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Investigating the methodological 
foundation of lesion network mapping
 

Martijn P. van den Heuvel    1,2  , Ilan Libedinsky1, Sebastian Quiroz Monnens1, 
Jonathan Repple3,4,5, Iris Sommer6 & Luca Cocchi    7,8

Lesion network mapping (LNM) is a neuroimaging framework that uses 
normative functional connectivity (FC) data to link heterogeneous 
brain lesions and functional alterations to brain networks implicated in 
neurological and psychiatric conditions. However, many of the networks 
identified by LNM and related methods appear to be highly similar across 
diverse conditions such as addiction, depression, psychosis and epilepsy. 
To understand this similarity, we re-examined the data from multiple LNM 
studies and assessed the methodological roots of the method. Our findings 
reveal a foundational limitation: at its core, LNM involves a repetitive 
sampling of one and the same FC matrix. As a result, it systematically maps 
sets of local brain changes—whether they are patient lesions, magnetic 
resonance imaging-derived alterations, synthetic or random—onto the 
same nonspecific properties of the used FC data, producing highly similar 
networks across conditions. This central limitation cautions the use of 
LNM as a method for studying distinct biological networks underlying 
brain disorders. Our work may aid the development of a new generation of 
network-mapping methods from first principles.

Identifying brain regions and circuits that give rise to neurological 
and psychiatric symptoms is a central goal of fundamental and clinical 
neuroscience. Charting the relationship between brain alterations and 
behavior has long served as a cornerstone of this effort, from linking 
brain injury to behavioral outcomes1–3 to systematic studies leveraging 
modern neuroimaging techniques4. Progress has, however, been more 
elusive for complex neurological and psychiatric conditions, where 
patients can often exhibit highly spatially distributed and heterogene-
ous brain abnormalities5–7.

The method of ‘lesion network mapping’ (LNM)8,9, also known in lit-
erature under alternative terms such as ‘causal brain mapping’10, ‘causal 
network localization’11, ‘lesion network-symptom mapping’12–15, ‘net-
work localization’16,17, ‘atrophy network mapping’18, ‘remission network 

mapping’19, ‘coordinate network mapping’ or ‘coordinate-based net-
work mapping’20–22, ‘activation network mapping’23, ‘network-based 
meta-analytic’ analysis24, among others (Supplementary Table 1), has 
rapidly gained traction as a framework to trace and unite topographi-
cally heterogenous lesions and other brain alterations to underlying 
brain circuits10,11,15. Collectively referred to as the LNM framework, 
this method maps the anatomical locations of brain alterations onto 
normative functional brain connectivity (FC) to examine whether, 
and if so how, these alterations converge onto a common underly-
ing network. The framework posits that alterations in different brain 
regions can give rise to similar clinical symptoms when they dis-
rupt the same functional brain network. Over the past years, LNM 
studies have reported such functional networks for a broad range 
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However, many of these reported LNM networks—purportedly 
delineated as disease-specific—seem to converge on strikingly similar 
brain networks. As illustrated in Fig. 1a,b, the LNM networks reported 
for psychiatric conditions such as addiction38, migraine20, PTSD25 and 
schizophrenia29, but also for neurological conditions such as vertigo41, 
Capgras syndrome42, Parkinson’s disease43 and disrupted volition16, 
appear to implicate one and the same system, a network involving 
bilateral insular cortices, the anterior cingulate cortex (ACC) and parts 
of the frontopolar cortex, thalamus and cerebellum. This observation 

of neurological and psychiatric disorders, including post-traumatic 
stress disorder (PTSD)25, epilepsy26,27, autism spectrum disorder 
(ASD)28, schizophrenia29, obsessive-compulsive disorder (OCD)30 
and migraine20, among many others (see refs. 31–33 and a 2025 Pub-
Med/ClinicalTrials.gov search for review; Supplementary Table 1 and 
Supplementary Note 1). Notable LNM findings include the ‘causal 
depression network’15,34–36, a ‘psychosis circuit’37 and brain circuits 
related to addiction38, all highlighted as promising for clinical 
application15,25,26,38–40.
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Fig. 1 | Observed similarity of published work using LNM networks from 
original and randomized lesions. a,b, Images of LNM-related circuitry maps 
from recent LNM and sLNM publications (from refs. 16,20,25,29,38,41–43). 
Panel a is reproduced with permission. c, Correlation between sLNM networks 
for reduced PTSD risk25 and cognitive decline induced by DBS in Parkinson’s 
disease43 (shown in b). d, Recomputed LNM maps resulting from the application 
of voxel-wise Lead-DBS54 on publicly available lesions for addiction38, migraine20, 
neurogenic stuttering44, neglect syndrome53, insomnia53 and disrupted agency16. 
Reconstruction of LNM maps (d, first two images) compared to those reported in 
the original study (a) is high. e–g, Correlations between reconstructed LNM maps 
depicted in d are shown. h–j, Results show high similarity between LNM circuits 
derived from cortical deviations for six psychiatric conditions (BP and OCD 
are shown) and healthy controls; data taken from ref. 28. k, The most reported 
regions across 102 LNM networks from a literature survey (Supplementary 
Tables 1 and 2), highlighting the prevalence of the top 10% highest correlated 
and anticorrelated voxels. Extensive overlap is evident in the insula, ACC and 
frontal pole. l–n, LNM networks derived from random lesions also show highly 
similar LNM outcomes. For example, lesions that disrupted agency16 and spin-
randomized versions of these lesions (middle row) across the brain, as well as 
completely randomized seed locations (bottom row), result in similar LNM 
outcomes (shown in n). o,q, Plot of the spatial correlation between the original 
LNM map (disrupted agency16) and a typical example from the randomized 
conditions. p,r, Randomization of lesions was repeated 1,000 times, with 

almost all occasions resulting in highly similar LNM maps between the original 
(disrupted agency) and random conditions (box plots show values of n = 1,000 
permutations; (p) minima = 0.06, maxima = 0.92, center = (median) 0.75, bounds 
of box (Q1 25th percentile–Q3 75th percentile) = 0.66–0.81, whiskers = 0.43–0.92; 
(r) minima = 0.58, maxima = 0.96, center = (median) 0.84, bounds of box (Q1 
25th percentile–Q3 75th percentile) = 0.81–0.87, whiskers = 0.72–0.96). s, The 
application of LNM (Lead-DBS) on lesions associated with addiction remission 
(top left, lesion masks taken from ref. 38). The panel also shows LNM outputs 
on the same lesion set but now spin-randomized across the cortex (top right, 
exemplary spin, r = 0.48), following a random selection of 100 lesions with 
mixed symptomatology (bottom left, ‘mixed lesions’, r = 0.93), and based on 
100 synthetic lesions (bottom right, r = 0.71). All approaches yield very similar 
LNM maps. t–v, Plots show data (ASD28) from an alternative null analysis, with 
the connections of the group connectome C binarized and randomized (t, 
left = original matrix, right = randomized matrix). Once again, LNM analyses 
resulted in very similar maps. Plot in u shows a representative example (ASD) 
and v shows a box plot of all randomizations (box plot shows values of n = 1,000 
permutations; minima = 0.93, maxima = 0.98, center = (median) 0.96, bounds of 
box (Q1 25th percentile–Q3 75th percentile) = 0.96–0.96, whiskers = 0.94–0.98). 
ADHD, attention-deficit/hyperactivity disorder; BP, bipolar disorder; MDD, 
major depressive disorder; OCD, obsessive-compulsive disorder; PTSD, post-
traumatic stress disorder; s subjects; SCZ, schizophrenia.
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is unexpected, considering the substantial heterogeneity in etiology 
and symptomatology of these conditions.

Examining this spatial overlap between published LNM networks 
in more detail substantiates the observed high spatial alignment. For 
example, published LNM networks for PTSD25 and cognitive decline 
in Parkinson’s disease43 show high spatial correlation (r = 0.73; see 
Fig. 1b,c, Supplementary Note 2 and Supplementary Table 2 for data 
sources). Similar overlap is observed among networks for addiction38, 
migraine20, neurogenic stuttering44 and disrupted agency16 (r = 0.62–
0.89; voxel-wise P < 0.001; Fig. 1d–g). This spatial alignment remains 
highly significant after correcting for spatial autocorrelation effects 
(spin test45 and BrainSMASH46; Pspin, Pbrainsmash < 0.001; r and P values for 
all examined networks are listed in Supplementary Table 3). Similar 
overlap is evident for LNM networks linked to aphasia47 and epilepsy27 
(r = 0.40), amnesia48 and psychosis37 (r = 0.80), as well as for networks 
further linked to individual symptom data like networks related to risk 
of depression in multiple sclerosis34 and remission for smoking addic-
tion38 (r = 0.57; all P, Pspin, Pbrainsmash < 0.001). LNM maps derived based 
on focal neurological lesions (for example, dyskinetic cerebral palsy49) 
or associated with deep brain stimulation (DBS)-related targets (for 
example, treatment for OCD50) also appear to show surprisingly high 
similarity (r = 0.64; P, Pspin, Pbrainsmash < 0.001; Supplementary Table 3).

Remarkably, several of these LNM networks—for example, dis-
ruption of agency16 (Fig. 1l–n), ASD28, addiction38, but also epilepsy27 
(Supplementary Fig. 8)—seem to be indistinguishable from networks 
derived when lesions are randomly shuffled across the brain (r = 0.73–
0.95; Fig. 1l–r), derived from a mix of lesions not associated with one 
specific disorder (Fig. 1s), or even from completely random synthetic 
lesions (Fig. 1s and Supplementary Note 6). Also, randomizing the 
connections of the normative connectome dataset does not appear 
to markedly disrupt the LNM outcomes, resulting in rather similar 
networks (degree-preserving randomization51,52; for example, LNM 
for neglect syndrome53, r = 0.66, addiction38, r = 0.72, agency16, r = 0.75, 
and ASD28, r = 0.94, illustrated in Fig. 1t–v; Supplementary Note 7 and 
Supplementary Fig. 3).

The breadth of this spatial similarity is indicated by a literature 
survey, identifying 201 studies that discussed and/or used the LNM 
framework in context of studying 101 neurological and psychiatric 
conditions (2015–2025; see details in Supplementary Notes 1 and 
Supplementary Table 1). Re-analyzing 102 LNM networks across 72 
of these studies confirmed an overall high alignment of LNM maps 
(|r| = 0.40, s.d. = 0.25; Supplementary Notes 2 and 3), with regions such 
as the bilateral insula, ACC and frontal cortex appearing in up to 74% of 
reported LNM networks (Fig. 1k; see Supplementary Note 5 for details).

To explain this notable similarity among reported LNM networks, 
we examined the core principles of the method. Our systematic analysis 
reveals a fundamental limitation of LNM methods: LNM projects sets of 
lesions—regardless of their clinical association—onto only elementary 
properties of the standard connectivity matrix, primarily the row sum 
of that matrix (that is, node ‘degree’). Below, we provide a step-by-step 
walkthrough of the LNM pipeline, illustrating how its procedural stages 
can be expressed compactly in linear matrix notation. This formaliza-
tion exposes the inherent constraint of the method that explains why 
the majority of published LNM networks converge to highly similar 
outcomes instead of identifying disorder-specific circuits.

Results
Step-by-step walkthrough of LNM
LNM (for methodologically equivalent variants and approaches pub-
lished under different nomenclature, see Supplementary Table 1, from 
now on collectively referred to as LNM) typically consists of three 
methodological steps. Figure 2a presents a schematic of these steps, 
as implemented in popular LNM toolboxes like Lead-DBS54 (Supple-
mentary Notes 8 and 17). We can consider a group of patients, each 
with one or more brain lesions, and study them using a large standard 

resting-state functional magnetic resonance imaging (fMRI) dataset 
from normative healthy individuals (for example, 1,000 healthy partici-
pants from the GSP1000 (ref. 55) or Human Connectome Project56). In 
step 1 of the LNM procedure, each lesion is mapped to corresponding 
voxels in the standardized space (for example, MNI152) of the normative 
dataset. Next, in step 2, the FC of a lesion is computed by correlating 
the average resting-state time series of the lesion’s matching voxels 
with all other voxels in the brain and standardizing the correlation 
values using a Fisher r-to-z transformation. This is repeated across all 
healthy datasets in the normative connectivity dataset, resulting in over 
1,000 FC maps per lesion, which are then combined into a single map 
using a one-sample t test to assess voxel-wise deviation from zero FC. 
A threshold (for example, |t| > 7) can be applied to identify the strong-
est connections57. Steps 1 and 2 are repeated for all studied lesions, 
producing a set of individual FC t maps, one for each lesion.

Next, in the group-analysis step 3 of the LNM procedure, the lesion 
FC t maps are combined to produce the group LNM network. This is 
typically done by averaging the lesion FC t maps, identifying regions 
consistently connected across lesions (for example, ≥75% (ref. 17)). The 
resulting map is referred to as the LNM network9 or LNM sensitivity 
map8. Alternatively, when individual symptom data are available, the 
group-analysis step 3 can involve correlating the lesion FC maps with 
symptom scores (~16% of reviewed studies; Supplementary Table 1) 
or contrast subgroups with differing symptom levels (~11%); variants 
of the method referred to as ‛lesion network-symptom mapping’ or 
symptom-based LNM12–15. The sign of the resulting r values or t values in 
the symptom lesion network mapping (sLNM) depends on the behavio-
ral scale that is used, and may indicate, for example, risk level11,25, symp-
tom change15 or clinical state (for example, relapse versus remission)38.

Formal notion of LNM
We found that the LNM methodological steps can be considerably com-
pressed, without losing information. This compression is illustrated in 
Fig. 2b,c, and a mathematical derivation is provided in Supplementary 
Note 18. First, precomputing the correlation among the time series 
of all brain voxels yields all possible lesion-to-voxel FC maps before-
hand. These precomputed matrices, for all normative participants in 
the normative connectivity dataset (H), can replace step 2 in the LNM 
approach (Fig. 2b). To improve practical feasibility, a high-resolution 
brain atlas can be used to divide the brain into, for example, R = 1,000 
equally sized regions58. Furthermore, inferring equal variance across 
the connections in H (which we empirically validated, r = 0.99; Sup-
plementary Note 8), the one-sample t test in step 2 can be replaced by 
taking the mean of the precomputed individual matrices54. This allows 
replacing the entire set of 1,000 normative FC matrices with a single 
mean group connectivity matrix C (Fig. 2b). This approach eliminates 
the need for looping the procedure over all normative datasets for 
each lesion, repetitively, reducing the computation time for a standard 
dataset of 50 lesions from ~10–12 h using the Lead-DBS toolbox54 to 
under 10 s. We empirically validated this compressed approach, with 
both the full Lead-DBS implementation and the atlas-based accelerated 
version producing effectively identical LNM maps (examined across 
100 patient and 100 synthetic lesions, mean r = 0.96; Supplementary 
Notes 8 and 20).

The compressed version (Fig. 2c) describes the LNM procedure 
now as: (step 1) matching lesion ms of participant s to the region(s) i 
in the used brain atlas; (step 2) selecting the matching row(s) i in the 
group connectivity matrix C; repeat steps 1–2 for all lesions; and (step 
3 group analysis) taking the sum (or mean, which are equivalent) of all 
selected rows to obtain the final LNM map.

Formally, we can express LNM as

LNM =
S
∑
s=1

( 1
|ms|

∑
i∈ms

Ci,r) for all r ∈ R (1)
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where S denotes the total set of patients, s one specific participant, 
ms the lesion of participant s, |ms| the size of lesion ms, i the row(s) in C 
matching the region(s) of lesion ms in participant s, C the group aver-
age functional matrix of size R × R, R all voxels or brain regions in the 
chosen brain mask or atlas and r a specific region in R (scaled with a 
fixed constant; for exact formal notation, see Supplementary Notes 
8 and 18). We can also rewrite equation (1) in a vector notation:

LNM =
S
∑
s=1

(ms × C) (2)

where ms  is a row vector of size 1 × R, indicating the lesion region  
with entries of 1 or 1/|ms| when a lesion covers multiple rows, and 
0 otherwise.

We can now make one final compression—combining all lesion 
vectors ms of all participants into a single lesion matrix M = (m⃗1, m⃗2, 
…,m⃗s) (Fig. 2c). This summarizes the entire LNM procedure (steps 1, 2 
and 3 combined) to a linear matrix multiplication:

LNM = ∑(M × C) (3)
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Fig. 2 | LNM pipeline and streamlined implementation. a, The procedure of 
LNM involves three major steps—first, the lesion(s) of a single patient s (step 1) 
is placed into standard space. Next, the FC profile of that lesion ms of patient s is 
computed by means of the fMRI resting-state data in a large normative dataset, 
with the FC maps combined in a one-sample t test (two-sided) to obtain a single 
FC map for each lesion of patient s. Optionally, the t map can be thresholded 
to select the strongest connections (step 2). Steps 1 and 2 are repeated for all 
lesions of the group of patients S. Afterwards, the individual FC lesion maps 
are combined in a group analysis (step 3) to define their underlying common 
network. b, Step 2 of the LNM procedure can be streamlined (left, middle  
row) using an atlas-based approach in which the cortex and subcortical  
areas are parcellated according to a high-resolution atlas—for example,  

the Yeo-Schaefer1000/Melbourne54 atlas107,108. Middle, an atlas-based approach 
allows for precomputation of all lesion-to-region FC for all datasets in the 
normative connectome dataset. Right, all individual matrices can be grouped 
into a single group connectome C, with the resulting group matrix containing the 
same information as the one-sample t test performed in step 2. c, Taken together, 
the entire LNM procedure is now compressed to selecting row i corresponding to 
lesion ms of patient s from the group matrix C (optionally, threshold the resulting 
vector), repeat this for all lesions of all patients s in S, and summing over the 
selected rows Cm to obtain the final LNM network map. C, group connectivity 
matrix; GSP1000, Brain Genomics Superstruct Project 1000; h, normative 
participants; r, correlation coefficient; S, all participants.
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where M denotes the lesion matrix, C the standard group connectivity  
matrix.

In the sLNM variant, the group-analysis step is slightly modi-
fied (illustrated in Supplementary Fig. 1). In step 3, at each voxel, the  
FC values across the individual lesion maps (size S × 1) are further cor-
related with the participants’ symptom scores (size S × 1), instead of 
taking the mean over all maps without further weighting. With steps 
1 and 2 the same (and given by M × C, equation (3)), it can be obtained 
that the calculation of the final sLNM r map of all voxels in step 3  
scales with:

sLNM = sv× (M × C) (4)

where M and C are again the lesion matrix and the normative group 
connectivity matrix, and sv now a standardized row vector describing 
the individual symptom scores (Supplementary Notes 9 and 19 provide 
a step-by-step and more formal derivation of sLNM).

We provide exemplary code for the voxel-wise Lead-DBS imple-
mentation of LNM and sLNM, along with the equivalent linear matrix 
form of equations (3) and (4) in Supplementary Note 20.

LNM converges to the elementary properties of the  
input matrix
The above formal characterization brings to light a key limitation at the 
core of the LNM method, explaining the observed similarity between 
published networks (Fig. 1). Specifically, the approach involves a repeti-
tive sampling of one and the same matrix C, with the lesions M (and 
additionally the symptom scores sv in the sLNM variant) involving only 
linear operations on the input matrix.

Let us consider two simple cases. First, for a single patient with 
exactly one unifocal lesion, applying LNM yields an intermediate 
tensor (equation (1)) of size S × M × R = 1 × 1 × 1,000. Averaging over 
lesions M of participants S (both equal to 1 here) results in an LNM 
brain map that mirrors row i of the input matrix C. Similarly, with 
five distinct lesions across five patients, LNM selects five rows from 
C, and the resulting LNM map corresponds to the sum or mean of 
those rows. Now consider a larger sample of S » 1 participants, each 
with a single lesion (Fig. 3). For S = 1,000 with minimal spatial over-
lap between lesions, each lesion approximately corresponds to a 
unique region in the set of R = 1,000 regions, and thus to a unique 
row of C. It now emerges that step 2 of the LNM procedure involves 
selecting all rows of C, effectively reproducing the entire matrix. In 
the group-analysis step 3, the resulting LNM map contains the same 
information as the row-summation vector of the original connectiv-
ity matrix C. This convergence to the row-summation vector of C is 
even clearer when viewed in matrix notation (equation (3)). In this 
example, the lesion matrix M is the identity matrix I, leaving steps 1 

and 2 as I × C, and the final group-analysis map as the row-summation 
vector of C (Fig. 3).

Such convergence arises rapidly for any reasonably sized set of 
spatially heterogeneous lesions, which represent the typical input 
to LNM studies (Supplementary Table 1). When LNM (equation (3)) 
is applied to lesion sets of ≥10 spatially heterogeneous lesions, the 
resulting map already approximates the summation vector of C 
(Supplementary Fig. 2; r > 0.44, 10,000 runs, Pspin < 0.05). For sets 
of 20–25 heterogeneous lesions, a typical size for LNM studies 
(Supplementary Table 4), the correlation increases further quickly 
(r > 0.62; Supplementary Fig. 2), approaching the degree distribution 
of the input matrix for almost all spatially heterogeneous lesion sets.

This systematic alignment with the summation vector of C also 
occurs when lesions exhibit substantial spatial overlap. Although most 
LNM studies focus on spatially heterogeneous lesion sets (for example, 
refs. 8,22,24,28,38; Supplementary Table 1), some have examined 
localized, overlapping lesions—for example, localized stroke or other 
lesion data linked to peduncular hallucinosis8, coma59, psychosis37, as 
well as spatially proximal transcranial magnetic stimulation (TMS) or 
DBS stimulation sites43,50,60. In these cases (with empirical examples 
reported below), the lesion vectors in matrix M contain duplicates or 
mark rows of C corresponding to spatially adjacent regions, resulting 
in the repeated selection of identical or highly similar rows. Con-
sequently, the resulting LNM map still converges to the sum of the 
selected rows, primarily reflecting the inherent FC pattern of the 
underlying seed region(s). Even in the extreme case where all lesions 
fall within a single region, the probability that the LNM map reflects 
the degree structure of C remains non-negligible (|r| > 0.3, 74% of all 
possible cases; Supplementary Note 10). More formally, in such sce-
narios, the LNM map converges toward the sum of the row-induced 
subgraph Cm of C, that is, the sum of rows corresponding to the lesion 
regions (i, j, …, k).

Variants like sLNM refine the LNM map using individual symptom 
scores, but they still fundamentally rely on information drawn from one 
and the same connectivity matrix C. The linear operation of a vector, 
such as the symptom/phenotype vector sv on a structured (formally, 
low-rank) matrix, will produce patterns of correlation r values that 
are shaped by the limited set of latent factors defining the matrix (we 
provide a more detailed explanation of this phenomenon together 
with examples in Supplementary Note 9). Consequently, sLNM maps 
based on a structured matrix, such as the FC matrix C, will align with the 
elementary properties of C. This leaves systematic traces in the sLNM 
map, most strongly aligned with the dominant latent factors of C (for 
example, PC1 of C, which overlaps with degree, |r| = 0.82), resulting 
in predictable sLNM outcomes regardless of whether the lesions or 
symptom scores are clinically informed or random (Supplementary 
Notes 9 and 20).
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1m1
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Fig. 3 | The systematic alignment of LNM to the summation vector of C. Visual 
illustration of how the method of LNM represents a matrix multiplication M × C. M 
is the lesion matrix containing the full lesion information across all participants S. 
Each row defines a unique lesion vector ms describing the brain region(s) affected 
by the lesion(s) of participant s (1) and which are not (0). C is the normative 
functional connectivity matrix of size R × R. The LNM procedure samples the 
corresponding rows of the normative matrix C. In the case of the number of 

lesions to approximate all regions of the brain, M becomes the identity matrix I, 
leading to the entire LNM procedure to copy C. After (optional) thresholding and 
summing across rows, the resulting LNM map equals the summation vector, or 
degree, of the normative connectome C. It is readily obtained that this alignment 
to degree will also occur when sets are smaller in size than R, with a uniform 
sampling of C approximating the degree of the matrix.
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Empirical LNM results systematically reflect the summation 
vector of the connectivity matrix
We empirically tested the predicted systematic alignment of published 
LNM and sLNM maps to degree and other basic elementary properties 
(see below) of the normative functional connectome. We computed the 

row-summation vector of the group-average connectivity matrix of the 
GSP1000 dataset as used in Lead-DBS55. Then we correlated the result-
ing voxel-wise and atlas-based degree map with a series of reported 
LNM networks. Results support the prediction that LNM network maps 
strongly represent the summation vector of the normative connectome 
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Fig. 4 | Published LNM networks converge to the summation vector of the 
connectome data. a, Brain plots displaying the degree of the group average 
functional connectome in standard space, with warmer colors indicating 
regions of high degree. b–e, Same slices as in a for LNM maps for addiction38 (b), 
neurogenic stuttering44 (c), disrupted agency16 (d) and neglect syndrome53 (e). 
f–q, Correlations between functional degree of the normative connectome and 
(s)LNM networks (from left to right) for political involvement109 (f), aphasia62 
(g), epilepsy27 (h), depression circuit in multiple sclerosis (MS-depression)34 (i), 
addiction38 (j), migraine20 (k), insomnia53 (l), neglect syndrome53 (m), disrupted 
agency16 (n), major depressive disorder (MDD)28 (o), schizophrenia (SCZ)28 (p) 
and neurogenic stuttering44 (q). Red dots represent voxels, black dots denote 

brain regions (atlas-based LNM). r,s, Systematic relationship between the first 
principal component (PC1) of the normative connectome and LNM maps derived 
from sLNM12, a variant of LNM in which lesion functional maps are further tuned 
by correlating them to individual symptom scores, for TMS target sites for 
depression64 (r), and DBS-related networks for cognitive decline in Parkinson’s 
disease43 (s). t,u, Association between LNM maps and row sum of the matching 
subset of rows of the normative connectome C corresponding to the voxels (or 
regions) affected by the set of lesions (Cm) for psychosis37 (t) and amnesia48 (u). 
In f–u, spatial spin permutation (Main and Methods) was used to assess statistical 
significance (Pspin < 0.001, two-sided, n = 10,000 permutations, P values shown in 
Supplementary Table 4).
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(multiple examples shown in Fig. 4). For example, LNM networks pre-
sented for addiction38 (three conditions, r = 0.81/0.70/0.82), neglect 
syndrome53 (r = 0.70, Fig. 4m), disrupted agency16 (r = 0.59, Fig. 4n), 
symptoms related to concussion61 (r = 0.50), emotional processing in 
depression24 (r = 0.74), schizophrenia28 (r = 0.97, Fig. 4p), bipolar dis-
order28 (r = 0.97) and OCD28 (r = 0.96) all show a strong association with 
the summation vector of C (P, Pspin, Pbrainsmash < 0.001; Supplementary 
Note 10; r and P values listed in Supplementary Table 4).

Similarly, published network maps derived by means of sLNM 
and related variants, for example, networks reported from addiction38 
(Fig. 4j, r = 0.63), risk for depression in multiple sclerosis34 (Fig. 4i, 
r = 0.44), or networks hypothesized to reduce anxiety and depression 
symptoms14 (r = 0.56) showed a significant trace of degree (P, Pspin, 
Pbrainsmash < 0.001; Supplementary Table 4) and more specifically the 
first principal component of C (|r| = 0.77–0.89; see also Supplementary 
Note 9).

LNM networks derived from small, homogeneous and/or highly 
focal lesions can similarly exhibit strong traces of degree. Examples 
are found in the application of LNM derived on the basis of smaller 
lesion datasets (for example, aphasia62, n = 20, r = 0.74; migraine20, 
n = 11, r = 0.70; Fig. 4g,k; delusional misidentification63, n = 17, r = 0.65; 
Supplementary Table 4). The same holds for application of LNM and 
sLNM to DBS and TMS target sites43,64, where the stimulation sites 
are often highly localized within a radius of millimeters or centim-
eters (for example, TMS to DLPFC target sites to treat depression 
symptoms, r = 0.53, DBS related to cognitive decline in Parkinson’s 
disease, r = 0.64, P, Pspin, Pbrainsmash < 0.001; PC1 |r| = 0.84/0.92; Fig. 4r,s). 
Similarly, traces of degree are present when considering LNM maps 
derived from lesions with considerable spatial overlap (psychosis37, 
~30% lesions in midbrain, |r| = 0.52; amnesia48, ~50% lesions in the thala-
mus, |r| = 0.12), but with these maps even more strongly reflecting the 
row-summation vector of their selected row graphs Cm (r = 0.95–0.98; 
Fig. 4t,u).

In total, of the 102 published LNM and sLNM networks we 
re-analyzed, 78 showed a significant trace of degree (Pspin < 0.05, 91 of 
102 for Pbrainsmash < 0.05; Supplementary Table 4). Below, we will further 
discuss the (non)specificity of these LNM maps, showing that the spa-
tial patterns of almost all LNM networks can be explained by means of 
the same elementary properties of the standard matrix C.

Elementary properties of whole-brain organization shape  
LNM outcomes
The fundamental properties of functional connectome organiza-
tion—for example, modularity58,65,66, hubs67, anticorrelation68, gradi-
ent structure69—constrain LNM and sLNM maps to reflect the network 
membership of lesion sites. The linear nature of LNM (equations (3) 
and (4)) implies repeated sampling of one and the same fixed matrix C, 
leaving lesion projections M, and joint symptom projections sv in the 
case of sLNM, inherently constrained to the principal subspace defined 
by C (Supplementary Note 9). Distributed lesions yield LNM maps that 
approximate the global degree sequence (as in many reported LNM 
networks; Fig. 4). Conversely, clustered lesions cause the procedure 
to mirror the functional module or resting-state network(s) in which 
the lesions are located. Simulations confirm that >90% of generated 
FC lesion maps correlate with the canonical resting-state networks 
derived from modularity analysis of C (Methods), a pattern replicated in 
patient lesions and published circuits (r > 0.3; Supplementary Table 4). 
Moreover, the anticorrelated architecture of the connectome (that is, 
~47% connections in the GSP1000 connectivity matrix are anticorre-
lated) ensures that LNM maps often show negative correlations with 
maps derived from lesions in opposing networks. Thus, patterns of 
anticorrelated LNM networks often interpreted as biologically mean-
ingful in LNM studies14,70,71 are likely predictable consequences of 
the combined modular and anticorrelated structure of the standard 
connectome dataset.

Specificity and explained variance of LNM networks
We examined the level of disease-specificity of LNM networks. On aver-
age, each LNM network showed a strong spatial overlap of |r| > 0.6 with 
24 of the other 102 networks (P, Pspin < 0.05). This supports the very low—
if not negligible—disease-specificity of LNM maps. This lack of specific-
ity reflects the intrinsic nature of the LNM procedure. As we have seen 
above (equations (3) and (4)), LNM and sLNM repeatedly use the same 
low-rank matrix C, which limits the outcomes of the procedure to main 
patterns already present in C. To further illustrate this, we constructed 
a linear regression model that reflects nine basic factors describing the 
elementary properties of C—that is, its subcortical and cortical degree 
and its modular (n = 4) and functional gradient (n = 3) architecture69, 
core aspects of functional brain connectivity documented extensively 
in the field (for example, refs. 58,65,66,69,72,73; Methods). Regressing 
LNM maps of which lesion data was available against this simple model 
showed that 93% (mean, s.d. = 5.0%) of the variance in LNM networks 
is explained by the basic properties of C (Supplementary Note 14). We 
found similar findings for published sLNM-derived networks (R2 = 79%, 
s.d. = 10.2%; Supplementary Table 4). Any remaining variance falls well 
within the expected noise level of fMRI and LNM data74,75. These findings 
suggest that published disease LNM networks include no substantive 
information, other than unspecific signal already captured by global 
properties of functional connectome organization.

Statistical procedures of LNM
LNM studies typically include statistical tests to support the sensitiv-
ity and specificity of presented networks16,32,76 (Supplementary Fig. 5). 
We briefly discuss the validity and meaning of these statistical tests in 
light of the above observations, with an extended discussion in Sup-
plementary Note 15.

Sensitivity test. In the LNM approach, step 2 often involves the use 
of a one-sample t test to assess whether voxel-wise FC differs from 
zero. However, the large size of the normative dataset often leads to 
widespread significance77. For example, running 50 synthetic lesions in 
Lead-DBS shows that, on average, 64% voxels exceed the common |t| > 7 
threshold. Moreover, this step contributes little additional statistical 
value. As shown above (Fig. 2c), the one-sample t test can be replaced 
altogether by simply taking the mean of the Fisher r-to-z-transformed 
correlations.

Specificity test. The specificity test evaluates the disease- or 
condition-specificity of the examined LNM map (Supplementary Fig. 5). 
This is typically conducted using a two-sample t test contrasting the 
derived map from a set of localized patient lesions with a set of ran-
dom lesions drawn from other disorders32,76. Although this procedure 
appears to constitute an additional null test, it is largely redundant 
with the liberal sensitivity test. With LNM of random lesions to con-
verge to the degree sequence of the normative matrix C (equation (3); 
Supplementary Fig. 2), the specificity test effectively re-assesses the 
same signal as the sensitivity test, but now relative to the matrix degree 
rather than zero. This highlights a lack of statistical independence 
between procedures intended to capture distinct information (for 
simulation analyses, see Supplementary Note 15).

Conjunction test. A commonly performed final test involves generat-
ing a conjunction or convergence map22,37,76, identifying voxels that pass 
both the sensitivity and specificity tests (Supplementary Fig. 5). Given 
the relative ease of passing the sensitivity test and its interdependence 
with specificity, such conjunctions are easily obtained. We modeled 
~500,000 lesions across all brain regions (Yeo-Schaefer1000/Mel-
bourne54) with varying levels of overlap using standard LNM settings 
(sensitivity |t| > 7, G = 75%; specificity |t| > 10 (for example, ref. 57); Sup-
plementary Note 15). Marginal overlap between lesions (Dice = 0.08) 
resulted already in significant group results (10% sets), with minimum 
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levels of overlap (Dice = 0.16) yielding 64% significant sets, increasing 
to almost all sets to reveal significant regions (97% tested sets) as spatial 
overlap increased (Dice > 0.25; Supplementary Fig. 6).

Discussion
LNM has emerged as a widely used approach for identifying brain 
circuits linked to neurological and psychiatric conditions, as well as 
their symptoms9,10,17. Our analysis reveals a foundational limitation 
of the LNM framework—it maps circumscribed brain changes mostly 
to one and the same outcome, reflecting only elementary properties 
of the normative connectome. Given that these challenges arise from 
the LNM method rather than from extensive circuit-level findings in 
clinical neuroscience, this knowledge may aid the development of new 
network-mapping techniques.

Our findings have broad implications for a wide range of existing 
work regarding disease networks and circuits derived by means of LNM, 
used here as an umbrella term that unifies various related terminologies 
and methods in literature ((for example, the method is also commonly 
applied under labels such as “atrophy network mapping,” “activation 
network mapping,” or “network-based meta-analytic” analysis; Main 
and see for an overview Supplementary Table 1). The current results 
suggest that a substantial proportion of the presented LNM networks 
are nonspecific and may not accurately reflect genuine biological brain 
networks. In practice, the LNM captures only a small set of factors that 
describe broad features of the input connectivity matrix and has limited 
ability to identify subtle disorder-specific properties.

The convergence of LNM networks onto elemental properties of 
the connectome could be interpreted as support for the biological 
plausibility of LNM networks and circuits, like reflecting a transdiag-
nostic network underlying multiple disorders78. High-degree brain 
hubs66,67,79–81, for example, have been extensively theorized to have a 
central role in the pathophysiology of a wide range of disorders82–85. 
However, this interpretation in the context of LNM is misleading. 
The convergence of LNM methods and variants to the row sum of the 
used connectivity matrix (equation (3)) or, in more general terms, to 
the latent factors of C (Supplementary Notes 9,10 and 14), is purely a 
mathematical consequence of the procedure, not evidence of cor-
respondence with the brain’s hub, resting-state modular network 
or otherwise complex wiring architecture. Accordingly, when the 
empirical connectivity matrix is replaced by a randomized coun-
terpart C′, or by other structured nonbiological matrices, the LNM 
outcome remains the product of the latent properties that govern C′ 
(Supplementary Fig. 3).

LNM is increasingly proposed as a framework to guide therapeutic 
applications of TMS and DBS14,25,37,39,40,50, with case studies performed86,87 
and protocols for larger randomized controlled trials based on LNM 
networks registered (see Supplementary Table 1 for review). However, 
many such proposed targets—for example, the anticorrelated fron-
topolar cortex for substance use disorder38, or peak voxels to refine DBS 
target sites for epilepsy26,27—seem to primarily reflect the mean signal of 
the standard connectivity data, rather than identifying disease-specific 
loci. Indeed, the same regions emerge when LNM is applied across 
unrelated conditions11,25,27,44,48,59 (Supplementary Fig. 7) or just summing 
FC across all voxels in the GSP1000 dataset (Supplementary Fig. 8). 
Given the clinical impact of these procedures, it appears essential 
to thoroughly reassess these targets before substituting traditional 
stimulation sites with demonstrated efficacy88–90.

LNM studies have often been motivated by the observation that 
brain alterations in neuropsychiatric and neurological disorders are 
spatially diverse and heterogeneous—indeed, 55% studies describe 
them as such (Supplementary Table 1)22–24,27–29,91–93. This heterogene-
ity is frequently cited as a rationale for performing the LNM analysis, 
in search of an underlying common functional network that unites 
these brain alterations. Our findings propose a re-appreciation of dis-
ease heterogeneity, further studying how brain disorders may involve 

spatially distributed, heterogeneous alterations that converge on 
shared phenotypes6,94.

A remaining question is whether the methodological limitations 
of LNM can be alleviated through refinements of its statistical proce-
dures, for example by using random(ized) lesions or seed locations as a 
null-model. We approach such a solution with caution. The observation 
that almost all meaningful variance in LNM maps is explained by basic 
properties of the connectivity matrix suggests that deviations from a 
reference model or baseline are likely minimal, if they exist. Indeed, 70 
of 78 LNM maps where lesion data were available failed to reach even a 
liberal significance criterion set by a generative null-model based on 
random synthetic lesions (nominal two-sided α = 0.05, uncorrected 
for 78,000 tests; Supplementary Note 16). A similar outcome was 
observed from a permutation-based null model in which lesion loca-
tions were randomly shuffled while preserving modular prevalence 
(71/78, PFDR > 0.05; Supplementary Note 16). We are also hesitant to 
propose a null-model solution for the LNM framework from a concep-
tual standpoint. Permutation-based null models estimate effects under 
random conditions by randomizing the input data. In LNM, only two 
variables exist at its core—M and C. With C describing the connectiv-
ity and remaining fixed in LNM studies and approaches8,9,17,24, the set 
of lesions (M) is left to be permuted. As predicted from equation (3), 
LNM on random sets of lesions consistently produces similar solutions 
dominated by degree (Supplementary Fig. 2). This inherent limitation 
of the LNM framework hinders the construction of a null distribution 
that fulfils the essential criterion of spanning a meaningful range of 
alternative maps for a valid null test.

The framework of network mapping has profoundly contrib-
uted to modern concepts of psychiatric and neurological disorders as 
network-based conditions83,95–98. LNM8,9,23,99 is proposed as a powerful 
and promising method within this framework to gain deeper insight 
into the mechanistic role of brain circuits in disorders9–11. Regrettably, 
our findings indicate that a substantial proportion of networks and 
disease circuits derived from LNM may not accurately reflect genuine 
disease-specific biological brain networks. However, it is crucial to 
separate the ‘theory’ from the ‘method’. While we, and experts in the 
field with whom we discussed our findings, were not able to find an 
enduring solution to the foundational methodological issues of LNM, 
a continuous community effort to study the role of brain circuits in 
neurological and psychiatric disorders is imperative for advancing 
our understanding and developing new, effective treatments for these 
conditions. Linking deviations in brain organization to behavioral 
outcomes has long served as a cornerstone of this effort—from early 
clinical observations1 to systematic studies leveraging modern neu-
roimaging techniques4. Embedded in efforts collectively referred to 
as disease connectomics82,83,100, proposed fruitful future directions 
for the field may lie in revisiting the original rationale of lesion and 
‘voxel-based lesion–symptom mapping’ in context of connectivity 
mapping techniques1–3,101–103 to systematically chart how lesions impact 
brain circuitry and behavior. In parallel, network neuroscience72,79,104 
offers the framework to more broadly investigate the central role of 
core network nodes in brain function and dysfunction79,82–84. Future 
efforts could focus in combining real patient lesions with in silico 
simulations to identify brain areas that may serve as general targets for 
intervention105,106. Such community efforts in revising the field of LNM 
from first principles may help ongoing work to develop brain network 
methods to map, understand and ultimately translate network-level 
approaches into clinical applications.
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Methods
Published LNM maps, lesion datasets and LNM application
A systematic literature search (December 2025) on LNM studies 
was performed. This identified 201 LNM studies, including 187 LNM 
data studies, 9 reviews and 5 commentaries with LNM, sLNM and/
or other related variants the focus of the study, published between 
2015 and 2025 (see Supplementary Note 1 and Supplementary Table 1 
for details). From these articles, we extracted data on 102 published 
(s)LNM networks across 72 studies on 50 neurological, 18 psychiat-
ric and 4 behavioral conditions (creativity, political, healthy, facial 
emotion), including 18 downloaded LNM maps, 11 datasets with 
reported lesion prevalence, 350 original lesion masks, 935 lesions 
manually segmented from original papers and 8 coordinate-based 
LNM (n = 1,442 brain coordinates). Details about the data extracted 
from these studies are presented in Supplementary Note 2 and 
Supplementary Table 2.

LNM
Voxel-wise LNM was performed using the Lead-DBS toolbox54 (settings, 
FullSet of GSP1000 participants55; Supplementary Note 3 and Fig. 2a). 
Equivalently, atlas-based LNM involved mapping lesions to the 1,000 
cortical regions of the Yeo-Schaefer1000 atlas107 and the Melbourne54 
subcortical atlas108 and selecting the matching rows of the selected 
parcels from the group connectome matrix C (Fig. 2c).

Comparison of LNM maps
Spatial overlap of LNM maps was computed using Pearson correla-
tion coefficients, using voxel-wise correlation for available voxel-wise 
maps and atlas-space for atlas-based maps. Significance was further 
assessed using the spin-null model45 and the BrainSMASH generative 
null model46 (10,000 permutations) to account for spatial autocor-
relation effects. For 102 downloaded and reconstructed LNM maps 
(see Supplementary Table 2 for sources), the top 10% correlated and 
anticorrelated voxels were binarized and averaged to generate an 
overlap map of LNM regions across published studies.

Normative connectome
A group functional connectome matrix C was formed by mapping the 
same functional time series of the GSP1000 participant data as used in 
voxel-wise LNM54,55 (Supplementary Note 4) to the Yeo-Schaefer1000/
Melbourne54 atlas and averaging the computed individual FC matrices 
into the group matrix (no thresholding).

Network analysis
The summation vector of the group connectivity matrix C, or degree, 
was calculated as the row sum of the connectivity matrix C using the 
Brain Connectivity Toolbox110. Functional modules66, reflecting the 
composition of resting-state networks58,73, were identified using the 
Newman modularity algorithm110.

Regression model
A simple model describing the elementary factors of the connectome 
matrix was formed on the basis of the derived network metrics. Sub-
cortical, whole-brain and modular degree were computed as the mean 
connectivity of matching regions from the brain atlas, together with 
three FC gradients69 taken as the first three components of a principal 
component analysis on C (Supplementary Note 13).

Spatially randomized lesions
Randomized lesions were generated by several randomization strate-
gies, including spatially rotating the original cortical lesions across the 
cortical surface (spin-null permutation45). Alternative randomization 
methods included the generation of random synthetic lesions by tak-
ing random samples from the brain atlas (matching lesion size) and a 
biologically driven randomization that drew random lesions from the 

total collection of clinically informed lesions associated with a wide 
range of conditions and disorders (Supplementary Note 6).

Randomized connectivity
A randomized normative connectome matrix was generated by rand-
omizing the connections in the connectivity matrix C (threshold r > 0.2, 
other thresholds yielded similar results) using the rewiring method 
described in refs. 51,52. LNM maps were compared between the original 
connectome and its randomized counterparts (1,000 permutations 
performed; see Supplementary Note 7 for details). Alternatively, full 
degree-disrupting randomization of C was examined.

Simulations
Synthetic lesions were constructed by randomly selecting regions 
with equal probability P = 1/R from all regions in the atlas, dilated by 
including the closest neighboring parcels (n = 4), and for voxel-wise 
LNM further mapped to corresponding voxels in the MNI atlas volume. 
Lesion sets (n = 50) with varying levels of overlap between lesions were 
created by randomly selecting a first lesion with probability P = 1/R 
from all brain regions, with the second to nth lesion placed in that 
region as 1/R × q, and in all other brain regions with probability P ~ 1/R. 
As such, parameter q ensured a variable level of overlap between some 
of the lesions in the set, while all other lesions remained completely 
randomly distributed across the brain. The level of lesion overlap 
within each set as a function of q was quantified by means of the aver-
age Dice coefficient among all lesion pairs in the set, ranging from zero 
(no overlap) to one (complete overlap; see Supplementary Note 16 for 
details). We refer to Supplementary Note 16 for null-model simulations 
using synthetic lesions and randomizing patient lesions, preserving 
modular assignment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data used in the present study are publicly available. The preproc-
essed normative FC time series from the GSP1000 dataset are available 
at https://doi.org/10.7910/DVN/ILXIKS and in the Lead-DBS toolbox54. 
Neuroimaging data from the Human Connectome Project are available 
at https://www.humanconnectome.org. All LNM maps used in this 
study are available at https://neurovault.org and on GitHub (https://
github.com/dutchconnectomelab/lesionnetworkmapping). Lesion 
masks associated with amnesia, hypersomnia, insomnia, neglect syn-
drome and Alice in Wonderland syndrome are available at https://www.
lesionbank.org/. All other reported lesion or LNM data are directly 
available from the referenced papers.

Code availability
Voxel-wise LNM was applied using the open-source Lead-DBS toolbox54 
(https://www.lead-dbs.org/). Spin-null permutation was conducted 
using the BrainSpace toolbox111. Network analysis of the normative con-
nectome was performed using the Brain Connectivity Toolbox110. Steps 
of the streamlined LNM procedure, mathematical derivation, simplifi-
cation of the method and example code are presented in Supplemen-
tary Notes 17–20 and at https://github.com/dutchconnectomelab/
lesionnetworkmapping.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Data collection Neuroimaging data was from available open-source datasets, 
additional lesion masks were manually segmented from images from published studies.

Data analysis Lesion Network Mapping was conducted using 
Lead-DBS toolbox (v3.1; https://www.lead-dbs.org/). Datasets were analyzed using MATLAB, and Python with 
two-sided independent t-tests and regression analysis were done using Scipy package (https://scipy.org/) 
and Visualization of brain plots with Nibabel package (https://nipy.org/nibabel/).
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data used in the present study are publicly available. The preprocessed normative functional connectivity time-series from the GSP1000 dataset are available 
from [https://doi.org/10.7910/DVN/ILXIKS] and the Lead-DBS toolbox from [https://www.lead-dbs.org]. Neuroimaging data from the Human Connectome Project 
are available at [www.humanconnectome.org]. LNM maps used in this study are available from [https://neurovault.org] and GitHub [https://github.com]. Lesion 
masks associated with amnesia, hypersomnia, insomnia, neglect syndrome, and Alice in Wonderland syndrome are available from [https://www.lesionbank.org/]. All 
other reported lesions or LNM data are directly available from the referenced papers. 

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender NA. Similar data as reported in the original Lesion Network Mapping studies was used.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

NA. Similar data as reported in the original Lesion Network Mapping studies was used.

Population characteristics Patients. Similar data as reported in the original Lesion Network Mapping studies was used.

Recruitment NA, all data included open source data

Ethics oversight NA, concerns a mathematical examination

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The objective was to examine the validity of the Lesion Network Mapping method. The study analyzed openly available and previously 
published  data, with the same sample and sample sizes similar as in the published studies.

Data exclusions All openly available and previously published case studies were included in the analysis, as the aim was to 
assess the reproducibility and validity of the methodology under investigation. Exclusion criteria were not applicable.

Replication Experiments consisted of replicating neuroimaging findings applying Lesion Network Mapping. 
Experiments were conducted with original and simulated data. Validation and sensitivity analyses included multiple brain resolutions (atlas-
based, voxel-based) and multiple normative connectome datasets.

Randomization NA

Blinding NA

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants

Magnetic resonance imaging

Experimental design

Design type Lesion Network Mapping

Design specifications NA

Behavioral performance measures NA

Acquisition
Imaging type(s) T1-weighted imaging, resting-state functional MRI

Field strength 1.3, 3T

Sequence & imaging parameters Sequence and imaging parameters were described in original publications of datasets.

Area of acquisition Whole Brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Lesion masks were mapped to functional maps using Lead-DBS toolbox.

Normalization Freesurfer normalized T1-weighted anatomical data extracting brain tissue, 
denoising, and bias field correction. GSP1000 FMRI data as provided by Lead-DBS.

Normalization template MNI152. Native patient images were projecting into standard stereotactic (MNI) space.

Noise and artifact removal Sensitivity analyses were performed for exclusion of small lesions and small lesion sets.

Volume censoring NA

Statistical modeling & inference

Model type and settings Lesion Network Mapping

Effect(s) tested Pearson correlation, linear regression, permutation testing
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Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)

Statistical testing using sensitivity, specificity and conjunction was conducted.

Correction FWE, Bonferroni, spatial-autocorrelation models (Spin-model and BrainSMASH).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Functional connectivity was derived as correlation; as similar to the LNM studies tested.

Graph analysis Weighted and binary graphs were examined. Scale-free, modular and randomized (degree preserved and 
otherwise), and spin-model permutation analysis was used.
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