding-based approach versus marker-based approach, 
improvement = 155 ± 5% s.e.m., n = 105 sessions, P < 0.001; end-to-end 
learning versus marker-based approach, improvement = 330 ± 9% 
s.e.m., n = 105 sessions, P < 0.001; end-to-end learning versus 
embedding-based approach, improvement = 76 ± 3% s.e.m., n = 105 
sessions, P < 0.001, one-sided Wilcoxon signed-tank test with Bonfer-
roni correction). Better predictive accuracy of the more expressive 
models was clear when visualizing single-trial predictions (Fig. 2f). 
Thus, even at timescales of tens of milliseconds, our dataset supports 
data-intensive models in learning meaningful features, surpassing less 
expressive models in predictive accuracy. However, not all neurons were 
predictable, even among neurons with highly reliable responses (see 
Methods for definition and Extended Data Fig. 1). The activity profile 
of some of these neurons suggests that they represented the auditory 
cues delivered in the task, which were not phase-locked to movements 
(Extended Data Fig. 1). Comparison across epochs suggested that a 
large portion of activity was correlated with licking and associated facial 
movements (Extended Data Fig. 2), but the relative differences in move-
ment encoding between areas were preserved (Extended Data Fig. 3).

Registering neurons to the CCF allowed us to analyze encoding 
at the level of brain areas and subdomains, such as cortical layers and 
nuclei. As an example, our recordings sampled large portions of the ante-
rior thalamus, which consists of multiple annotated nuclei. We found 
that explained variance was nonuniform across the thalamus (Fig. 3a–d, 
test against spatial uniformity, P < 0.0001, and Methods). We analyzed 
how variance explained changes over space by measuring the distribu-
tion of difference in variance explained between nearest-neighbor neu-
rons. If variance explained changes as some smooth function over CCF 
space, then the difference in variance explained between a neuron and 
its nearest neighbors would be smaller than the difference between that 
neuron and a randomly selected one. We found that variance explained 
was significantly smaller between nearest-neighbor pairs, indicating 

active sensation10,13 and predictive coding12,15. But in other brain regions, 
including frontal cortex, the impact of movement-related activity on 
neural computation is not well understood. Many laboratory tasks 
require animals to perform instructed movements to report decisions, 
for example, pressing a lever. However, animals perform additional 
uninstructed movements, which can be correlated with the cognitive 
process under study26, such as small movements biased toward the 
direction of future choice as evidence is accumulated. Indeed, neural 
signals related to accumulated evidence have been reported in muscle 
tensions27 or even in ongoing movement execution28,29. Motor-related 
signals have been found in decision-making and motor planning 
areas of the brain17,20,22, but these studies did not distinguish between 
decision- and movement-related activity and compare different types 
of encoding across brain regions. Consequently, it remains unclear how 
pervasive uninstructed movement signals are across the brain, and how 
they are related to neural activity modulated by an animal’s decision.

To address these questions, we analyzed recordings of more than 
50,000 neurons, recorded in more than a dozen cortical and sub-
cortical structures, simultaneously with high-speed video of orofa-
cial movements, while mice performed a decision-making task30,31. 
We tested multiple methods to solve the computational problem of 
relating two high-dimensional, complex time-series datasets: pix-
els of behavioral videos describing the movement of the animal and 
time-varying spike rates of neurons recorded in specific brain regions. 
Although movement-related signals were widespread, the strength of 
movement-related signals differed across areas and across subdivi-
sions of areas, with stronger movement signals in motor areas and 
motor subdivisions. The high temporal resolution of electrophysiology 
enabled us to distinguish activity predicting versus following move-
ment, parsing putative sensory- and motor-related signals within brain 
areas. Further, we distinguish between neurons whose modulation is 
primarily movement-dependent versus others whose modulation is 
more task-contingency-dependent. The prevalence of these two types 
of neurons systematically differed across brain areas, with enriched 
task-contingency modulation in forebrain and midbrain regions. Our 
study offers a principled approach to dissecting the relationship of 
movements and cognition across multiregional neural circuits.

Results
Neural activity explained by movement differs across brain areas
Populations of individual units were recorded while mice performed 
a memory-guided movement task (Fig. 1). Mice were trained to per-
form directional licking (lick-left or lick-right) depending on the 
frequency of a series of pure tones presented to the animal (12-kHz 
tones instruct lick-left; 3-kHz tones instruct lick-right) to obtain water 
rewards32 (Fig. 1a). In between the stimulus delivery and the behavioral 
response, mice were required to withhold licking for 1.2 s. We refer 
to the time period in which the sensory stimulus is presented as the 
‘sample’ epoch, the period in which mice were required to respond as 
the ‘response’ epoch and the period in between as the ‘delay’ epoch. 
High-speed (300 Hz) videos of the face and paws were acquired from 
side and bottom views, together with neural population recordings 
(Fig. 1b). Two to five Neuropixels33 probes were used simultaneously 
to record extracellular activity in multiple regions of the mouse brain, 
including anterolateral motor cortex (ALM), an area critical for direc-
tional licking decisions3,34–36, as well as medulla, midbrain, striatum and 
thalamus, which form multiregional networks with ALM (Fig. 1b–d). 
Recording locations were registered to the Allen Common Coordinate 
Framework (CCF, v.3) and thus mapped37 to the Allen Reference Atlas38.

To examine the relationship of neural activity and ongoing move-
ments, we analyzed facial and paw movements during task performance 
using three approaches. First, in the marker-based approach (Fig. 1e), 
we marked the nose, tongue and jaw in training data. DeepLabCut24 
was used to track the two-dimensional location of the three markers 
in each video frame. We then regressed neural activity based on the 
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spatially structured smooth changes in variance explained across thala-
mus (Fig. 3e, nearest-neighbor difference in explained variance smaller 
than shuffle control, P < 1 × 10−3). For additional analysis we grouped neu-
rons into nuclei based on the Allen ontology38. For seven of the nuclei, 
we had a sufficient number of recorded neurons for analysis (threshold 
set at 100; see Methods and Supplementary Table 1 for definitions of 
nuclei). Explained variance based on the embedding method varied 
significantly among nuclei (Fig. 3c,d,f and see Extended Data Fig. 4 for 
pairwise statistics). Spike rate differences did not explain differences 
in variance explained (spike rate difference not significant between 
posterior complex (PO), ventral anterior–lateral complex (VAL), ven-
tral medial nucleus (VM) and ventral posterior complex (VP), P > 0.1, 
yet variance explained differed significantly between VAL and PO/
VM/VP, P < 1 × 10−3, one-way F-test between these four nuclei; also see 
Extended Data Fig. 4 for pairwise comparisons).

Dissecting putative motor and sensory neural signals
Movement-related signals could reflect motor commands, where activ-
ity is expected to lead movement. Alternatively, reafferent signals are 
expected to lag movement. The high temporal resolution of electro-
physiology allowed us to analyze the temporal relation between neural 

activity and movement (Fig. 4). We shifted the window of video frames 
used to predict neural activity across a range of lead or lag times. We 
tested time windows both from the past and in the future relative to 
the analyzed neural activity (Fig. 4a). For a brain area involved in pro-
ducing movement, the current activity predicts future movement, 
which will be reflected in future video frames. Thus, shifting the window 
of behavioral variables forward in time will yield better prediction 
(Fig. 4a). Conversely, if an area is sensory (for example, propriocep-
tive), then current activity follows past movements. Thus, shifting 
the window of behavioral variables backward in time will yield better 
prediction (Fig. 4a).

We performed this analysis in the response epoch, which had 
the strongest relation between movement and neural activity, using 
the embedding-based approach. We found clear differences across 
the brain (Fig. 4b,c), with differences both in the average optimal 
time-shifts (Extended Data Fig. 5) and in the proportion of neurons 
with positive versus negative time-shifts (Fig. 4c). A strong anterior–
posterior pattern emerged, with neurons in the medulla having a 
strong preference for video-shifts into future time points that was 
also apparent when averaging neurons within brain regions and com-
paring across brain regions (Fig. 4b), consistent with the known role 
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Fig. 1 | Multiregional neural recordings and prediction of neural activity from 
video. a, Delayed response task. b, Simultaneous video and neural recording. 
c, Example recording configuration. d, Raster plot of recorded neurons (top) 
and traces of body part marker locations for a single trial. e, Three approaches 
to predict neural activity from video. Left: marker-based analysis. For each video 
frame, each of the markers ( jaw, nose or tongue) is a two-dimensional vector 
representing the vertical and horizontal positions. Middle: embedding-based 

analysis. For each frame, the embedding vector is a 16-dimensional vector. Right: 
end-to-end learning with deep neural network. ALMc, contralateral ALM; Cb, 
cerebellum; CNN, convolutional neural network; Ctx, cortex; Med, medulla; 
MRN, midbrain reticular nucleus; PN, pons; PPN, pedunculopontine nucleus; px, 
pixels; SCm, superior colliculus, motor related; SNr, substantia nigra, reticular 
part; Str, striatum; Thal, thalamus.
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Fig. 2 | Movement encoding varies across brain areas. a, A two-dimensional 
spatial map of brain-wide prediction of neural activity from video. Each voxel 
is 150 × 150 µm2 in the sagittal plane and spans the brain in the third dimension. 
Color corresponds to mean variance explained by the embedding-based pipeline 
over all the neurons contained within each voxel. For visualization a 3 × 3-voxel 
median filter was applied on the heatmap. Scale bar, 0.5 mm. b, Performance 
of video-based prediction with neurons pooled according to brain area. Error 
bars correspond to the s.e.m. of insertion-averaged values. Overlaid markers 
correspond to individual insertions; numbers of insertions are: medulla n = 36 
insertions, midbrain n = 79 insertions, ALM n = 77 insertions, striatum n = 67 
insertions, thalamus n = 62. Visual representation of statistics corresponds 
to pairwise comparison for the embedding-based predictions with two-sided 
Mann–Whitney U test and Bonferroni correction, ***P < 0.001, NS P > 0.05; 
for exact P values see Extended Data Fig. 2. c, Comparison of single-neuron 
explained variance between marker-based method (x axis) and embedding-
based method (y axis). Each dot corresponds to a neuron. d, Comparison of 
single-neuron explained variance between marker-based method (x axis) and 
end-to-end learning (y axis). Each dot corresponds to a neuron. e, Comparison 

of single-neuron explained variance between embedding-based method (x axis) 
and end-to-end learning (y axis). Each dot corresponds to a neuron. Session-
averaged improvements in explained variance are, for embedding-based 
approach versus marker-based approach, mean improvement = 155 ± 5% s.e.m., 
n = 105 sessions, P < 0.001; end-to-end learning versus marker-based approach, 
mean improvement = 330 ± 9% s.e.m., n = 105 sessions, P < 0.001; end-to-end 
learning versus embedding-based approach, mean improvement = 76 ± 3% 
s.e.m., n = 105 sessions, P < 0.001, one-sided Wilcoxon signed-tank test with 
Bonferroni correction. f, Spike rates of four example neurons during four single 
trials. Spike rates are plotted (black line) overlaid with their prediction from 
the marker-based (green), embedding-based (blue) and end-to-end (brown) 
pipelines. Note, negative spike rate could have been removed post hoc but here 
we show raw prediction output. The explained variances for the four neurons are 
the following: from top left to bottom right: medulla neuron, explained variance 
marker 0.44, embedding 0.68, end-to-end 0.83; medulla neuron, explained 
variance marker 0.17, embedding 0.36, end-to-end 0.39; medulla neuron, 
explained variance marker 0.13, embedding 0.23, end-to-end 0.26; medulla 
neuron, explained variance marker 0.22, embedding 0.25, end-to-end 0.46.
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Fig. 3 | Differences of movement encoding across thalamic nuclei. a, Fraction 
of neural activity variance explained by video prediction. Each dot corresponds 
to a neuron. Color reflects variance explained by embedding-based prediction 
b, Annotations for thalamic nuclei. Each dot corresponds to a neuron. Neurons 
were mapped to their CCF coordinates and colored according to the annotation 
for that coordinate. c, Two-dimensional projection onto the coronal plane based 
on nuclei annotation along the full length of anterior–posterior axis. Each dot 
corresponds to a neuron. Color corresponds to nuclei annotation. Overlaid with 
high transparency is a map with color corresponding to Allen Reference Atlas 
annotation. Left plot shows more anterior portion of thalamus (AP = 6,600 µm); 
right plot shows more posterior (AP = 6,800 µm). Scale bar: 1 mm. d, Two-
dimensional coronal projection of variance explained. Each dot corresponds 

to a neuron. Color reflects variance explained by embedding-based prediction. 
Left plot shows more anterior portion of thalamus; right plot shows more 
posterior. Overlaid with high transparency is a map with color corresponding to 
Allen Reference Atlas annotation. Scale bar: 1 mm. e, Variance explained varies 
nondiscontinuously across space. Plot shows cumulative distribution function of 
difference between variance explained of each neuron and its nearest-neighbor 
neuron. Data are in blue and 100 repetitions of neuron-by-neuron shuffle are in 
gray (Methods). f, Average explained variance across thalamic nuclei. Error bars 
correspond to s.e.m. Numbers of neurons in each region are: CN n = 235, MD 
n = 1,112, PCN n = 268, PO n = 600, VAL = 457, VM n = 221, VP n = 651. See Extended 
Data Fig. 4 for pairwise comparisons. CN, central lateral nucleus and central 
medial nucleus; MD, mediodorsal nucleus; PCN, paracentral nucleus.
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of medulla in controlling orofacial movement39. We observed that the 
best time-offset was positively correlated with the explained variance 
of the neurons (Extended Data Fig. 6) with the exception of medulla 
(Spearman rank correlation between best time-offset and explained 
variance of neurons not significant in medulla, P > 0.1 n = 992, and 
significantly positive in midbrain, P < 0.001, n = 1,702; ALM, P < 0.001, 
n = 1,059; striatum, P < 0.001, n = 1,171; thalamus, P < 0.001, n = 2,881, 
with Bonferroni correction). In other words, more motor-related neu-
rons were better predicted by behavioral videos.

Neurons within each brain area had heterogeneous video-activity 
shift preference (Fig. 5), suggesting rich encoding of movement. Never-
theless, systematic differences were found between known structures 

associated with sensory versus motor functions. Among cortical 
regions, we found that somatosensory areas are more sensory tuned 
than ALM (Fig. 5a; somatosensory areas mean time-offset, −12.8 ± 1.1 ms 
s.e.m., n = 870 neurons; ALM mean time-offset, 8.7 ± 1.5 ms s.e.m., 
n = 1,059 neurons; the two distributions are different at P < 0.0001, 
one-sided Mann–Whitney U test), as expected. We additionally ana-
lyzed subregions within thalamus and midbrain and found significant 
differences in video time-offset. In thalamus (Fig. 5b), sensory thalamus 
PO followed movement (mean time-offset, −11.6 ± 1.4 ms s.e.m., n = 516 
neurons) and motor thalamus VM led movement (mean time-offset, 
5.8 ± 3.4 ms s.e.m., n = 134 neurons). In midbrain (Fig. 5c), we found 
a significant difference between pretectal region (mean time-offset, 
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heatmaps. Scale bar: 0.5 mm. d, Heatmap of best time-offsets for ALM neurons. 
Each voxel is 150 µm squared in the coronal plane and spans the brain in the third 
direction. Color corresponds to the average of best temporal offsets within that 
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axis shown in d. Each row is normalized by its minimal and maximal values. 
Spearman rank correlation between cortical depth and best time-offset is R = 0.1, 
P = 0.0014, n = 1,059 neurons.
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0.0 ± 2.8 ms s.e.m., n = 203) and motor-related superior colliculus 
(mean time-offset, 19.3 ± 1.8 ms s.e.m., n = 612). Thus, we were able 
to uncover differences in sensory versus motor processing across 
subregions in subcortical structures (thalamus, P < 0.001; midbrain, 
P < 0.001, comparison of distributions with one-sided Mann–Whitney 
U test and Bonferroni correction). We also examined differences on a 
more fine-grained level in ALM (Fig. 4d,e). We found a change from 
more sensory-related signals to motor-associated signals as a function 
of cortical depth (best time-offset is significantly, positively correlated 
with cortical depth, P < 0.01, n = 1,059, Spearman rank correlation). This 
sensory-motor encoding is consistent with established anatomy of 
motor cortex, where superficial layers receive sensory signals, whereas 
deeper layers send motor signals to midbrain and medulla34,35,40.

Analyzing and interpreting uninstructed movements
Are uninstructed movements related to decision-making? If unin-
structed movements bear some relation to future choice-behaviors, 

then single-trial choices could be predictable directly from behavioral 
videos. We trained decoders to predict choice from behavioral vid-
eos (Fig. 6). We found that before the sample epoch, predictions of 
choice were at chance (area under the curve (AUC) of receiver operat-
ing characteristic (ROC) was 0.51 ± 0.06 s.d., n = 106 sessions, predic-
tion based on embedding method; Methods), consistent with the lack 
of information regarding trial type at this point. In the sample and 
delay epochs, the mean AUC increased significantly (0.66 ± 0.12 s.d., 
n = 106 sessions, mean AUC ROC of the second half of sample epoch 
and the delay epoch). Thus, even before mice performed their explicit 
choice action (directional licking), uninstructed movements contained 
trial-type information. Soon after the go cue, prediction saturated at 
close to perfect performance (0.99 ± 0.01 s.d., n = 106 sessions, mean 
AUC ROC of the second half of response epoch), consistent with the 
choice being easily decodable from video of directional licking. Nota-
bly, predictive accuracy was highly variable across sessions in the sam-
ple and delay epochs (Fig. 6a–c). Future behavior was predictable from 
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neurons, P < 0.0001. b, Comparison between two thalamic subnuclei: PO of the 
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videos in some sessions, but not in others. In other words, animals 
were highly heterogenous in the extent they exhibited uninstructed, 
trial-type-related movements. Variability in predictability of actions 
from video was smaller within mice than across mice, consistent with 
the notion that individual animals adopted relatively consistent unin-
structed movements (Fig. 6d, Calinski–Harabasz clustering score41 for 
clustering of within-animal points 10.45, compared with null model 
value of 1.02 ± 0.37 s.d.; higher scores correspond to stronger cluster-
ing, P < 0.001; Methods).

To visualize the nature of uninstructed movements, we first sorted 
trials according to prediction confidence. We found that in highly 
predictable trials, mice displayed mostly stereotypical patterns of 
behavior, but the specific movements were diverse across sessions and 
subjects. A subset of mice tended to have more uninstructed move-
ments in lick-left trials (Supplementary Video 1), whereas another 
subset had stronger movements during lick-right trials (Supplementary 
Video 2). For some mice, the uninstructed movements were jaw or paw 
movements (Supplementary Video 1), whereas other mice exhibited 
only jaw movements (Supplementary Video 2). The behavior of indi-
vidual mice varied across days. For example, one mouse remained 
static before the go cue in lick-left trials (Supplementary Video 2) 
but performed stereotypical swinging of the paw in lick-left trials of 
the next day (Supplementary Video 3). To allow more interpretable 
analysis of the movements that predicted choice, we repeated the 
choice prediction analysis using single markers, instead of embed-
dings of the full video. Despite the weaker predictive power of single 
markers (response epoch: marker: 0.88 ± 0.01 s.e.m., n = 106 sessions; 
embedding: 0.96 ± 0.00 s.e.m., n = 106, P < 1 × 10−6, n = 106 sessions), 
the heterogeneity of uninstructed trial-related movements across mice 

was still present (Fig. 6e, Calinski–Harabasz clustering score for clus-
tering of within-animal points 12.57, compared with null model value 
of 1.05 ± 0.54 s.d.; higher scores correspond to stronger clustering, 
P < 0.001; Methods). For some animals, movements of the nose were 
more informative than movements of the jaw, whereas in other mice 
jaw movement was more informative than nose movements (Fig. 6e). 
Interestingly, we found that such task-related preparatory movements 
during sample and delay epochs were positively correlated with the 
animal’s performance on a given session (r = 0.33, n = 106 sessions, 
P < 0.001; Extended Data Fig. 7 and Methods). These analyses reveal 
idiosyncratic patterns of uninstructed movements in individual mice 
that predict choice behavior.

Activity related to uninstructed movement and 
decision-making
Given that uninstructed movements can predict future behavior, we 
explored the interplay between encoding of uninstructed movements 
and choice-related neural activity. When movements can predict future 
choice, movement encoding is entangled with choice encoding. Analo-
gously to the way error trials are often used to differentiate stimulus 
encoding from action encoding, in which the task instruction and action 
are dissociated3,34, we used trials where the behavioral choice and the 
choice predicted from the uninstructed movements during the delay 
epoch were in disagreement to dissociate choice and movement encod-
ing (see Extended Data Fig. 8 for schematic). We analyzed correct trials 
only and separately divided lick-left (L) and lick-right (R) trials into two 
groups based on the prediction of the video-based classifier (predicted 
lick-left (vL) and predicted lick-right (vR) for each trial type; Fig. 7a), 
thus obtaining four trial contingencies (L-vL, L-vR, R-vR, R-vL; Methods). 
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e, Prediction from single markers during the delay epoch. Each circle or triangle 
corresponds to a session. The x-axis value corresponds to ROC AUC from 
behavioral prediction using only the nose marker. The y-axis value corresponds 
to ROC AUC from behavioral prediction using only the jaw marker. To allow 
association of sessions to mice to be visible, only sessions that passed a high 
predictability criterion (AUC larger than 0.6) are shown as colored triangles.  
The rest are shown as circles. Colors of triangles correspond to individual  
mouse identity.
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When considering single-neuron tuning properties, in trials where 
choice and video prediction match (L-vL and R-vR), choice tuning and 
movement tuning are confounded. In contrast, trials with mismatches 
between choice and video prediction enable us to potentially distin-
guish between tuning to choice versus movements (L-vR and R-vL).

We analyzed each neuron for differences of spike rates across these 
four groups of trials. Some neurons’ spike rates were strongly modu-
lated by choice and did not change across different video predictions 
(that is, same response in R-vR and R-vL, and same response in L-vR and 
L-vL). We refer to these as choice-modulated neurons (Fig. 7b). This was 
not due to the video decoders picking up only on minute movements 
that would be unlikely to drive neural modulation, as we observed 
strong differences in multiple behavioral features across the video 
prediction groups (Fig. 7b). For instance, jaw height was significantly 
different across same choice groups with different video predictions in 
most sessions (Fig. 7b, significantly differentiated R-vR versus R-vL in 
56 of 80 sessions and in 56 of 80 sessions for L-vR versus L-vL, P < 0.05; 
only sessions with moderate and higher behavioral predictability were 
chosen for this analysis, defined as AUC > 0.6; Methods). Indeed, other 
neurons’ spike rates were strongly modulated by the grouping of video 
prediction even when conditioned for the choice (same response in 
R-vR and L-vR, and same response in R-vL and L-vL). We refer to these as 
uninstructed movement-modulated neurons (Fig. 7b). Some neurons 
were modulated both by choice and uninstructed movement.

The relative proportions of choice-modulated and uninstructed 
movement-modulated neurons varied across the brain (Fig. 7c,d and 
Extended Data Fig. 9; AUC test against spatial uniformity, P < 0.001), 
but the two types of neurons were spatially intermingled within each 
area. The relative strength of modulation also varied across brain 
regions (Extended Data Fig. 9; defined as the difference in AUC for 
choice and uninstructed movements, test against spatial uniform-
ity, P < 0.001). ALM and midbrain neurons were more likely to be 
choice-modulated than medulla neurons (proportion of choice- to 
uninstructed movement-modulated neurons, ALM 4.8 versus medulla 
1.2, P < 0.001; midbrain 4.3 versus medulla 1.2, P < 0.001, binomial test 
with Bonferroni correction). This is consistent with the reported roles 
of ALM and subregions of midbrain in decision-making tasks3,30,35,42–44 
and that of medulla in low-level motor control39. We also tested a dif-
ferent approach, predicting and then subtracting movement-related 
neural activity, followed by reassessing choice selectivity, and found 
largely consistent results (Extended Data Fig. 10). In summary, our 
analysis of the relationship between video-based behavior prediction 
and spike rates allowed us to disentangle neural coding of movement 
from decision-related activity, which revealed clear differences in 

encoding across different brain areas and identified regions of interest 
for choice computation.

Discussion
We analyzed movement-related activity across the brain during a 
decision-making task. We present multiple methods to relate neural 
activity to movements captured by behavior videos, with less inter-
pretable nonlinear methods yielding superior predictions in terms of 
explained variance. Movement-related signals were pervasive across 
the brain, but their strength differed across areas. Analysis of activity 
following movement versus leading movement revealed a rich structure 
of sensory versus motor processing between and within brain regions. 
Choice-related uninstructed movements were common but varied 
greatly across animals and sessions. We used single-trial analysis to 
tease apart activity modulation by uninstructed movements versus 
coding of choice.

Movement-related neural activity has been investigated in mul-
tiple brain regions and by multiple methods17,20,26,45–47. Although dif-
ferences between brain areas have been previously reported17,20,47, 
we provide a comprehensive characterization of movement-related 
activity across the brain in a single behavior. The temporal resolution 
of electrophysiological recordings allowed us to dissect neural activity 
related to motor versus sensory encoding, and, in anatomical struc-
tures known for sensory or motor processing, the overall organization 
agreed with expectations. At the same time, our analysis reveals rich 
encoding of movement within each area. The neural activity of inter-
mingled neurons can lead or lag movement. The observed large spread 
suggests broadly distributed, closed sensorimotor loops, with most 
brain areas participating in controlling movement and responding 
to movement. Resolving whether the activity leading versus lagging 
movement truly reflects reafferent versus efferent signals will require 
experimental manipulations. For example, in the rodent whisker sys-
tem, lesion of the infraorbital nerve can abolish reafferent signals from 
the vibrissa, while leaving efferent signals relatively intact10. However, 
such experimental manipulation has been done only in limited cases. 
Our analysis can provide a first-order localization of relevant signals 
to guide further manipulation experiments.

When studying neural computations underlying cognitive pro-
cesses, we may wish to disentangle these forms of encoding from activ-
ity related to uninstructed movement. Previous studies have tackled 
this question in multiple ways. For example, one can try to regress-out 
the movement-related part of neural activity17,30,45, or define different 
subspaces in relation with movements46. Here, we used single-trial-level 
predictions of choice from videos to identify trials where animals’ 

Fig. 7 | Single-trial analysis of movement and spike rate reveals neurons 
modulated by choice and movement. a, Schematic of analysis. Correct 
trials were split into lick-left and lick-right trials. Each of these sets of trials 
corresponding to a choice was further broken into two groups based on the 
prediction of behavior from video, yielding four groups of trials corresponding 
to the choice contingency and value of single-trial video prediction (Methods). 
b, Analysis schematic as applied to two example neurons (center, right) and jaw 
marker (left) within a single session. Left: jaw marker position (height) during 
entire trial (top) and magnified on the delay epoch (middle). Lines correspond 
to the mean of jaw height across the four trial groups. Color indicates trial type 
and line style (solid or dashed) corresponds to the video-prediction-based 
contingency. Shaded area corresponds to the s.e.m. across trials. Center: same 
data as in top, magnified on the delay epoch. Bottom: mean jaw height during the 
delay epoch split into the choice and video prediction groups. Color indicates 
choice and line style type (solid or dashed) indicates agreement between 
choice and video prediction contingency. Error bars correspond to the s.e.m. 
across trials (the numbers of trials in each group are: L-vL, 111; L-vR, 70; R-vL, 
63; R-vR, 104). Middle: firing rate of example neuron analyzed according to 
groups defined in a. Top: firing rate of example neuron during the entire trial 
divided into the same four groups as a. Color indicates trial type and line style 

indicates agreement between choice and video prediction contingency. Center: 
same data as in top, magnified on the delay epoch. Bottom: average firing rate 
during the delay epoch split into the trial type and video prediction groups. 
Color indicates trial type and line style type agreement between choice and 
video prediction contingency. Error bars correspond to the s.e.m. across trials. 
Neuron is modulated mainly by uninstructed movements. Right: same format 
as in middle column for a different example neuron that is modulated mostly by 
choice. c, Brain-wide spatial map of the fraction of neurons modulated by choice 
(top) and modulated by uninstructed movement (bottom). Each voxel is 300 µm 
squared in the sagittal plane and spans the brain in the third direction. Color 
corresponds to the fraction of choice-modulated neurons (top) and uninstructed 
movement-modulated neurons (bottom) within that voxel. For visualization, 
a 3 × 3-voxel median filter was applied on the heatmap. Scale bar: 0.5 mm. 
d, Fraction of neurons modulated by choice, uninstructed movement or both for 
six brain regions. The midline of the boxes represents median, the box edges are 
interquartile range and the whiskers are 1.5 × interquartile range for the fractions 
in individual sessions (n = 87 sessions). Neurons were classified into choice- or 
uninstructed movement-modulated according to differences in prediction AUC 
across the four trial contingencies (Methods). L, left; R, right.
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uninstructed movements differed from those most characteristic 
of a given upcoming choice. While earlier work relying on encoding 
models has found that a large portion of trial-by-trial variance can be 
attributed to movements17,42, we have shown that in multiple regions 

upcoming choice is also encoded independently of movements. We 
were able to uncover significant differences between areas in the preva-
lence of neurons tuned to the choice- versus task-related uninstructed 
movements. Our approach, as all decoder-based approaches, might 
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suffer from the choice of the specific predictors used, both in terms 
of their ability to account for different forms of movement as well 
as their ability to generalize across variations of similar movements, 
and therefore the question of whether we captured all the relevant 
uninstructed movements remains open. We believe that this form of 
video-prediction-based dissection of modulation is complimentary to 
other approaches and can be broadly useful to disentangle different 
trial-related forms of encoding.

Uninstructed movement could be part of an animal’s strategy in 
solving the cognitive task48 or reflect the state of the animal or other 
ongoing processes26,45. Although video-based choice prediction was 
positively correlated with the performance of the animal, the explana-
tory power of the correlation was weak, and multiple animals per-
formed the task at a high level without engaging in choice-related 
uninstructed movements. On one hand, this could stem from weak-
nesses in the choice-related movement prediction methods or from 
the animal engaging in movements that are outside of the camera’s 
field-of-view, such as posture and hind-leg movements17. On the other 
hand, some animals are likely to be able to solve this cognitive task 
without relying on overt, uninstructed movements. One way to explore 
this question further is to study task-related uninstructed movements 
in more complex tasks, as one could expect that if uninstructed, but 
task-specific, movements are a useful strategy, or even a necessary 
strategy, then task-related uninstructed movements should be more 
prevalent in more demanding tasks.

Our finding that direct end-to-end methods outperform other 
methods was surprising given the large number of parameters to be fit 
in that approach, the limited number of trials available from training 
and the known variability in single-trial responses, all of which could 
have reasonably led to overfitting. This suggests that for studies focus-
ing on questions such as dissection of movement-related responses, 
in which the main goal is to identify (and then potentially subtract) 
movement-related activity, end-to-end models would be an appro-
priate tool. However, the key disadvantage of these models is poor 
interpretability. If the goal is to understand the different aspects of 
movements neurons are tuned to, we believe the autoencoder-based 
embedding space approach is more favorable. Unlike marker-based 
methods that require specific body parts to be defined in advance for 
tracking, the autoencoder extracts the aspects of movement that are 
then tracked in the embedding space directly from data, which can be 
beneficial since it is difficult to put in place reasonable priors for the 
range of movements that might modulate neural activity. Additionally, 
the embedding space can be trained once and then allows for many 
different analyses to be performed on top of it and experimented with, 
while incurring relatively little additional computational cost. This key 
advantage may outweigh the additional predictive power gained by 
using the end-to-end approach.

What is the importance of widespread and intermingled effer-
ent and reafferent signals? The existence of motor signals could be 
the result of an explicit computational strategy to supply these sig-
nals as they are necessary for the area’s function. For instance, an 
area involved in active sensing likely needs information about the 
motor commands, both as they could influence the active sensing 
strategy and because they may affect the sensory apparatus13,49,50. 
However, identifying specific signals does not by itself indicate their 
functional necessity for an area’s computations. Given the dense local 
and inter-regional connectivity, perfect filtering of signals unrelated 
to a region’s function could require overly complex and inefficient 
gating mechanisms. An alternative computational strategy is to iso-
late the dynamics needed for an area’s computations from irrelevant 
signals, for instance, by organizing them into distinct subspaces in 
activity space51–53. To test these possibilities, an area’s dynamics could 
be perturbed specifically along directions associated with specific 
information. This could be accomplished by simultaneous imaging 
and online targeting of perturbations54,55.
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Methods
Data collection and preprocessing
We analyzed a publicly available dataset published in refs. 30,31. This 
study is based on data from 28 mice, including 25 VGAT-ChR2-EYFP (The 
Jackson Laboratory, JAX no. 014548), one C57BL/6J ( JAX no. 000664), 
one Sst-IRES-Cre ( JAX no. 013044) crossed with reporter mouse Ai32 
( JAX no. 024109) and one Emx1-IRES-Cre ( JAX no. 005628) crossed 
with R26-LNL-GtACR1-Fred-Kv2.1 reporter mouse ( JAX no. 033089). 
The mice were 3–7 months old at the time of recording. All procedures 
were in accordance with protocols approved by the Janelia Research 
Campus Institutional Animal Care and Use Committee.

The data were obtained from Neuropixels probes33 used to record 
extracellular activity in multiple regions of the mouse brain. To perform 
spike-sorting, we used Kilosort56 with a custom quality control pipeline 
outlined in a whitepaper57 (https://doi.org/10.25378/janelia.24066108.
v1). We then binned spikes into firing rates with a bin width of 40 ms 
and a stride of 3.4 ms.

In addition to neural activity, we recorded high-speed (300 Hz) 
multiview video of the face, paws and body of the mouse using comple-
mentary metal-oxide semiconductor cameras (CM3-U3-13Y3M, FLIR) 
under infrared (940 nm light emitting diode) light, with 4–12-mm focal 
length lenses (12VM412ASIR, Tamron), achieving a pixel resolution 
of 71 µm. For analysis, only the side-view frames were used. We used 
DeepLabCut24 to obtain the positions of the jaw, paws and tongue. We 
refer to these positions as markers. We manually labeled about 2,800 
frames, and trained the model using this software, and we used the 
same model across all sessions. Although these markers were mostly 
reliable, we found outliers that harmed the prediction of firing rates 
or animal behavior. We identified outliers by a five-sigma threshold on 
velocity across frames and imputed outliers from nearby frames. When 
the tongue was occluded while it was in the mouth, as was typically the 
case before the response epoch, we set the tongue position to its mean 
value. We note that other choices of specific data imputation method 
did not qualitatively affect the results.

Further details regarding the animals, behavior and data collec-
tion, including electrophysiology, video tracking, spike-sorting and 
histology, can be found in ref. 30.

Convolutional autoencoder
The architecture of the convolutional autoencoder we used was 
similar to BehaveNet described in ref. 22. The encoder was composed 
of an initial convolutional layer, two residual blocks58 and two fully 
connected layers. The initial convolutional layer has 3 × 3 kernel size 
and 16 output channels and is followed by ReLU activation and a 2 × 2 
max pooling. Each residual block was composed of four convolutional 
layers. Each convolutional layer has kernel size 3 and stride 1. The 
first residual block had 16 channels; and the second residual block 
increased the channel number to 32 in the first layer. Each convolu-
tional layer is followed by ReLU activation and the second residual 
block ends with a max pooling with kernel size 4. The input image was 
resized into a 120 × 112 matrix. The output of the last convolutional 
layer was a vector with a length of 288. This output was then processed 
by the two fully connected layers (288 × 128 and 128 × 16) with ReLU 
activation between them yielding the output of the encoder, the 
embedding vector, with a length of 16. The decoder was a fully con-
nected linear layer.

We trained and primarily used session-specific autoencoders. 
However, we also verified that one can train a session-independent 
encoder with session-dependent decoders. We note that decoders had 
to be session-dependent due to differences in overall position of the 
mouse, experimental components and background. In other words, 
during training, all frames are fed into the same encoder but will then go 
to different decoders depending on which session they were extracted 
from. We verified that training a session-independent autoencoder 
with 40 sessions yielded similar performance and qualitatively similar 

analysis results to a session-dependent decoder. We also verified that 
the encoder can then generalize to sessions that the encoder has never 
seen before.

End-to-end learning framework
In the end-to-end learning framework, we trained deep neural networks 
to directly predict neural firing rates. For each session with each brain 
region, we trained a neural network. The network was composed of 
three residual blocks58 and a final linear output layer. Each residual 
block was composed of four convolutional layers, and each convolu-
tional layer was followed by a two-dimensional batch normalization 
with epsilon 1 × 10−5 and momentum 0.1. The first convolutional layer 
of a residual block had kernel size 1 and stride 1; the latter three had 
3 × 3 kernel size and stride 1. The output of the first residual block had 
16 channels, and the output of the other two blocks had 32 channels. 
Each residual block was followed by a two-dimensional max pooling 
with a kernel size of 4 and a stride of 4 for down sampling. After each 
batch normalization or max pooling, a ReLU activation was applied. 
After the three residual blocks and the max poolings, the output was a 
vector of length 160. A linear output layer was connected to the end of 
the last residual block with output size equal to the number of neurons 
to be predicted in the session.

Prediction of neural activity using embedding or markers
When predicting neural activity at time t from embedding vectors 
or marker positions, we took a 5-frame window of the video and col-
lected the respective features at t − 6.8 ms, t − 3.4 ms, t, t + 3.4 ms 
and t + 6.8 ms and concatenated these vectors, obtaining a single 
feature vector that was 80-dimensional for the embedding-based 
approach (16 latent dimensions times the 5 neighboring time points) 
and 15-dimensional for the marker-based approach (3 markers 
times the 5 time points). We then used L2 regularized linear regres-
sion (ridge-regression) to predict neural activity at time t. The 
regularization parameter was obtained through fivefold nested 
cross-validation. Neurons with low firing rates (below 2 Hz) were 
excluded from analyses; the results were not sensitive to the exact 
value of this threshold.

Trial selection and cross-validation
The dataset contains trials with photoinhibition, water administration 
regardless of the animals’ choice (free water trials), early licks and 
trials where the animal ignores the lick-spouts. These were excluded 
from all analyses.

For the analyses comparing the three methods (Fig. 2 and Extended 
Data Figs. 2 and 3), we used a single, random train-test split, with balanc-
ing of the ratio of lick-left, lick-right and correct versus error trials in 
the training and test splits. The test split was 64 trials for all sessions, 
and the same splits were kept across methods.

For analyses involving only the embedding-based meth-
ods (Figs. 3–5 and Extended Data Figs. 4–6), we used fivefold 
cross-validation, stratified with regards to licking direction and cor-
rectness across the folds.

For analyses involving behavioral prediction (Figs. 6 and 7 and 
Extended Data Figs. 7 and 9), we selected only correct trials and used 
20-fold stratified cross-validation.

Thalamic nuclei. For Fig. 3 and Extended Data Fig. 4 the following 
subregion definitions were used, based on the Allen ontology: CN, cen-
tral lateral nucleus; central medial nucleus; MD, mediodorsal nucleus 
of thalamus; PC, paracentral nucleus; PO, posterior complex of the 
thalamus; VAL, ventral anterior-lateral complex of the thalamus; VM, 
ventral medial nucleus of the thalamus; VP, ventral posterior complex 
of the thalamus; ventral posterolateral nucleus of the thalamus, parvi-
cellular part; ventral posteromedial nucleus of the thalamus; ventral 
posteromedial nucleus of the thalamus, parvicellular part.
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Epoch-averaged explained variance
To calculate epoch average explained variance we first calculated the 
explained variance for each time point and test-fold separately. Then, 
we rectified the explained variance scores by setting all negative values 
to 0. After this, the folds were averaged. Finally, we averaged the time 
points within the relevant epoch (sample, delay or response). To avoid 
edge effects and compare the same time points (for neural activity) 
across all time-shifts, we excluded the first and last 150 ms of each 
epoch when taking the average. We filtered out neurons with very low 
explained variances (below 0.01); the results were not sensitive to the 
exact value of this threshold.

Identifying neurons with reliable firing patterns and poor 
video prediction
To identify neurons with highly reliable spiking patterns across 
trials but poor predictions from behavioral videos (as shown in 
Extended Data Fig. 1), we selected neurons with low epoch-averaged 
explained variance (embedding-based response epoch-explained 
variance < 0.1), with high correlation between the single-trial firing 
rate traces and the trial-averaged firing rate pattern (correlation > 0.4) 
and with low trial-by-trial variability (average across all time points of 
instantaneous trial-to-trial firing rate variance < 100 s−2). We have found 
a total of 196 such neurons in the whole dataset. The exact value of these 
thresholds does not change the qualitative type or the approximate 
proportion of these neurons found in the dataset.

Analyzing optimal time-offsets
When analyzing the optimal time-shift between video and neural activ-
ity, we shift the video by tau (τ) in time (multiples of 6.8 ms which 
corresponds to two frames). Then we repeat the same analysis that 
we did when predicting neural activity using embedding vectors 
for a large set of possible time-shifts (−102 ≤ τ ≤ 102 ms): we take the 
features corresponding to five neighboring frames at t + τ − 6.8 ms, 
t + τ − 3.4 ms, t + τ, t + τ + 3.4 ms, t + τ + 6.8 ms; predict neural activity 
using ridge-regression for every time point separately; and calculate 
the epoch-averaged explained variance for each possible τ time-shift. 
The optimal time-shift is the one that maximizes the explained 
variance τ* = max_τ(R2(τ)). Since some neurons’ explained variance 
curves as function of time-offset were flat, we kept only neurons with 
well-defined peaks (max(R2) ≥ 1.2mean(R2), where mean(R2) is the mean 
explained variance across all time-shifts); the results were not sensitive 
to the exact value of this threshold.

To assess the significance of a neuron’s time-offset (Fig. 5), we 
used the explained variances from the different cross-validation folds 
and compared the optimal time shifts coming from the different folds 
against zero, using a t-test to obtain a P value for each neuron. Signifi-
cance was established through Benjamini–Hochberg false discovery 
rate control, with rate parameter Q = 0.05.

Defining choice- and uninstructed movement-modulated 
neurons using video-based choice decoder
To define choice- and uninstructed movement-modulated neurons 
(Fig. 7 and Extended Data Fig. 9), we used all correct trials and split them 
into four groups based on licking direction and the delay epoch video 
prediction (obtained as described above). Sessions with fewer than 
20 trials in any of the four groups were excluded. We used regularized 
logistic regression either to predict choice while conditioning for video 
prediction or to predict uninstructed movement type (video prediction) 
while conditioning for choice from average firing rates of single neurons 
during the delay epoch. The prediction was characterized by ROC AUC on 
the test-fold and the two conditions were averaged in each case, yielding 
a single AUC for choice prediction and another AUC for uninstructed 
movement prediction for each neuron. The final AUC for each neuron 
is the average of the test AUC across all test-folds. The regularization 
parameter was found through nested leave-one-out cross-validation.

A neuron was then grouped as choice- versus uninstructed 
movement-modulated if the relevant AUC exceeded 0.65; note that 
some neurons have AUC higher than this threshold for both variables.

Defining choice-modulated neurons after subtraction of 
movement-related activity
To define neurons modulated by choice but unaffected by any unin-
structed movements (Extended Data Fig. 10), we first subtracted the 
predicted per-timepoint neural activity based on the embedding 
method of each neuron. We then used regularized logistic regression 
to predict choice from single-neuron residual activity using fivefold 
cross-validation, with nested cross-validation to find the regulariza-
tion parameter. Each neuron’s choice decoding AUC is the average 
test-fold AUC across all cross-validation folds. To classify a neuron 
as choice-modulated we used the same threshold as for the other 
method, AUC > 0.65.

Calinski–Harabasz clustering score
The Calinski–Harabasz index, also known as the variance ratio criterion, 
is the ratio of the sum of between-clusters dispersion of a measured 
feature to the inter-cluster dispersion for all clusters. Higher scores 
indicate stronger clustering. To obtain a reference null-distribution 
for the Calinski–Harabasz score, we randomly assign the labels (mice) 
to each data point, and then calculate the score, repeating the random 
process 1,000 times. We assess significance by comparison to this 
null distribution.

We used this clustering score two times. In Fig. 6d, we take the 
AUC from the embedding framework as features and mouse identity 
as cluster labels. In Fig. 6e, AUCs from the jaw and the nose markers 
were used as features, and mouse identity was used as cluster labels. 
We note that we used only sessions where the trial type was predictable 
from either jaw or nose (AUC equal to or higher than 0.65) and only mice 
that had two or more of such predictable sessions.

Testing against spatial discontinuity with nearest-neighbor 
explained variance difference distribution
To test whether spatially closer neurons have smaller difference in their 
explained variance than expected by chance within thalamus (Fig. 3e), 
we first identified neurons within each nucleus and calculated the 
cumulative distribution function for the explained variance difference 
between nearest neighbors. As a control we randomly shuffled the 
neurons’ explained variance values within each nucleus separately and 
calculated the cumulative distribution function for the explained vari-
ance difference in the shuffled sample. We repeated the shuffle 1,000 
times to establish a null-distribution and bootstrap P value.

Test against spatial uniformity
To test against spatial uniformity (Figs. 3 and 7 and Extended Data Fig. 9) 
of a given scalar statistic (explained variance, single-neuron AUC) 
given the fixed sampling provided by the CCF coordinates, we split 
the brain into cubic voxels (0.2 mm cubed for Fig. 3 and 0.5 mm cubed 
for Fig. 7 and Extended Data Fig. 9, but the results do not depend on 
the specific choice of this size) and grouped neurons based on these 
voxels. We then calculated an F-statistic for this grouping using one-way 
F-test. As a control we randomly shuffled the scalar statistics of interest 
(explained variance, single-neuron AUC) across neurons while keeping 
the CCF coordinates fixed; we used the same cubic voxels as before to 
group the shuffled neurons and calculated an F-statistic for this shuffle 
control using one-way F-test. We repeated the shuffle 10,000 times to 
establish a null-distribution and bootstrap P value.

Data pooling
The registration of individual animals into a common reference frame 
(CCF v.3) allowed us to pool data across animals when it was neces-
sary to combine neurons across animals (Figs. 2a, 3–5 and 7c,d). All 

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-025-02114-x

analyses relating movement to neural activity were first carried out 
on a session-by-session basis and the pooling happened only on the 
level of single-neuron variables (for example, explained variance, best 
time-offset, AUC) with uniform weights across sessions.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data used for this study are publicly available via the DANDI archive 
at https://doi.org/10.48324/dandi.000363/0.230822.0128 (ref. 31).

Code availability
All analyses were performed using custom Python code. Code is 
publicly available via GitHub at https://github.com/druckmann-lab/
MapVideoAnalysis (ref. 59).
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Extended Data Fig. 1 | Neurons with reliable responses but whose activity is not well predicted from video. Heatmap of firing rate as a function of time. Each 
row corresponds to a single trial. Top neuron is a midbrain neuron, middle neuron is a striatum neuron, bottom neuron is a thalamic neuron. Bottom panel shows 
schematic for the presented auditory cues.
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Extended Data Fig. 2 | Voxel level explained variance separately per epoch. 
Response epoch with rich licking movements (left column) sample/delay epochs 
(middle column) and difference between the response to sample/delay epochs 
(right column). The rows correspond to different projections: sagittal on top, 
coronal in the middle and horizontal on the bottom. Voxel size is 150 µm squared 

in the respective projection plane and spans the brain in the third direction. Color 
corresponds to average of single neurons’ explained variance within each voxel 
(left and middle columns) and to the difference between response epoch and 
sample/delay epoch explained variance (right column). For visualization a 3x3 
median filter was applied to the heatmaps.
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Extended Data Fig. 3 | Explained variance by brain area across methods 
and epochs. Single neuron explained variances are pooled by anatomical 
regions. Error bars represent standard error of insertion averaged means. 
Overlaid markers show individual mean values for individual insertions. 
Visual representation of statistics corresponds to pairwise comparison for 
the embedding based predictions with two-tailed Mann-Whitney U test and 
Bonferroni correction, *** is p < 0.001, ** is p < 0.01, * is p < 0.05 and ns is p > 0.05. 
Sample epoch insertion averaged comparisons for embedding based method: 
Medulla (0.0833 ± 0.0066, n = 36) vs Midbrain (0.0632 ± 0.0039, n = 70), 
p = 0.0785; Medulla (0.0833 ± 0.0066, n = 36) vs ALM (0.0629 ± 0.0047, n = 69), 
p = 0.0382; Medulla (0.0833 ± 0.0066, n = 36) vs Striatum (0.0586 ± 0.0046, 
n = 59), p = 0.0212; Medulla (0.0833 ± 0.0066, n = 36) vs Thalamus 
(0.0364 ± 0.0027, n = 57), p = 3.77e-07; Midbrain (0.0632 ± 0.0039, n = 70) vs ALM 
(0.0629 ± 0.0047, n = 69), p = 1; Midbrain (0.0632 ± 0.0039, n = 70) vs Striatum 
(0.0586 ± 0.0046, n = 59), p = 1; Midbrain (0.0632 ± 0.0039, n = 70) vs Thalamus 
(0.0364 ± 0.0027, n = 57), p = 3.45e-06; ALM (0.0629 ± 0.0047, n = 69) vs Striatum 
(0.0586 ± 0.0046, n = 59), p = 1; ALM (0.0629 ± 0.0047, n = 69) vs Thalamus 
(0.0364 ± 0.0027, n = 57), p = 2.19e-04; Striatum (0.0586 ± 0.0046, n = 59) vs 
Thalamus (0.0364 ± 0.0027, n = 57), p = 0.00256. Delay epoch insertion averaged 
comparisons for embedding based method: Medulla (0.0927 ± 0.0065, n = 36) 
vs Midbrain (0.0690 ± 0.0045, n = 67), p = 0.0304; Medulla (0.0927 ± 0.0065, 
n = 36) vs ALM (0.0654 ± 0.0069, n = 70), p = 6.91e-04; Medulla (0.0927 ± 0.0065, 

n = 36) vs Striatum (0.0594 ± 0.0063, n = 57), p = 1.81e-04; Medulla 
(0.0927 ± 0.0065, n = 36) vs Thalamus (0.0347 ± 0.0028, n = 53), p = 8.06e-10; 
Midbrain (0.0690 ± 0.0045, n = 67) vs ALM (0.0654 ± 0.0069, n = 70), p = 1; 
Midbrain (0.0690 ± 0.0045, n = 67) vs Striatum (0.0594 ± 0.0063, n = 57), 
p = 0.211; Midbrain (0.0690 ± 0.0045, n = 67) vs Thalamus (0.0347 ± 0.0028, 
n = 53), p = 1.15e-07; ALM (0.0654 ± 0.0069, n = 70) vs Striatum (0.0594 ± 0.0063, 
n = 57), p = 1; ALM (0.0654 ± 0.0069, n = 70) vs Thalamus (0.0347 ± 0.0028, 
n = 53), p = 4.24e-05; Striatum (0.0594 ± 0.0063, n = 57) vs Thalamus 
(0.0347 ± 0.0028, n = 53), p = 0.00741. Response epoch insertion averaged 
comparisons for embedding based method: Medulla (0.1764 ± 0.0061, n = 36) vs 
Midbrain (0.1043 ± 0.0040, n = 79), p = 1.04e-11; Medulla (0.1764 ± 0.0061, n = 36) 
vs ALM (0.0923 ± 0.0037, n = 77), p = 1.24e-13; Medulla (0.1764 ± 0.0061, n = 36) vs 
Striatum (0.0912 ± 0.0034, n = 67), p = 1.03e-13; Medulla (0.1764 ± 0.0061, n = 36) 
vs Thalamus (0.0611 ± 0.0026, n = 62), p = 3.31e-15; Midbrain (0.1043 ± 0.0040, 
n = 79) vs ALM (0.0923 ± 0.0037, n = 77), p = 0.314; Midbrain (0.1043 ± 0.0040, 
n = 79) vs Striatum (0.0912 ± 0.0034, n = 67), p = 0.0999; Midbrain 
(0.1043 ± 0.0040, n = 79) vs Thalamus (0.0611 ± 0.0026, n = 62), p = 2.47e-11; 
ALM (0.0923 ± 0.0037, n = 77) vs Striatum (0.0912 ± 0.0034, n = 67), p = 1; ALM 
(0.0923 ± 0.0037, n = 77) vs Thalamus (0.0611 ± 0.0026, n = 62), p = 2.80e-08; 
Striatum (0.0912 ± 0.0034, n = 67) vs Thalamus (0.0611 ± 0.0026, n = 62), 
p = 8.26e-09. All comparisons were done with two-tailed Mann-Whitney U test 
and Bonferroni correction.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-025-02114-x

Extended Data Fig. 4 | Pairwise comparisons between thalamic nuclei. The significance (with p < 0.1) of pairwise comparisons between thalamic nuclei are shown for 
explained variance (left) and firing rate (right). P-values are calculated with two-tailed Mann–Whitney U test and Bonferroni correction for multiple comparisons.
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Extended Data Fig. 5 | Spatial patterns in optimal video-activity time-offset. 
The heatmaps show the proportion of neurons with positive time-offset 
(left column), negative time-offset (middle column) and best time-offset 
(right column) in the sagittal plane (top row), coronal plane (middle row) and 
horizontal plane (bottom row). Each voxel is 150 µm squared in the respective 

plane and spans the brain in the third direction. Color corresponds to the 
proportion of neurons within each voxel with positive time-offset (left column), 
with positive time-offset (middle column) and to the average of single-neuron 
best time-offsets within each voxel (right column). For visualization a 3x3 voxel 
median filter was applied on the heatmaps.
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Extended Data Fig. 6 | Relation between explained variance and video 
activity time offset. The neurons are first grouped into 5 quantiles based on 
their explained variance at zero offset, then the normalized explained variance 
as a function of time is averaged for neurons within each quantile. Each row is 
normalized by its maximum and minimum value. The p-values are calculated 

using Spearman rank correlation between explained variance and the best time-
offset of neurons. Medulla n = 992 neurons, R = -0.06, p = 0.22; Midbrain n = 1702 
neurons, R = 0.17, p = 6e-12; ALM n = 1059 neurons, R = 0.22, p = 2e-12; Striatum 
n = 1171 neurons, R = 0.15, p = 3e7; Thalamus n = 2881 neurons, R = 0.13, p = 5e-12; 
Spearman rank correlation with Bonferroni correction.
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Extended Data Fig. 7 | Correlation between predictability of behavior from video and task performance. The x axis corresponds to the mean ROC-AUC for 
predicting behavior directly from video during the delay epoch. Each dot corresponds to a session. The y axis is the behavioral task performance of that session.
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Extended Data Fig. 8 | Schematic of trial contingency based single neuronal 
tuning analyses. On the top the traditional response-stimulus analysis is 
outlined that uses error trials to differentiate between tuning to response versus 
stimulus for individual neurons. In the middle two example schematics are shown 
for stimulus (top) and response (bottom) tuning; and two example neurons are 
shown on the right. The traces correspond to trial averaged mean traces during 
the delay epoch, and the shaded areas correspond to one standard deviation. 

The bottom half outlines the video-prediction-based analysis that uses single 
trial level choice predictions from videos to distinguish between modulation 
by choice versus uninstructed movements. The middle shows two example 
single-neuron schematics for choice (top) and uninstructed (bottom) movement 
modulation. On the right, two example neurons are shown. Traces correspond 
to trial averaged mean traces during the delay epoch, and the shaded areas 
correspond to one standard deviation.
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Extended Data Fig. 9 | Spatial distribution of choice and movement prediction 
single neuron AUC. The heatmaps show the distribution of choice prediction 
AUC (left column), uninstructed movement related AUC (middle column) and the 
difference between the two (right column) in the sagittal plane (top row), coronal 
plane (middle row), horizontal plane (bottom row). Each voxel is 300 µm squared 

in the respective projection plane and spans the brain in the third direction. Color 
corresponds to the average AUC of neurons within that voxel for choice (left 
column), uninstructed movement (middle column) and the difference of these 
(right column). For visualization a 3x3 voxel median filter was applied on the 
heatmaps.
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Extended Data Fig. 10 | Comparison of methods for identifying choice 
modulated neurons. a. Proportion of choice modulated neurons in the 
sagittal plane. Each voxel is 300 µm squared in the sagittal plane and spans 
the brain in the third direction. Color corresponds to the fraction of choice 
modulated neurons in each voxel. For visualization a 3x3 voxel median filter 
was applied. b. Scatter plot for the choice AUC obtained by grouping trials 
based on video-based choice prediction (x-axis) and subtraction of movement 
related neural activity predicted by videos (y-axis). Colors correspond to 

modulation of neurons according to trial grouping-based AUC (same as in Fig. 7). 
Dashed lines show the AUC threshold for choice modulation. c. Proportion of 
neurons categorized as choice modulated based on the choice AUC obtained 
after subtraction of movement related neural activity. Colors correspond to 
modulation of neurons according to video-prediction-based trial grouping AUC 
(same as in Fig. 7). Large markers correspond to mean of the fractions across 
sessions, error bars show SEM. Overlaid small markers show the fractions in 
individual sessions.
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