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High-throughput screening 
platform for solid electrolytes 
combining hierarchical ion-
transport prediction algorithms
Bing He   1, Shuting Chi1, Anjiang Ye1, Penghui Mi1, Liwen Zhang2, Bowei Pu2, Zheyi Zou2, 
Yunbing Ran2, Qian Zhao3, Da Wang2, Wenqing Zhang4, Jingtai Zhao5, Stefan Adams   6, 
Maxim Avdeev7,8 & Siqi Shi   2,3 ✉

The combination of a materials database with high-throughput ion-transport calculations is an 
effective approach to screen for promising solid electrolytes. However, automating the complicated 
preprocessing involved in currently widely used ion-transport characterization algorithms, such as 
the first-principles nudged elastic band (FP-NEB) method, remains challenging. Here, we report on 
high-throughput screening platform for solid electrolytes (SPSE) that integrates a materials database 
with hierarchical ion-transport calculations realized by implementing empirical algorithms to assist in 
FP-NEB completing automatic calculation. We first preliminarily screen candidates and determine the 
approximate ion-transport paths using empirical both geometric analysis and the bond valence site 
energy method. A chain of images are then automatically generated along these paths for accurate 
FP-NEB calculation. In addition, an open web interface is actualized to enable access to the SPSE 
database, thereby facilitating machine learning. This interactive platform provides a workflow toward 
high-throughput screening for future discovery and design of promising solid electrolytes and the SPSE 
database is based on the FAIR principles for the benefit of the broad research community.

Introduction
Historically, new materials developments have conventionally been driven by a trial-and-error experimental 
approach. However, the recently established Materials Genome Initiative (MGI1) has provided an alternative 
route that can effectively reduce the development time for new materials. The critical idea behind the MGI is the 
combination of high-throughput computations, high-throughput experiments, and materials databases1. Over 
the past decade, many high-throughput computational materials databases have emerged, including Materials 
Project2, AFLOW3–5, OQMD6,7, NOMAD8, NIMS9, NIST10, AiiDA11 and so on. These databases contain a broad 
range of crystal structure and computationally derived property data, such as the formation energy, band gap, 
band structure, elastic constants, etc. However, they rarely include the ion-transport properties of solid electro-
lytes, which are crucial for research on all-solid-state batteries that are evaluated on their safety, stability, and 
cycle life12. The ion transport usually involves ion hopping from one interstitial site to another interstitial site or 
to a vacant lattice site with sufficiently low migration barrier energy. Factors such as the crystal structure, size of 
mobile ions, bottleneck size, and bonding characteristic determine this barrier energy13. Currently, widely used 
methods for calculating the ion-transport barrier include classical or ab initio molecular dynamics14,15, kinetic 
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Monte Carlo, and nudged elastic band (NEB16) method, of which the NEB is an effective algorithm for the calcu-
lation of transition-state energies.

To accelerate the development of all-solid-state batteries with high energy and power densities, the 
high-throughput automated screening of solid electrolytes with excellent ion-transport performance is essen-
tial17–19. However, the automated process is limited by the complicated manual preprocessing currently required 
for accurate ion-transport algorithms such as the first-principles nudged elastic band (FP-NEB) method. For 
example, the atomate tool20 developed by Materials Project implements an automatic workflow for NEB calcula-
tion; however, the endpoints of the migration path for each structure must still be defined manually. In this con-
text, we develop a high-throughput screening platform for solid electrolytes (SPSE: https://www.bmaterials.cn),  
that provides the following three main advances:

	(1)	 Geometric analysis21,22 is combined with the bond valence site energy method23 to rapidly simulate the 
path and energy profile of ion migration, facilitating the completion of high-throughput automated calcu-
lations using the FP-NEB method without requiring complicated manual preprocessing.

	(2)	 High-throughput hierarchical screening for solid electrolytes is achieved by using extremely fast empiri-
cal methods to identify promising candidates24 for further ab initio calculations, thereby accelerating the 
discovery of optimal solid electrolytes.

	(3)	 A materials database containing ion-transport properties is built that allows users to explore the proper-
ties of solid electrolytes. The computational data available in the materials database can be also used in 
machine-learning algorithms to predict and optimize materials properties.

Results
Platform architecture.  The objective of the SPSE platform is to provide insight into ion-transport proper-
ties to enable the materials community to explore promising solid electrolytes. To accelerate materials discovery, 
we design the platform architecture to include four modules: Materials data, Materials calculation, Data interac-
tion, and Machine learning (Fig. 1). Here, we introduce the four modules of SPSE, which interact with each other.

The materials data module contains crystal structure data, computational data, and literature data. All the data 
are stored in a database using a MongoDB backend25, which is a NoSQL database based on distributed file storage. 
The BSON format supported by MongoDB allows the flexible storage of diversified materials data.

The algorithms of the materials calculation module can be mainly classified into two categories: empiri-
cal algorithms (geometric analysis and bond valence site energy calculations) and ab initio algorithm (such as 
first-principles nudged elastic band), which are used for preliminary and fine-tuned screenings of materials, 
respectively. Promising solid electrolytes can be identified and ranked using this hierarchical screening process.
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Fig. 1  Architecture of high-throughput screening platform for solid electrolytes. The blue bidirectional lines 
indicate dataflow.
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One of the important components of SPSE is the data interaction module used to access our database. The data 
interaction module is realized in the form of a web interface implemented in the Django web framework26 and 
RESTful API27, which provides data access via the Hypertext Transfer Protocol (HTTP).

Finally, the machine learning module can accelerate the prediction of materials properties by extracting 
knowledge from data in our database to build models.

Materials data: materials database.  Data composition.  The SPSE database implements the FAIR data 
principles, which ensures the processed and produced data will be findable, accessible, interoperable, and reusa-
ble28. As mentioned earlier, there are three main types of data in the SPSE: crystal structure, computational, and 
literature data, which are related to each other via independent identifier, making the data findable. The data can 
also be retrieved using a web interface, rendering it accessible. Moreover, the ability to download the data from 
the web interface reflects its interoperability. Finally, to ensure the reusability of data, the computed data retain 
metadata attributes (such as the calculation conditions and methods).

Currently, our database contains 91,763 crystal structures, more than 10,000 computationally derived prop-
erties (ion-transport data), and 121 properties obtained from literature for Li- and Na-containing compounds. 
The crystal structure data are mostly extracted from the Inorganic Crystal Structure Database (ICSD29) and com-
plemented by recent literature data. The structures from the ICSD include 91,688 Li-, Na-, Mg-, Al-, Ca-, Cu-, 
Ag- and Zn-containing compounds. In addition, we generate 75 custom crystallographic information files (CIFs) 
from crystal structures data obtained from literature, with the file format of custom CIF mainly following that of 
the ICSD30. We also obtain preliminary ion-transport data for 7,678 structures through geometric analysis and 
12,000 activation energy values through bond valence site energy calculations. The literature data can be roughly 
classified into structural information, descriptors of dynamics, conduction mechanisms, and physical properties.

Data storage.  To ensure high efficiency of a data query, the materials data are stored separately in different col-
lections of MongoDB. A collection is analogous to a table in a relational database management system and can 
store an infinite number of documents. A record is stored as a document in MongoDB; however, large data are 
stored in GridFS collections because of the document size limit of 16 MB.

The Crystallographic Information File (CIF) format is commonly used for storing crystal structure data; the 
structural information can be extracted using pymatgen31 or Atomic Simulation Environment (ASE)32. Here, 
the CIF data are stored in a collection after being extracted using ASE. The computational data are automatically 
stored in separate collections according to the calculation type.

Materials calculation: ion-transport calculations.  To enhance the computational throughput, our plat-
form is designed to maximize its computational efficiency. The workflow of fully automated calculations is illus-
trated in Fig. 2. There are N tasks simultaneously running in the computational queue. The running of multiple 
concurrent jobs is managed using FireWorks33 and the SLURM34 job scheduling system. For each task, the struc-
ture is first retrieved from the database, and the configuration file is then read to execute the computational task. 
These computational tasks include crystal structure analysis by Voronoi decomposition (CAVD), bond valence 

Fig. 2  Workflow of N computational tasks for high-throughput automated calculations.
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site energy (BVSE), ion-transport descriptor, and hierarchical (i.e., CAVD + BVSE→NEB) calculations. Next, we 
discuss the ideas behind the CAVD, BVSE, and hierarchical calculations.

Crystal structure analysis by Voronoi decomposition.  The crystal space can be divided into two non-intersecting 
topological subspaces: the subspace of atoms and the subspace of interatomic interstices21. To characterize and 
analyze these two subspaces, we develop the crystal structural geometric analysis program CAVD35. In the CAVD 
calculation process, the interstitial network is first obtained from the subspace of atoms in the crystal structure by 
radical Voronoi decomposition22. The interstitial network consists of interstices (vertices), passageways between 
interstices (edges), and bottlenecks (the smallest cross-sectional areas of the passageways). The ion-transport 
network (also represents ion migration paths) can then be constructed by comparing the radii of mobile ions 
with that of interstices and bottlenecks in the interstitial network. Analysis of the interstitial network also pro-
vides the radii of the largest free sphere that can travel within the structure22. Similar analysis is implemented in 
PLATON36, ToposPro37 and Zeo++22 programs, but they are not suitable for automated unsupervised work-
flows. An example of an ion-transport network calculated using CAVD is presented in Fig. 3a for NaZr2P3O12

38,39 
(ICSD-467), a prototype composition from which Na superionic conductor (NASICON) solid electrolytes can be 
derived by ionic substitutions40. The threshold parameter related to the radius of a mobile ion (Na+) is determined 
to be 0.9 Å. Although the CAVD program can determine the ion-transport network of a crystal structure within 
seconds, we want to further characterize the network with the migration energy barrier, which is calculated using 
the bond valence site energy method.

Bond valence site energy calculation.  The bond valence (BV) theory is derived from Linus Pauling’s principle of 
electrostatic valence41 and has evolved into a method for predicting the structure and bonding geometry of com-
plex materials23. Currently, the BV method is used to predict ion migration paths and energy barriers42–44. Based 
on the BV method, the bond valence site energy (BVSE)45,46 model was developed by Adams and Rao, and bond 
valence energy landscape (BVEL) was proposed by Sale and Avdeev47. The difference between these two closely 
related empirical methods is, besides technical details in the pathfinding algorithm, in nuances of consideration 
for Coulomb repulsion. In this work, we develop a separate BVSE calculation program based on the BVSE model, 
which can be used to conduct the migration pathway and barriers calculations for mobile ions including Li+, Na+, 
Mg2+, Zn2+, Al3+, F− etc. and is subject only to the limitations of the bond valence site energy method itself23.

The BVSE for a mobile ion M at a given site in the crystal structure is related to the sum of a Morse-type poten-
tial term for cation-anion pairs (representing both the attractive ionic, covalent or Van der Waals interactions and 
the Born repulsion) and Coulomb repulsions between the mobile ion M and the N immobile ions Mi as follows:

BVSE M D R R E M M( )
2

{(exp[ ( )] 1) 1} ( )
(1)i

N

i
0

min
2

1
Coulomb∑α= − − − + − .

=

The Morse-type potential is characterized by the empirical BV parameters: D0, α, and Rmin
48,49. The use of 

D0/2 as the Morse bond breaking energy prevents double-counting of the same interaction in both the energy 
landscapes of M and Mi and may be seen as taking into account in a simplified average way relaxations in the 
immobile substructure, as the suppression of relaxations in the static BVSE modelling tends to overestimate the 
migration barriers. The Coulomb repulsions between two different cations (or between anions) M1 and M2 is 
calculated by the following formula:

Fig. 3  Three-dimensional migration paths of NaZr2P3O12 constructed using (a) CAVD and (b) BVSE 
calculations with migration energy barrier Ea of 1.055 eV. (c) Comparison of migration paths of NaZr2P3O12 
constructed using BVSE and CAVD calculations.
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where q refers to effective charge of atom, and −RM M1 2
 is the distance between M1 and M2. The screening factor 

ρM1 − M2 = 0.74 × (rM1 + rM2), therein rMi
 is modelled in analogy to the real part of the Ewald summation ensuring 

that the repulsive Coulomb interactions converge over a similar length scale as the attractive interactions. Here 
we use a fixed scaling factor 0.74 for the radii sum of the interacting ions in the screening factor. It may be noted 
that the screened Coulomb term in Eq. (1) is in contrast to the Morse term not divided by 2, which is empirically 
found to strengthen the relative influence of the short range Coulomb repulsion between adjacent mobile and 
immobile cations (or mobile and immobile anions), which helps to eliminate unphysical paths, while it allows to 
keep the screening factor small enhancing the computational efficiency. As shown in our recent work, (see e.g.50 
and references therein) the chosen approach yields a semiquantitative agreement of migration barriers with the 
available DFT or experimental information. Using this formulation revised with respect to the original46 will 
ensure consistency of the results of SPSE and the current version of softBV51.

Adams developed the softBV49,51 software to calculate ion migration energy and profiles based on this BVSE 
approach, but softBV does not provide an application programming interface that can be easily integrated into 
the SPSE. Moreover, the aim of softBV is rather to substitute ab initio calculations, while in the present software 
suite the BVSE calculations are a step to automatically guide the first principles calculations. Hence softBV com-
promises to some extent on robustness, computational efficiency and transferability in order to enhance precision 
of the predicted energy landscape, whereas for the screening application a fast and robust approximate estimate of 
the migration barriers is aimed for and the precise barriers will be derived at the subsequent first principles stage.

We checked for a wide range of Li+, Mg2+, Ag+ compounds that the standalone softBV programme and the 
current BVSE programme yield closely similar results, though the algorithms differ slightly to optimize the com-
promise between computational efficiency, robustness and transferability for the respective application. The main 
difference in the calculation of the energy landscape is that the current software uses a universally fixed scaling 
factor 0.74 for the radii sum of the interacting ions in the screening factor M M1 2

ρ −
, whereas the softBV software 

iteratively adapts the screening factor based on the balance between Morse and Coulomb interactions in the 
individual structure. While the iterative approach yields higher precision results when applied to reliable fully 
ordered crystal structure models, it is slower, requires knowledge of bond valence parameters for all atom pairs in 
the crystal structure (whereas for the present algorithm knowledge of the bond valence parameters for interac-
tions between the mobile ion and its counterions is sufficient) and the adjustment is more susceptible to be sys-
tematically biased towards too low barriers for low quality crystal structures with implausible interatomic 
distances. Thus for the prescreening stage of crystal structures in this work, the fixed scaling factor 0.74 is consid-
ered to be more robust.

Another difference is that softBV analyses migration barriers between local minima of the energy landscape 
irrespective of their site occupancy leading to a focus on comprehensively mapping interstitial sites, while in this 
work the BVSE approach is primarily meant to guide the first principles calculation of energy barriers between 
the occupied sites in the crystal structure reducing the need to explicitly classify and analyze interstitial sites. 
The BVSE calculation program generates a periodic grid volumetric data (GRD) file52 for visualization of the ion 
migration paths. An example of the three-dimensional migration paths visualization is presented in Fig. 3b for 
NaZr2P3O12.

Hierarchical calculations.  The NEB is an efficient approach for finding the minimum energy path (MEP) 
between the given initial and final states of a transition16,53,54, but requires complicated data preprocessing before 
NEB calculation can be done, for example, with the Vienna Ab Initio Simulation Package (VASP)55,56. The pre-
processing includes locating the initial and final states of ion migration, configuring input files, and generating a 
set of transition states (images) by linear interpolation (Fig. 4a). Moreover, the MEP constructed by linear inter-
polation may have an image with an unphysical distance between atoms57. In this process, human intervention 
is unavoidable. To overcome these issues, we develop high-throughput automated hierarchical algorithms that 
combine empirical CAVD and BVSE calculations to identify the approximate MEPs of ion migration, avoiding 
unphysical paths. A more accurate migration energy barrier can be further obtained by fine-tuning the observed 
MEP using FP-NEB calculation (Fig. 4b).

The NEB calculation requires simultaneous optimization of a set of transition states. The iterative optimization 
is performed until the NEB force and energy criteria are satisfied to obtain the MEP. The NEB force contains two 
independent components,

= +F F F , (3)NEB T S

where FT is the component of true force due to the potential perpendicular to the band and FS is the spring force 
parallel to the band58. During the optimization process, the images are affected by the spring forces. To ensure 
that an equal spacing between the images is maintained along the path, the spring forces must be updated at 
each iteration. An important feature of the hierarchical algorithm is that the calculation of the migration path 
is performed using the simplified string method59, which in contrast to the NEB method does not require defi-
nition of the spring force along the path or the use of force projections, eliminating instability issues associated 
with the NEB method58 that are particularly detrimental for the intended automated pathway analysis. Rong 
et al. also used the simplified string method to accelerate the construction of the MEP57; however, they use the 
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density functional theory-derived scalar charge density as the basis of true force definition, whereas we utilize the 
computationally efficient empirical BVSE approach. The standardized hierarchical flow of the calculations can be 
therefore summarized as follows (only works in this way for fully ordered structures, which without sites with 
mixed or fractional occupancies):

(1) The use of CAVD + BVSE to find the endpoints of ion migration paths
To enable automatic calculations, we use CAVD + BVSE to find the endpoints of the ion migration path in an 

ordered structure. The ion-transport network calculated using CAVD is mapped to an undirected graph G (V, E), 
which consists of a set of vertices (V, including interstices and bottlenecks) and edges (E) that connect a pair of 
vertices; BVSE values are used to characterize these vertices and exclude vertices of high energies to obtain more 
reliable ion-transport network G' (V, E, B), of which B represents that BVSE value of each vertex. Generally, the 
mobile ions at lattice site locations are characterized by relatively low site energies. Thus, we choose adjacent lat-
tice sites as endpoints of the migration path and use S to denote a set of lattices sites. As adjacent lattices sites are 
not necessarily connected, we use the ion-transport network G′ to screen out connected path segments for adja-
cent lattices sites. Considering the efficiency of the algorithms, we construct the non-equivalent path segments by 
excluding duplicate equivalent path segments. The criterion for judging the equivalent path segments is equiva-
lent endpoints and equivalent interstices, which are the components of the path. The concept of equivalent path 
(endpoints, interstices) is similar to that of equivalent atoms. In other words, one path segment can be used to 
generate a set of equivalent path segments via symmetry operations. The non-equivalent path segments are then 
used to locate endpoints of migration paths: = ∈ ∈ ≠P x y x S y S x y{( , ), , , }.

(2) The use of BVSE calculation to determine approximate MEP
BVSE calculations yield a three-dimensional mesh composed of energy values of grid points in a unit cell, with 

a default distance between two adjacent grid sites of 0.1 Å. A mobile ion in the three-dimensional grid tends to 
move toward the adjacent grid site of minimal BVSE value (i.e., the energetically stable site), avoiding unphysical 
distances with other atoms. Consequently, the BVSE energy landscape can be used to simulate the potential force 
field to calculate FT in Eq. (3). This information is combined with the simplified string method to calculate the 
approximate MEP between each endpoints (x, y) in P (this process takes an average of 5 min for one structure).

(3) Configuration of NEB calculation package
When using the approximate MEP determined by CAVD + BVSE calculations as the initial path for the NEB 

calculation, the intermediate images will be produced along the approximate MEP by interpolating between the 
initial and final structures. The initial and final structures are created by removing one atom from the endpoints, 
and other input files (INCAR, POTCAR, and KPOINTS) are automatically generated using pymatgen. In addi-
tion, we define a template for Load Sharing Facility (LSF) script. All the files are packaged as the NEB calculation 
package which can be directly employed to run the VASP calculation, and manual preprocessing is no longer 
needed.

The hierarchical algorithms can be applied for materials screening (Fig. 5). First, candidates are selected 
from the SPSE database by imposing certain arbitrary conditions, e.g. on composition. Second, high-throughput 
preliminary screening of materials is performed using empirical algorithms (such as CAVD and BVSE calcula-
tions). Finally, ab initio algorithm (such as first-principles nudged elastic band) is used for fine-tuned screening 
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Fig. 4  Comparison of calculation processes between (a) NEB and (b) CAVD + BVSE→NEB. Two manual 
operations are required to generate the initial and final states and configuration files for VASP calculation in (a), 
while these configurations in (b) are automatically completed.
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of materials to identify potential solid electrolytes. The complete example of hierarchical algorithms in the SPSE 
is as follows:

Step 1. Preliminary results

There are 21,542 candidate compounds containing Li and Na in SPSE, of which only 5,192 candidates 
remained after the preliminary screening for Ea ≤ 1.2 eV in one-dimensional migration paths (see Supplementary 
Information S1). These 5,192 compounds include NaZr2P3O12 and Li7La3Zr2O12 (LLZO, ICSD-246817). The 
garnet-related LLZO is a lithium conductor with a high-conductivity cubic phase and low-conductivity tetrag-
onal phase60,61. The thermodynamically stable phase of LLZO at room temperature is the tetragonal phase62,63. 
NaZr2P3O12 with space group R-3c (no. 167) and tetragonal LLZO with space group I41/acd (no. 142) are used 
below as examples of the hierarchical calculations.

Step 2. Finding endpoints of ion migration paths

The consistency of the CAVD and BVSE calculation results is an important premise for the hierarchical calcu-
lations and is verified by visualizing the migration paths of NaZr2P3O12 and tetragonal LLZO (Figs. 3 and 6). The 

Potential 
ion 

conductors

3. Fine screening:
First-principles nudged elastic band

2. Preliminary screening:
CAVD + BVSE calculations

1. System selection:
Element, space group, 

etc.

Materials
database

Fig. 5  Screening process for solid electrolytes based on hierarchical ion-transport algorithms.

Fig. 6  (a) Three-dimensional migration paths of tetragonal LLZO generated using CAVD are shown in green 
and blue cylinders, where the threshold parameter related to the Li+ radius is 0.563 Å. (b) Comparison of 
migration paths of tetragonal LLZO calculated using CAVD and BVSE. The 3D migration paths of BVSE are 
shown in yellow isosurfaces with migration energy barrier Ea of 0.576 eV.
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visualization demonstrates that the interstices and bottlenecks appear at the minimum and maximum energy sites 
of BVSE, respectively; the three-dimensional migration paths calculated using CAVD are in excellent agreement 
with the BVSE results (Figs. 3c and 6b).

NaZr2P3O12 consists of a three-dimensional network of tetrahedral PO4 corner-sharing with octahedral 
ZrO6, with the Na+ occupying the octahedral 6b (Na1) sites39. A single identified non-equivalent path segment 
is formed by adjacent Na1 in the ion-transport network, based on the CAVD + BVSE calculations (Fig. 7a). For 
the tetragonal LLZO, Li atoms occupy three types of crystallographic sites: the tetrahedral 8a (Li1) sites, the octa-
hedral 16f (Li2) sites, and the 32 g (Li3) sites62,63. Six types of migration paths may be considered between lattices 
sites: Li1–Li1, Li1–Li2, Li1–Li3, Li2–Li2, Li2–Li3, and Li3–Li3. There are two paths between Li2–Li3 and Li3–Li3 
in the ion-transport network calculated by CAVD (Fig. 6a). According to the BVSE calculation, the energy bar-
riers of the blue paths are higher than that of the green paths; therefore, the blue paths are removed to obtain a 
more reliable ion-transport network (Fig. 6b). Li1–Li1 and Li1–Li2 are observed to be connected via Li3 in the 
ion-transport network, indicating that the Li1–Li3–Li3–Li1 path can be described as concatenation of two path 
segments of Li1–Li3. Thus, only the other four types of non-equivalent path segments remain (one path segment 
is shown in Fig. 8a; further details are provided in Supplementary Information S2).

Step 3. MEP calculation

Fig. 7  Ion migration paths of NaZr2P3O12 calculated using (a) CAVD and (b) BVSE respectively, where Ea is 
1.055 eV. (c) Approximate MEP of Na1–Na1. The dotted circles indicate the endpoints.

Fig. 8  Ion migration paths of tetragonal LLZO calculated using (a) CAVD and (b) BVSE respectively, where Ea 
is 0.576 eV. (c) Approximate MEP of Li2–Li2. The dotted circles indicate the endpoints.
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BVSE is used to calculate the migration paths of NaZr2P3O12 (Fig. 7b) and tetragonal LLZO (Fig. 8b) to 
determine the approximate MEP between the endpoints (Figs. 7c and 8c, respectively). The approximate MEP 
is consistent with the path calculated by CAVD. To evaluate the reliability of the approximate MEP, we compare 
the MEPs calculated using our method with those calculated using the NEB method (see Table 1 for configure 
parameters) and observe that the paths are fully consistent (Fig. 9). The results of Fig. 10 indicate that these two 
migration paths pass through two bottlenecks and one interstice and the difference in the energy profile shape is 
the result of the static nature of the BVSE calculations in contrast to NEB which allows local structure relaxation. 
In addition, the Coulomb repulsion between mobile ions is not considered in BVSE; therefore, the energy values 
near the bottlenecks are lower. For example, we tested one migration path of β-Li3PS4

64, where the Coulomb 
repulsion between mobile ions was eliminated (see Supplementary Information S3).

Overall, the comparison of the BVSE + CAVD and NEB results clearly demonstrates that the empirical meth-
ods can effectively identify the robust path of ion migration for further ab initio calculations.

Step 4. NEB calculation package

After determining the approximate MEP of ion migration, POSCAR files corresponding to the images along 
the MEP can be generated. To facilitate the VASP calculation, each POSCAR file is stored separately in folders 
labeled “00”-“10” (for example, nine intermediate images are generated). In addition, other input files (INCAR, 
POTCAR, KPOINTS, and LSF script) are automatically generated. Then, the subsequent NEB calculation can be 
performed by running the Load Sharing Facility (LSF) script.

Identifier Compound
Space 
group a (Å) b (Å) c (Å)

K-points 
set

Cut-off 
energy (eV)

ICSD_000467 NaZr2P3O12 R-3c 8.815 8.815 22.746 1 × 1 × 1 520

ICSD_246817 Li7La3Zr2O12 I41/acd 13.1279 13.1279 12.6715 2 × 2 × 2 600

Table 1.  Parameters of NEB calculations.

Fig. 9  Migration paths in (a) NaZr2P3O12 and (b) tetragonal LLZO. The paths calculated using NEB and 
CAVD + BVSE are colored in pink and white, respectively. The tetrahedral PO4 and octahedral ZrO6 sites are 
colored gray and green, respectively. The octahedral Na1 and Li2 sites are shown in yellow and blue polyhedra 
respectively, and tetrahedral Li3 sites in LLZO are shown in purple.
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Fig. 10  Migration energy profiles of (a) Na1–Na1 in NaZr2P3O12 and (b) Li2–Li2 in tetragonal LLZO calculated 
using NEB and CAVD + BVSE.
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Data interaction: web interface.  The web interface provides five functions: Materials Search, Materials 
Calculation, CIF Upload, Data Download, and Task Monitor. The operation flow of the web interface is elaborated 
as follows.

First, the Materials Search page presents a periodic table and search options including the space group num-
ber, range of BVSE values, elements, and so on (Fig. 11a). The elements can also be directly selected from the peri-
odic table. For instance, 771 compounds containing Li and Na are obtained by searching for “Li & Na” (Fig. 11b). 
The search results provide common information about the structure, including the data source, data identifier, lat-
tice constant lengths, lattice constant angles, chemical formula, space group, and creation date. More details about 
the structure can be obtained by clicking “Details” to access the structure details page (Fig. 11d). Additionally, 
data can be downloaded in batches for analysis by clicking the “Download CIFs” or “Download computational 
data” button. In consideration of the demand for additional structures, a “CIF Upload” option is provided for 
users to upload CIF(s).

Second, the search page allows users to select the structure(s) of interest and click the “Add to calculation list” 
button to jump to the Materials Calculation page (Fig. 11c). Currently, CAVD, BVSE, ion-transport descriptor, 
and hierarchical (CAVD + BVSE→NEB) calculations are available. The parameter settings for these calculations 
are simple. For CAVD, the required parameters are the type of mobile ion and a threshold about the screening 
radii of bottlenecks and interstices. If the size of the interstice or bottleneck is within this threshold, it means that 
mobile ion can access the interstice or bottleneck. Similarly, the type and valence of the mobile ion are required 
for BVSE, and the grid resolution is an optional parameter with a default value of 0.1 Å. Grid resolution represents 
the distance between grid points. The lower the value is, the more accurate the calculation result will be. For hier-
archical calculations, it not only involves the parameter setting of CAVD and BVSE, but also the screening values 
need to be set. If the radii of the largest free spheres calculated by CAVD and energy barriers calculated by BVSE 
are not within the range of the screening values, the hierarchical calculations will not continue. In addition, no 
parameters are required for the calculation of ion-transport descriptors.

Finally, the calculation tasks will be uploaded to our server after the calculation types are selected and the 
calculation tasks are submitted. Users can query the states of their submitted tasks using Task Monitor (the states 
include READY, RUNNING, COMPLETED, FIZZLED, etc.). The calculation results will be displayed on the 
structure details page for querying and downloading. For instance, the BVSE data file can be downloaded for 
visualizing the migration paths in VESTA52, and the NEB calculation package can be downloaded for external 
standalone VASP calculations.

Machine learning: ion-transport descriptors.  SPSE data can be used in machine-learning algorithms 
(such as linear regression, support vector machines, etc.) to predict materials properties and accelerate materi-
als discovery and design65. For materials property prediction, the descriptors play an important role. Here, we 

Fig. 11  (a) Search page. (b) Results of a “Li & Na” search. (c) Materials calculation page. (d) Structure details 
page: structure visualization of NaZr2P3O12 and migration energy profile of Na ion in NaZr2P3O12.
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provide 22 ion-transport descriptors, 20 of which are derived from the work of Sendek et al.66. The other two 
descriptors, RLFS and Ea values, are described as follows.

(1) RLFS: Radii of the largest free spheres calculated by CAVD
The largest free spheres calculated for the three principal directions (with corresponding radii Ra, Rb, and Rc, 

respectively).
(2) Ea values: Energy barrier values calculated by BVSE
Approximate energy thresholds along the one-dimensional, two-dimensional, and three-dimensional migra-

tion paths.
The Ea values calculated by BVSE can be used as the decision attributes for activation energy prediction; the 

other 21 descriptors can be combined with regression analysis methods to predict the ionic conductivity. It is 
advantageous to accelerate the screening for solid electrolytes with high ionic conductivity and low activation 
energy, which are important preconditions of this screening67–69.

Discussion
In this paper, we report the development of a high-throughput screening platform for solid electrolytes, SPSE. 
SPSE provides an open web interface for users to access a database and calculation tools of ion-transport prop-
erties, which are relatively lacking in the recent emerged platforms. Based on this, user can access the platform 
to complete the batch calculation and screening of the structures. The critical feature of SPSE is the fully auto-
matic hierarchical calculations based on the analysis of crystal structure, and the implement of high-throughput 
calculation workflow. The hierarchical calculations combine empirical CAVD and BVSE calculations to obtain 
the ion-transport networks of crystal structures and then automatically analyzes these networks to obtain the 
approximate MEPs. These steps replace the linear interpolation method to provide more reliable migration paths 
for NEB calculation, avoiding unphysical paths and complicated manual preprocessing. This process enables 
high-throughput screening for potential solid electrolytes. It should be noted that the CAVD and hierarchical 
calculations are not applicable for crystal structure with fractional or mixed occupancy. The vision for further 
development of SPSE includes more sophisticated analysis of the hierarchical calculations, such as automatic 
molecular dynamics simulations, phase diagram calculation, etc. In addition, the ionic conductivity is helpful 
to screen the promising solid electrolyte. We intend to use the platform to obtain this information based on the 
BVSE calculation, and we have done the ionic conductivity prediction in our recent paper50.

Methods
For CAVD calculation, the threshold about screening radii of bottlenecks and interstices needs to be set. The 
lower threshold is set to 0.563 Å for Li-containing compounds, and for Na-containing compounds it is 0.9 Å. 
Since the upper threshold is not considered in this paper, it is set to 3 Å. At present, we have provided a reliable 
reference range of the threshold in our resent paper35. In the BVSE calculation, the valence state of mobile ion is 
usually same with that in the CIF file, and the grid resolution is set as 0.1 Å.

For hierarchical calculations, the screening value of CAVD presents the range of RLFS, it can reference the 
threshold in the paper35. The screening value of BVSE is set between 0–1.2 eV in one-dimensional migration 
paths. The number of 1.2 is a suitable threshold to screen structures with low activation energy51. The NEB cal-
culation is implemented in VASP and climbing image NEB method70 is selected by default. For all the VASP 
calculations, the exchange correlation of electrons is described by the Perdew–Burke–Ernzerhof (PBE) parame-
terization of the generalized gradient approximation (GGA)71. The plane-wave cut-off energy is set to 1.5 times 
larger than the maximum cut-off energy in POTCAR, and the k-point mesh is generated using the Monkhorst–
Pack scheme72. The shape and volume of the unit cell are fixed at the optimized geometry. For the halting criteria 
for performing the NEB method and relaxing the end point structures, we provide a looser parameter for the 
convergence thresholds of the energy and force, which are set to 10−4 eV and 0.02 eV/Å, respectively. While the 
user can tune these parameters as their requirement. For the VASP calculations in the manuscript and supple-
mentary information, the convergence thresholds are set as described above. All the preset settings in the VASP 
calculations have been tested.

Data availability
The authors declare that the main data supporting the finding of this study are available within the article and its 
Supplementary Information files. All the SPSE data have been deposited at figshare73.

Code availability
The CAVD, BVSE and hierarchical computational codes have been integrated in SPSE, and they can only be run if 
the user has access to a SPSE account. The SPSE manuals are available in the website: https://www.bmaterials.cn/
static/help/SPSE-UserManuals.pdf. Source codes of SPSE are freely available for download at figshare73.
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