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Lesion network mapping (LNM) is a neuroimaging framework that uses
normative functional connectivity (FC) data to link heterogeneous

brain lesions and functional alterations to brain networks implicated in
neurological and psychiatric conditions. However, many of the networks
identified by LNM and related methods appear to be highly similar across
diverse conditions such as addiction, depression, psychosis and epilepsy.
To understand this similarity, we re-examined the data from multiple LNM
studies and assessed the methodological roots of the method. Our findings
reveal afoundational limitation: at its core, LNM involves arepetitive
sampling of one and the same FC matrix. As a result, it systematically maps
sets of local brain changes—whether they are patient lesions, magnetic
resonance imaging-derived alterations, synthetic or random—onto the
same nonspecific properties of the used FC data, producing highly similar
networks across conditions. This central limitation cautions the use of
LNM as amethod for studying distinct biological networks underlying
braindisorders. Our work may aid the development of a new generation of
network-mapping methods from first principles.

Identifying brain regions and circuits that give rise to neurological
and psychiatric symptomsis a central goal of fundamental and clinical
neuroscience. Charting the relationship between brain alterations and
behavior has long served as a cornerstone of this effort, from linking
braininjury to behavioral outcomes' to systematic studies leveraging
modern neuroimaging techniques*. Progress has, however, been more
elusive for complex neurological and psychiatric conditions, where
patients can often exhibit highly spatially distributed and heterogene-
ous brain abnormalities®”".

The method of ‘lesion network mapping’ (LNM)®?, also known in lit-
erature under alternative termssuch as ‘causal brain mapping, ‘causal

network localization™, ‘lesion network-symptom mapping™ ", ‘net-

work localization®”, ‘atrophy network mapping”®, ‘remission network

mapping’”, ‘coordinate network mapping’ or ‘coordinate-based net-

work mapping?°?, “activation network mapping, ‘network-based
meta-analytic’ analysis**, among others (Supplementary Table 1), has
rapidly gained tractionas aframework to trace and unite topographi-
cally heterogenous lesions and other brain alterations to underlying
brain circuits'®"". Collectively referred to as the LNM framework,
this method maps the anatomical locations of brain alterations onto
normative functional brain connectivity (FC) to examine whether,
and if so how, these alterations converge onto a common underly-
ing network. The framework posits that alterations in different brain
regions can give rise to similar clinical symptoms when they dis-
rupt the same functional brain network. Over the past years, LNM
studies have reported such functional networks for a broad range
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Fig.1| Observed similarity of published work using LNM networks from
original and randomized lesions. a,b, Images of LNM-related circuitry maps
fromrecent LNM and sLNM publications (fromrefs.16,20,25,29,38,41-43).
Panelais reproduced with permission. ¢, Correlation between sSLNM networks
for reduced PTSD risk* and cognitive decline induced by DBS in Parkinson’s
disease* (showninb). d, Recomputed LNM maps resulting from the application
of voxel-wise Lead-DBS** on publicly available lesions for addiction®®, migraine®,
neurogenic stuttering**, neglect syndrome®, insomnia** and disrupted agency'.
Reconstruction of LNM maps (d, first two images) compared to those reported in
the original study (a) is high. e-g, Correlations between reconstructed LNM maps
depicted ind are shown. h-j, Results show high similarity between LNM circuits
derived from cortical deviations for six psychiatric conditions (BP and OCD

are shown) and healthy controls; data taken from ref. 28. k, The most reported
regions across 102 LNM networks from a literature survey (Supplementary
Tables1and 2), highlighting the prevalence of the top 10% highest correlated
and anticorrelated voxels. Extensive overlap is evidentin the insula, ACC and
frontal pole.l-n, LNM networks derived from random lesions also show highly
similar LNM outcomes. For example, lesions that disrupted agency' and spin-
randomized versions of these lesions (middle row) across the brain, as well as
completely randomized seed locations (bottom row), result in similar LNM
outcomes (showninn).0,q, Plot of the spatial correlation between the original
LNM map (disrupted agency'®) and a typical example from the randomized
conditions. p,r, Randomization of lesions was repeated 1,000 times, with

almost all occasions resulting in highly similar LNM maps between the original
(disrupted agency) and random conditions (box plots show values of n =1,000
permutations; (p) minima = 0.06, maxima = 0.92, center = (median) 0.75, bounds
of box (Q125th percentile-Q3 75th percentile) = 0.66-0.81, whiskers = 0.43-0.92;
(r) minima = 0.58, maxima = 0.96, center = (median) 0.84, bounds of box (Q1
25th percentile-Q3 75th percentile) = 0.81-0.87, whiskers = 0.72-0.96).s, The
application of LNM (Lead-DBS) on lesions associated with addiction remission
(top left, lesion masks taken from ref. 38). The panel also shows LNM outputs

on the same lesion set but now spin-randomized across the cortex (top right,
exemplary spin, r = 0.48), following arandom selection of 100 lesions with
mixed symptomatology (bottom left, ‘mixed lesions’,r = 0.93), and based on

100 syntheticlesions (bottom right, r= 0.71). Allapproaches yield very similar
LNM maps. t-v, Plots show data (ASD*) from an alternative null analysis, with
the connections of the group connectome Cbinarized and randomized (t,

left = original matrix, right = randomized matrix). Once again, LNM analyses
resulted in very similar maps. Plot in ushows a representative example (ASD)
and v shows a box plot of all randomizations (box plot shows values of n=1,000
permutations; minima = 0.93, maxima = 0.98, center = (median) 0.96, bounds of
box (Q125th percentile-Q3 75th percentile) = 0.96-0.96, whiskers = 0.94-0.98).
ADHD, attention-deficit/hyperactivity disorder; BP, bipolar disorder; MDD,
major depressive disorder; OCD, obsessive-compulsive disorder; PTSD, post-
traumatic stress disorder; s subjects; SCZ, schizophrenia.

of neurological and psychiatric disorders, including post-traumatic
stress disorder (PTSD)*, epilepsy**?, autism spectrum disorder
(ASD)?%, schizophrenia®, obsessive-compulsive disorder (OCD)*°
and migraine?’, among many others (see refs. 31-33 and a 2025 Pub-
Med/ClinicalTrials.gov search for review; Supplementary Table1and
Supplementary Note 1). Notable LNM findings include the ‘causal
depression network’***¢, a ‘psychosis circuit™ and brain circuits
related to addiction®, all highlighted as promising for clinical
application15,25,26,38740.

However, many of these reported LNM networks—purportedly
delineated as disease-specific—seem to converge on strikingly similar
brain networks. Asillustrated in Fig.1a,b, the LNM networks reported
for psychiatric conditions such as addiction®®, migraine?®, PTSD* and
schizophrenia®, but also for neurological conditions such as vertigo*,
Capgras syndrome*?, Parkinson’s disease*’ and disrupted volition®,
appear to implicate one and the same system, a network involving
bilateralinsular cortices, the anterior cingulate cortex (ACC) and parts
ofthe frontopolar cortex, thalamus and cerebellum. This observation
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is unexpected, considering the substantial heterogeneity in etiology
and symptomatology of these conditions.

Examining this spatial overlap between published LNM networks
in more detail substantiates the observed high spatial alignment. For
example, published LNM networks for PTSD? and cogpnitive decline
in Parkinson’s disease* show high spatial correlation (r=0.73; see
Fig. 1b,c, Supplementary Note 2 and Supplementary Table 2 for data
sources). Similar overlap is observed among networks for addiction’,
migraine?’, neurogenic stuttering* and disrupted agency (r = 0.62-
0.89; voxel-wise P< 0.001; Fig. 1d-g). This spatial alignment remains
highly significant after correcting for spatial autocorrelation effects
(spintest® and BrainSMASH*; Py,in, Poyainsmash < 0.001; rand Pvalues for
all examined networks are listed in Supplementary Table 3). Similar
overlapis evident for LNM networks linked to aphasia*’ and epilepsy”
(r=0.40),amnesia*®and psychosis® (r= 0.80), as well as for networks
further linked to individual symptom datalike networks related to risk
of depressionin multiple sclerosis** and remission for smoking addic-
tion® (r=0.57; all P, Pyyin, Porainsmash < 0.001). LNM maps derived based
onfocal neurological lesions (for example, dyskinetic cerebral palsy*’)
or associated with deep brain stimulation (DBS)-related targets (for
example, treatment for OCD*°) also appear to show surprisingly high
similarity (r=0.64; P, Py, Porainsmash < 0.001; Supplementary Table 3).

Remarkably, several of these LNM networks—for example, dis-
ruption of agency'® (Fig. 11-n), ASD?, addiction®, but also epilepsy”
(Supplementary Fig. 8)—seem to be indistinguishable from networks
derived whenlesions are randomly shuffled across the brain (r=0.73-
0.95; Fig. 11-r), derived from a mix of lesions not associated with one
specific disorder (Fig. 1s), or even from completely random synthetic
lesions (Fig. 1s and Supplementary Note 6). Also, randomizing the
connections of the normative connectome dataset does not appear
to markedly disrupt the LNM outcomes, resulting in rather similar
networks (degree-preserving randomization®*?; for example, LNM
forneglectsyndrome®, r=0.66,addiction®, r=0.72,agency', r= 0.75,
and ASD*, r=0.94, illustrated in Fig. 1t-v; Supplementary Note 7 and
Supplementary Fig. 3).

The breadth of this spatial similarity is indicated by a literature
survey, identifying 201 studies that discussed and/or used the LNM
framework in context of studying 101 neurological and psychiatric
conditions (2015-2025; see details in Supplementary Notes 1 and
Supplementary Table 1). Re-analyzing 102 LNM networks across 72
of these studies confirmed an overall high alignment of LNM maps
(Irl=0.40,s.d. = 0.25; Supplementary Notes 2and 3), with regions such
asthebilateralinsula, ACC and frontal cortex appearingin up to 74% of
reported LNM networks (Fig. 1k; see Supplementary Note 5 for details).

To explainthis notable similarity among reported LNM networks,
we examined the core principles of the method. Our systematic analysis
reveals afundamental limitation of LNM methods: LNM projects sets of
lesions—regardless of their clinical association—onto only elementary
properties of the standard connectivity matrix, primarily the row sum
ofthat matrix (thatis, node ‘degree’). Below, we provide a step-by-step
walkthrough of the LNM pipeline, illustrating how its procedural stages
canbeexpressed compactly in linear matrix notation. This formaliza-
tion exposes the inherent constraint of the method that explains why
the majority of published LNM networks converge to highly similar
outcomes instead of identifying disorder-specific circuits.

Results

Step-by-step walkthrough of LNM

LNM (for methodologically equivalent variants and approaches pub-
lished under different nomenclature, see Supplementary Table1, from
now on collectively referred to as LNM) typically consists of three
methodological steps. Figure 2a presents a schematic of these steps,
asimplemented in popular LNM toolboxes like Lead-DBS** (Supple-
mentary Notes 8 and 17). We can consider a group of patients, each
with one or more brain lesions, and study them using alarge standard

resting-state functional magnetic resonance imaging (fMRI) dataset
fromnormative healthy individuals (for example, 1,000 healthy partici-
pants from the GSP1000 (ref. 55) or Human Connectome Project’®). In
step1ofthe LNM procedure, eachlesionis mappedto corresponding
voxelsinthe standardized space (for example, MNI152) of the normative
dataset. Next, in step 2, the FC of a lesion is computed by correlating
the average resting-state time series of the lesion’s matching voxels
with all other voxels in the brain and standardizing the correlation
values using a Fisher r-to-z transformation. This is repeated across all
healthy datasets in the normative connectivity dataset, resultingin over
1,000 FC maps per lesion, which are then combined into a single map
using a one-sample t test to assess voxel-wise deviation from zero FC.
Athreshold (for example, || > 7) can be applied to identify the strong-
est connections”. Steps 1and 2 are repeated for all studied lesions,
producing a set of individual FC ¢ maps, one for each lesion.

Next, inthe group-analysis step 3 of the LNM procedure, the lesion
FC t maps are combined to produce the group LNM network. This is
typically done by averaging the lesion FC ¢t maps, identifying regions
consistently connected across lesions (for example, >75% (ref.17)). The
resulting map is referred to as the LNM network’ or LNM sensitivity
map®. Alternatively, when individual symptom data are available, the
group-analysis step 3 can involve correlating the lesion FC maps with
symptom scores (-16% of reviewed studies; Supplementary Table 1)
or contrast subgroups with differing symptom levels (-11%); variants
of the method referred to as ‘lesion network-symptom mapping’ or
symptom-based LNM"* ™, The sign of the resulting rvalues or t valuesin
the symptom lesion network mapping (SLNM) depends on the behavio-
ralscale thatis used, and may indicate, for example, risk level*, symp-
tom change” or clinical state (for example, relapse versus remission)*s.

Formal notion of LNM

We found that the LNM methodological steps can be considerably com-
pressed, without losinginformation. This compressionisillustratedin
Fig.2b,c,and amathematical derivationis provided in Supplementary
Note 18. First, precomputing the correlation among the time series
of all brain voxels yields all possible lesion-to-voxel FC maps before-
hand. These precomputed matrices, for all normative participantsin
the normative connectivity dataset (H), can replace step 2in the LNM
approach (Fig. 2b). To improve practical feasibility, a high-resolution
brain atlas can be used to divide the braininto, for example, R =1,000
equally sized regions®®. Furthermore, inferring equal variance across
the connections in H (which we empirically validated, r = 0.99; Sup-
plementary Note 8), the one-sample t testin step 2 can be replaced by
taking the mean of the precomputed individual matrices**. This allows
replacing the entire set of 1,000 normative FC matrices with a single
mean group connectivity matrix C (Fig. 2b). Thisapproach eliminates
the need for looping the procedure over all normative datasets for
eachlesion, repetitively, reducing the computation time forastandard
dataset of 50 lesions from ~10-12 h using the Lead-DBS toolbox** to
under 10 s. We empirically validated this compressed approach, with
boththe full Lead-DBS implementation and the atlas-based accelerated
version producing effectively identical LNM maps (examined across
100 patient and 100 synthetic lesions, mean r = 0.96; Supplementary
Notes 8 and 20).

The compressed version (Fig. 2c) describes the LNM procedure
now as: (step 1) matching lesion m, of participant s to the region(s) i
in the used brain atlas; (step 2) selecting the matching row(s) i in the
group connectivity matrix C; repeat steps 1-2 for all lesions; and (step
3 group analysis) taking the sum (or mean, which are equivalent) of all
selected rows to obtain the final LNM map.

Formally, we can express LNM as

S
LNM = 3° L >, G |forallre R )
s=1 |mS| ’

iemg
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Fig.2|LNM pipeline and streamlined implementation. a, The procedure of
LNM involves three major steps—first, the lesion(s) of asingle patient s (step 1)
is placed into standard space. Next, the FC profile of that lesion m, of patient sis
computed by means of the fMRI resting-state datain alarge normative dataset,
with the FC maps combined in aone-sample ¢ test (two-sided) to obtain asingle
FC map for each lesion of patient s. Optionally, the t map can be thresholded

to select the strongest connections (step 2). Steps 1and 2 are repeated for all
lesions of the group of patients S. Afterwards, the individual FC lesion maps
are combined inagroup analysis (step 3) to define their underlying common
network. b, Step 2 of the LNM procedure can be streamlined (left, middle

row) using an atlas-based approach in which the cortex and subcortical

areas are parcellated according to a high-resolution atlas—for example,

Cindividual _

Group average C

Cm LNM network
- FC,
- FC,
L d
- FC, + T

the Yeo-Schaeferl000/Melbourne54 atlas'*”'°%, Middle, an atlas-based approach
allows for precomputation of all lesion-to-region FC for all datasets in the
normative connectome dataset. Right, allindividual matrices can be grouped
into asingle group connectome C, with the resulting group matrix containing the
same information as the one-sample t test performed in step 2. ¢, Taken together,
the entire LNM procedure is now compressed to selecting row i corresponding to
lesion m,of patient s from the group matrix C (optionally, threshold the resulting
vector), repeat this for all lesions of all patients sin S, and summing over the
selected rows Cmto obtain the final LNM network map. C, group connectivity
matrix; GSP1000, Brain Genomics Superstruct Project 1000; h, normative
participants; r, correlation coefficient; S, all participants.

where S denotes the total set of patients, s one specific participant,
m,thelesion of participants, |m,| the size of lesion m,, i the row(s) in C
matching the region(s) of lesion m, in participants, C the group aver-
age functional matrix of size R x R, R all voxels or brain regions in the
chosen brain mask or atlas and r a specific region in R (scaled with a
fixed constant; for exact formal notation, see Supplementary Notes
8 and 18). We can also rewrite equation (1) in a vector notation:

LNM = f; (mg x C) 2)

s=1

where m; is a row vector of size 1 x R, indicating the lesion region
with entries of 1 or 1/|m,| when a lesion covers multiple rows, and
O otherwise.

We can now make one final compression—combining all lesion
vectors my of all participants into a single lesion matrix M= (m;, m,,
...,my) (Fig. 2c). This summarizes the entire LNM procedure (steps 1,2
and 3 combined) to alinear matrix multiplication:

LNM =3 (M x O) 3)
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Fig. 3| The systematic alignment of LNM to the summation vector of C. Visual
illustration of how the method of LNM represents a matrix multiplication M x C. M
is the lesion matrix containing the full lesion information across all participants S.
Each row defines a unique lesion vector m,describing the brain region(s) affected
by the lesion(s) of participant s (1) and which are not (0). Cis the normative
functional connectivity matrix of size R x R. The LNM procedure samples the
corresponding rows of the normative matrix C. In the case of the number of

LNM network

: 1

lesions to approximate all regions of the brain, Mbecomes the identity matrix/,
leading to the entire LNM procedure to copy C. After (optional) thresholding and
summing across rows, the resulting LNM map equals the summation vector, or
degree, of the normative connectome C. It is readily obtained that this alignment
to degree will also occur when sets are smaller in size than R, with a uniform
sampling of Capproximating the degree of the matrix.

where M denotes the lesion matrix, Cthe standard group connectivity
matrix.

In the sLNM variant, the group-analysis step is slightly modi-
fied (illustrated in Supplementary Fig. 1). In step 3, at each voxel, the
FCvalues across the individual lesion maps (size S x 1) are further cor-
related with the participants’ symptom scores (size S x 1), instead of
taking the mean over all maps without further weighting. With steps
land 2 the same (and given by M x C, equation (3)), it can be obtained
that the calculation of the final SLNM r map of all voxels in step 3
scales with:

SLNM = sv x (M x C) 4)

where M and C are again the lesion matrix and the normative group
connectivity matrix, and sv now astandardized row vector describing
theindividual symptomscores (Supplementary Notes 9 and 19 provide
astep-by-step and more formal derivation of SLNM).

We provide exemplary code for the voxel-wise Lead-DBS imple-
mentation of LNM and sLNM, along with the equivalent linear matrix
form of equations (3) and (4) in Supplementary Note 20.

LNM converges to the elementary properties of the

input matrix

The above formal characterizationbrings to light akey limitationat the
core of the LNM method, explaining the observed similarity between
published networks (Fig.1). Specifically, the approachinvolves arepeti-
tive sampling of one and the same matrix C, with the lesions M (and
additionally the symptomscores svinthe sSLNM variant) involving only
linear operations on the input matrix.

Let us consider two simple cases. First, for a single patient with
exactly one unifocal lesion, applying LNM yields an intermediate
tensor (equation (1)) of size S x M x R=1x1x1,000. Averaging over
lesions M of participants S (both equal to 1 here) results in an LNM
brain map that mirrors row i of the input matrix C. Similarly, with
five distinct lesions across five patients, LNM selects five rows from
C, and the resulting LNM map corresponds to the sum or mean of
those rows. Now consider alarger sample of S » 1 participants, each
with asingle lesion (Fig. 3). For § =1,000 with minimal spatial over-
lap between lesions, each lesion approximately corresponds to a
unique region in the set of R=1,000 regions, and thus to a unique
row of C. It now emerges that step 2 of the LNM procedure involves
selecting all rows of C, effectively reproducing the entire matrix. In
the group-analysis step 3, the resulting LNM map contains the same
information as the row-summation vector of the original connectiv-
ity matrix C. This convergence to the row-summation vector of Cis
even clearer when viewed in matrix notation (equation (3)). In this
example, the lesion matrix Mis the identity matrix /, leaving steps 1

and2as/x C,andthe final group-analysis map as the row-summation
vector of C (Fig. 3).

Such convergence arises rapidly for any reasonably sized set of
spatially heterogeneous lesions, which represent the typical input
to LNM studies (Supplementary Table 1). When LNM (equation (3))
is applied to lesion sets of 210 spatially heterogeneous lesions, the
resulting map already approximates the summation vector of C
(Supplementary Fig. 2; r > 0.44,10,000 runs, P, < 0.05). For sets
of 20-25 heterogeneous lesions, a typical size for LNM studies
(Supplementary Table 4), the correlation increases further quickly
(r>0.62;Supplementary Fig. 2), approaching the degree distribution
ofthe input matrix for almost all spatially heterogeneous lesion sets.

This systematic alignment with the summation vector of C also
occurs whenlesions exhibit substantial spatial overlap. Although most
LNMstudies focus on spatially heterogeneous lesion sets (for example,
refs. 8,22,24,28,38; Supplementary Table 1), some have examined
localized, overlapping lesions—for example, localized stroke or other
lesion datalinked to peduncular hallucinosis®, coma®, psychosis®, as
well as spatially proximal transcranial magnetic stimulation (TMS) or
DBS stimulation sites*>**¢°, In these cases (with empirical examples
reported below), the lesion vectorsin matrix M contain duplicates or
mark rows of Ccorresponding to spatially adjacent regions, resulting
in the repeated selection of identical or highly similar rows. Con-
sequently, the resulting LNM map still converges to the sum of the
selected rows, primarily reflecting the inherent FC pattern of the
underlying seed region(s). Even in the extreme case where all lesions
fall within a single region, the probability that the LNM map reflects
the degree structure of C remains non-negligible (|r| > 0.3, 74% of all
possible cases; Supplementary Note 10). More formally, in such sce-
narios, the LNM map converges toward the sum of the row-induced
subgraph Cmof C, thatis, the sum of rows corresponding to the lesion
regions (i, j, ..., k).

Variants like SLNM refine the LNM map using individual symptom
scores, but they still fundamentally rely oninformation drawn from one
and the same connectivity matrix C. The linear operation of a vector,
such as the symptom/phenotype vector sv on a structured (formally,
low-rank) matrix, will produce patterns of correlation r values that
are shaped by the limited set of latent factors defining the matrix (we
provide a more detailed explanation of this phenomenon together
with examples in Supplementary Note 9). Consequently, SLNM maps
based on astructured matrix, such as the FC matrix C, will align with the
elementary properties of C. This leaves systematic traces in the SLNM
map, most strongly aligned with the dominant latent factors of C (for
example, PC1 of C, which overlaps with degree, |r| = 0.82), resulting
in predictable sSLNM outcomes regardless of whether the lesions or
symptom scores are clinically informed or random (Supplementary
Notes 9 and 20).
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from sSLNM", a variant of LNM in which lesion functional maps are further tuned
by correlating them to individual symptom scores, for TMS target sites for
depression®* (r), and DBS-related networks for cognitive decline in Parkinson’s
disease® (s). t,u, Association between LNM maps and row sum of the matching
subset of rows of the normative connectome C corresponding to the voxels (or
regions) affected by the set of lesions (Cm) for psychosis® (t) and amnesia*® (u).
In f-u, spatial spin permutation (Main and Methods) was used to assess statistical
significance (P, < 0.001, two-sided, n=10,000 permutations, Pvalues shownin
Supplementary Table 4).

Empirical LNM results systematically reflect the summation
vector of the connectivity matrix

We empirically tested the predicted systematic alignment of published
LNM and sLNM maps to degree and other basic elementary properties
(see below) of the normative functional connectome. We computed the

row-summation vector of the group-average connectivity matrix of the
GSP1000 dataset as used in Lead-DBS*. Then we correlated the result-
ing voxel-wise and atlas-based degree map with a series of reported
LNM networks. Results support the prediction that LNM network maps
strongly represent the summation vector of the normative connectome
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(multiple examples shownin Fig. 4). For example, LNM networks pre-
sented for addiction’® (three conditions, r = 0.81/0.70/0.82), neglect
syndrome®® (r=0.70, Fig. 4m), disrupted agency (r = 0.59, Fig. 4n),
symptoms related to concussion® (r= 0.50), emotional processingin
depression® (r=0.74), schizophrenia® (r= 0.97, Fig. 4p), bipolar dis-
order®® (r=0.97) and OCD* (r= 0.96) all show a strong association with
the summation vector of C (P, Pyyin, Porainsmash < 0.001; Supplementary
Note 10; rand Pvalues listed in Supplementary Table 4).

Similarly, published network maps derived by means of SLNM
and related variants, for example, networks reported from addiction®
(Fig. 4j, r=0.63), risk for depression in multiple sclerosis®* (Fig. 4i,
r=0.44), or networks hypothesized to reduce anxiety and depression
symptoms' (r = 0.56) showed a significant trace of degree (P, P,
Porainsmash < 0.001; Supplementary Table 4) and more specifically the
first principal componentof C(|r| = 0.77-0.89; see also Supplementary
Note9).

LNM networks derived from small, homogeneous and/or highly
focal lesions can similarly exhibit strong traces of degree. Examples
are found in the application of LNM derived on the basis of smaller
lesion datasets (for example, aphasia®, n =20, r= 0.74; migraine®,
n=11,r=0.70;Fig. 4g k; delusional misidentification®,n=17,r= 0.65;
Supplementary Table 4). The same holds for application of LNM and
SsLNM to DBS and TMS target sites****, where the stimulation sites
are often highly localized within a radius of millimeters or centim-
eters (for example, TMS to DLPFC target sites to treat depression
symptoms, r = 0.53, DBS related to cognitive decline in Parkinson’s
disease, r=0.64, P, Py, Porainsmash < 0.001; PC1|r| = 0.84/0.92; Fig. 4r,s).
Similarly, traces of degree are present when considering LNM maps
derived from lesions with considerable spatial overlap (psychosis”,
~30% lesions inmidbrain, |r] = 0.52; amnesia**, -50% lesions in the thala-
mus, |r] = 0.12), but with these maps even more strongly reflecting the
row-summation vector of their selected row graphs Cm (r = 0.95-0.98;
Fig.4t,u).

In total, of the 102 published LNM and sLNM networks we
re-analyzed, 78 showed asignificant trace of degree (P, < 0.05, 91 of
102 fOr Pyyinsmash < 0.05; Supplementary Table 4). Below, we will further
discuss the (non)specificity of these LNM maps, showing that the spa-
tial patterns of almost all LNM networks can be explained by means of
the same elementary properties of the standard matrix C.

Elementary properties of whole-brain organization shape

LNM outcomes

The fundamental properties of functional connectome organiza-
tion—for example, modularity®®*>*, hubs®, anticorrelation®®, gradi-
entstructure®—constrain LNM and sSLNM maps to reflect the network
membership of lesion sites. The linear nature of LNM (equations (3)
and (4)) impliesrepeated sampling of one and the same fixed matrix C,
leaving lesion projections M, and joint symptom projections svin the
case of SLNM, inherently constrained to the principal subspace defined
by C(Supplementary Note 9). Distributed lesions yield LNM maps that
approximate the global degree sequence (as in many reported LNM
networks; Fig. 4). Conversely, clustered lesions cause the procedure
to mirror the functional module or resting-state network(s) in which
the lesions are located. Simulations confirm that >90% of generated
FC lesion maps correlate with the canonical resting-state networks
derived from modularity analysis of C(Methods), a patternreplicatedin
patientlesions and published circuits (r > 0.3; Supplementary Table 4).
Moreover, the anticorrelated architecture of the connectome (thatis,
~47% connections in the GSP1000 connectivity matrix are anticorre-
lated) ensures that LNM maps often show negative correlations with
maps derived from lesions in opposing networks. Thus, patterns of
anticorrelated LNM networks ofteninterpreted as biologically mean-
ingful in LNM studies'”*"" are likely predictable consequences of
the combined modular and anticorrelated structure of the standard
connectome dataset.

Specificity and explained variance of LNM networks

We examined the level of disease-specificity of LNM networks. On aver-
age, each LNM network showed a strong spatial overlap of |r| > 0.6 with
24 of the other102 networks (P, Py, < 0.05). This supports the very low—
ifnot negligible—disease-specificity of LNM maps. This lack of specific-
ity reflects the intrinsic nature of the LNM procedure. As we have seen
above (equations (3) and (4)), LNM and sLNM repeatedly use the same
low-rank matrix C, which limits the outcomes of the procedure to main
patterns already presentin C. To further illustrate this, we constructed
alinear regression model that reflects nine basic factors describing the
elementary properties of C—thatis, its subcortical and cortical degree
and its modular (n =4) and functional gradient (n = 3) architecture®’,
coreaspects of functional brain connectivity documented extensively
inthefield (for example, refs.58,65,66,69,72,73; Methods). Regressing
LNM maps of which lesion data was available against this simple model
showed that 93% (mean, s.d. = 5.0%) of the variance in LNM networks
isexplained by the basic properties of C (Supplementary Note 14). We
found similar findings for published sSLNM-derived networks (R*=79%,
s.d.=10.2%; Supplementary Table 4). Any remaining variance falls well
within the expected noise level of fMRIand LNM data™”. These findings
suggest that published disease LNM networks include no substantive
information, other than unspecific signal already captured by global
properties of functional connectome organization.

Statistical procedures of LNM

LNM studies typically include statistical tests to support the sensitiv-
ity and specificity of presented networks'®**’® (Supplementary Fig. 5).
We briefly discuss the validity and meaning of these statistical testsin
light of the above observations, with an extended discussion in Sup-
plementary Note 15.

Sensitivity test. In the LNM approach, step 2 often involves the use
of a one-sample ¢ test to assess whether voxel-wise FC differs from
zero. However, the large size of the normative dataset often leads to
widespread significance”. For example, running 50 synthetic lesions in
Lead-DBS shows that, on average, 64% voxels exceed the common [t| > 7
threshold. Moreover, this step contributes little additional statistical
value. As shown above (Fig. 2c), the one-sample t test can be replaced
altogether by simply taking the mean of the Fisher r-to-z-transformed
correlations.

Specificity test. The specificity test evaluates the disease- or
condition-specificity of the examined LNM map (Supplementary Fig.5).
This is typically conducted using a two-sample ¢ test contrasting the
derived map from a set of localized patient lesions with a set of ran-
domesions drawn from other disorders®*”®. Although this procedure
appears to constitute an additional null test, it is largely redundant
with the liberal sensitivity test. With LNM of random lesions to con-
verge to the degree sequence of the normative matrix C (equation (3);
Supplementary Fig. 2), the specificity test effectively re-assesses the
same signal as the sensitivity test, but now relative to the matrix degree
rather than zero. This highlights a lack of statistical independence
between procedures intended to capture distinct information (for
simulation analyses, see Supplementary Note 15).

Conjunction test. Acommonly performed final testinvolves generat-
inga conjunction or convergence map*>*”, identifying voxels that pass
boththe sensitivity and specificity tests (Supplementary Fig.5). Given
therelative ease of passing the sensitivity test and itsinterdependence
with specificity, such conjunctions are easily obtained. We modeled
~500,000 lesions across all brain regions (Yeo-Schaefer1000/Mel-
bourne54)withvaryinglevels of overlap using standard LNM settings
(sensitivity |¢] > 7, G = 75%; specificity |¢| > 10 (for example, ref. 57); Sup-
plementary Note 15). Marginal overlap between lesions (Dice = 0.08)
resulted already in significant group results (10% sets), with minimum
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levels of overlap (Dice = 0.16) yielding 64% significant sets, increasing
toalmostall setsto reveal significant regions (97% tested sets) as spatial
overlapincreased (Dice > 0.25; Supplementary Fig. 6).

Discussion

LNM has emerged as a widely used approach for identifying brain
circuits linked to neurological and psychiatric conditions, as well as
their symptoms®'®?, Our analysis reveals a foundational limitation
of the LNM framework—it maps circumscribed brain changes mostly
to one and the same outcome, reflecting only elementary properties
of the normative connectome. Given that these challenges arise from
the LNM method rather than from extensive circuit-level findings in
clinical neuroscience, this knowledge may aid the development of new
network-mapping techniques.

Our findings have broad implications for awide range of existing
work regarding disease networks and circuits derived by means of LNM,
used here asanumbrellatermthat unifies various related terminologies
and methodsinliterature ((for example, the method is also commonly
applied under labels such as “atrophy network mapping,” “activation
network mapping,” or “network-based meta-analytic” analysis; Main
and see for an overview Supplementary Table 1). The current results
suggest that asubstantial proportion of the presented LNM networks
arenonspecificand may not accurately reflect genuine biological brain
networks. Inpractice, the LNM captures only asmall set of factors that
describe broad features of theinput connectivity matrix and has limited
ability to identify subtle disorder-specific properties.

The convergence of LNM networks onto elemental properties of
the connectome could be interpreted as support for the biological
plausibility of LNM networks and circuits, like reflecting a transdiag-
nostic network underlying multiple disorders’. High-degree brain
hubs®*¢77?-%1 for example, have been extensively theorized to have a
central role in the pathophysiology of a wide range of disorders®* .
However, this interpretation in the context of LNM is misleading.
The convergence of LNM methods and variants to the row sum of the
used connectivity matrix (equation (3)) or, in more general terms, to
the latent factors of C (Supplementary Notes 9,10 and 14), is purely a
mathematical consequence of the procedure, not evidence of cor-
respondence with the brain’s hub, resting-state modular network
or otherwise complex wiring architecture. Accordingly, when the
empirical connectivity matrix is replaced by a randomized coun-
terpart C’, or by other structured nonbiological matrices, the LNM
outcome remains the product of the latent properties that govern C’
(Supplementary Fig. 3).

LNMisincreasingly proposed as aframework to guide therapeutic
applications of TMS and DBS'**73%400 wjith case studies performed®**’
and protocols for larger randomized controlled trials based on LNM
networks registered (see Supplementary Table 1for review). However,
many such proposed targets—for example, the anticorrelated fron-
topolar cortex for substance use disorder’, or peak voxels to refine DBS
targetsites for epilepsy**”’—seemto primarily reflect the meansignal of
the standard connectivity data, rather thanidentifying disease-specific
loci. Indeed, the same regions emerge when LNM is applied across
unrelated conditions'*****$ (Supplementary Fig. 7) or just summing
FC across all voxels in the GSP1000 dataset (Supplementary Fig. 8).
Given the clinical impact of these procedures, it appears essential
to thoroughly reassess these targets before substituting traditional
stimulation sites with demonstrated efficacy®®*°.

LNM studies have often been motivated by the observation that
brain alterations in neuropsychiatric and neurological disorders are
spatially diverse and heterogeneous—indeed, 55% studies describe
them as such (Supplementary Table 1)22#%72%°1"% This heterogene-
ity is frequently cited as a rationale for performing the LNM analysis,
in search of an underlying common functional network that unites
thesebrainalterations. Our findings propose are-appreciation of dis-
ease heterogeneity, further studying how brain disorders may involve

spatially distributed, heterogeneous alterations that converge on
shared phenotypes®™.

Aremaining question is whether the methodological limitations
of LNM can be alleviated through refinements of its statistical proce-
dures, forexample by using random(ized) lesions or seed locations as a
null-model. We approach such asolution with caution. The observation
that almost all meaningful variance in LNM maps is explained by basic
properties of the connectivity matrix suggests that deviations froma
reference model or baseline are likely minimal, if they exist.Indeed, 70
of 78 LNM maps where lesion datawere available failed toreach evena
liberal significance criterion set by a generative null-model based on
random synthetic lesions (nominal two-sided a = 0.05, uncorrected
for 78,000 tests; Supplementary Note 16). A similar outcome was
observed from a permutation-based null model in which lesion loca-
tions were randomly shuffled while preserving modular prevalence
(71/78, Pipr > 0.05; Supplementary Note 16). We are also hesitant to
propose anull-model solution for the LNM framework from a concep-
tual standpoint. Permutation-based null models estimate effects under
random conditions by randomizing the input data. In LNM, only two
variables exist at its core—M and C. With C describing the connectiv-
ity and remaining fixed in LNM studies and approaches®>"”*, the set
of lesions (M) is left to be permuted. As predicted from equation (3),
LNM onrandom sets of lesions consistently produces similar solutions
dominated by degree (Supplementary Fig. 2). Thisinherent limitation
ofthe LNM framework hinders the construction of a null distribution
that fulfils the essential criterion of spanning a meaningful range of
alternative maps for avalid null test.

The framework of network mapping has profoundly contrib-
uted tomodern concepts of psychiatric and neurological disorders as
network-based conditions®% %%, LNM*°*% is proposed as a powerful
and promising method within this framework to gain deeper insight
into the mechanistic role of brain circuitsin disorders® . Regrettably,
our findings indicate that a substantial proportion of networks and
disease circuits derived from LNM may not accurately reflect genuine
disease-specific biological brain networks. However, it is crucial to
separate the ‘theory’ from the ‘method’. While we, and experts in the
field with whom we discussed our findings, were not able to find an
enduring solution to the foundational methodological issues of LNM,
a continuous community effort to study the role of brain circuits in
neurological and psychiatric disorders is imperative for advancing
our understanding and developing new, effective treatments for these
conditions. Linking deviations in brain organization to behavioral
outcomes has long served as a cornerstone of this effort—from early
clinical observations’ to systematic studies leveraging modern neu-
roimaging techniques®. Embedded in efforts collectively referred to
as disease connectomics®%*1°°, proposed fruitful future directions
for the field may lie in revisiting the original rationale of lesion and
‘voxel-based lesion-symptom mapping’ in context of connectivity
mapping techniques' """ to systematically chart how lesions impact
brain circuitry and behavior. In parallel, network neuroscience’”*%*
offers the framework to more broadly investigate the central role of
core network nodes in brain function and dysfunction’**%*, Future
efforts could focus in combining real patient lesions with in silico
simulations toidentify brain areas that may serve as general targets for
intervention'*>'%, Such community efforts in revising the field of LNM
from first principles may help ongoing work to develop brain network
methods to map, understand and ultimately translate network-level
approachesinto clinical applications.
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Methods

Published LNM maps, lesion datasets and LNM application

A systematic literature search (December 2025) on LNM studies
was performed. This identified 201 LNM studies, including 187 LNM
data studies, 9 reviews and 5 commentaries with LNM, sSLNM and/
or other related variants the focus of the study, published between
2015 and 2025 (see Supplementary Note1and Supplementary Table1
for details). From these articles, we extracted data on 102 published
(s)LNM networks across 72 studies on 50 neurological, 18 psychiat-
ric and 4 behavioral conditions (creativity, political, healthy, facial
emotion), including 18 downloaded LNM maps, 11 datasets with
reported lesion prevalence, 350 original lesion masks, 935 lesions
manually segmented from original papers and 8 coordinate-based
LNM (n =1,442 brain coordinates). Details about the data extracted
from these studies are presented in Supplementary Note 2 and
Supplementary Table 2.

LNM

Voxel-wise LNM was performed using the Lead-DBS toolbox** (settings,
FullSet of GSP1000 participants®; Supplementary Note 3 and Fig. 2a).
Equivalently, atlas-based LNM involved mapping lesions to the 1,000
cortical regions of the Yeo-Schaefer1000 atlas'”” and the Melbourne54
subcortical atlas'®® and selecting the matching rows of the selected
parcels from the group connectome matrix C (Fig. 2¢).

Comparison of LNM maps

Spatial overlap of LNM maps was computed using Pearson correla-
tion coefficients, using voxel-wise correlation for available voxel-wise
maps and atlas-space for atlas-based maps. Significance was further
assessed using the spin-null model* and the BrainSMASH generative
null model*® (10,000 permutations) to account for spatial autocor-
relation effects. For 102 downloaded and reconstructed LNM maps
(see Supplementary Table 2 for sources), the top 10% correlated and
anticorrelated voxels were binarized and averaged to generate an
overlap map of LNM regions across published studies.

Normative connectome

Agroup functional connectome matrix Cwas formed by mappingthe
same functional time series of the GSP1000 participant dataasusedin
voxel-wise LNM**** (Supplementary Note 4) to the Yeo-Schaefer1000/
Melbourne54 atlas and averaging the computed individual FC matrices
into the group matrix (no thresholding).

Network analysis

The summation vector of the group connectivity matrix C, or degree,
was calculated as the row sum of the connectivity matrix C using the
Brain Connectivity Toolbox"’. Functional modules®, reflecting the
composition of resting-state networks**”*, were identified using the
Newman modularity algorithm™®,

Regression model

Asimple model describing the elementary factors of the connectome
matrix was formed on the basis of the derived network metrics. Sub-
cortical, whole-brainand modular degree were computed as the mean
connectivity of matching regions from the brain atlas, together with
three FC gradients® taken as the first three components of a principal
component analysis on C (Supplementary Note 13).

Spatially randomized lesions

Randomized lesions were generated by several randomization strate-
gies, including spatially rotating the original cortical lesions across the
cortical surface (spin-null permutation®). Alternative randomization
methods included the generation of random synthetic lesions by tak-
ing random samples from the brain atlas (matching lesion size) and a
biologically driven randomization that drew random lesions fromthe

total collection of clinically informed lesions associated with a wide
range of conditions and disorders (Supplementary Note 6).

Randomized connectivity

Arandomized normative connectome matrix was generated by rand-
omizing the connectionsin the connectivity matrix C (thresholdr>0.2,
other thresholds yielded similar results) using the rewiring method
describedinrefs.51,52. LNM maps were compared between the original
connectome and its randomized counterparts (1,000 permutations
performed; see Supplementary Note 7 for details). Alternatively, full
degree-disrupting randomization of C was examined.

Simulations

Synthetic lesions were constructed by randomly selecting regions
with equal probability P=1/R from all regions in the atlas, dilated by
including the closest neighboring parcels (n = 4), and for voxel-wise
LNM further mappedto corresponding voxelsin the MNI atlas volume.
Lesion sets (n = 50) with varying levels of overlap between lesions were
created by randomly selecting a first lesion with probability P=1/R
from all brain regions, with the second to nth lesion placed in that
regionas1/R x g, and in all other brain regions with probability P - 1/R.
Assuch, parameter g ensured avariable level of overlap betweensome
of the lesions in the set, while all other lesions remained completely
randomly distributed across the brain. The level of lesion overlap
within each set as a function of g was quantified by means of the aver-
age Dice coefficient amongalllesion pairsin the set, ranging from zero
(nooverlap) toone (complete overlap; see Supplementary Note 16 for
details). We refer to Supplementary Note 16 for null-model simulations
using synthetic lesions and randomizing patient lesions, preserving
modular assignment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All dataused in the present study are publicly available. The preproc-
essed normative FC time series from the GSP1000 dataset are available
athttps://doi.org/10.7910/DVN/ILXIKS and in the Lead-DBS toolbox**.
Neuroimaging data from the Human Connectome Project are available
at https://www.humanconnectome.org. All LNM maps used in this
study are available at https://neurovault.org and on GitHub (https://
github.com/dutchconnectomelab/lesionnetworkmapping). Lesion
masks associated with amnesia, hypersomnia, insomnia, neglect syn-
drome and Alice in Wonderland syndrome are available at https://www.
lesionbank.org/. All other reported lesion or LNM data are directly
available from the referenced papers.

Code availability

Voxel-wise LNM was applied using the open-source Lead-DBS toolbox™*
(https://www.lead-dbs.org/). Spin-null permutation was conducted
using the BrainSpace toolbox™". Network analysis of the normative con-
nectome was performed using the Brain Connectivity Toolbox'°. Steps
ofthe streamlined LNM procedure, mathematical derivation, simplifi-
cation of the method and example code are presented in Supplemen-
tary Notes 17-20 and at https://github.com/dutchconnectomelab/
lesionnetworkmapping.
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- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data used in the present study are publicly available. The preprocessed normative functional connectivity time-series from the GSP1000 dataset are available
from [https://doi.org/10.7910/DVN/ILXIKS] and the Lead-DBS toolbox from [https://www.lead-dbs.org]. Neuroimaging data from the Human Connectome Project
are available at [www.humanconnectome.org]. LNM maps used in this study are available from [https://neurovault.org] and GitHub [https://github.com]. Lesion
masks associated with amnesia, hypersomnia, insomnia, neglect syndrome, and Alice in Wonderland syndrome are available from [https://www.lesionbank.org/]. All
other reported lesions or LNM data are directly available from the referenced papers.
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Reporting on sex and gender NA. Similar data as reported in the original Lesion Network Mapping studies was used.

Reporting on race, ethnicity, or NA. Similar data as reported in the original Lesion Network Mapping studies was used.
other socially relevant

groupings

Population characteristics Patients. Similar data as reported in the original Lesion Network Mapping studies was used.
Recruitment NA, all data included open source data

Ethics oversight NA, concerns a mathematical examination
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assess the reproducibility and validity of the methodology under investigation. Exclusion criteria were not applicable.

Replication Experiments consisted of replicating neuroimaging findings applying Lesion Network Mapping.
Experiments were conducted with original and simulated data. Validation and sensitivity analyses included multiple brain resolutions (atlas-
based, voxel-based) and multiple normative connectome datasets.

Randomization  NA
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the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-authentication-procedures for-each seed stock ised-or novel genotype generated.-Describe-anyexperiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Magnetic resonance imaging

Experimental design

Design type Lesion Network Mapping
Design specifications NA

Behavioral performance measures ~ NA

Acquisition
Imaging type(s) T1-weighted imaging, resting-state functional MRI
Field strength 13,3T
Sequence & imaging parameters Sequence and imaging parameters were described in original publications of datasets.
Area of acquisition Whole Brain
Diffusion MR [ ] Used Not used

Preprocessing

Preprocessing software Lesion masks were mapped to functional maps using Lead-DBS toolbox.

Normalization Freesurfer normalized T1-weighted anatomical data extracting brain tissue,
denoising, and bias field correction. GSP1000 FMRI data as provided by Lead-DBS.

Normalization template MNI152. Native patient images were projecting into standard stereotactic (MNI) space.
Noise and artifact removal Sensitivity analyses were performed for exclusion of small lesions and small lesion sets.
Volume censoring NA

Statistical modeling & inference

Model type and settings Lesion Network Mapping

Effect(s) tested Pearson correlation, linear regression, permutation testing




Specify type of analysis:  [X] whole brain || ROI-based [ ] Both

Statistic type for inference Statistical testing using sensitivity, specificity and conjunction was conducted.

(See Eklund et al. 2016)
Correction FWE, Bonferroni, spatial-autocorrelation models (Spin-model and BrainSMASH).

Models & analysis

n/a | Involved in the study
|:| |X| Functional and/or effective connectivity

|:| |X| Graph analysis

|X| |:| Multivariate modeling or predictive analysis
Functional and/or effective connectivity Functional connectivity was derived as correlation; as similar to the LNM studies tested.

Graph analysis Weighted and binary graphs were examined. Scale-free, modular and randomized (degree preserved and
otherwise), and spin-model permutation analysis was used.
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