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Movement-related activity has been detected across much of the brain,

including sensory and motor regions. However, much remains unknown
regarding the distribution of movement-related activity across brain
regions, and how this activity relates to neural computation. Here we
analyzed movement-related activity in brain-wide recordings of more
than 50,000 neurons in mice performing a decision-making task. We
used multiple machine learning methods to predict neural activity from
videography and found that movement-related signals differed across

areas, with stronger movement signals close to the motor periphery andin
motor-associated subregions. Delineating activity that predicts or follows
movement revealed fine-scale structure of sensory and motor encoding
across and within brain areas. Through single-trial video-based predictions
of behavior, we identified activity modulation by uninstructed movements

and theirimpact on choice-related activity analysis. Our work provides a
map of movement encoding across the brain and approaches for linking
neural activity, uninstructed movements and decision-making.

A standard view of the function of the nervous system is the transla-
tion of sensory inputs into action'. According to this view, the brain
is parcellated into sensory and motor areas, with association areas in
between®. On the other hand, decades of neurophysiological record-
ings have found activity related to movement throughout sensory and
motor regions of the brain. For example, neurons in visual cortical areas
are modulated by eye movement in primates>® and mice’; neurons
in the barrel cortex are modulated by movement of the whiskers in
rodents®*; and activity related to licking, locomotion and other motor
behaviors causes modulation of neural activity across multiple cortical
regions''°. Recent studies suggest that movement-related signals can
account forasubstantial proportion of ongoing neural activity across
both sensory and motor areas” *, with differing degrees across brain
areas. However, these studies have examined a few brain areas at a
time and different studies relied on diverse behaviors and recording

methods. There has not been a comprehensive characterization of
movement-related activity across many relevantbrainareasinasingle
behavior. It thus remains unclear how movement-related activity is
distributed across the brain and whether there are systematic differ-
ences between brain areas.

Multiple statistical methods have been proposed to relate ongo-
ing movements and neural activity at the level of single neurons or
neural populations®™*, Yet, existing methods do not distinguish
between different types of movement-related encoding. For exam-
ple, movement-related activity could reflect motor commands, effer-
ence copies, reafferent signals from sensory organs or mixtures of
these signals®.

The presence of motor signals also raises the question of how these
signals influence neural computations. In sensory cortical regions,
movement-related activity can modulate sensory coding to enable

'Stanford University, Stanford, Palo Alto, CA, USA. 2Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA. ®Baylor College of
Medicine, Houston, TX, USA. “Allen Institute for Neural Dynamics, Seattle, WA, USA. °Duke University, Durham, NC, USA. ®These authors contributed

equally: Ziyue Aiden Wang, Balint Kurgyis. </ e-mail: shauld@stanford.edu

Nature Neuroscience | Volume 29 | January 2026 | 147-158

147


http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-025-02114-x
http://orcid.org/0000-0001-9334-7422
http://orcid.org/0000-0002-5065-1157
http://orcid.org/0000-0002-7849-6574
http://orcid.org/0000-0002-8645-7356
http://orcid.org/0000-0002-6670-7362
http://orcid.org/0000-0002-6613-5018
http://orcid.org/0000-0003-0068-3377
http://crossmark.crossref.org/dialog/?doi=10.1038/s41593-025-02114-x&domain=pdf
mailto:shauld@stanford.edu

Article

https://doi.org/10.1038/s41593-025-02114-x

active sensation'"” and predictive coding'>". Butin other brainregions,
including frontal cortex, the impact of movement-related activity on
neural computation is not well understood. Many laboratory tasks
require animals to performinstructed movements toreport decisions,
for example, pressing a lever. However, animals perform additional
uninstructed movements, which can be correlated with the cognitive
process under study?, such as small movements biased toward the
direction of future choice as evidence is accumulated. Indeed, neural
signalsrelated toaccumulated evidence have been reportedin muscle
tensions” or even in ongoing movement execution?®*, Motor-related
signals have been found in decision-making and motor planning
areas of the brain'”***, but these studies did not distinguish between
decision-and movement-related activity and compare different types
ofencoding across brainregions. Consequently, it remains unclear how
pervasive uninstructed movementsignals are across the brain, and how
they are related to neural activity modulated by an animal’s decision.
To address these questions, we analyzed recordings of more than
50,000 neurons, recorded in more than a dozen cortical and sub-
cortical structures, simultaneously with high-speed video of orofa-
cial movements, while mice performed a decision-making task**>",
We tested multiple methods to solve the computational problem of
relating two high-dimensional, complex time-series datasets: pix-
els of behavioral videos describing the movement of the animal and
time-varying spike rates of neurons recorded in specific brainregions.
Although movement-related signals were widespread, the strength of
movement-related signals differed across areas and across subdivi-
sions of areas, with stronger movement signals in motor areas and
motor subdivisions. The high temporal resolution of electrophysiology
enabled us to distinguish activity predicting versus following move-
ment, parsing putative sensory- and motor-related signals within brain
areas. Further, we distinguish between neurons whose modulation is
primarily movement-dependent versus others whose modulation is
more task-contingency-dependent. The prevalence of these two types
of neurons systematically differed across brain areas, with enriched
task-contingency modulationin forebrain and midbrain regions. Our
study offers a principled approach to dissecting the relationship of
movements and cognition across multiregional neural circuits.

Results
Neural activity explained by movement differs across brainareas
Populations of individual units were recorded while mice performed
amemory-guided movement task (Fig. 1). Mice were trained to per-
form directional licking (lick-left or lick-right) depending on the
frequency of a series of pure tones presented to the animal (12-kHz
tonesinstructlick-left; 3-kHz tones instruct lick-right) to obtain water
rewards® (Fig.1a). Inbetween the stimulus delivery and the behavioral
response, mice were required to withhold licking for 1.2 s. We refer
to the time period in which the sensory stimulus is presented as the
‘sample’ epoch, the period in which mice were required to respond as
the ‘response’ epoch and the period in between as the ‘delay’ epoch.
High-speed (300 Hz) videos of the face and paws were acquired from
side and bottom views, together with neural population recordings
(Fig. 1b). Two to five Neuropixels® probes were used simultaneously
torecord extracellular activity inmultiple regions of the mouse brain,
including anterolateral motor cortex (ALM), an area critical for direc-
tionallicking decisions®**~¢, as well as medulla, midbrain, striatum and
thalamus, which form multiregional networks with ALM (Fig. 1b-d).
Recordinglocations wereregistered to the Allen Common Coordinate
Framework (CCF, v.3) and thus mapped® to the Allen Reference Atlas’®.
To examine therelationship of neural activity and ongoing move-
ments, we analyzed facial and paw movements during task performance
using three approaches. First, in the marker-based approach (Fig. 1e),
we marked the nose, tongue and jaw in training data. DeepLabCut*
was used to track the two-dimensional location of the three markers
in each video frame. We then regressed neural activity based on the

time-series of the marker positions (Fig. 1e, left). Second, in the embed-
ding approach, we used autoencoders® to learn a low-dimensional
embedding of the videos. The autoencoders reconstructed each
frame through a low-dimensional bottleneck (Fig. 1e, middle). The
encoder was a convolutional neural network, and the decoder was
linear (Methods). In this architecture each frame was transformed
intoal6-dimensional vector and the time-series of this 16-dimensional
vector wasthen used to predict neural activity. Third, in the end-to-end
learning approachwe trained neural networks to directly predict neural
activity from video (Fig. le, right, and Methods). The marker-based
approach was the least expressive, as we manually selected a small
number of features. The embedding approach was more expressive
in that the nonlinear encoder network could learn a richer, if still
low-dimensional, representation. The end-to-end approach was the
most expressive as it could make full use of the high-dimensional
dynamicsinthe video to explain activity.

Our analysis recapitulated the finding that movement-related
activity is widely distributed across the brain (Fig. 2a,b). However,
ouranalysis also revealed clear differences across brainregionsin the
ability of the video recordings to predict neural activity (Fig. 2a,b).
For example, explained variance was especially high in the medulla
(Fig.2a). Variance explained in the medulla was significantly larger than
midbrain (medulla explained variance from the embedding method
0.176 £ 0.06 s.e.m., n =36 insertions compared with 0.104 + 0.004,
n=79 of midbrain, P<0.001, Mann-Whitney test, note insertions
rather than sessions were used since in some sessions recordings were
performed for a given brain area simultaneously across two hemi-
spheres). Explained variance followed a logical progression, with
greater explained variance in areas closer to the sensory or motor
periphery (Fig. 2b).

The ordering of brain areas in terms of predictive power was pre-
served across approaches, despite the greater predictive power of the
more expressive models (Fig. 2c-e, improvement in explained vari-
ance for embedding-based approach versus marker-based approach,
improvement =155+ 5% s.e.m., n =105 sessions, P < 0.001; end-to-end
learning versus marker-based approach, improvement =330 + 9%
s.e.m., n =105 sessions, P<0.001; end-to-end learning versus
embedding-based approach, improvement =76 + 3% s.e.m., n =105
sessions, P < 0.001, one-sided Wilcoxon signed-tank test with Bonfer-
roni correction). Better predictive accuracy of the more expressive
models was clear when visualizing single-trial predictions (Fig. 2f).
Thus, even at timescales of tens of milliseconds, our dataset supports
data-intensive modelsin learning meaningful features, surpassingless
expressive modelsin predictive accuracy. However, not all neurons were
predictable, even among neurons with highly reliable responses (see
Methods for definition and Extended Data Fig. 1). The activity profile
of some of these neurons suggests that they represented the auditory
cuesdeliveredinthetask, whichwere not phase-locked to movements
(Extended Data Fig. 1). Comparison across epochs suggested that a
large portion of activity was correlated with licking and associated facial
movements (Extended DataFig. 2), but therelative differences inmove-
ment encoding between areas were preserved (Extended Data Fig. 3).

Registering neurons to the CCF allowed us to analyze encoding
at the level of brain areas and subdomains, such as cortical layers and
nuclei. Asanexample, our recordings sampled large portions of the ante-
rior thalamus, which consists of multiple annotated nuclei. We found
that explained variance was nonuniformacross the thalamus (Fig. 3a-d,
testagainst spatial uniformity, P < 0.0001, and Methods). We analyzed
how variance explained changes over space by measuring the distribu-
tion of difference invariance explained between nearest-neighbor neu-
rons. If variance explained changes as some smooth function over CCF
space, then the differencein variance explained between aneuron and
itsnearest neighbors would be smaller than the difference between that
neuronand arandomly selected one. We found that variance explained
was significantly smaller between nearest-neighbor pairs, indicating
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Fig. 1| Multiregional neural recordings and prediction of neural activity from
video. a, Delayed response task. b, Simultaneous video and neural recording.

¢, Example recording configuration. d, Raster plot of recorded neurons (top)
and traces of body part marker locations for asingle trial. e, Three approaches
to predict neural activity from video. Left: marker-based analysis. For each video
frame, each of the markers (jaw, nose or tongue) is a two-dimensional vector
representing the vertical and horizontal positions. Middle: embedding-based

7

Neural activity

—

analysis. For each frame, the embedding vector is a 16-dimensional vector. Right:
end-to-end learning with deep neural network. ALMc, contralateral ALM; Cb,
cerebellum; CNN, convolutional neural network; Ctx, cortex; Med, medulla;
MRN, midbrain reticular nucleus; PN, pons; PPN, pedunculopontine nucleus; px,
pixels; SCm, superior colliculus, motor related; SNr, substantia nigra, reticular
part; Str, striatum; Thal, thalamus.

spatially structured smooth changesin variance explained across thala-
mus (Fig. 3e, nearest-neighbor difference in explained variance smaller
thanshuffle control, P<1x107). Foradditional analysis we grouped neu-
rons into nuclei based on the Allen ontology?®. For seven of the nuclei,
we had asufficient number of recorded neurons for analysis (threshold
set at 100; see Methods and Supplementary Table 1 for definitions of
nuclei). Explained variance based on the embedding method varied
significantly among nuclei (Fig. 3c,d,fand see Extended Data Fig. 4 for
pairwise statistics). Spike rate differences did not explain differences
in variance explained (spike rate difference not significant between
posterior complex (PO), ventral anterior-lateral complex (VAL), ven-
tral medial nucleus (VM) and ventral posterior complex (VP), P> 0.1,
yet variance explained differed significantly between VAL and PO/
VM/VP, P<1x107, one-way F-test between these four nuclei; also see
Extended Data Fig. 4 for pairwise comparisons).

Dissecting putative motor and sensory neural signals

Movement-related signals could reflect motor commands, where activ-
ity is expected to lead movement. Alternatively, reafferent signals are
expected to lag movement. The high temporal resolution of electro-
physiology allowed us to analyze the temporal relation between neural

activity and movement (Fig. 4). We shifted the window of video frames
used to predict neural activity across a range of lead or lag times. We
tested time windows both from the past and in the future relative to
the analyzed neural activity (Fig. 4a). For abrain areainvolved in pro-
ducing movement, the current activity predicts future movement,
whichwill bereflected in future video frames. Thus, shifting the window
of behavioral variables forward in time will yield better prediction
(Fig. 4a). Conversely, if an area is sensory (for example, propriocep-
tive), then current activity follows past movements. Thus, shifting
the window of behavioral variables backward in time will yield better
prediction (Fig. 4a).

We performed this analysis in the response epoch, which had
the strongest relation between movement and neural activity, using
the embedding-based approach. We found clear differences across
the brain (Fig. 4b,c), with differences both in the average optimal
time-shifts (Extended Data Fig. 5) and in the proportion of neurons
with positive versus negative time-shifts (Fig. 4c). A strong anterior—
posterior pattern emerged, with neurons in the medulla having a
strong preference for video-shifts into future time points that was
also apparent when averaging neurons within brain regions and com-
paring across brain regions (Fig. 4b), consistent with the known role
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Fig. 2| Movement encoding varies across brain areas. a, A two-dimensional
spatial map of brain-wide prediction of neural activity from video. Each voxel
is 150 x 150 pm?in the sagittal plane and spans the brain in the third dimension.
Color corresponds to mean variance explained by the embedding-based pipeline
over all the neurons contained within each voxel. For visualization a 3 x 3-voxel
median filter was applied on the heatmap. Scale bar, 0.5 mm. b, Performance
of video-based prediction with neurons pooled according to brain area. Error
bars correspond to the s.e.m. of insertion-averaged values. Overlaid markers
correspond to individual insertions; numbers of insertions are: medullan =36
insertions, midbrain n=79 insertions, ALM n =77 insertions, striatumn = 67
insertions, thalamus n = 62. Visual representation of statistics corresponds

to pairwise comparison for the embedding-based predictions with two-sided
Mann-Whitney Utest and Bonferroni correction, ***P < 0.001, NS P> 0.05;

for exact Pvalues see Extended Data Fig. 2. ¢, Comparison of single-neuron
explained variance between marker-based method (x axis) and embedding-
based method (y axis). Each dot corresponds to a neuron. d, Comparison of
single-neuron explained variance between marker-based method (x axis) and
end-to-end learning (y axis). Each dot corresponds to a neuron. e, Comparison

of single-neuron explained variance between embedding-based method (x axis)
and end-to-end learning (y axis). Each dot corresponds to a neuron. Session-
averaged improvements in explained variance are, for embedding-based
approach versus marker-based approach, mean improvement =155 + 5% s.e.m.,
n=105sessions, P< 0.001; end-to-end learning versus marker-based approach,
mean improvement =330 + 9% s.e.m., n =105 sessions, P < 0.001; end-to-end
learning versus embedding-based approach, meanimprovement = 76 + 3%
s.e.m.,n =105 sessions, P < 0.001, one-sided Wilcoxon signed-tank test with
Bonferroni correction. f, Spike rates of four example neurons during four single
trials. Spike rates are plotted (black line) overlaid with their prediction from

the marker-based (green), embedding-based (blue) and end-to-end (brown)
pipelines. Note, negative spike rate could have been removed post hoc but here
we show raw prediction output. The explained variances for the four neurons are
the following: from top left to bottom right: medulla neuron, explained variance
marker 0.44, embedding 0.68, end-to-end 0.83; medulla neuron, explained
variance marker 0.17, embedding 0.36, end-to-end 0.39; medulla neuron,
explained variance marker 0.13, embedding 0.23, end-to-end 0.26; medulla
neuron, explained variance marker 0.22, embedding 0.25, end-to-end 0.46.
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were mapped to their CCF coordinates and colored according to the annotation
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right plot shows more posterior (AP = 6,800 pm). Scale bar:1 mm. d, Two-
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DataFig. 4 for pairwise comparisons. CN, central lateral nucleus and central
medial nucleus; MD, mediodorsal nucleus; PCN, paracentral nucleus.
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within each voxel. For visualization a 3 x 3-voxel median filter was applied on the
heatmaps. Scale bar: 0.5 mm. d, Heatmap of best time-offsets for ALM neurons.
Eachvoxel is150 pm squared in the coronal plane and spans the brainin the third
direction. Color corresponds to the average of best temporal offsets within that
voxel. For visualization a 3 x 3-voxel median filter was applied on the heatmap.
Scale bar:1 mm. e, Comparison of explained variance across different temporal
offsets as afunction of cortical depth, taken as distance along the dorsal-ventral
axisshownind. Each row is normalized by its minimal and maximal values.
Spearman rank correlation between cortical depth and best time-offsetisR=0.1,
P=0.0014, n=1,059 neurons.

of medullain controlling orofacial movement®’. We observed that the
best time-offset was positively correlated with the explained variance
of the neurons (Extended Data Fig. 6) with the exception of medulla
(Spearman rank correlation between best time-offset and explained
variance of neurons not significant in medulla, P> 0.1n=992, and
significantly positive in midbrain, P< 0.001,n=1,702; ALM, P< 0.001,
n=1,059; striatum, P< 0.001, n=1,171; thalamus, P< 0.001,n = 2,881,
with Bonferronicorrection). In other words, more motor-related neu-
rons were better predicted by behavioral videos.

Neurons withineachbrainareahad heterogeneous video-activity
shift preference (Fig. 5), suggesting richencoding of movement. Never-
theless, systematic differences were found between known structures

associated with sensory versus motor functions. Among cortical
regions, we found that somatosensory areas are more sensory tuned
thanALM (Fig. 5a; somatosensory areas mean time-offset,-12.8 + 1.1 ms
s.e.m., n =870 neurons; ALM mean time-offset, 8.7 £ 1.5 ms s.e.m.,
n=1,059 neurons; the two distributions are different at P<0.0001,
one-sided Mann-Whitney U test), as expected. We additionally ana-
lyzed subregions within thalamus and midbrain and found significant
differencesin video time-offset. In thalamus (Fig. 5b), sensory thalamus
PO followed movement (mean time-offset, -11.6 + 1.4 mss.e.m.,n= 516
neurons) and motor thalamus VM led movement (mean time-offset,
5.8 £3.4 ms s.e.m., n=134 neurons). In midbrain (Fig. 5c), we found
a significant difference between pretectal region (mean time-offset,
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s.e.m., n =870 neurons; ALM mean time-offset 8.7 + 1.5 mss.e.m.,n =1,059
neurons, P<0.0001. b, Comparison between two thalamic subnuclei: PO of the
thalamus (left) and VM of the thalamus (right). PO mean time-offset —11.6 + 1.4 ms
s.e.m., n =516 neurons; VM mean time-offset 5.8 + 3.4 ms s.e.m., n =134 neurons,
P<0.001.c, Comparison between two midbrain subregions: pretectal region
(left) and superior colliculus, motor-related (right). Pretectal region mean
time-offset 0.0 + 2.8 mss.e.m., n=203; superior colliculus mean time-offset
19.3+1.8 mss.e.m., n =612, P<0.001. The distributions were compared using
one-sided Mann-Whitney Utest and Bonferroni correction.

0.0 £2.8 ms s.e.m., n =203) and motor-related superior colliculus
(mean time-offset, 19.3 + 1.8 ms s.e.m., n= 612). Thus, we were able
to uncover differences in sensory versus motor processing across
subregions in subcortical structures (thalamus, P < 0.001; midbrain,
P <0.001, comparison of distributions with one-sided Mann-Whitney
Utest and Bonferroni correction). We also examined differencesona
more fine-grained level in ALM (Fig. 4d,e). We found a change from
more sensory-related signals to motor-associated signals asafunction
of cortical depth (best time-offset is significantly, positively correlated
with cortical depth, P<0.01,n=1,059, Spearmanrank correlation). This
sensory-motor encoding is consistent with established anatomy of
motor cortex, where superficial layers receive sensory signals, whereas
deeper layers send motor signals to midbrain and medulla®**>*°,

Analyzing and interpreting uninstructed movements
Are uninstructed movements related to decision-making? If unin-
structed movements bear some relation to future choice-behaviors,

thensingle-trial choices could be predictable directly from behavioral
videos. We trained decoders to predict choice from behavioral vid-
eos (Fig. 6). We found that before the sample epoch, predictions of
choice were at chance (area under the curve (AUC) of receiver operat-
ing characteristic (ROC) was 0.51+ 0.06 s.d., n =106 sessions, predic-
tionbased on embedding method; Methods), consistent with the lack
of information regarding trial type at this point. In the sample and
delay epochs, the mean AUC increased significantly (0.66 + 0.12s.d.,
n=106 sessions, mean AUC ROC of the second half of sample epoch
andthe delay epoch). Thus, even before mice performed their explicit
choiceaction (directionallicking), uninstructed movements contained
trial-type information. Soon after the go cue, prediction saturated at
close to perfect performance (0.99 + 0.01s.d., n =106 sessions, mean
AUC ROC of the second half of response epoch), consistent with the
choice being easily decodable from video of directional licking. Nota-
bly, predictive accuracy was highly variable across sessions in the sam-
pleand delay epochs (Fig. 6a-c). Future behavior was predictable from
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Fig. 6| Prediction of single-trial behavior directly from video. a, Prediction
accuracy of single-trial behavior from videos through embedding pipeline.
Accuracy quantified through ROC AUC (y axis). Thick lineindicates across
session mean. Shaded area indicates standard deviation. b, Histogram of
prediction accuracy during the sample epoch across sessions. ¢, Single sessions
examples. Each panel corresponds to asingle session, and each session is taken
from adifferent mouse. d, Sample epoch prediction across all sessions and mice.
Each x-axis location corresponds to an individual mouse. Each circle is a session.
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e, Prediction from single markers during the delay epoch. Each circle or triangle
corresponds to a session. The x-axis value corresponds to ROC AUC from
behavioral prediction using only the nose marker. The y-axis value corresponds
to ROC AUC from behavioral prediction using only the jaw marker. To allow
association of sessions to mice to be visible, only sessions that passed a high
predictability criterion (AUC larger than 0.6) are shown as colored triangles.
The restare shown as circles. Colors of triangles correspond to individual
mouse identity.

videos in some sessions, but not in others. In other words, animals
were highly heterogenous in the extent they exhibited uninstructed,
trial-type-related movements. Variability in predictability of actions
from video was smaller within mice than across mice, consistent with
the notionthatindividual animals adopted relatively consistent unin-
structed movements (Fig. 6d, Calinski-Harabasz clustering score* for
clustering of within-animal points 10.45, compared with null model
value 0f1.02 + 0.37s.d.; higher scores correspond to stronger cluster-
ing, P<0.001; Methods).

Tovisualize the nature of uninstructed movements, we first sorted
trials according to prediction confidence. We found that in highly
predictable trials, mice displayed mostly stereotypical patterns of
behavior, but the specific movements were diverse across sessions and
subjects. A subset of mice tended to have more uninstructed move-
ments in lick-left trials (Supplementary Video 1), whereas another
subset had stronger movements during lick-right trials (Supplementary
Video 2). For some mice, the uninstructed movements were jaw or paw
movements (Supplementary Video 1), whereas other mice exhibited
only jaw movements (Supplementary Video 2). The behavior of indi-
vidual mice varied across days. For example, one mouse remained
static before the go cue in lick-left trials (Supplementary Video 2)
but performed stereotypical swinging of the paw in lick-left trials of
the next day (Supplementary Video 3). To allow more interpretable
analysis of the movements that predicted choice, we repeated the
choice prediction analysis using single markers, instead of embed-
dings of the full video. Despite the weaker predictive power of single
markers (response epoch: marker: 0.88 + 0.01s.e.m.,n =106 sessions;
embedding: 0.96 + 0.00 s.e.m., n=106, P<1x107%, n=106 sessions),
the heterogeneity of uninstructed trial-related movements across mice

was still present (Fig. 6e, Calinski-Harabasz clustering score for clus-
tering of within-animal points 12.57, compared with null model value
of 1.05 £ 0.54 s.d.; higher scores correspond to stronger clustering,
P <0.001; Methods). For some animals, movements of the nose were
more informative than movements of the jaw, whereas in other mice
jaw movement was more informative than nose movements (Fig. 6e).
Interestingly, we found that such task-related preparatory movements
during sample and delay epochs were positively correlated with the
animal’s performance on a given session (r=0.33, n =106 sessions,
P<0.001; Extended Data Fig. 7 and Methods). These analyses reveal
idiosyncratic patterns of uninstructed movements inindividual mice
that predict choice behavior.

Activity related to uninstructed movement and
decision-making

Given that uninstructed movements can predict future behavior, we
explored theinterplay between encoding of uninstructed movements
and choice-related neural activity. When movements can predict future
choice, movement encoding is entangled with choice encoding. Analo-
gously to the way error trials are often used to differentiate stimulus
encodingfromactionencoding, inwhichthetaskinstructionandaction
are dissociated>**, we used trials where the behavioral choice and the
choice predicted from the uninstructed movements during the delay
epochwereindisagreement to dissociate choice and movementencod-
ing (see Extended DataFig. 8 for schematic). We analyzed correct trials
only and separately divided lick-left (L) and lick-right (R) trials into two
groups based on the prediction of the video-based classifier (predicted
lick-left (vL) and predicted lick-right (vR) for each trial type; Fig. 7a),
thus obtaining four trial contingencies (L-vL, L-vR, R-vR, R-vL; Methods).
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When considering single-neuron tuning properties, in trials where
choice and video prediction match (L-vL and R-vR), choice tuning and
movement tuning are confounded. In contrast, trials with mismatches
between choice and video prediction enable us to potentially distin-
guish between tuning to choice versus movements (L-vR and R-vL).

We analyzed each neuron for differences of spike rates across these
four groups of trials. Some neurons’ spike rates were strongly modu-
lated by choice and did not change across different video predictions
(thatis, sameresponseinR-vRandR-vL,and sameresponseinL-vRand
L-vL). Werefer to these as choice-modulated neurons (Fig. 7b). This was
not due to the video decoders picking up only on minute movements
that would be unlikely to drive neural modulation, as we observed
strong differences in multiple behavioral features across the video
prediction groups (Fig. 7b). For instance, jaw height was significantly
different across same choice groups with different video predictionsin
most sessions (Fig. 7b, significantly differentiated R-vR versus R-vL in
56 of 80 sessions and in 56 of 80 sessions for L-vR versus L-vL, P < 0.05;
only sessions withmoderate and higher behavioral predictability were
chosen for this analysis, defined as AUC > 0.6; Methods). Indeed, other
neurons’ spike rates were strongly modulated by the grouping of video
prediction even when conditioned for the choice (same response in
R-vRandL-vR,and sameresponseinR-vLand L-vL). Werefer to these as
uninstructed movement-modulated neurons (Fig. 7b). Some neurons
were modulated both by choice and uninstructed movement.

The relative proportions of choice-modulated and uninstructed
movement-modulated neurons varied across the brain (Fig. 7c,d and
Extended Data Fig. 9; AUC test against spatial uniformity, P<0.001),
but the two types of neurons were spatially intermingled within each
area. The relative strength of modulation also varied across brain
regions (Extended Data Fig. 9; defined as the difference in AUC for
choice and uninstructed movements, test against spatial uniform-
ity, P<0.001). ALM and midbrain neurons were more likely to be
choice-modulated than medulla neurons (proportion of choice- to
uninstructed movement-modulated neurons, ALM 4.8 versus medulla
1.2,P<0.001; midbrain 4.3 versus medulla1.2, P< 0.001, binomial test
with Bonferroni correction). This is consistent with the reported roles
of ALM and subregions of midbrain in decision-making tasks*>%>>42-4¢
and that of medulla in low-level motor control*’. We also tested a dif-
ferent approach, predicting and then subtracting movement-related
neural activity, followed by reassessing choice selectivity, and found
largely consistent results (Extended Data Fig. 10). In summary, our
analysis of the relationship between video-based behavior prediction
and spike rates allowed us to disentangle neural coding of movement
from decision-related activity, which revealed clear differences in

encodingacross different brain areas and identified regions of interest
for choice computation.

Discussion

We analyzed movement-related activity across the brain during a
decision-making task. We present multiple methods to relate neural
activity to movements captured by behavior videos, with less inter-
pretable nonlinear methods yielding superior predictionsin terms of
explained variance. Movement-related signals were pervasive across
the brain, but their strength differed across areas. Analysis of activity
following movement versus leading movement revealed arichstructure
of'sensory versus motor processing between and within brainregions.
Choice-related uninstructed movements were common but varied
greatly across animals and sessions. We used single-trial analysis to
tease apart activity modulation by uninstructed movements versus
coding of choice.

Movement-related neural activity has been investigated in mul-
tiple brain regions and by multiple methods***** Although dif-
ferences between brain areas have been previously reported”***,
we provide a comprehensive characterization of movement-related
activity across the brainin a single behavior. The temporal resolution
ofelectrophysiological recordings allowed us to dissect neural activity
related to motor versus sensory encoding, and, in anatomical struc-
tures known for sensory or motor processing, the overall organization
agreed with expectations. At the same time, our analysis reveals rich
encoding of movement within each area. The neural activity of inter-
mingled neurons canlead or lag movement. The observed large spread
suggests broadly distributed, closed sensorimotor loops, with most
brain areas participating in controlling movement and responding
to movement. Resolving whether the activity leading versus lagging
movement truly reflects reafferent versus efferent signals will require
experimental manipulations. For example, in the rodent whisker sys-
tem, lesion of the infraorbital nerve can abolish reafferent signals from
thevibrissa, while leaving efferent signals relatively intact'. However,
such experimental manipulation has been done only in limited cases.
Our analysis can provide a first-order localization of relevant signals
to guide further manipulation experiments.

When studying neural computations underlying cognitive pro-
cesses, we may wish to disentangle these forms of encoding fromactiv-
ity related to uninstructed movement. Previous studies have tackled
this questionin multiple ways. For example, one cantry to regress-out
the movement-related part of neural activity'***, or define different
subspacesin relation with movements*. Here, we used single-trial-level
predictions of choice from videos to identify trials where animals’

Fig. 7| Single-trial analysis of movement and spike rate reveals neurons
modulated by choice and movement. a, Schematic of analysis. Correct

trials were splitinto lick-left and lick-right trials. Each of these sets of trials
corresponding to a choice was further broken into two groups based on the
prediction of behavior from video, yielding four groups of trials corresponding
to the choice contingency and value of single-trial video prediction (Methods).
b, Analysis schematic as applied to two example neurons (center, right) and jaw
marker (left) within asingle session. Left: jaw marker position (height) during
entire trial (top) and magnified on the delay epoch (middle). Lines correspond
to the mean of jaw height across the four trial groups. Color indicates trial type
and line style (solid or dashed) corresponds to the video-prediction-based
contingency. Shaded area corresponds to the s.e.m. across trials. Center: same
dataasintop, magnified on the delay epoch. Bottom: mean jaw height during the
delay epoch splitinto the choice and video prediction groups. Color indicates
choice and line style type (solid or dashed) indicates agreement between
choice and video prediction contingency. Error bars correspond to the s.e.m.
across trials (the numbers of trials in each group are: L-vL, 111; L-vR, 70; R-VL,

63; R-VR,104). Middle: firing rate of example neuron analyzed according to
groups definedin a. Top: firing rate of example neuron during the entire trial
divided into the same four groups as a. Color indicates trial type and line style

indicates agreement between choice and video prediction contingency. Center:
same data asin top, magnified on the delay epoch. Bottom: average firing rate
during the delay epoch splitinto the trial type and video prediction groups.
Colorindicates trial type and line style type agreement between choice and
video prediction contingency. Error bars correspond to the s.e.m. across trials.
Neuron is modulated mainly by uninstructed movements. Right: same format
asinmiddle column for a different example neuron that is modulated mostly by
choice. ¢, Brain-wide spatial map of the fraction of neurons modulated by choice
(top) and modulated by uninstructed movement (bottom). Each voxel is 300 pm
squared in the sagittal plane and spans the brainin the third direction. Color
corresponds to the fraction of choice-modulated neurons (top) and uninstructed
movement-modulated neurons (bottom) within that voxel. For visualization,

a3 x3-voxel median filter was applied on the heatmap. Scale bar: 0.5 mm.

d, Fraction of neurons modulated by choice, uninstructed movement or both for
six brain regions. The midline of the boxes represents median, the box edges are
interquartile range and the whiskers are 1.5 x interquartile range for the fractions
inindividual sessions (n = 87 sessions). Neurons were classified into choice- or
uninstructed movement-modulated according to differences in prediction AUC
across the four trial contingencies (Methods). L, left; R, right.
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uninstructed movements differed from those most characteristic
of a given upcoming choice. While earlier work relying on encoding
models has found that a large portion of trial-by-trial variance can be
attributed to movements'”**, we have shown that in multiple regions

upcoming choice is also encoded independently of movements. We
were able to uncover significant differences betweenareasin the preva-
lence of neuronstuned to the choice- versus task-related uninstructed
movements. Our approach, as all decoder-based approaches, might
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suffer from the choice of the specific predictors used, both in terms
of their ability to account for different forms of movement as well
as their ability to generalize across variations of similar movements,
and therefore the question of whether we captured all the relevant
uninstructed movements remains open. We believe that this form of
video-prediction-based dissection of modulation is complimentary to
other approaches and can be broadly useful to disentangle different
trial-related forms of encoding.

Uninstructed movement could be part of an animal’s strategy in
solving the cognitive task*® or reflect the state of the animal or other
ongoing processes”**. Although video-based choice prediction was
positively correlated with the performance of the animal, the explana-
tory power of the correlation was weak, and multiple animals per-
formed the task at a high level without engaging in choice-related
uninstructed movements. On one hand, this could stem from weak-
nesses in the choice-related movement prediction methods or from
the animal engaging in movements that are outside of the camera’s
field-of-view, such as posture and hind-leg movements". On the other
hand, some animals are likely to be able to solve this cognitive task
withoutrelying on overt, uninstructed movements. One way to explore
this question furtheris to study task-related uninstructed movements
in more complex tasks, as one could expect that if uninstructed, but
task-specific, movements are a useful strategy, or even a necessary
strategy, then task-related uninstructed movements should be more
prevalentin more demanding tasks.

Our finding that direct end-to-end methods outperform other
methods was surprising given the large number of parameters to be fit
in that approach, the limited number of trials available from training
and the known variability in single-trial responses, all of which could
have reasonably led to overfitting. This suggests that for studies focus-
ing on questions such as dissection of movement-related responses,
in which the main goal is to identify (and then potentially subtract)
movement-related activity, end-to-end models would be an appro-
priate tool. However, the key disadvantage of these models is poor
interpretability. If the goal is to understand the different aspects of
movements neurons are tuned to, we believe the autoencoder-based
embedding space approach is more favorable. Unlike marker-based
methods that require specific body parts to be defined in advance for
tracking, the autoencoder extracts the aspects of movement that are
thentrackedinthe embedding space directly from data, which canbe
beneficial since it is difficult to put in place reasonable priors for the
range of movements that might modulate neural activity. Additionally,
the embedding space can be trained once and then allows for many
different analyses to be performed ontop of itand experimented with,
whileincurring relatively little additional computational cost. This key
advantage may outweigh the additional predictive power gained by
using the end-to-end approach.

What is the importance of widespread and intermingled effer-
ent and reafferent signals? The existence of motor signals could be
the result of an explicit computational strategy to supply these sig-
nals as they are necessary for the area’s function. For instance, an
area involved in active sensing likely needs information about the
motor commands, both as they could influence the active sensing
strategy and because they may affect the sensory apparatus™**,
However, identifying specific signals does not by itself indicate their
functional necessity for an area’s computations. Given the dense local
andinter-regional connectivity, perfect filtering of signals unrelated
to aregion’s function could require overly complex and inefficient
gating mechanisms. An alternative computational strategy is to iso-
late the dynamics needed for an area’s computations fromirrelevant
signals, for instance, by organizing them into distinct subspaces in
activity space® >, To test these possibilities, an area’s dynamics could
be perturbed specifically along directions associated with specific
information. This could be accomplished by simultaneous imaging
and online targeting of perturbations>**.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Data collection and preprocessing

We analyzed a publicly available dataset published in refs. 30,31. This
study is based on datafrom 28 mice, including 25 VGAT-ChR2-EYFP (The
Jackson Laboratory, JAX no. 014548), one C57BL/6) (JAXno.000664),
one Sst-IRES-Cre (JAX no. 013044) crossed with reporter mouse Ai32
(JAX no. 024109) and one Emx1-IRES-Cre (JAX no. 005628) crossed
with R26-LNL-GtACRI1-Fred-Kv2.1 reporter mouse (JAX no. 033089).
The mice were 3-7 months old at the time of recording. All procedures
were in accordance with protocols approved by the Janelia Research
Campus Institutional Animal Care and Use Committee.

The datawere obtained from Neuropixels probes® used to record
extracellular activity inmultiple regions of the mouse brain. To perform
spike-sorting, we used Kilosort*® with a custom quality control pipeline
outlinedin awhitepaper” (https://doi.org/10.25378/janelia.24066108.
v1). We then binned spikes into firing rates with a bin width of 40 ms
and astride of 3.4 ms.

In addition to neural activity, we recorded high-speed (300 Hz)
multiview video of the face, paws and body of the mouse using comple-
mentary metal-oxide semiconductor cameras (CM3-U3-13Y3M, FLIR)
under infrared (940 nm light emitting diode) light, with 4-12-mm focal
length lenses (12VM412ASIR, Tamron), achieving a pixel resolution
of 71 um. For analysis, only the side-view frames were used. We used
DeepLabCut* to obtain the positions of the jaw, paws and tongue. We
refer to these positions as markers. We manually labeled about 2,800
frames, and trained the model using this software, and we used the
same model across all sessions. Although these markers were mostly
reliable, we found outliers that harmed the prediction of firing rates
oranimal behavior. Weidentified outliers by a five-sigma threshold on
velocity across frames and imputed outliers from nearby frames. When
thetongue was occluded while it was in the mouth, as was typically the
casebeforetheresponse epoch, we set the tongue position toits mean
value. We note that other choices of specific dataimputation method
did not qualitatively affect the results.

Further details regarding the animals, behavior and data collec-
tion, including electrophysiology, video tracking, spike-sorting and
histology, can be found inref. 30.

Convolutional autoencoder

The architecture of the convolutional autoencoder we used was
similar to BehaveNet described inref. 22. The encoder was composed
of an initial convolutional layer, two residual blocks*® and two fully
connected layers. Theinitial convolutional layer has 3 x 3 kernel size
and 16 output channels andis followed by ReLU activationand a2 x 2
max pooling. Eachresidual block was composed of four convolutional
layers. Each convolutional layer has kernel size 3 and stride 1. The
first residual block had 16 channels; and the second residual block
increased the channel number to 32 in the first layer. Each convolu-
tional layer is followed by ReLU activation and the second residual
block ends with amax pooling with kernel size 4. The input image was
resized into a 120 x 112 matrix. The output of the last convolutional
layer was a vector with alength of 288. This output was then processed
by the two fully connected layers (288 x 128 and 128 x 16) with ReLU
activation between them yielding the output of the encoder, the
embedding vector, with a length of 16. The decoder was a fully con-
nected linear layer.

We trained and primarily used session-specific autoencoders.
However, we also verified that one can train a session-independent
encoder withsession-dependent decoders. We note that decoders had
to be session-dependent due to differences in overall position of the
mouse, experimental components and background. In other words,
duringtraining, allframes are fed into the same encoder but willthengo
to different decoders depending on which session they were extracted
from. We verified that training a session-independent autoencoder
with 40 sessions yielded similar performance and qualitatively similar

analysis results to a session-dependent decoder. We also verified that
theencoder canthen generalize to sessions that the encoder has never
seen before.

End-to-end learning framework

Inthe end-to-end learning framework, we trained deep neural networks
todirectly predict neural firing rates. For each session with each brain
region, we trained a neural network. The network was composed of
three residual blocks® and a final linear output layer. Each residual
block was composed of four convolutional layers, and each convolu-
tional layer was followed by a two-dimensional batch normalization
with epsilon1x107° and momentum 0.1. The first convolutional layer
of aresidual block had kernel size 1 and stride 1; the latter three had
3 x 3 kernel size and stride 1. The output of the first residual block had
16 channels, and the output of the other two blocks had 32 channels.
Each residual block was followed by a two-dimensional max pooling
with a kernel size of 4 and a stride of 4 for down sampling. After each
batch normalization or max pooling, a ReLU activation was applied.
After the three residual blocks and the max poolings, the output wasa
vector of length160. Alinear outputlayer was connected to the end of
thelastresidual block with output size equal to the number of neurons
tobe predicted inthe session.

Prediction of neural activity using embedding or markers
When predicting neural activity at time ¢ from embedding vectors
or marker positions, we took a 5-frame window of the video and col-
lected the respective featuresat t - 6.8 ms, t -3.4 ms, ¢, t + 3.4 ms
and ¢ + 6.8 ms and concatenated these vectors, obtaining a single
feature vector that was 80-dimensional for the embedding-based
approach (16 latent dimensions times the 5 neighboring time points)
and 15-dimensional for the marker-based approach (3 markers
times the 5 time points). We then used L2 regularized linear regres-
sion (ridge-regression) to predict neural activity at time ¢. The
regularization parameter was obtained through fivefold nested
cross-validation. Neurons with low firing rates (below 2 Hz) were
excluded from analyses; the results were not sensitive to the exact
value of this threshold.

Trial selection and cross-validation

The dataset contains trials with photoinhibition, water administration
regardless of the animals’ choice (free water trials), early licks and
trials where the animal ignores the lick-spouts. These were excluded
fromallanalyses.

For the analyses comparing the three methods (Fig. 2 and Extended
DataFigs.2and 3), we used asingle, random train-test split, with balanc-
ing of the ratio of lick-left, lick-right and correct versus error trials in
the training and test splits. The test split was 64 trials for all sessions,
and the same splits were kept across methods.

For analyses involving only the embedding-based meth-
ods (Figs. 3-5 and Extended Data Figs. 4-6), we used fivefold
cross-validation, stratified with regards to licking direction and cor-
rectness across the folds.

For analyses involving behavioral prediction (Figs. 6 and 7 and
Extended Data Figs. 7 and 9), we selected only correct trials and used
20-fold stratified cross-validation.

Thalamic nuclei. For Fig. 3 and Extended Data Fig. 4 the following
subregion definitions were used, based on the Allen ontology: CN, cen-
tral lateral nucleus; central medial nucleus; MD, mediodorsal nucleus
of thalamus; PC, paracentral nucleus; PO, posterior complex of the
thalamus; VAL, ventral anterior-lateral complex of the thalamus; VM,
ventral medial nucleus of the thalamus; VP, ventral posterior complex
of the thalamus; ventral posterolateral nucleus of the thalamus, parvi-
cellular part; ventral posteromedial nucleus of the thalamus; ventral
posteromedial nucleus of the thalamus, parvicellular part.

Nature Neuroscience


http://www.nature.com/natureneuroscience
https://doi.org/10.25378/janelia.24066108.v1
https://doi.org/10.25378/janelia.24066108.v1

Article

https://doi.org/10.1038/s41593-025-02114-x

Epoch-averaged explained variance

To calculate epoch average explained variance we first calculated the
explained variance for each time point and test-fold separately. Then,
we rectified the explained variance scores by setting all negative values
to 0. After this, the folds were averaged. Finally, we averaged the time
points within therelevantepoch (sample, delay or response). To avoid
edge effects and compare the same time points (for neural activity)
across all time-shifts, we excluded the first and last 150 ms of each
epochwhentaking the average. We filtered out neurons with very low
explained variances (below 0.01); the results were not sensitive to the
exact value of this threshold.

Identifying neurons with reliable firing patterns and poor
video prediction

To identify neurons with highly reliable spiking patterns across
trials but poor predictions from behavioral videos (as shown in
Extended Data Fig. 1), we selected neurons with low epoch-averaged
explained variance (embedding-based response epoch-explained
variance < 0.1), with high correlation between the single-trial firing
rate traces and the trial-averaged firing rate pattern (correlation > 0.4)
and with low trial-by-trial variability (average across all time points of
instantaneous trial-to-trial firing rate variance <100 s2). We have found
atotal of 196 such neurons inthe whole dataset. The exact value of these
thresholds does not change the qualitative type or the approximate
proportion of these neurons found in the dataset.

Analyzing optimal time-offsets

When analyzing the optimal time-shift between video and neural activ-
ity, we shift the video by tau () in time (multiples of 6.8 ms which
corresponds to two frames). Then we repeat the same analysis that
we did when predicting neural activity using embedding vectors
for a large set of possible time-shifts (-102 < 7 <102 ms): we take the
features corresponding to five neighboring frames at t + - 6.8 ms,
t+7-34ms,t+1,t+7+3.4ms, t+7+6.8ms; predict neural activity
using ridge-regression for every time point separately; and calculate
the epoch-averaged explained variance for each possible T time-shift.
The optimal time-shift is the one that maximizes the explained
variance 7 = max_t(R*(r)). Since some neurons’ explained variance
curves as function of time-offset were flat, we kept only neurons with
well-defined peaks (max(R?) > 1.2mean(R?), where mean(R?) is the mean
explained variance across all time-shifts); the results were not sensitive
to the exact value of this threshold.

To assess the significance of a neuron’s time-offset (Fig. 5), we
used the explained variances from the different cross-validation folds
and compared the optimal time shifts coming from the different folds
against zero, using a t-test to obtain a Pvalue for each neuron. Signifi-
cance was established through Benjamini-Hochberg false discovery
rate control, with rate parameter Q = 0.05.

Defining choice- and uninstructed movement-modulated
neurons using video-based choice decoder

To define choice- and uninstructed movement-modulated neurons
(Fig.7 and Extended DataFig. 9), we used all correct trialsand split them
into four groups based on licking direction and the delay epoch video
prediction (obtained as described above). Sessions with fewer than
20 trials in any of the four groups were excluded. We used regularized
logisticregression either to predict choice while conditioning for video
predictionor to predict uninstructed movement type (video prediction)
while conditioning for choice from average firing rates of single neurons
duringthe delay epoch. The prediction was characterized by ROCAUC on
thetest-fold and the two conditions were averagedineach case, yielding
asingle AUC for choice prediction and another AUC for uninstructed
movement prediction for each neuron. The final AUC for each neuron
is the average of the test AUC across all test-folds. The regularization
parameter was found through nested leave-one-out cross-validation.

A neuron was then grouped as choice- versus uninstructed
movement-modulated if the relevant AUC exceeded 0.65; note that
some neurons have AUC higher than this threshold for both variables.

Defining choice-modulated neurons after subtraction of
movement-related activity

To define neurons modulated by choice but unaffected by any unin-
structed movements (Extended Data Fig. 10), we first subtracted the
predicted per-timepoint neural activity based on the embedding
method of each neuron. We then used regularized logistic regression
to predict choice from single-neuron residual activity using fivefold
cross-validation, with nested cross-validation to find the regulariza-
tion parameter. Each neuron’s choice decoding AUC is the average
test-fold AUC across all cross-validation folds. To classify a neuron
as choice-modulated we used the same threshold as for the other
method, AUC > 0.65.

Calinski-Harabasz clustering score

The Calinski-Harabaszindex, also known as the varianceratio criterion,
is the ratio of the sum of between-clusters dispersion of a measured
feature to the inter-cluster dispersion for all clusters. Higher scores
indicate stronger clustering. To obtain a reference null-distribution
for the Calinski-Harabasz score, we randomly assign the labels (mice)
toeach datapoint,and then calculate the score, repeating the random
process 1,000 times. We assess significance by comparison to this
null distribution.

We used this clustering score two times. In Fig. 6d, we take the
AUC from the embedding framework as features and mouse identity
as cluster labels. In Fig. 6e, AUCs from the jaw and the nose markers
were used as features, and mouse identity was used as cluster labels.
We note that we used only sessions where the trial type was predictable
from either jaw or nose (AUC equal to or higher than 0.65) and only mice
that had two or more of such predictable sessions.

Testing against spatial discontinuity with nearest-neighbor
explained variance difference distribution

Totest whether spatially closer neurons have smaller difference in their
explained variance than expected by chance within thalamus (Fig. 3e),
we first identified neurons within each nucleus and calculated the
cumulative distribution function for the explained variance difference
between nearest neighbors. As a control we randomly shuffled the
neurons’ explained variance values within each nucleus separately and
calculated the cumulative distribution function for the explained vari-
ance difference in the shuffled sample. We repeated the shuffle 1,000
times to establish a null-distribution and bootstrap Pvalue.

Test against spatial uniformity

Totestagainst spatial uniformity (Figs.3 and 7and Extended Data Fig. 9)
of a given scalar statistic (explained variance, single-neuron AUC)
given the fixed sampling provided by the CCF coordinates, we split
thebraininto cubic voxels (0.2 mm cubed for Fig.3 and 0.5 mm cubed
for Fig. 7 and Extended Data Fig. 9, but the results do not depend on
the specific choice of this size) and grouped neurons based on these
voxels. We then calculated an F-statistic for this grouping using one-way
F-test. Asa control we randomly shuffled the scalar statistics of interest
(explained variance, single-neuron AUC) across neurons while keeping
the CCF coordinates fixed; we used the same cubic voxels as before to
group the shuffled neurons and calculated an F-statistic for this shuffle
control using one-way F-test. We repeated the shuffle 10,000 times to
establish a null-distribution and bootstrap Pvalue.

Data pooling

Theregistration of individual animals into acommon reference frame
(CCF v.3) allowed us to pool data across animals when it was neces-
sary to combine neurons across animals (Figs. 2a, 3-5 and 7c,d). All
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analyses relating movement to neural activity were first carried out
on a session-by-session basis and the pooling happened only on the
level of single-neuron variables (for example, explained variance, best
time-offset, AUC) with uniform weights across sessions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used for this study are publicly available viathe DANDI archive
at https://doi.org/10.48324/dandi.000363/0.230822.0128 (ref. 31).

Code availability

All analyses were performed using custom Python code. Code is
publicly available via GitHub at https://github.com/druckmann-lab/
MapVideoAnalysis (ref. 59).
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Extended Data Fig. 1| Neurons with reliable responses but whose activity is not well predicted from video. Heatmap of firing rate as a function of time. Each
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Extended DataFig. 2 | Voxel level explained variance separately per epoch. in the respective projection plane and spans the brainin the third direction. Color
Response epoch with rich licking movements (left column) sample/delay epochs corresponds to average of single neurons’ explained variance within each voxel
(middle column) and difference between the response to sample/delay epochs (left and middle columns) and to the difference between response epoch and
(right column). The rows correspond to different projections: sagittal on top, sample/delay epoch explained variance (right column). For visualization a 3x3

coronalinthe middle and horizontal on the bottom. Voxel size is 150 pm squared median filter was applied to the heatmaps.
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and epochs. Single neuron explained variances are pooled by anatomical
regions. Error bars represent standard error of insertion averaged means.
Overlaid markers show individual mean values for individual insertions.

Visual representation of statistics corresponds to pairwise comparison for

the embedding based predictions with two-tailed Mann-Whitney U test and
Bonferroni correction, *isp < 0.001, **is p < 0.01, *is p < 0.05and nsis p > 0.05.
Sample epochinsertion averaged comparisons for embedding based method:
Medulla (0.0833 + 0.0066, n = 36) vs Midbrain (0.0632 + 0.0039,n = 70),

p =0.0785; Medulla (0.0833 + 0.0066,n =36) vs ALM (0.0629 + 0.0047,n = 69),
p =0.0382; Medulla (0.0833 + 0.0066, n = 36) vs Striatum (0.0586 + 0.0046,
n=59), p=0.0212; Medulla (0.0833 + 0.0066, n = 36) vs Thalamus

(0.0364 +0.0027,n=57), p=3.77e-07; Midbrain (0.0632 + 0.0039, n = 70) vs ALM
(0.0629 £ 0.0047,n=69), p=1; Midbrain (0.0632 + 0.0039, n = 70) vs Striatum
(0.0586 +0.0046,n =59), p =1; Midbrain (0.0632 + 0.0039, n = 70) vs Thalamus
(0.0364 + 0.0027,n=57), p =3.45e-06; ALM (0.0629 + 0.0047, n = 69) vs Striatum
(0.0586 +0.0046,n=59),p =1, ALM (0.0629 + 0.0047, n = 69) vs Thalamus
(0.0364 + 0.0027,n =57), p =2.19e-04; Striatum (0.0586 + 0.0046,n =59) vs
Thalamus (0.0364 + 0.0027,n =57), p=0.00256. Delay epoch insertion averaged
comparisons for embedding based method: Medulla (0.0927 + 0.0065, n = 36)
vs Midbrain (0.0690 + 0.0045, n = 67), p= 0.0304; Medulla (0.0927 + 0.0065,
n=36)vs ALM (0.0654 + 0.0069, n = 70), p = 6.91e-04; Medulla (0.0927 + 0.0065,

n=36) vs Striatum (0.0594 + 0.0063, n = 57), p = 1.81e-04; Medulla

(0.0927 £ 0.0065, n =36) vs Thalamus (0.0347 + 0.0028,n = 53), p = 8.06e-10;
Midbrain (0.0690 + 0.0045,n = 67) vs ALM (0.0654 + 0.0069,n=70),p=1;
Midbrain (0.0690 + 0.0045, n = 67) vs Striatum (0.0594 + 0.0063, n = 57),

p =0.211; Midbrain (0.0690 + 0.0045, n = 67) vs Thalamus (0.0347 + 0.0028,
n=53), p=115e-07; ALM (0.0654 + 0.0069, n = 70) vs Striatum (0.0594 + 0.0063,
n=57),p=1,ALM (0.0654 + 0.0069, n = 70) vs Thalamus (0.0347 + 0.0028,
n=53), p =4.24e-05; Striatum (0.0594 + 0.0063, n = 57) vs Thalamus

(0.0347 £ 0.0028,n =53), p = 0.00741. Response epoch insertion averaged
comparisons for embedding based method: Medulla (0.1764 + 0.0061, n = 36) vs
Midbrain (0.1043 + 0.0040, n=79), p =1.04e-11; Medulla (0.1764 + 0.0061, n =36)
vs ALM (0.0923 + 0.0037,n = 77), p = 1.24e-13; Medulla (0.1764 + 0.0061,n = 36) vs
Striatum (0.0912 + 0.0034, n = 67), p =1.03e-13; Medulla (0.1764 + 0.0061, n = 36)
vs Thalamus (0.0611 + 0.0026, n = 62), p = 3.31e-15; Midbrain (0.1043 + 0.0040,
n=79)vsALM (0.0923 + 0.0037,n = 77), p = 0.314; Midbrain (0.1043 + 0.0040,
n=79)vsStriatum (0.0912 + 0.0034, n = 67), p = 0.0999; Midbrain

(0.1043 £ 0.0040, n =79) vs Thalamus (0.0611 + 0.0026, n = 62), p = 2.47e-11;
ALM (0.0923 + 0.0037,n = 77) vs Striatum (0.0912 + 0.0034, n = 67), p=1;ALM
(0.0923 +0.0037,n =77) vs Thalamus (0.0611 + 0.0026, n = 62), p = 2.80e-08;
Striatum (0.0912 + 0.0034, n = 67) vs Thalamus (0.0611 + 0.0026, n = 62),

p =8.26e-09. All comparisons were done with two-tailed Mann-Whitney U test
and Bonferroni correction.
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Extended Data Fig. 4 | Pairwise comparisons between thalamic nuclei. The significance (with p < 0.1) of pairwise comparisons between thalamic nuclei are shown for
explained variance (left) and firing rate (right). P-values are calculated with two-tailed Mann-Whitney U test and Bonferroni correction for multiple comparisons.
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Extended Data Fig. 5| Spatial patterns in optimal video-activity time-offset. plane and spans the brainin the third direction. Color corresponds to the
The heatmaps show the proportion of neurons with positive time-offset roportion of neurons within each voxel with positive time-offset (left column),
p prop p prop p
(left column), negative time-offset (middle column) and best time-offset with positive time-offset (middle column) and to the average of single-neuron
(right column) in the sagittal plane (top row), coronal plane (middle row) and best time-offsets within each voxel (right column). For visualization a 3x3 voxel
horizontal plane (bottom row). Each voxel is 150 pm squared in the respective median filter was applied on the heatmaps.
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Extended Data Fig. 6 | Relation between explained variance and video
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their explained variance at zero offset, then the normalized explained variance
asafunction of time is averaged for neurons within each quantile. Each row is
normalized by its maximum and minimum value. The p-values are calculated
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Extended DataFig. 7| Correlation between predictability of behavior from video and task performance. The x axis corresponds to the mean ROC-AUC for
predicting behavior directly from video during the delay epoch. Each dot corresponds to a session. The y axis is the behavioral task performance of that session.
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stimulus for individual neurons. In the middle two example schematics are shown
for stimulus (top) and response (bottom) tuning; and two example neurons are
shownontheright. The traces correspond to trial averaged mean traces during
the delay epoch, and the shaded areas correspond to one standard deviation.
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The bottom half outlines the video-prediction-based analysis that uses single
trial level choice predictions from videos to distinguish between modulation

by choice versus uninstructed movements. The middle shows two example
single-neuron schematics for choice (top) and uninstructed (bottom) movement
modulation. On the right, two example neurons are shown. Traces correspond

to trial averaged mean traces during the delay epoch, and the shaded areas
correspond to one standard deviation.
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Extended DataFig. 9 | Spatial distribution of choice and movement prediction in the respective projection plane and spans the brainin the third direction. Color
single neuron AUC. The heatmaps show the distribution of choice prediction corresponds to the average AUC of neurons within that voxel for choice (left
AUC (left column), uninstructed movement related AUC (middle column) andthe  column), uninstructed movement (middle column) and the difference of these
difference between the two (right column) in the sagittal plane (top row), coronal (right column). For visualization a 3x3 voxel median filter was applied on the
plane (middle row), horizontal plane (bottom row). Each voxel is 300 pm squared heatmaps.
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Extended Data Fig. 10 | Comparison of methods for identifying choice modulation of neurons according to trial grouping-based AUC (same asin Fig. 7).
modulated neurons. a. Proportion of choice modulated neuronsin the Dashed lines show the AUC threshold for choice modulation. c. Proportion of
sagittal plane. Each voxelis 300 pm squared in the sagittal plane and spans neurons categorized as choice modulated based on the choice AUC obtained
the brainin the third direction. Color corresponds to the fraction of choice after subtraction of movement related neural activity. Colors correspond to
modulated neurons in each voxel. For visualization a 3x3 voxel median filter modulation of neurons according to video-prediction-based trial grouping AUC
was applied. b. Scatter plot for the choice AUC obtained by grouping trials (same asin Fig. 7). Large markers correspond to mean of the fractions across
based onvideo-based choice prediction (x-axis) and subtraction of movement sessions, error bars show SEM. Overlaid small markers show the fractions in
related neural activity predicted by videos (y-axis). Colors correspond to individual sessions.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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al. Mesoscale Activity Map Dataset. DANDI archive, 2023. DOI: https://doi.org/10.48324/dandi.000363/0.230822.0128.

Data analysis All the code was implemented in standard versions of Python 3 and Pytorch 1. We have been sharing code upon request and will continue to
do so. And now the code used for the analyses and to generate the figures can be found in the repository: https://github.com/druckmann-
lab/MapVideoAnalysis
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reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

£zoz |udy




Data

Policy information about availability of data
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

We have already made the data publicly available: Chen, S., et al. Mesoscale Activity Map Dataset. DANDI archive, 2023. DOI: https://doi.org/10.48324/
dandi.000363/0.230822.0128.
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Data exclusions  Brain areas in which less than 10 neurons per session were recorded were excluded from analysis
Replication We haven't performed experimental replication but all our computational results are cross-validated.
Randomization  Inthe existing data behavioral trials were randomized using standard random number generation.

Blinding Analyses were performed at the level of individual neurons and sessions, then comparisons were built out of those. The analysis was blind to
the specific mapping between neurons, sessions and analyzed groups such as brain areas.
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