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. We introduce and make openly accessible a comprehensive, multivariate time series (MVTS) dataset

. extracted from solar photospheric vector magnetograms in Spaceweather HMI Active Region Patch

. (SHARP) series. Our dataset also includes a cross-checked NOAA solar flare catalog that immediately

. facilitates solar flare prediction efforts. We discuss methods used for data collection, cleaning and pre-

. processing of the solar active region and flare data, and we further describe a novel data integration and
sampling methodology. Our dataset covers 4,098 MVTS data collections from active regions occurring
between May 2010 and December 2018, includes 51 flare-predictive parameters, and integrates over
10,000 flare reports. Potential directions toward expansion of the time series, either “horizontally” - by
adding more prediction-specific parameters, or “vertically” — by generalizing flare into integrated solar
eruption prediction, are also explained. The immediate tasks enabled by the disseminated dataset
include: optimization of solar flare prediction and detailed investigation for elusive flare predictors or
precursors, with both operational (research-to-operations), and basic research (operations-to-research)
benefits potentially following in the future.

Background & Summary

Solar flares and coronal mass ejections (CMEs)'~* are events occurring in the solar corona and heliosphere that
: can have a major negative impact on our technology-dependent society*. A flare is characterized by a sudden
. brightening by orders of magnitude in Extreme Ultra-Violet (EUV) and X-ray and, for large events, gamma-ray
. emissions, from a small area on the Sun, lasting from minutes to a few hours. High-frequency electromagnetic
: radiation and particles from solar flares and eruptions are filtered out by Earth’s atmosphere, but they pose a
. hazard to astronauts and sensitive equipment in space. A strong enough CME can induce currents in the Earth’s

atmosphere and large networks of conductive materials such as power grids, leading to surges, tripping, and
: melting of transformers.

A 2008 report by the National Research Council concluded that a solar superstorm similar to the 1859

* Carrington event® could cripple the entire US power grid for months and cause an economic damage of 1 to 2
- trillion dollars®. In response, the White House released the National Space Weather Strategy and Space Weather
: Action Plan? in 2015 as a roadmap for research aimed at predicting and mitigating the effects of solar eruptive

activity. The plan suggests leveraging machine learning for space weather predictions, with vested interest in this

recommended approach reiterated recently’. Key for this approach is to produce benchmark datasets for testing

flare prediction algorithms, as mentioned in®’.
: The benchmark dataset described in this work is intended as a testbed for solar physicists or machine learning
© practitioners, by providing a cleaned, integrated, and readily available dataset with data verified from multiple
. sources. Successful flare predictions via machine learning models trained and tested on this dataset intend to (1)
© tackle a central problem in space weather forecasting and (2) help identify physical mechanisms pertaining, or

even giving rise, to solar flares. This dataset is a reliable resource for providing an unbiased comparison between
: results from various solar flare prediction algorithms. Without the use of a fixed dataset, such as the one presented
. here, discrepancies in performance evaluation metrics between different machine learning methods cannot be
. attributed unambiguously to the differences in the dataset or the quality of the methods at hand.
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Fig. 1 The block diagram of our dataset generation process, with principal procedures of flare cleaning (in red),
MVTS generation and flare integration (in blue), and the eventual machine-learning-ready dataset creation (in
orange).

MVTS Dataset
for Space
Weather
Analytics

Our benchmark dataset mainly relies on Spaceweather HMI Active Region Patches (SHARPs)' available from
the Joint Science Operations Center (JSOC). This product stems from solar vector magnetograms obtained by the
Helioseismic Magnetic Imager (HMI)'! onboard the Solar Dynamics Observatory (SDO)'2. HMI observes the
Sun almost continuously and provides information on the magnetic field in the solar photosphere.

Since the cause of a solar flare is the sudden release of magnetic energy in the solar corona (see, e.g. - see
also" for comprehensive reviews) it makes sense to use available magnetic field information for modeling and
flare prediction?*?!. However, much of the HMI data is irrelevant for flare prediction since flares are known to
originate from active regions; namely, areas of high concentration of magnetic flux. Thus, HMI active region
patches were first created””. The HARP is a data pipeline product that identifies and tracks active regions in the
solar photosphere, providing trimmed vector magnetic field maps. HARPs were then enriched with metadata
(i.e., physical parameters inferred by magnetograms) of space weather forecasting interest, giving rise to Space
Weather HARPs, or SHARPs!?.

Information on possible flares occurring in the region of interest, however, is missing from the SHARPs. The
National Oceanic and Atmospheric Administration (NOAA) operates Geostationary Operational Environmental
Satellites (GOES) that have X-ray and particle detectors onboard. Since 1975, GOES have been detecting solar
flares, and a catalog of all detected flares is available from NOAA? while flare reports are available through
the Heliophysics Events Knowledgebase (HEK)?%. These flares are classified logarithmically via their peak X-ray
flux as A, B, C, M and X. The GOES flare catalog contains the flare time (start, peak, end), GOES class, peak
X-ray flux, a spatial location on the solar disk, and associated NOAA active region (AR) number, where available.
Additionally, the Solar Region Summary (SRS) product provides daily data on NOAA-numbered ARs, including
mean location and sunspot classification.

Flares have also been automatically detected by various solar feature detection modules?, and are regularly
collected in various databases. These modules include Flare Detective?®, SSW Latest Events?’, RHESSI*® and
Hinode flare observations®. Reports from two of these modules, SSW Latest Events and Hinode Flare Catalog,
are used here as auxiliary data sources to verify the missing locations of flares in the GOES catalog. The methods
utilized in the process of cleaning, verifying, and combining the individual flare source data are described in the
following section.

13-18
>

Methods

Creating benchmark datasets for solar flare prediction based on magnetic maps of the Sun’s surface is a three-fold
problem: first, solar flare reports from GOES need to be cleaned, with conflicting information resolved. Second,
solar flare reports need to be matched with solar magnetic data. This can be done by either utilizing availa-
ble NOAA AR numbers, if matched to HARP numbers present in SHARPs, or by performing a spatiotemporal
overlap procedure between the onset time and location of a flare and the bounding box of an HMI active region
patch (HARP) at that given time. Finally, sampling biases need to be eliminated when creating labeled datasets
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for training machine learning models. A schematic overview of the overall MVTS dataset generation process is
presented in Fig. 1.

Curating the NOAA active region database and NOAA-to-HARP associations. The list of NOAA
active regions is a fundamental component of our data integration methodology. We use the NOAA active region
(AR) locations to augment unknown or unreported flare locations (described in the next section). More impor-
tantly, the NOAA AR numbers are utilized for the integration of flare annotations to our MVTS through the
HARP to NOAA AR number. Each HARPNUM (identifier of HARPs) is associated with zero, one, or more
NOAA AR numbers. The list of HARPNUM associated to NOAA AR numbers is provided by JSOC and is availa-
ble online in*’. However, we have identified two issues with NOAA ARs: there are (1) a number of instances where
NOAA AR daily reports have unexpected location changes and (2) instances of faulty associations, where either
NOAA AR numbers were not associated with a HARPNUM when they should be, or vice versa.

As was described in®!, to identify unexpected location reports, we utilize the daily heliographic latitude and
longitude (the latter expressed as central meridian distance) changes for each NOAA AR report. Given this infor-
mation, we identify abnormal location changes in the data by binning them based on their latitudes. The binning
process utilized four groups of latitudinal zones covering the entire earthward solar hemisphere. These zones
have absolute latitudes (i.e., repeated in solar North and South) (0°, 10°), (10°, 20°), (20°, 30°) and (30°, 90°). We
found the median longitudinal displacement for each of these, and their distributions are shown in Fig. S.1 (in
Supplementary File). The active regions were generally found to move between 13° to 14° westward daily, due to
the solar differential rotation, as consistent with expectations. However, in cases identified as outliers we found
that some active regions either did not change location or moved over 25° on a single day. Similarly, we observed
outliers for latitudes, where the active region latitude changed over 5° on a single day.

Three example cases of anomalous NOAA AR movements and our corrections are shown in Fig. S.2 (in
Supplementary File). Most of these outliers can be explained by a single misreporting, often in the first or the last
observation close to the limbs, as shown in Fig. S.2(a,b). However, in some cases, the error propagated through
the end of active region’s lifespan and multiple records had to be fixed; see the example in Fig. S.2(c). In Table S.1
(provided in Supplementary File), we show these identified NOAA AR daily report outliers and present their
updated locations. In total, we have fixed the locations of 59 active regions.

Based on the updated NOAA AR locations, we then performed a spatiotemporal co-occurrence analysis
between NOAA ARs and HARP locations, as described in®!. The NOAA AR centroid locations are reported
daily as a point coordinate. HARPs have bounding boxes reported every 12 minutes. We extrapolate the locations
of the NOAA ARs based on the known solar differential rotation, using +12 hours for every daily NOAA SRS
report. Then, for each of these records, we check the temporal co-existence and spatiotemporal co-occurrence
intervals between NOAA ARs and reportedly associated HARPs. Note that (temporal) co-existence refers to the
time ranges where both NOAA ARs and HARPs are reported, while (spatiotemporal) co-occurrence refers to the
times where a NOAA AR and a HARP co-exist, and the point coordinate of the NOAA AR lies within the HARP
bounding box. Using this information, we calculate a co-occurrence factor (cof) defined as

Length of co-existence window

B Length of co-occurrence window ' (1)

In addition, we calculated the average minimum distance between the NOAA AR coordinate and the HARP
bounding box during the time intervals they co-exist, which is denoted as (1,4 For this calculation, the dis-
tance is calculated between the interpolated NOAA AR coordinate and the nearest point along the edge of the
HARP bounding box, with NOAA AR coordinates either inside or touching the HARP bounding box considered
to have a zero distance.

While calculating these values, we determined that some of the reported NOAA AR number to HARPNUM
associations could not be verified with spatiotemporal co-occurrence analysis. We found, in total, 156 discrepan-
cies in the original HARPNUM to NOAA AR number associations®, where for 66 associations the given NOAA
AR do not spatially and/or temporally overlap (intersect) with the HARP’s trajectory. For the remaining 90 asso-
ciations, we discovered co-occurrences with unreported NOAA AR numbers.

After careful visual examination together with our co-occurrence similarity indexes (i.e., cof and p,i,aisr)> We
manually updated 116 of the 156 individual HARP-to-NOAA associations (66 added and 50 removed). The dis-
crepancies and applied updates are presented in Table S.2 (provided in Supplementary File) along with similarity
indices, HARP and NOAA AR lifespans, co-existence and co-occurrence intervals. The full list of 156 discrepan-
cies found are also provided as an addendum with remarks.

Solar flare reports. The NOAA/GOES observations®? measure disk-integrated fluxes between 0.1-0.8 nm
from the Sun using the X-ray Sensors (XRS). When a sudden, yet persistent, X-ray flux increase is detected, the
event is flagged as a likely flare. Manual review is performed by NOAA forecasters to produce the final NOAA
flare list. The GOES satellites are subject to eclipses by the Earth in the spring and fall, leading to interruptions
(blackouts) in the X-ray flux record lasting from minutes to one hour. The background X-ray radiation emitted by
the Sun is usually at the level of A- or B-class flares, making it difficult to capture all flares of these classes during
higher-activity phases of the solar cycle. C-, M- and X-class flares, on the other hand, are seldom missed, except
in periods of intense activity, when the background may even exceed C1.0. Figure 2 presents an example GOES
X-ray flux series annotated with some flare occurrences. As data from the XRS has no spatial information, NOAA
uses data from the Solar X-ray Imager (SXI) on the same GOES satellites®®, which captures full-disk images with
one-minute cadence in filter bands ranging from 0.6 to 6 nm, as well as other data sources, aiming to pin-point
each flare location.
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Fig. 2 GOESI15 1-8 A solar X-ray flux from 2011-02-14 to 2011-02-15. The GOES flare classification is provided
on the minor y-axis. The plot also includes annotations of flares exceeding GOES class C5.0, with red vertical
lines indicating the flares’ peak time. The example interval also shows that during these two days of intense
activity background X-ray flux was high, making it difficult to identify small flares. Notice also that the first two
C-class flares peak essentially simultaneously (i.e., within 1 minute from each other).

This spatiotemporal information on solar flares allows NOAA’s Space Weather Prediction Center (SWPC)
to co-locate the active region responsible for a given flare. Nonetheless, the GOES catalog is not perfect: the
locations and NOAA active region numbers are missing for many B-, C- and even a few M-class flares. Our goal
is to create a set of clean, cross-checked flare reports. Therefore, we integrated the centroid locations of NOAA
ARs to GOES flare reports without an explicit spatial location (i.e., only the NOAA AR numbers are listed), and
later cross-checked these locations with two independent feature reporting modules, SSW Latest Events?” and
Hinode-XRT?. Hereafter, we will refer to flare reports from SSW Latest Events and Hinode-XRT modules as SSW
and XRT flares, respectively.

Data acquisition. 'We considered the GOES flare catalog as our primary data source. We then used SSW and XRT
flares along with NOAA AR locations to enhance, verify, and clean the data. The GOES flare reports were down-
loaded using SunPy modules®, which obtain data from HEK. The SSW flares were downloaded directly from
their web archive?’, due to the inconsistencies between the web archive and HEK records. The XRT flares were
downloaded directly from the online XRT Flare Catalog®. Additionally, we downloaded the 1-minute averaged
GOES X-ray flux (0.1 to 0.8 nm) time series available from NOAA, as well as the NOAA AR data from the NOAA
Solar Region Summary (SRS)>.

During the period of interest that spans more than eight years (2010-05-01 to 2018-12-31), there are 14,401
GOES flare records, distributed into 50 X-, 742 M-, 7,754 C- and 5,817 B-, and 38 A-class events. We also down-
loaded 14,570 XRT flares and 14,443 SSW flares. All three data sources have the following common attributes:
start time, peak time, end time, NOAA active region number, GOES class, and point location (i.e., heliographic
latitude and longitude (central meridian distance), in degrees). Additionally, we utilize the daily NOAA active
region list, which includes both numbered sunspot and plage regions, totaling about 16,045 daily NOAA active
region reports.

Data enhancement and verification for GOES flares. 'We schematically show our flare enhancement and
cross-checking procedures in Fig. 3. The first step of the procedure involves a data enrichment process for GOES
flares lacking an explicit point location, using their associated NOAA active regions. Then, we attempt to match
each GOES flare to an SSW and an XRT flare using the temporal attributes (start and end times of flares) and flare
magnitudes. For the GOES flares that we now have location information and matched secondary flare source
information, we cross-check the flare locations from these three data sources to verify their authenticity. Lastly,
if the GOES flare locations are still missing or could not be verified using the locations from secondary flare data
sources, we perform a secondary location augmentation using only the secondary data sources (SSW and XRT).

Among 14,401 GOES flares, only 4,999 have explicit locations and 9,402 do not. For these missing locations
we use the associated NOAA active region locations as a proxy. With NOAA active region location augmentation,
we determined the approximate locations of 7,104 flares. The vast majority of the remaining 2,298 GOES flares
with undetermined locations were A-, B- and C-class flares (2,265 or 98.56% of them). These cases did not have
location information or NOAA active region association.

For those GOES flares with original or augmented location information we found the corresponding SSW
flare report, which has the same magnitude and is temporally overlapping. In case of multiple candidate SSW flare
reports, we picked the spatially closest one to the GOES flare. The same procedure was applied for XRT flares. In
the end, for 14,239 (out of 14,401) GOES flares, we found at least one flare report from SSW or XRT flares; and
for 12,716 of them we found a flare report from both SSW and XRT flares. Only 162 GOES flares with location
information, could not be matched to either SSW or XRT flares.

For each matched flare, we also found the distances among GOES, SSW, and XRT reported coordinates.
Namely, we calculated three distances: (1) dgs - distance between GOES and SSW coordinates, (2) dgx — distance
between GOES and XRT coordinates, and (3) dgy — distance between SSW and XRT coordinates. We used these
distances in our distance-based verification step. An example illustration of distances between GOES-, SSW-, and
XRT-reported flare coordinates is shown in Fig. S.3 (provided in Supplementary File). The reported locations
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Fig. 3 Overview of our 4-step flare data enhancement and cross-cheking procedures as well as accompanied
enhancements after each step (brief explanations also provided). The cross-checking with secondary flare

data sources (SSW Latest Events and Hinode-XRT) results in three sets of flare reports: (1) primary-verified,
where the locations of the primary flare reports (from GOES) are verified by at least one secondary source;

(2) secondary-verified, where GOES reported locations could not be verified but SSW and XRT reported
locations are in agreement; and (3) non-verified, where flare location from any of the three data sources cannot
be verified.

from GOES, SSW, and XRT are usually different. While most of these differences are negligible, some are not.
There are a variety of reasonable explanations for these differences, including the numerical accuracy of the
reported coordinate (i.e., the number of decimal places reported), use of approximate active region location aug-
mentation (both by us and by XRT), or pixel bleeding®. However, for the large differences, often times reporting
modules either do not report correct coordinates (such as, say, flares at extreme heliographic latitudes) or there
are multiple flares occurring close to the solar limbs.

In matching the locations of GOES, SSW and XRT flares, we chose to use 275 arcsec (in helioprojective coor-
dinates®) as the proximity threshold for distance-based verification. We determined this threshold after a careful
examination of M- and X-class flares, which had relatively large distances (>150arcsec) in their reported loca-
tions from different data sources. The reported locations of the examined flares and the notes and links to those
flare reports can be found in the additional files of the dataset. We also acknowledge that the coordinate system
we use for the verification, Helioprojective Cartesian (HPC), carries a bias for flares and active regions occurring
near the limbs, due to foreshortening. This implies that uncertainties in flare locations derived from pixel coor-
dinates will be much higher for flares near the limbs. We used the more inclusive 275 arcsec threshold to reduce
the possible bias in practice.

In the course of flare verification process, if for a GOES flare there is at least one secondary flare report within
275arcsec (dgx < 275 or dgs < 275), we mark that flare as primary-verified. If this is not the case, but the distance
between the SSW and XRT reported locations is less than 275 arcsec (dgy < 275), we mark it as secondary-verified.
For secondary-verified flares, the reported GOES location is not close to either of the SSW or XRT locations;
however, SSW and XRT locations are in agreement. If a flare is neither primary- nor secondary-verified, we mark
it as non-verified. If a flare is marked as verified, either primary or secondary, it means that its existence is con-
firmed with at least two independent observations and detections. Note that the need for a secondary-verification
step using NOAA AR location information could be an artifact of our GOES flare location augmentation.
Although the use of the NOAA AR interpolated center is a suitable way to assign flare locations, a flare could
easily have occurred near the edge of the NOAA AR as opposed to its interpolated center location. Our threshold
of 275 arcsec corresponds roughly to the linear dimensions of a sizable active region.

We present the distributions of the minimum distances between either GOES and SSW or GOES and XRT
reported locations in Fig. S.4 (in Supplementary File). It can be seen that the vast majority of the >M1.0 flares
have distance smaller than 150 arcsec between the GOES location and the secondary location (from either SSW
or XRT). We also present the heatmaps of the minimum distance used for verification for different classes of flares
for both primary- and secondary-verified in Fig. S.5 (in Supplementary File). The relatively higher distances
(>150arcsec) between primary and secondary locations are scattered across the disk. Thus, we can claim that the
intrinsic bias of the HPC coordinate system close to the solar limbs is not propagated to the data.

The last step of our flare enhancement procedure is the augmentation of the flare record with the second-
ary flare locations. For each secondary-verified flare, the GOES reported location is replaced with the XRT
location, while the XRT locations are verified using the SSW locations. The latitudes of primary-verified,
secondary-verified, and non-verified flares over time are shown in Fig. S.6(a—c), respectively (in Supplementary
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Fig. 4 Scatter plot of the primary- and secondary-verified heliographic latitudes of flares (in degrees), as a
function of peak times, ranging between May 1, 2010 and December 31, 2018.
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Fig. 5 The number of flares for each GOES flare class after flare cross-checking procedures were applied. Blue
bars show the primary-verified flares, with cross-checked GOES locations, orange bars show the secondary-
verified flares whose GOES location could not be verified and green bars show the non-verified flares.

File). We notice a concentration of non-verified flares over the second half of 2010, when the SSW Latest Events
module was not operating. Naturally, then, this period does not include any secondary verified flares. We also see
a few clusters in non-verified flares which correspond to outages of the SDO/AIA instrument.

Resulting flares.  After the NOAA AR augmentation and flare cross-checking steps, between May 1 2010 and
December 31, 2018 we have 10,878 primary verified, 2,763 secondary verified, and 760 non-verified GOES flares.
There are 50 X-class, 730 M-class, 7,556 C-class, and 5,305 A- or B-class flares that were verified (primary or sec-
ondary). All X-class flares are primary verified. Only 12 out of 742 M-class (1.6%) are not verified. About 97.4%
of C-class flares and 90.6% of A- and B-class flares are verified. Given their small size and abundance, the majority
of non-verified flares are, therefore, A- and B-class events.

Figure 4 shows histograms of verified and non-verified flares per flare class, while Fig. S.7 (in Supplementary
File) shows the spatial distribution of verified and non-verified flares. Figure 5 depicts the scatter plot of verified
flare latitudes and peak times as a function of time, which is reminiscent of the long known butterfly diagram for
sunspots®’.

SHARP data and magnetic field parameters. A HARP data collection (and the corresponding
SHARPs) consist of a 12-minute sampled time series of spatial cutouts including the vector magnetic field, con-
tinuum intensity, and maps or values of other quantities. Each HARP may contain one or more solar active
regions within the cutout region. Each HARP series is labeled with a unique identifier, HARPNUM. The number of
observations in HARP series depends on how long the active region(s) it encloses were visible on the solar disk.

There are two types of HARPs (and associated SHARP metadata) available from JSOC: the definitive and the
near real-time (NRT). The NRT series is useful for space weather forecasting in an operational context as it is
processed within three hours of acquisition. However, the NRT dataset pipeline changes the bounding box size
of HARPs as they evolve and assigns different identifiers to active regions within the series that might merge or
split as they traverse the disk. This makes it difficult to associate flares to specific HARPs and this is why we have
chosen to utilize the definitive series instead.

The definitive series is processed after observing a HARP for its entire rotation across the earthward solar hem-
isphere. A maximal bounding box, which can often encompasses multiple active regions within a HARP is chosen
and remains fixed in this case. Active regions that merge or split are also tracked as a single, all-encompassing
HARP. The higher data quality and consistency makes the definitive series a better option for creating benchmark
datasets that increase our physical understanding of space weather phenomena and their possible links to the
photospheric magnetic field, including the identification and optimization of solar flare predictors.
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HARP magnetogram time series are available in two coordinate systems: native CCD and Lambert cylindrical
equal area (CEA™). In the CEA projection, the vector magnetic field is decomposed into radial (), westward (¢),
and southward () components. This projection is very convenient for calculating various extensive (i.e., area- or
size-dependent) quantities, such as the total area of the active region, its magnetic flux, etc. For our dataset, we
have used the definitive series mapped to CEA projection with 720 seconds cadence (hmi . Sharp cea_ 720s).
Provided that this dataset results in improved flare forecasting performance, the next step will be the creation of
an NRT dataset for the pre-operational testing of prediction algorithms. Any performance discrepancies between
the two series could then be attributed to caveats and shortcomings of the NRT dataset.

Magnetic field parameters. It has become generally accepted that, since flares are predominantly magnetic phe-
nomena, a viable flare forecast could rely on the choice of adequate magnetic field properties and prediction
methods (see, e.g.2**42). Therefore, we use the definitive hmi.Sharp cea 720s data series to calculate
the parameters discussed in?! using the vector magnetic field. We have chosen to recalculate these parameters
ourselves to, first, validate these data and achieve better maintainability and, second, complement them with
parameters not currently present in SHARP headers but considered important for flare and coronal mass ejection
prediction.

We emphasize that many, but by no means all, of the existing flare-prediction studies did not consider these
magnetic field parameters as time series. Instead, forecasting relied on cross-sectional, or point-in-time (snap-
shot) parameter values*>-#%. There are a few exceptions: Gallagher et al.**, Falconer ef al.*°, and Leka et al.*’ used
the rate or previous flaring in an active region. Leka et al.*’ also derived two coeflicients (slope and intercept of
a linear fit) of flare-predictive time series parameters. Lee et al.*® used the temporal change in active region area
and McCloskey et al.*’ considered the evolution of sunspot characteristics as a flare predictor. Boucheron et al.*
considered time evolution parameters for predicting the flare size and time-to-flare.

To facilitate both point-in-time and time series analysis, we derive a set of magnetic field parameters from
individual region patches and transform them into multivariate time series over the entire length of a given
HARP series. This way we enable the analysis of the active region evolution by systematically analyzing
high-cadence time series for the parameters we calculate. Full time series, second-order moments thereof, as well
as point-in-time values chosen within these time series, for any given physical parameter, are then fully enabled
for prediction. To our knowledge, this avenue has yet to be systematically investigated for space weather predic-
tion and we believe it will be promising for this purpose.

A number of physically important and potentially flare-predictive magnetic field parameters have been listed
by?! and are reproduced in Table 1. However, as previously mentioned, several of our MVTS parameters (marked
with an asterisk in Table 1) are not included in the original SHARP header information. For the generation of
these parameters, we used the following information: B, (radial component of the magnetic field), B, (southward/
poloidal component of the magnetic field), B, (westward/toroidal component of the magnetic field), BITMAP
(active region boundary), MAGNETOGRAM (line of sight magnetogram), and CONF_DISAMB (confidence map
of magnetic field disambiguation). Using these segments as inputs to our magnetic field parameter calculation
module®!, we generated time series of all magnetic field parameters listed in Table 1. These recalculated parame-
ters were then compared against the SHARP keyword values for correctness. Note that, as was discussed in*,
there are daily variations of the radial velocity of the spacecraft inherent to its geosynchronous orbit, which can
introduce periodicities in some of the parameters!’. As our calculations are based on the work of'’, our recalcu-
lated values unavoidably exhibit the same variations that were discussed in that work.

Cleaning the MVTS. 'The cleaning steps we took in our MVTS account for empty SHARPs, location-based filter-
ing, and missing values. Firstly, we removed the empty SHARPs, which possibly resulted due to post-processing
merging of NRT HARPs. After this, we recovered 4,098 MVTS files representing over 520,000 hours of solar
activity. Furthermore, about 8.34% of timestamps were missing in the time series and were filled with null values
to maintain a fixed cadence of 12 minutes. Potential reasons for these data gaps are, first, gaps in the SHARP series
when the HARP is close to the eastern solar limb or when it is about to rotate beyond the western limb and, sec-
ond, the SDO eclipse seasons.

To warn about severe projection effects and the low signal-to-noise ratio for magnetic field measurements
near solar limbs, while still allowing the interested researchers to perform limb-to-limb analyses, we added a
Boolean flag, TMFI (trusted magnetic field information) to our MVTS dataset. TMFI was set to True for regions
with (1) CMD within 70 degrees from the solar disk center and (2) SHARP QUALITY index equal to zero. A
non-zero QUALITY™ value in the SHARP header corresponds to magnetic field observables created under
sub-optimal conditions and hence these records are flagged as not trustworthy by setting TMFI as False.

Flare integration with SHARP data. The NOAA/GOES flare reports have three temporal attributes (start,
peak and end times) and two spatial attributes, namely the explicit coordinate location and implicit NOAA AR
number. Moreover, as the HARP detection module identifies smaller active regions and reorganizes the reports
for the definitive series, HARPNUMs (identifiers of HARP series) do not show a one-to-one correspondence with
NOAA AR numbers. There are some SHARP series not mapped to any NOAA ARs, while others are mapped to
multiple NOAA ARs. The list of HARPNUM to NOAA AR number associations are provided by JSOC*’. However,
we identified a few discrepancies in that matching and updated this list as described earlier.

Due to these inconsistencies between SHARPs and flare reports, we apply two flare integration procedures
based on (1) NOAA AR numbers and (2) location attributes. Utilizing the integrated flare information produced
by these two methods, we create eight additional time series parameters of flare history for each MVTS (i.e., four
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Magnetic Field
Parameters from?! Description Formula
ABSNJZH* Absolute value of the net current helicity in G2/m H, o [¥B, - |
EPSX*7 Sum of X-component of normalized Lorentz force OF, o %
EPSY*7 Sum of Y-component of normalized Lorentz force OF, — ;ZBZ

57 . Z(Bf + B Bf)
EPSZ* Sum of Z-component of normalized Lorentz force SF, 72

B
MEANALP># Mean twist parameter Qgopa) X E;‘{B' ZB Z
'z
MEANGAM® Mean inclination angle 5= %Zarctan (ﬁ)
z
MEANGBH Mean value of the horizontal field gradient VB, = lﬁz, (% + %ﬂ)
x y
MEANGBTS Mean value of the total field gradient [VB, = %Z (% + %1:)
MEANGBZ*¢ Mean value of the vertical field gradient VB, = %Z (’ZBZ 98, Z)
Ix
56 : . + 1 BB}, 9B
MEAN]JZD Mean vertical current density J, ﬁ —= = —"
MEAN]JZH% Mean current helicity H, x ZB -,
MEANPOT® Mean photospheric excess magnetic energy density P ﬁz (B9 — B :
- gObs _ gPot
MEANSHR* Mean shear angle r= 7Zarccos 0% 5P
Total unsigned flux around high gradient polari
%60 g gh g p ty — ithi
R_VALUE inversion lines using the B, component ©=31By|. dA (within R mask)
SAVNCPP>* Sum of the absolute value of the net current per polarity Teoum € ZB; J.dA ‘ + |82 144
SHRGT45% Area with shear angle greater than 45 degrees %‘:“”450
TOTBSQ**’ Total magnitude of Lorentz force F x YB?
TOTEX*>7 Sum of X-component of Lorentz force F, o< 3B,B,dA
TOTFY*>7 Sum of Y-component of Lorentz force F, o< BB dA
TOTFZ*7 Sum of Z-component of Lorentz force E x Z(Bf + B; - B? )dA
. . . . Obs Pot 2

TOTPOT*® Total photospheric magnetic energy density Do Z(E’ _B ) dA
TOTUSJH>® Total unsigned current helicity H, < 2B, ],
TOTUSJZ*¢ Total unsigned vertical current Voot = 22|dA
USFLUX*® Total unsigned flux in Maxwells ®=3"|B,|dA

Table 1. Computed magnetic field parameters. Parameters marked with asteriks (*) are discussed in?!, but are
not available in SHARP headers.

flare classes (B, C, M, and X) for each of the two separate procedures (NOAA AR numbers and locations)). The
history series signify the identifier, magnitude, and, when available, NOAA AR number of the flares. Values in
the flare history series show the number of flares from a particular class occurring in a given 12-minute interval,
associated with a particular HARP record. The flare annotations are inserted in the series at the timestamps clos-
est to the flare peak times.

Using NOAA active region numbers. We find all NOAA AR numbers that correspond to a given HARPNUM and
search the flare reports only for those NOAA ARs. We then create NOAA AR number-based flare history series for
B-, C-, M-, and X-class flares separately. All associated flares that occur in the HARP’s lifespan are added. If there
are no flares for a particular NOAA AR number or if the resulting subset of associated flares did not occur during
the lifespan of the respective HARP series, then no flares are integrated.

Using location attributes.  For each bounding box in the spatiotemporal trajectory of active regions (obtained
using LAT_MIN, LON_MIN, LAT_MAX, and LON_MAX keywords of SHARP headers), we perform a spatio-
temporal search on the flare reports. We initially perform a temporal search for flares that occurred during the
lifespan of the SHARP series. Next, for each flare report, we check if its spatial location is within the bounding
box of the HARP region at its peak time. The result is a list of flares that spatiotemporally overlap with the SHARP
series, and we use these series to create the location-based flare history series for B-, C-, M-, and X-class flares.

X-ray flux integration. In addition to flare history parameters, we integrate the 1-minute averaged GOES
X-ray flux data into our MVTS. As discussed already, many NOAA/GOES satellites have an X-ray sensor (XRS)
onboard. The first GOES to have an XRS capable of continuous monitoring was GOES-5 and since then many
GOES satellites have been used as NOAA’s primary and secondary sources of solar X-ray flux (Table S.3 provided
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in Supplementary File). Flying in geostationary orbits, these satellites experience a several week period around
each equinox when the Earth (or more rarely the Moon) intercepts the line-of-sight between the satellite and the
Sun for periods of minutes up to one hour. The eclipse start times plotted against the duration of data gaps from
GOES primary satellite data are shown in Fig. S.8(a) (provided in Supplementary File). The X-ray data from
primary satellites has a downtime of 1.43% over the period of our dataset. During these downtimes, data from
the secondary satellites was used to fill the missing values, which reduced the downtime to 0.80%. The remaining
gaps are shown in Fig. S.8(b).

Due to the different cadence between the 1-minute X-ray flux data and the 12-minute MVTS, we chose to
report the maximum X-ray flux during the 12-minute interval centered around the timestamps of MVTS records.
We also included a quality flag (XRQUALITY) to identify X-ray blackouts and data quality issues, which indicates
how many of the X-ray recordings in a particular 12-minute interval are valid. The quality flag ranges between 0,
when there is a total blackout and no data are available in the 12-minute interval, and 12, when all of the 1-minute
averaged data are present for that time period. It should be noted that while flare reports are specific to particular
active regions, the X-ray flux is measured over the entire Sun.

Task-based dataset generation. Our main data product is 4,098 MVTS of solar active region parameters
annotated with a collection of co-occurring flares. Each MVTS is directly and uniquely associated to a SHARP.
We now establish a methodology for creating machine-learning-ready time series datasets and provide the source
code for generating them. The knowledge discovery process starts with determining the data mining task. The
entire process of data handling and preparation should be tailored for the task at hand. Supervised machine
learning tasks can be loosely separated into two categories based on the characteristics of the target variables:
classification (if the target variable is discrete) and regression (if the target variable is continuous). For the task of
dataset generation, we focus on supervised classification based on discrete flare labels.

An important step towards accelerating machine learning-based solar physics analyses is providing bench-
mark datasets that are cleaned, partitioned, properly sliced and labeled, as well as consistently balanced based
on the number and ratio of flaring (minority) class instances across partitions. We have already discussed the
cleaning procedures applied and will now review the partitioning, slicing, labeling, and balancing procedures. We
would like to note here that we have not applied any data transformation or dimensionality reduction procedures
because these procedures are dependent on the task and selected models.

Partitioning.  The first step in creating a machine learning model is to determine the task, and therefore, to
specify the target classes. Target classes are determined using flare intensity threshold criteria. For a common
binary classification schema, where M- or X-class flares (>M1.0) are considered flaring and lower magnitude
flares (<M1.0) and flare quiet instances are considered non-flaring, target class specification will use a single
threshold value [M1.0]. For creating a 4-class classification schema (e.g., B-class or lower (<B9.9), C-class (>C1.0
and <C9.9), M-class (>M1.0 and <M9.9), and X-class (>X1.0)), we can use [C1.0, M1.0, X1.0] as the threshold
criteria. Different threshold criteria can be produced for different tasks.

It is important to remember that large flares (M- or X-class), which have the greatest impacts on the space
environment and are thus the most commonly targeted in predictive analyses, are scarce. In our dataset, we have
730 M-class flares and only 50 X-class flares, corresponding to a mere ~6.8% of all flare records included in the
dataset. Among 4,098 MVTS, only 27 contain X-class flares and 178 have M-class flares, corresponding to a slim
~5% of the total. 3,293 MVTS do not have any flares (including B- or C-class flares).

In machine learning applications the creation of validation datasets is usually performed by holding out parts
of datasets one or more times, so that the models can learn from the training sets and generalize on samples they
have never seen before. Given this scarcity, we propose a more robust validation strategy for machine learning
applications to solar flare prediction: time-segmented stratification. Besides scarcity, time-segmented stratification
is dictated by possible correlations between different time series segments stemming from the same MVTS.

Our stratification method separates the dataset into unequal time intervals (partitions). These different inter-
vals, however, achieve similar total numbers of major flares (i.e., members of the minority class) in each partition.
For example, in a partitioned MVTS with balanced minority class populations, a total of 450 M- and X-class flares
split between five partitions will give rise to rough totals of 90 M-/X-class flares per partition.

With this method, we can (1) have non-overlapping time segments in each partition, so that the training and
testing samples rely on different MVTS, and (2) preserve the number of minority instances across all partitions
as much as possible.

Slicing and labeling.  The following partitioning is to methodically slice and label MVTS based on a desired pre-
diction scenario. To achieve that, we introduce the observation window, latency, and prediction window concepts.
We use the observation window length (T,,,) to determine the duration of time series slices for the sampling of
predictive parameters. To label each of these slices with the appropriate flare occurrence, we determine the latency
(L) and prediction window (T},.;) lengths. Latency represents the time interval from the issuing of a forecast (end
of the observation window) to its coming into effect at the start of the prediction window. The prediction window
is then the interval of validity of that forecast. We use T, L, and T, as user-defined input parameters for cus-
tom slicing and labeling.

For a time series slice (i.e., observation, latency and prediction windows) starting at ¢, the observation window
corresponds to the interval at [t t, + T,,,). The prediction window corresponds to the interval at
t, + Ty + L, t; + T, + L + T,,,) - Each instance (slice) are then labeled with the magnitude of the largest
flare (if any) that occurred in that fiArp during the prediction window. A schematic, exemplary scenario of slic-
ing and labeling for a MVTS is presented in Fig. 6.
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Fig. 6 Example slicing and labeling of time series, characterized by an elementary time unit of length 7. Time
steps (¢;) can then be defined at instances corresponding to integer multiples of 7.

Though optional, another important step is to ensure the quality of the individual slices and their labels. There
are three factors that may impact the quality. The first is the lack of trusted magnetic field information, with qual-
ity of individual records in slices checked using the TMFI parameter. The second is the lack of high quality X-ray
flux data. The slices whose prediction window coincides with a prolonged period of unavailable or low quality
X-ray flux data should be eliminated, as possibly missed flare reports during these intervals may mistrain models.
This can be checked using the XRQUALITY parameter. The third is the non-verified flare reports, which can
result in mislabelings, primarily for non-flaring slices whose prediction window coincides with the peak times
of large non-verified flares. For completeness, we provide these non-verified flare reports as an addendum to our
dataset.

Undersampling for class imbalance.  The last step in our dataset generation procedure is adjusting the class distri-
butions, of majority and minority classes, in each partition. Note that the terms, minority and majority, are used
in the context of number of occurrences and not energy levels of flares. Despite different frequencies of large flares
during different parts of solar cycle, the representation of instances from minority class (usually M- or X-class
flares) should be consistently proportional among each time-segmented partition. To achieve this, we can use use
different undersampling or oversampling techniques. We provide an example undersampled dataset as addenda
to our dataset. A more detailed study on undersampling and oversampling for flare prediction is available in our
recent studies®>*.

Extending the datasets. While the dataset generation procedures described here provide a framework for
testing the validity of predictions of solar flares, we envision possible directions to extend and improve the dataset.
We present two methods of extension, namely a “horizontal” and a “vertical” one.

A horizontal extension would be the addition of more time series variables (parameters) to our dataset. These
parameters would add new dimensions to our original dataset in the interest of improving predictions. Possible
horizontal extensions include addtional magnetogram-based metadata parameters, measures of photospheric or
coronal intensity, the latter for various wavelengths, measures of the Doppler velocity and a horizontal velocity
inferred by line-of-sight or vector magnetograms and centered around each 12-minute instance, as well as back-
ground X-ray levels or adjacent morphological features such as X-ray sigmoids, filaments, coronal holes, etc. and
the distance of the active region location from them.

A vertical extension would be an integration of additional phenomena of space weather interest. These
resources, similar to flare reports, could be annotated to enhance the predictive potential of the datasets. Examples
of vertical extensions include: CMEs, filament eruptions, or solar energetic particle (SEP) events.

Data Records

As described throughout this paper, our benchmark dataset MVTS originated from the SHARP data series cov-
ering the period from 2010-05-01 to 2018-08-31. The data records along with supplementary data files are avail-
able through Harvard Dataverse®*, along with usage notes. Each of these MVTS consists of 51 parameters (not
including timestamps). We categorized these parameters into four groups and listed the individual parameters
in each group in Table 2. The time and location parameters include timestamp and bounding box information,
as well as the corresponding NOAA active region number demonstrating the implicit location of active regions.
Location parameters, i.e., LAT_MIN, LON_MIN, LAT_MAX, LON_MAX, show the HARP bounding box loca-
tions. NOAA_AR series signifies the corresponding NOAA active region number, when available. The quality
parameters include magnetic field and X-ray quality information (XRQUALITY) along with the TMFI flag. Two
large groups of parameters are magnetic field and flare history parameters. Details on magnetic field parameters
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Time and Magnetic Field Par ters
Parameter Category Location (Table 1) Flare History Parameters Quality
ABSNJZH EPSX
EPSY EPSZ
TIMESTAMP | MEANALP MEANGAM | BFLARE BFLARE_LABEL? QUALITY
LAT_MIN MEANGBH MEANGBT BFLARE_LOC | BFLARE_LABEL_LOC* XRQUALITY®
LON_MIN MEANGBZ | MEANJZD CFLARE CFLARE_LABEL? CRVALL1
LAT_MAX MEANJZH MEANPOT CFLARE_LOC | CFLARE_LABEL_LOC?* CRVAL2
Individual Parameters
LON_MAX MEANSHR | SAVNCPP MFLARE MFLARE_LABEL* CRLN_OBS
HC_ANGLE | SHRGT45 TOTBSQ MFLARE_LOC | MFLARE_LABEL_LOC? CRLT_OBS
NOAA_AR TOTFX TOTFY XFLARE XFLARE_LABEL? SPEI
TOTFZ TOTPOT XFLARE_LOC | XFLARE_LABEL_LOC* IS_TMFI
TOTUSJH TOTUSJZ XR_MAX®
USFLUX R_VALUE

Table 2. Summary and categorization of the time series parameters in our dataset. *The flare label series (e.g.,
CFLARE_LABEL or XFLARE_LABEL_LOC) are stored as annotations in the form of JSON objects, shown

as follows: { “magnitude” : [GOES class of the flare], “id” : [flare identifier],

“NOAA AR”: [associated NOAA active region number if available], “narn_
source” : [data source where NOAA AR is obtained- GOES, SSW, or XRT]
“verification” : [verification flag- Primary, Secondary, or Non-verified] }.
PXR_MAX series signifies the maximum X-ray flux (from 1-8 Angstrom), while XRQUALITY is the quality flag
showing its quality.

are demonstrated in Table 1. The flare history parameters show the number of associated flares in the form of time
series. Each value (at t;) in these time series shows the number of flares occurred between t; and (f;,+ 12 minutes).
BFLARE, CFLARE, MFLARE, XFLARE series signify the flare counts (of particular classes of flares) integrated
using NOAA active region numbers, while BFLARE_LOC, CFLARE_LOC, MFLARE_LOC, XFLARE_LOC
series are flares integrated using location attributes.

In total, we have 4,098 MVTS in our series. The MVTS files are stored in CSV format and the name of files
correspond to the HARPNUM of the SHARP series. Each file stores 51 time series parameters, equidistributed
with 12 minute cadence.

Technical Validation

Our technical validation can be summarized in two courses of action: (1) the comparison of the magnetic field
parameters we calculated with those provided in SHARP headers, and (2) the cross-checking of the flare reports
we obtained from GOES with the SSW and XRT flares. Our analysis of magnetic field parameters shows con-
sistency with the values reported in SHARP headers, with minimal discrepancies due to minor implementation
differences. In particular, our comparisons show that ~96.6% of our calculated values differ by less than 1%
and 98.1% of them differ by less than 2% from the SHARP values. Most of the differences (~90% in both cases)
between values correspond to the SHRGT45 parameter (Table 1).

Differences between our estimations and SHARP headers in the range 0-1% can be attributed to the
double-precision floating point variables that we utilize for calculations. To our knowledge and understanding,
JSOC calculations used to provide SHARP headers were performed in single precision. This leads to differences
in calculated values from a given algorithm and explains why we used a 1% difference threshold in our validation
step. This said, there are cases of differences between our parameter values and SHARP headers that are above it,
referring mainly to the SHRGT45 parameter and, secondarily, to the MEANSHR parameter. Discrepancies are
due to the fact that we did not include computed uncertainties for the radial (B,), westward (B,), and southward
(Bg) components of the CEA vector magnetic field. The original calculations for the SHARP headers would not
include pixel locations in the SHRGT45 calculation that had a not-a-number (NaN) value in the uncertainty files
for any of these components. Therefore, in case of an unknown error at all pixels in the calculation area, SHARP
headers produce NaN entries while ours calculate a value, which makes our calculations significantly different in
these cases.

The uncertainty files were not included for storage and computational efficiency as well as because the effects
of their omission are overall negligible. Cases with non-negligible differences occur almost exclusively close to the
limbs (i.e., beyond £70 degrees from the central meridian), when magnetic field measurements are generally not
trusted. Such cases, however, are covered by our TMFI flag.

Code availability

Our open-source repositories for MVTS generation, task-based sampling, and model validation is available on
Bitbucket™. Interested parties are encouraged to get involved in the ongoing development for and extensions to
the dataset.
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