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OPEN A rasterized building footprint
DATA DESCRIPTOR dataset for the United States

Mehdi P. Heris(®*™, Nathan Leon Foks?, Kenneth J. Bagstad?, Austin Troy! &
Zachary H. Ancona?®

Microsoft released a U.S.-wide vector building dataset in 2018. Although the vector building layers
provide relatively accurate geometries, their use in large-extent geospatial analysis comes at a high
computational cost. We used High-Performance Computing (HPC) to develop an algorithm that
calculates six summary values for each cell in a raster representation of each U.S. state, excluding

. Alaska and Hawaii: (1) total footprint coverage, (2) number of unique buildings intersecting each cell,

: (3) number of building centroids falling inside each cell, and area of the (4) average, (5) smallest, and (6)
largest area of buildings that intersect each cell. These values are represented as raster layers with 30 m

. cell size covering the 48 conterminous states. We also identify errors in the original building dataset.

. We evaluate precision and recall in the data for three large U.S. urban areas. Precision is high and

© comparable to results reported by Microsoft while recall is high for buildings with footprints larger than
200 m2 but lower for progressively smaller buildings.

Background & Summary
Building footprints are a critical environmental descriptor. Microsoft produced a U.S.-wide vector building data-
set in 2018! that was generated from aerial images available to Bing Maps using deep learning methods for object
classification® The main goal of this product has been to increase the coverage of building footprints available
for OpenStreetMap. Microsoft identified building footprints in two phases; first, using semantic segmentation to
© identify building pixels from aerial imagery using Deep Neural Networks and second, converting building pixel
. blobs into polygons. The final dataset includes 125,192,184 building footprint polygon geometries in GeoJSON
. vector format, covering all 50 U.S. States, with data for each state distributed separately. These data have 99.3%
: precision and 93.5% pixel recall accuracy®. Temporal resolution of the data (i.e., years of the aerial imagery used
© to derive the data) are not provided by Microsoft in the metadata.
: Using vector layers for large-extent (i.e., national or state-level) spatial analysis and modelling (e.g., mapping
. the Wildland-Urban Interface, flood and coastal hazards, or large-extent urban typology modelling) is challeng-
© ing in practice. Although vector data provide accurate geometries, incorporating them in large-extent spatial
analysis comes at a high computational cost. We used High Performance Computing (HPC) to develop an algo-
. rithm that calculates six summary statistics (described below) for buildings at 30-m cell size in the 48 conter-
. minous U.S. states, to better support national-scale and multi-state modelling that requires building footprint
© data. To develop these six derived products from the Microsoft buildings dataset, we created an algorithm that
© took every single building and built a small meshgrid (a 2D array) for the bounding box of the building and
. calculated unique values for each cell of the meshgrid. This grid structure is aligned with National Land Cover
Database (NLCD) products (projected using Albers Equal Area Conic system), enabling researchers to combine
or compare our products with standard national-scale datasets such as land cover, tree canopy cover, and urban
imperviousness®.

Locations, shapes, and distribution patterns of structures in urban and rural areas are the subject of many
studies. Buildings represent the density of built up areas as an indicator of urban morphology or spatial structures
of cities and metropolitan areas®. In local studies, the use of vector data types is easier®”. However, in regional

. and national studies a raster dataset would be more preferable. For example in measuring the spatial structure of
: metropolitan areas a rasterized building layer would be more useful than the original vector datasets®.
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Our output raster products are: (1) total building footprint coverage per cell (m? of building footprint per 900
m? cell); (2) number of buildings that intersect each cell; (3) number of building centroids falling within each cell;
(4) area of the largest building intersecting each cell (m?); (5) area of the smallest building intersecting each cell
(m?); and (6) average area of all buildings intersecting each cell (m?). The last three area metrics include building
area that falls outside the cell but where part of the building intersects the cell (Fig. 1). These values can be used to
describe the intensity and typology of the built environment.

Since the data’ and software'® from this project are publicly available, the code could be used to generate sim-
ilar raster summary layers in other areas where building data are available. For example, Microsoft has published
similar building footprint datasets for Canada'' and Eastern Africa'?, and similar data might be produced in other
locations or for different time periods.

Methods

To create a rasterized summary building footprint dataset, we first selected an appropriate spatial resolution.
We assumed that most potential U.S.-based applications of such data would also use data from NLCD and other
Landsat products, which have 30-m resolution. Aligning the rasterized building footprint summary with NLCD
products would provide the opportunity for future analysts to use building data along with land cover, tree canopy
cover, and impervious surface cover data. Although 30-m resolution may be an appropriate scale for the U.S., our
code is flexible enough to calculate the same values for different spatial resolutions as well.

To carry out the rasterization procedure, we used open-source Python libraries. Box 1 presents pseudo-code
illustrating our method to intersect building shapes with the cells of a raster dataset and then compute the sum-
mary statistics needed to produce the six building dataset outputs. Our software is also open-source'’. The Python
packages we used include “Fiona”®® to read in the building shapes as a list of shape objects; “Shapely”!* to perform
the intersections between raster cells and building shapes; and “Rasterio”!* to obtain raster information and write
our final summary layers to GeoTIFFs. All arrays were + using the NumPy package'®. For each cell, we found the
intersection of the 30-m grid cells with each building and calculated the six values in our dataset. Box 1 elaborates
the main procedure to calculate these summary values.

Box 1 Intersection of building shapes with a raster layer:
1. shps <— Read in the building shapefile
2. geom= {x0, y0, dx, dy, nx, ny} «— Origin, cell size, and number of cells in the raster
3. count = 0 < Initialize an integer array with shape(nx, ny)
4. area = 0.0 « Initialize a float array with shape(nx, ny)
5. intersectArea = 0.0 < Initialize a float array with shape(nx, ny)
6. min = huge (a large number) « Initialize a float array with shape(nx, ny)
7. max = 0.0 « Initialize a float array with shape(nx, ny)
8. centroidCount = 0 « Initialize an integer array with shape(nx, ny)
9. for each shp in shps do

10. box — Bounding box for current shp

11. for each cell in box N shp do

12. count(cell) +=1

13. area(cell) += shp.area

14. intersectArea(cell) += shp.intersect(cell).area

15. min(cell) = minimum(min(cell), shp.area)

16. max(cell) = maximum(max(cell), shp.area)

17. if shp.centroid ? cell do

18. centroidCount(cell) +=1

19. where count!=10

20. average = area / count

21. Write each summary layer to GeoTiff

Two computational aspects required further consideration when implementing this algorithm at a large scale.
First, reading in an entire set of building shapes upon instantiation of the algorithm leads to an unnecessarily
large time and memory overhead. Instead, we simply open the shapefile (generated from GeoJSON) with Fiona
without reading the entire contents and iteratively process each shape. This approach has the benefit of reducing
memory and initial time overhead. Second, to ensure that the alignment of our summary raster layers matches
the alignment of each state (U.S. state NLCD grids are seamless), we used Rasterio to read the geometry of each
state’s raster grid and used that geometry to initialize our arrays. The state-wide GeoJSON layers do not have
duplicated buildings on state boundaries. Therefore, putting together state layers does not cause double counting.
For example, if a cell has intersecting buildings with two adjacent states the values of the state-wide layer will
reflect the buildings of one state only. Since we only require the geometry of the state raster grid, we do not read
its cell values since this would impose a high memory and time overhead.

We implemented this algorithm both in serial and in parallel using mpi4py"’. The parallel algorithm behaves
similarly to the serial algorithm with the exception that polygons in the shapefile are distributed among available
Central Processing Unit (CPU) cores. We used the CPU cores in a master-worker paradigm where a single master
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Fig. 1 Example cell and intersecting buildings to illustrate how summary values are calculated. Left: The total
area of each building is shown. Center: Only the building area within the highlighted cell is shown.

rank distributes the polygons to each worker in user-specified chunks. This approach was necessitated by the ina-
bility to read in all geometry objects of one state at once due to large memory and time requirements. Instead, the
master rank opens the shapefile and iteratively reads and distributes chunks of polygons from the shapefile. Once
a worker rank finishes processing its chunk of polygons, it requests the next chunk from the master. An unfortu-
nate side effect of this paradigm is the duplication of memory on each CPU core to store the rasterized summary
statistics. For very large raster layers, or large states in our dataset, this requires a large amount of RAM, however
for small to medium examples a standard laptop or desktop will suffice. To overcome the memory limitations
of the largest states, we used the USGS Yeti supercomputer'®, which enabled access to a large shared-memory
machine. We also tried an out-of-memory approach HDF5 with parallel file access, however the increase in com-
putation time due to the atomic operations of our statistics was prohibitive.

Data Records

The final data product has six raster layers for all U.S. states and the District of Columbia except Alaska and
Hawaii. Figure 1 shows an example cell intersecting with four buildings. In this case, we first count the number
of intersecting buildings (four) and building centroids (three) in each grid cell, then we calculate the total area of
the cell that is covered by building footprints (346 m?), in addition to the area of the average, smallest, and largest
intersecting buildings (165.7 m?, 92.6 m?, and 261.3 m? respectively). Figure 2 shows the rasterized summary
layers of building footprints for the District of Columbia.

The data are available from the U.S. Geological Survey’s ScienceBase Catalog®. The publicly available data
include two categories: (1) state-level layers (49 zipped folders) and (2) conterminous U.S. layers. A metadata
XML file is included in the data package. In the state-wide category, each zipped folder has six summary rasters.
The raster layers represent (1) [stateName]_sum: total footprint coverage; (2) [stateName]_cnt: number of unique
buildings intersecting each cell; (3) [stateName]_centroids: number of building centroids falling inside each cell;
and area of the (4) [stateName]_avg: average; (5) [stateName]_min: smallest, and (6) [stateName]_max: largest
area of buildings that intersect each cell. In the conterminous U.S. the same six layers are included.

Technical Validation

The rasterized building footprint output dataset represents the vector building footprints data with six raster
layers. The rasterized data do not degrade or improve the accuracy of the vector layers. Microsoft has validated
the vector building dataset and reported 99.3% precision and 93.5% recall as building matching metrics?. In the
Machine Learning literature, precision refers to the ratio of relevant instances (buildings) among the retrieved
instances. Recall is the fraction of the total amount of relevant instances that were actually retrieved'’. To calculate
recall and precision we identified two types of error in the Microsoft dataset: (1) undercounting existing buildings
(the non-detection of building objects) and (2) overcounting buildings (identifying non-building objects or pat-
terns as buildings). To explore the vector building footprint’s accuracy, we used high-resolution building datasets
for three cities/regions: (1) city of Denver, CO, (2) New York, NY, and (3) Los Angeles County, CA. Building
footprint datasets of Denver?® and New York?! are produced from orthoimagery captured in 2014 and 2015,
respectively. The Los Angeles County building dataset®® is produced from stereo imagery captured in 2008. Since
the Los Angeles County data is relatively older than Denver and New York, we expect to observe a slightly lower
precision rate due to the absence of buildings that have been constructed since 2008.

Undercounting. Our evaluation shows that Microsoft’s algorithm fails to detect small buildings (generally
those smaller than 100 m?) in all three regions. Most of the undetected buildings are accessory units such as
garden sheds or detached garages in this example area of Denver (Fig. 3). Figure 4 shows the histogram of the
size of undetected buildings in Denver, Los Angeles, and New York City and highlights the large number of small
undetected buildings. We also identified systematic gaps in the Microsoft data for some geographic areas. These
larger gaps seem to have a tile pattern, where aerial photos may have been unavailable to the Microsoft building
detection algorithm, for example in Austin, TX and San Jose, CA (Fig. 5). In Denver, a relatively small tile gap
resulted in 7,478 missing buildings (2.6% of the city’s total).
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Fig. 2 Rasterized summary layers of building footprints for Washington, DC.

In New York City, we also noticed that attached buildings with similar heights are consolidated to form a large
block of single polygons (Fig. 6). Although these polygons do not substantially affect the total area of footprint
coverage, they affect counts, counts of centroids, and average area of buildings. This error must be considered in
high-density areas with where attached buildings are common.

Overcounting. In some cases, the Microsoft building dataset has identified objects and patterns as build-
ings where there is no structure. These data artifacts are rare but can be problematic when the layer is being
used in a national study. These polygons are most likely detected based on the reflectance of objects that create
a building-like pattern. We identified these artifacts in lakes, rivers, and snow-covered areas at high altitude.
Figure 7 illustrates a cluster of polygons in Lake Superior where there clearly is no structure. This misidentifica-
tion is probably due to reflectance patterns in the aerial images. Another problem in the Microsoft dataset occurs
when overlapping polygons generate values larger than 900 m? for the total footprint coverage value within a grid
cell. We describe these errors and data artifacts in the Supplementary Information.

Precision and recall. To report the precision metric, we calculated the ratio of accurately identified building
objects to all detected objects in the Microsoft dataset. Precision of the Microsoft dataset is 99.5%, 99.1%, and
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Fig. 3 Neighborhood-scale comparison of City of Denver and Microsoft building footprint datasets.
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Fig. 4 Histogram of the area of missing buildings in the Microsoft dataset for Denver, CO, New York, NY, and
Los Angeles County, CA.

98.2% in Denver, New York, and Los Angeles County, respectively (Table 1). We also calculated precision for
different area ranges. For buildings larger than 100 m? precision is above 99% for Denver and New York and is
98.8% for Los Angeles County (Fig. 8). This is consistent Microsoft’s reported precision. The lower precision of
Los Angeles County can be attributed to the relatively older building data that we used as for ground truthing.

To calculate recall, we subtracted falsely detected objects from all detected objects by Microsoft data and
divided by all instances (using the high-resolution data). As expected, recall values are fairly low in area ranges
smaller than 150 m? When all area ranges are assessed, the overall recall ratios are 63.8%, 36.5%, and 73.0% for
Denver, New York, and Los Angeles County respectively. Recall values for buildings larger than 200 m? are about
99% for Denver and New York and 93% for Los Angeles County (Fig. 9). Our validation shows that studies that
use this building dataset need to note the purpose that this data serves. If small buildings do not matter signifi-
cantly, then this dataset has an acceptable accuracy. Additionally, we identified a series of common issues in this
dataset that are documented in the Supplementary Information.
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Fig. 5 Missing tiles in San Jose, CA. Existing Microsoft data are overlaid on the aerial image to show data gaps.

Precision Recall
Los Angeles Denver, Los Angeles Denver,
County, CA | NYC,NY | CO County, CA | NYC,NY |CO
All area ranges 98.20% 99.10% | 99.50% 73.00% 36.50% | 63.80%
2 —
10 m* < =area 94.50% 93.30% | 97.80% 28.90% 6.50% 12.80%
<50 m
2 —
50 m* < =area 96.90% 98.90% 99.20% 57.20% 19.20% 63.80%
<100 m
2 —
100 m*<=area | g5 49, 99.50% | 99.70% | 86.90% 5520% | 86.90%
<200 m!
2 —
200m < =area | g5 g9, 99.20% | 99.50% | 92.80% 99.70% | 99.60%
<500 m
2 —
500mi<=area | g, 5500 99.40% 99.70% 94.70% 98.00% 93.70%
<1500 m

Table 1. Accuracy assessment of Microsoft building footprint dataset in three U.S. cities.

Usage Notes

A rasterized building footprint dataset can be helpful in a wide range of studies related to built environments®*2%,
A particularly relevant use of these data would be to evaluate spatially disaggregated measures of urbanization
across the country. Studies that evaluate land cover, land use, and human settlement patterns would benefit from
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Fig. 7 Data artifacts in Lake Superior (Left: the location of data artifacts; Right: overlapping building polygons
in the Lake).

the use of this dataset?>?. Most major cities in the U.S. now use high-resolution orthoimagery and LiDAR to
produce their own building footprint datasets?”. Therefore, the Microsoft dataset is particularly helpful where
such data are not available.

The rasterized layers match the resolution and cell alignment of NLCD land cover, tree canopy, and impervi-
ous cover products. This is an advantage when all or some of these layers are used in models since rescaling, shift-
ing, or retiling need not be carried out. The summary layers can also be used independently or in combination.
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Fig. 9 Recall accuracy metric for Microsoft building footprint dataset.

For example, comparing the total building footprint coverage in a cell with the average building area would yield
the built-up density in a cell. A different application of our data might focus on the size of buildings to classify
use types or residential density. In that case, the average building area might be most useful. When the number of
structures is the subject of interest, the building centroid count might be useful in a certain geography.

The original vector dataset provided by Microsoft is appropriate for small-extent applications (e.g., city- or
metropolitan-area scale studies). However, in large-extent studies (multistate or national-scale), using the vector
data format would require intensive computational power and could require complicated geoprocessing proce-
dures. In such cases, using the rasterized products would be substantially faster. Finally, another advantage of
rasterized layers is the capacity to convert them to arrays in programming environments such as Numpy arrays
for Python which is computationally attractive for large-extent applications.

Code availability

Our software is available through U.S. Geological Survey code repository (https://doi.org/10.5066/
P9XZCPMT)™X. Our serial code is also available in our Github page: https://github.com/mehdiheris/
RasterizingBuildingFootprints.
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