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A rasterized building footprint 
dataset for the United States
Mehdi P. Heris   1 ✉, Nathan Leon Foks2, Kenneth J. Bagstad3, Austin Troy1 & 
Zachary H. Ancona3

Microsoft released a U.S.-wide vector building dataset in 2018. Although the vector building layers 
provide relatively accurate geometries, their use in large-extent geospatial analysis comes at a high 
computational cost. We used High-Performance Computing (HPC) to develop an algorithm that 
calculates six summary values for each cell in a raster representation of each U.S. state, excluding 
Alaska and Hawaii: (1) total footprint coverage, (2) number of unique buildings intersecting each cell, 
(3) number of building centroids falling inside each cell, and area of the (4) average, (5) smallest, and (6) 
largest area of buildings that intersect each cell. These values are represented as raster layers with 30 m 
cell size covering the 48 conterminous states. We also identify errors in the original building dataset. 
We evaluate precision and recall in the data for three large U.S. urban areas. Precision is high and 
comparable to results reported by Microsoft while recall is high for buildings with footprints larger than 
200 m2 but lower for progressively smaller buildings.

Background & Summary
Building footprints are a critical environmental descriptor. Microsoft produced a U.S.-wide vector building data-
set in 20181 that was generated from aerial images available to Bing Maps using deep learning methods for object 
classification2. The main goal of this product has been to increase the coverage of building footprints available 
for OpenStreetMap. Microsoft identified building footprints in two phases; first, using semantic segmentation to 
identify building pixels from aerial imagery using Deep Neural Networks and second, converting building pixel 
blobs into polygons. The final dataset includes 125,192,184 building footprint polygon geometries in GeoJSON 
vector format, covering all 50 U.S. States, with data for each state distributed separately. These data have 99.3% 
precision and 93.5% pixel recall accuracy2. Temporal resolution of the data (i.e., years of the aerial imagery used 
to derive the data) are not provided by Microsoft in the metadata.

Using vector layers for large-extent (i.e., national or state-level) spatial analysis and modelling (e.g., mapping 
the Wildland-Urban Interface, flood and coastal hazards, or large-extent urban typology modelling) is challeng-
ing in practice. Although vector data provide accurate geometries, incorporating them in large-extent spatial 
analysis comes at a high computational cost. We used High Performance Computing (HPC) to develop an algo-
rithm that calculates six summary statistics (described below) for buildings at 30-m cell size in the 48 conter-
minous U.S. states, to better support national-scale and multi-state modelling that requires building footprint 
data. To develop these six derived products from the Microsoft buildings dataset, we created an algorithm that 
took every single building and built a small meshgrid (a 2D array) for the bounding box of the building and 
calculated unique values for each cell of the meshgrid. This grid structure is aligned with National Land Cover 
Database (NLCD) products (projected using Albers Equal Area Conic system), enabling researchers to combine 
or compare our products with standard national-scale datasets such as land cover, tree canopy cover, and urban 
imperviousness3.

Locations, shapes, and distribution patterns of structures in urban and rural areas are the subject of many 
studies. Buildings represent the density of built up areas as an indicator of urban morphology or spatial structures 
of cities and metropolitan areas4,5. In local studies, the use of vector data types is easier6,7. However, in regional 
and national studies a raster dataset would be more preferable. For example in measuring the spatial structure of 
metropolitan areas a rasterized building layer would be more useful than the original vector datasets8.
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Our output raster products are: (1) total building footprint coverage per cell (m2 of building footprint per 900 
m2 cell); (2) number of buildings that intersect each cell; (3) number of building centroids falling within each cell; 
(4) area of the largest building intersecting each cell (m2); (5) area of the smallest building intersecting each cell 
(m2); and (6) average area of all buildings intersecting each cell (m2). The last three area metrics include building 
area that falls outside the cell but where part of the building intersects the cell (Fig. 1). These values can be used to 
describe the intensity and typology of the built environment.

Since the data9 and software10 from this project are publicly available, the code could be used to generate sim-
ilar raster summary layers in other areas where building data are available. For example, Microsoft has published 
similar building footprint datasets for Canada11 and Eastern Africa12, and similar data might be produced in other 
locations or for different time periods.

Methods
To create a rasterized summary building footprint dataset, we first selected an appropriate spatial resolution. 
We assumed that most potential U.S.-based applications of such data would also use data from NLCD and other 
Landsat products, which have 30-m resolution. Aligning the rasterized building footprint summary with NLCD 
products would provide the opportunity for future analysts to use building data along with land cover, tree canopy 
cover, and impervious surface cover data. Although 30-m resolution may be an appropriate scale for the U.S., our 
code is flexible enough to calculate the same values for different spatial resolutions as well.

To carry out the rasterization procedure, we used open-source Python libraries. Box 1 presents pseudo-code 
illustrating our method to intersect building shapes with the cells of a raster dataset and then compute the sum-
mary statistics needed to produce the six building dataset outputs. Our software is also open-source10. The Python 
packages we used include “Fiona”13 to read in the building shapes as a list of shape objects; “Shapely”14 to perform 
the intersections between raster cells and building shapes; and “Rasterio”15 to obtain raster information and write 
our final summary layers to GeoTIFFs. All arrays were + using the NumPy package16. For each cell, we found the 
intersection of the 30-m grid cells with each building and calculated the six values in our dataset. Box 1 elaborates 
the main procedure to calculate these summary values.

Two computational aspects required further consideration when implementing this algorithm at a large scale. 
First, reading in an entire set of building shapes upon instantiation of the algorithm leads to an unnecessarily 
large time and memory overhead. Instead, we simply open the shapefile (generated from GeoJSON) with Fiona 
without reading the entire contents and iteratively process each shape. This approach has the benefit of reducing 
memory and initial time overhead. Second, to ensure that the alignment of our summary raster layers matches 
the alignment of each state (U.S. state NLCD grids are seamless), we used Rasterio to read the geometry of each 
state’s raster grid and used that geometry to initialize our arrays. The state-wide GeoJSON layers do not have 
duplicated buildings on state boundaries. Therefore, putting together state layers does not cause double counting. 
For example, if a cell has intersecting buildings with two adjacent states the values of the state-wide layer will 
reflect the buildings of one state only. Since we only require the geometry of the state raster grid, we do not read 
its cell values since this would impose a high memory and time overhead.

We implemented this algorithm both in serial and in parallel using mpi4py17. The parallel algorithm behaves 
similarly to the serial algorithm with the exception that polygons in the shapefile are distributed among available 
Central Processing Unit (CPU) cores. We used the CPU cores in a master-worker paradigm where a single master 

Box 1 Intersection of building shapes with a raster layer:

	 1.	 shps ← Read in the building shapefile
	 2.	 geom= {x0, y0, dx, dy, nx, ny} ← Origin, cell size, and number of cells in the raster
	 3.	 count = 0 ← Initialize an integer array with shape(nx, ny)
	 4.	 area = 0.0 ← Initialize a float array with shape(nx, ny)
	 5.	 intersectArea = 0.0 ← Initialize a float array with shape(nx, ny)
	 6.	 min = huge (a large number) ← Initialize a float array with shape(nx, ny)
	 7.	 max = 0.0 ← Initialize a float array with shape(nx, ny)
	 8.	 centroidCount = 0 ← Initialize an integer array with shape(nx, ny)
	 9.	 for each shp in shps do
	10.		  box ← Bounding box for current shp
	11.		  for each cell in box ∩ shp do
	12.		  count(cell) += 1
	13.		  area(cell) += shp.area
	14.		  intersectArea(cell) += shp.intersect(cell).area
	15.		  min(cell) = minimum(min(cell), shp.area)
	16.		  max(cell) = maximum(max(cell), shp.area)
	17.		  if shp.centroid ? cell do
	18.		  centroidCount(cell) += 1
	19.	 where count != 0
	20.		  average = area / count
	21.	 Write each summary layer to GeoTiff
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rank distributes the polygons to each worker in user-specified chunks. This approach was necessitated by the ina-
bility to read in all geometry objects of one state at once due to large memory and time requirements. Instead, the 
master rank opens the shapefile and iteratively reads and distributes chunks of polygons from the shapefile. Once 
a worker rank finishes processing its chunk of polygons, it requests the next chunk from the master. An unfortu-
nate side effect of this paradigm is the duplication of memory on each CPU core to store the rasterized summary 
statistics. For very large raster layers, or large states in our dataset, this requires a large amount of RAM, however 
for small to medium examples a standard laptop or desktop will suffice. To overcome the memory limitations 
of the largest states, we used the USGS Yeti supercomputer18, which enabled access to a large shared-memory 
machine. We also tried an out-of-memory approach HDF5 with parallel file access, however the increase in com-
putation time due to the atomic operations of our statistics was prohibitive.

Data Records
The final data product has six raster layers for all U.S. states and the District of Columbia except Alaska and 
Hawaii. Figure 1 shows an example cell intersecting with four buildings. In this case, we first count the number 
of intersecting buildings (four) and building centroids (three) in each grid cell, then we calculate the total area of 
the cell that is covered by building footprints (346 m2), in addition to the area of the average, smallest, and largest 
intersecting buildings (165.7 m2, 92.6 m2, and 261.3 m2, respectively). Figure 2 shows the rasterized summary 
layers of building footprints for the District of Columbia.

The data are available from the U.S. Geological Survey’s ScienceBase Catalog9. The publicly available data 
include two categories: (1) state-level layers (49 zipped folders) and (2) conterminous U.S. layers. A metadata 
XML file is included in the data package. In the state-wide category, each zipped folder has six summary rasters. 
The raster layers represent (1) [stateName]_sum: total footprint coverage; (2) [stateName]_cnt: number of unique 
buildings intersecting each cell; (3) [stateName]_centroids: number of building centroids falling inside each cell; 
and area of the (4) [stateName]_avg: average; (5) [stateName]_min: smallest, and (6) [stateName]_max: largest 
area of buildings that intersect each cell. In the conterminous U.S. the same six layers are included.

Technical Validation
The rasterized building footprint output dataset represents the vector building footprints data with six raster 
layers. The rasterized data do not degrade or improve the accuracy of the vector layers. Microsoft has validated 
the vector building dataset and reported 99.3% precision and 93.5% recall as building matching metrics2. In the 
Machine Learning literature, precision refers to the ratio of relevant instances (buildings) among the retrieved 
instances. Recall is the fraction of the total amount of relevant instances that were actually retrieved19. To calculate 
recall and precision we identified two types of error in the Microsoft dataset: (1) undercounting existing buildings 
(the non-detection of building objects) and (2) overcounting buildings (identifying non-building objects or pat-
terns as buildings). To explore the vector building footprint’s accuracy, we used high-resolution building datasets 
for three cities/regions: (1) city of Denver, CO, (2) New York, NY, and (3) Los Angeles County, CA. Building 
footprint datasets of Denver20 and New York21 are produced from orthoimagery captured in 2014 and 2015, 
respectively. The Los Angeles County building dataset22 is produced from stereo imagery captured in 2008. Since 
the Los Angeles County data is relatively older than Denver and New York, we expect to observe a slightly lower 
precision rate due to the absence of buildings that have been constructed since 2008.

Undercounting.  Our evaluation shows that Microsoft’s algorithm fails to detect small buildings (generally 
those smaller than 100 m2) in all three regions. Most of the undetected buildings are accessory units such as 
garden sheds or detached garages in this example area of Denver (Fig. 3). Figure 4 shows the histogram of the 
size of undetected buildings in Denver, Los Angeles, and New York City and highlights the large number of small 
undetected buildings. We also identified systematic gaps in the Microsoft data for some geographic areas. These 
larger gaps seem to have a tile pattern, where aerial photos may have been unavailable to the Microsoft building 
detection algorithm, for example in Austin, TX and San Jose, CA (Fig. 5). In Denver, a relatively small tile gap 
resulted in 7,478 missing buildings (2.6% of the city’s total).

Fig. 1  Example cell and intersecting buildings to illustrate how summary values are calculated. Left: The total 
area of each building is shown. Center: Only the building area within the highlighted cell is shown.
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In New York City, we also noticed that attached buildings with similar heights are consolidated to form a large 
block of single polygons (Fig. 6). Although these polygons do not substantially affect the total area of footprint 
coverage, they affect counts, counts of centroids, and average area of buildings. This error must be considered in 
high-density areas with where attached buildings are common.

Overcounting.  In some cases, the Microsoft building dataset has identified objects and patterns as build-
ings where there is no structure. These data artifacts are rare but can be problematic when the layer is being 
used in a national study. These polygons are most likely detected based on the reflectance of objects that create 
a building-like pattern. We identified these artifacts in lakes, rivers, and snow-covered areas at high altitude. 
Figure 7 illustrates a cluster of polygons in Lake Superior where there clearly is no structure. This misidentifica-
tion is probably due to reflectance patterns in the aerial images. Another problem in the Microsoft dataset occurs 
when overlapping polygons generate values larger than 900 m2 for the total footprint coverage value within a grid 
cell. We describe these errors and data artifacts in the Supplementary Information.

Precision and recall.  To report the precision metric, we calculated the ratio of accurately identified building 
objects to all detected objects in the Microsoft dataset. Precision of the Microsoft dataset is 99.5%, 99.1%, and 

Fig. 2  Rasterized summary layers of building footprints for Washington, DC.
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98.2% in Denver, New York, and Los Angeles County, respectively (Table 1). We also calculated precision for 
different area ranges. For buildings larger than 100 m2 precision is above 99% for Denver and New York and is 
98.8% for Los Angeles County (Fig. 8). This is consistent Microsoft’s reported precision. The lower precision of 
Los Angeles County can be attributed to the relatively older building data that we used as for ground truthing.

To calculate recall, we subtracted falsely detected objects from all detected objects by Microsoft data and 
divided by all instances (using the high-resolution data). As expected, recall values are fairly low in area ranges 
smaller than 150 m2. When all area ranges are assessed, the overall recall ratios are 63.8%, 36.5%, and 73.0% for 
Denver, New York, and Los Angeles County respectively. Recall values for buildings larger than 200 m2 are about 
99% for Denver and New York and 93% for Los Angeles County (Fig. 9). Our validation shows that studies that 
use this building dataset need to note the purpose that this data serves. If small buildings do not matter signifi-
cantly, then this dataset has an acceptable accuracy. Additionally, we identified a series of common issues in this 
dataset that are documented in the Supplementary Information.

Fig. 3  Neighborhood-scale comparison of City of Denver and Microsoft building footprint datasets.

Fig. 4  Histogram of the area of missing buildings in the Microsoft dataset for Denver, CO, New York, NY, and 
Los Angeles County, CA.
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Usage Notes
A rasterized building footprint dataset can be helpful in a wide range of studies related to built environments8,23,24. 
A particularly relevant use of these data would be to evaluate spatially disaggregated measures of urbanization 
across the country. Studies that evaluate land cover, land use, and human settlement patterns would benefit from 

Fig. 5  Missing tiles in San Jose, CA. Existing Microsoft data are overlaid on the aerial image to show data gaps.

Precision Recall

Los Angeles 
County, CA NYC, NY

Denver, 
CO

Los Angeles 
County, CA NYC, NY

Denver, 
CO

All area ranges 98.20% 99.10% 99.50% 73.00% 36.50% 63.80%

10 m2 < = area 
<50 m2 94.50% 93.30% 97.80% 28.90% 6.50% 12.80%

50 m2 < = area 
<100 m2 96.90% 98.90% 99.20% 57.20% 19.20% 63.80%

100 m2 < = area 
<200 m2 98.80% 99.50% 99.70% 86.90% 55.20% 86.90%

200 m2 < = area 
<500 m2 98.90% 99.20% 99.50% 92.80% 99.70% 99.60%

500 m2 < = area 
<1500 m2 97.50% 99.40% 99.70% 94.70% 98.00% 93.70%

Table 1.  Accuracy assessment of Microsoft building footprint dataset in three U.S. cities.
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the use of this dataset25,26. Most major cities in the U.S. now use high-resolution orthoimagery and LiDAR to 
produce their own building footprint datasets27. Therefore, the Microsoft dataset is particularly helpful where 
such data are not available.

The rasterized layers match the resolution and cell alignment of NLCD land cover, tree canopy, and impervi-
ous cover products. This is an advantage when all or some of these layers are used in models since rescaling, shift-
ing, or retiling need not be carried out. The summary layers can also be used independently or in combination. 

Fig. 6  Consolidated buildings in Manhattan, New York, NY.

Fig. 7  Data artifacts in Lake Superior (Left: the location of data artifacts; Right: overlapping building polygons 
in the Lake).
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For example, comparing the total building footprint coverage in a cell with the average building area would yield 
the built-up density in a cell. A different application of our data might focus on the size of buildings to classify 
use types or residential density. In that case, the average building area might be most useful. When the number of 
structures is the subject of interest, the building centroid count might be useful in a certain geography.

The original vector dataset provided by Microsoft is appropriate for small-extent applications (e.g., city- or 
metropolitan-area scale studies). However, in large-extent studies (multistate or national-scale), using the vector 
data format would require intensive computational power and could require complicated geoprocessing proce-
dures. In such cases, using the rasterized products would be substantially faster. Finally, another advantage of 
rasterized layers is the capacity to convert them to arrays in programming environments such as Numpy arrays 
for Python which is computationally attractive for large-extent applications.

Code availability
Our software is available through U.S. Geological Survey code repository (https://doi.org/10.5066/
P9XZCPMT)10. Our serial code is also available in our Github page: https://github.com/mehdiheris/
RasterizingBuildingFootprints.
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Fig. 8  Precision accuracy metric for Microsoft building footprint dataset.

Fig. 9  Recall accuracy metric for Microsoft building footprint dataset.
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