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Colonomics is a multi-omics dataset that includes 250 samples: 50 samples from healthy colon mucosa
donors and 100 paired samples from colon cancer patients (tumor/adjacent). From these samples,
Colonomics project includes data from genotyping, DNA methylation, gene expression, whole exome
sequencing and micro-RNAs (miRNAs) expression. It also includes data from copy number variation
(CNV) from tumoral samples. In addition, clinical data from all these samples is available. The aims of
the project were to explore and integrate these datasets to describe colon cancer at molecular level
and to compare normal and tumoral tissues. Also, to improve screening by finding biomarkers for

the diagnosis and prognosis of colon cancer. This project has its own website including four browsers
allowing users to explore Colonomics datasets. Since generated data could be reuse for the scientific
community for exploratory or validation purposes, here we describe omics datasets included in the
Colonomics project as well as results from multi-omics layers integration.
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Fig. 1 Scheme of Colonomics data. Number of samples that remained after quality control for each type of data.
M are healthy colon mucosae, T is tumoral tissue and N is normal tissue adjacent to tumor.

Background & Summary

Colon cancer is a complex disease characterized by an accumulation of alterations at different molecular levels.
Many studies focus on one molecular level, leading to a partial view of the carcinogenic process. Here we pres-
ent Colonomics (https://www.colonomics.org/), a multi-omics dataset that comprises 100 stage IT colon cancer
patients from which samples of tumoral tissue (T) and paired normal adjacent tissue (N) were obtained from
the surgical specimen. Also, 50 samples from healthy colon mucosa obtained at colonoscopy from donors (M)
without cancer were included and used as reference (Fig. 1).

Multiomics data analysis allows to integrate different levels of biological and molecular information to
understand complex diseases as cancer and to move forward towards precision medicine’. The Colonomics
project aims to study the molecular basis of colon cancer through the integrative and large-scale analysis of dif-
ferent molecular data and to identify useful biomarkers of diagnosis and prognosis in colon cancer.

From each sample, DNA and RNA were extracted to obtain molecular data. Thus, extracted DNA was used to
acquire methylation data (using Illumina microarrays), single nucleotide polymorphism (SNP) genotypes and
CNV (using Affymetrix microarrays) and somatic mutations (through whole exome sequencing) in a subset.
RNA was used to obtain gene and miRNAs expression, using Affymetrix microarrays and SOLID sequencing,
respectively. Finally, patient clinical data from all samples were obtained, including follow up.

The analysis of these datasets allowed us to make a descriptive and a comparative snapshot of the molecular
state of cancer cells (T) and, also, to find differences between healthy normal tissue (M), normal tissue adjacent
to tumor (N), and tumoral tissue (T).

The Colonomics project web page (https://www.colonomics.org/) links to the digital data repository of the
University of Barcelona (UB-DD)?® and provides four user friendly web tools that allow an agile and direct vis-
ualization of data.

Methods
Patients and samples. Colon cancer patients were retrospectively selected during 2012 from those that
had received radical surgery in the Bellvitge University Hospital (Barcelona, Spain) between January 1996
and December 2000, and had fresh frozen tumor samples in the hospital biobank. One hundred patients were
included, with the criteria of a confirmed adenocarcinoma of the colon, diagnosed in stage II and the tumor was
microsatellite stable (tested with five markers). Patients should have not received adjuvant therapy and a mini-
mum follow up of three years was requested at the time of selection. A pathologist reviewed the tumor blocks,
confirming diagnosis and that there were no signs of tumor cells when margins were examined. The paired adja-
cent normal mucosa (N) was obtained from the proximal margin, at least 10 cm distant from the tumor (T).
As a control group, 50 healthy mucosa donors (M) were prospectively invited to participate in this study when
they underwent a colonoscopy indicated for screening or symptoms with no evidence of lesions in the colon or
rectum. Table 1 shows the basic clinical characteristics of the samples. The study protocol was approved by The
Clinical Research Ethics Committee (CEIC) of the Bellvitge Hospital. All the recruited individuals provided a
written informed consent to participate in the genetic study. The approval number is PR178/11.

From these 250 samples (100'T, 100N and 50 M), data on gene expression, DNA methylation, SNPs, CNV
and miRNAs were obtained. Whole exome sequencing was analyzed in a subset of 42 tumors and their paired
adjacent normal mucosa. Figure 1 shows the number of samples for each type of data.
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Age | Age | Age Age Age | Age | ColonSite | Colon Site
n Female | Male |min |1Q median | mean |3Q max | Left Right
M |50 23 27 25 52 63 62.5 74 88 23 27
N 100 28 72 43 65 71.5 70.7 78 87 61 39
T 100 28 72 43 65 71.5 70.7 78 87 61 39
All | 250 79 171 25 64 70 69.0 77 88 145 105

Table 1. Clinical characteristics of the 250 samples. M is healthy colon mucosae, T is tumoral tissue and N is
normal tissue adjacent to tumor.

DNA extraction. DNA was extracted from colon tissue by the phenol-chloroform procedure, quantified
using a NanoDrop ND 2000c¢ spectrophotometer (NanoDrop Thermo Scientific, DE, USA) and stored at 4 °C.
Bisulphite conversion of DNA (200-500 ng) was performed according to the manufacturer’s recommendations
for the Illumina Infinium Assay (EZ DNA methylation kit. Zymo Research. Cat. No. D5004). The incubation
profile was 16 cycles at 95 °C for 30 seconds, 50 °C for 60 minutes and a final holding step at 4°C.

RNA isolation. Total RNA was isolated from tissue samples using Exiqon’s miRCURY™ RNA Isolation
Kit (Exiqon, Denmark). For quantification, NanoDrop® ND-1000 Spectrophotometer (Nanodrop technolo-
gies, Wilmington, DE) was used. RNA quality was assessed by gel electrophoresis and RNA 6000 Nano Assay
(Agilent Technologies, Santa Clara, CA). RNA purity was measured with the ratio of absorbance at 269/280 nm
(mean=1.96, sd = 0.04), no differences among tissue types were found. RNA integrity numbers showed good
quality (mean=38.1 for T, and 7.5 for N).

Gene expression data. Affymetrix Human Genome U219 Array Plate platform (Affymetrix, Santa Clara,
CA, USA) was used to obtain gene expression data from isolated RNA. A block experimental design was per-
formed to the 96-array plates to avoid batch effects and sample ids were blinded to laboratory technicians. Robust
Multiarray Average (RMA) algorithm in affy package (version 1.28) from R/Bioconductor* was used to normalize
data. After quality control and normalization 49,386 probesets in 20,070 genes and 246 samples remain for the
analysis: 50 M, 98 N and 98 T (98 paired N/T). Since the array provides multiple probes per gene, a summary gene
expression value for each gene was obtained through a principal components analysis (PCA). We extracted the
first principal component, that captures the highest expression variability, and was rescaled to have the average
expression of the different proves and maximum observed standard deviation. This rescaling was required to
avoid negative expression values of the first PC. Therefore, in addition of the dataset with the measured probes, a
final dataset with a single expression value for each one of the 20,070 genes was obtained.

Methylation data. The Illumina Infinium HumanMethylation 450k BeadChip assay was used to obtain the
DNA methylation profile of the samples. The array interrogates the methylation levels of 485,512 CpG sites cover-
ing 99% of RefSeq genes and 96% of CpG islands>®. To minimize batch effects, samples were randomly distributed
but matching paired samples (N, T) in the same array row (M samples were randomly paired in array rows).

Sample quality and sex concordance was checked using the SNPs of the 450 K array with those of the Affymetrix
Genome-Wide Human SNP 6.0 array (Affymetrix, Santa Clara, USA). A total of 10 samples had to be excluded due
to quality problems and the final dataset contained 240 samples: 96N, 96 T (92 complete pairs of N/T) and 48 M.

Background correction was performed filtering out probes with a detection p-value greater than 0.01 in more
than 5% of the samples. We discarded probes that ambiguously mapped to multiple locations in the human
genome with up to two mismatches’. We also excluded probes that contained SNPs within 10bp of distance.
Finally, a set of 430,086 probes was obtained.

We used (3-values, the Illumina’s standard, to measure methylation level at each locus. 3-values are calcu-
lated using the average probe intensity and they range from 0 to 1, being 3 = 0 the absence of methylation and
=1 a complete methylation. Subset-quantile within array normalization (SWAN) was used to reduce technical
variation within and between arrays® using the Bioconductor package minfi (version 3.0.1)°. A random forest
approach was used for the imputation of missing values.

Genotyping data. Extracted DNA was hybridized to obtain the genotypes of the samples using Affymetrix
Genome-Wide Human SNP 6.0 array (Affymetrix, Santa Clara, USA), which includes near 1 million of SNP
markers. Genotype calling was performed with Corrected Robust Linear Model with Maximum Likelihood
Classification (CRLMM) algorithm as implemented in R/Bioconductor package crlmm (version 1.8)°. A total
of 4 samples were excluded due to quality or sex concordance problems (3 M and 1N) so 146 samples (47 M and
99N) remained for the analysis.

Copy number variation data. The Affymetrix Genome-Wide Human SNP 6.0 genotyping array was used
to infer the copy number aberrations in the tumors. The average inter-marker distance of this array was 700 bp.
Copy number estimate (CNE) was calculated using Affymetrix Power Tools (Version 1.16.1) software!! with
default parameters.

Adjacent locus with a similar CNE were grouped in regions using a segmentation pipeline that had three
steps. First, a smoothing spline was applied to normalize data. Second, change points in CNE pattern were
located using the Vega R package (version 1.35)!? and split into discrete segments. To avoid masking effects, the
stromal content of the tumor samples was taken into account to calculate the thresholds to split the segments.
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Stromal content was estimated using the ESTIMATE R package (version 1.0.13)'® using gene expression data'*.
A hierarchical cluster analysis was performed to divide the samples in 4 clusters reflecting their different levels of
stromal content. A different threshold to split the segments was used for each cluster: £0.5 for low stroma, +-0.4
for medium-low stroma, +0.3 for medium-high stroma and +0.2 for high stroma'®. The third and final step of
the segmentation process consisted in a t-test to compare the mean of consecutive segments and to merge them
in case there are no statistical differences (p-value > le-04). For each segment, the mean of CNE was assigned
as the representative value of the region. 26,423 segments of CNV were found in the 99 T samples (15,646 losses
and 10,777 gains).

miRNA expression data. Isolated RNA was used to obtain the expression of miRNAs. Small RNA Assay
of the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) was used to assess the quality control
of the miRNA fraction following manufacturer’s recommendation. Small RNA-seq was performed through the
SOLID platform. The PureLink miRNA isolation kit was used to construct the libraries of compatible fragments
with SOLiD from an enriched fraction of small RNA. Sequencing microspheres were obtained by applying an
emulsion PCR into an equimolar mixture of 48 libraries followed by an enrichment process before charging in
the reaction chamber. Finally, the reaction to obtain the sequences (of 35nt 4 10nt barcode) from miRNA fraction
was performed by blinded laboratory technicians through the Applied Biosystems SOLiD 4 System. The samples
were randomly distributed among the different sequencing slides to minimize batch effects. The data quality was
estimated using the SOLiD Experimental Tracking System (SETS) software. Parameters such as total number of
reads, proportion of reads with miscalls or proportion of reads with low average quality value (QV) were evalu-
ated for quality control with HTS SOLiD Preprocessing software'®, removing reads containing a miscall as well
as reads containing negative quality scores. All 250 samples showed adequate quality. Quantification of specific
miRNAs was performed mapping the reads to the reference of mature miRNA sequences annotated in miRBase
release 22.1 (October 2018) that contained 2,654 human miRNA sequences'”. The FASTX-toolkit'® was used to
preprocess the miRNA data and to provide compatible sequences for mapping with the Bowtie 1.2.2 aligner®.
Cutadapt®® software was used to trim read adapter and the final table of counts was generated with SAMtools
mpileup v1.82. Finally, 2,641 miRNAs remained for the analysis.

Whole exome sequencing. Genomic DNA from a subset of 42N and T paired samples was sequenced in
the National Center of Genomic Analysis (Barcelona, Spain; CNAG) using the Illumina HiSeq- 2000 platform.
Samples selection was required due to budgetary constraints. Samples included were those from all patients that
had experienced tumor progression (n=21), and a matched sample from a patient with more than 5 years of
follow-up without progression.

Exome capture was performed with the commercial Agilent kit Sure Select XT Human All Exon 50MB.
Exomes from T were sequenced at 60x coverage (2 X 75bp reads), and exomes from N were sequenced at 40x
(2 x 75bp reads). The sequences were quality controlled using FastQC software?? and aligned over the human
genome hg19 version, with Bowtie 2.0%. Unmapped reads, reads with unmapped mate, nonprimary alignments,
and reads that were PCR or optical duplicates were discarded with Picard®. A local realignment around indels
found in our samples and defined in dbSNP 135.b37 version* and 1000 genomes project* was applied. Variant
calling was performed with GATK software?’, and low-quality variants (mapping quality below 30, read depth
below 10 or frequency <10%) were filtered out. Germline variants from our study that are the variants found in
normal adjacent paired tissue but not in tumor were removed. Other germline variants found in normal tissue
from 1000 genomes project were also filtered out. Only single-nucleotide variants (SNV) were included in this
study. Finally, variants were annotated using the SeattleSeq Variant Annotation web tool?®. No correlation was
observed between the number of mutations per sample and the control quality parameters (number of reads,
number of no matched reads, percentage of unique aligned reads, number of duplicate reads and coverage).
Finally, 13,015 somatic variants (11,126 SN'Vs) were found.

Data Records

All the Colonomics data is publicly available, though it has been deposited in diverse repositories. Table 2 sum-
marizes the accession for the different types of data. To facilitate performing multiomics analysis, downloading
and merging the different sets, all samples have the same identifiers in all the upload datasets. We provide the
processed data in the Colonomics website (https://www.colonomics.org/), and in the digital data repository of
the University of Barcelona (UB-DD)?, to ensure permanent availability.

Gene expression includes 246 samples: 50 M, 98 N and 98 T. Gene expression raw and normalized data are
available in the Gene Expression Omnibus database (GEO) through BioProject PRINA188510 and accession
number GSE44076%. Raw data was upload as 246 CEL files and the normalized data is included within sample
table as text file. The normalized data as log2 RMA signals include 49,386 probesets and can also be downloaded
from UB-DD?. Finally, the gene expression summarized at gene level is available at the UB-DD” and includes
20,070 genes.

DNA methylation data, both, raw and normalized are also available in GEO through BioProject
PRJNA542323 and accession number GSE131013*. Methylation data includes 240 samples: 48 M, 96 N and
96 T. We provide 240 IDAT files that correspond to raw data and a text file with the normalized beta values of the
240 samples and 430,086 CpG probes. The normalized methylation data is also available at the UB-DD? together
with the annotation of the 430,086 CpG methylation probes. Both gene expression and DNA methylation data
are part of the GEO super series GSE166427°!,
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Data Format Elements N samples Accession Accession 2
https://identifiers.org/
raw data CEL files 49,534 probes 246 GEO ge0:GSE44076 —
. " . https://doi.
Expression ﬁ‘;\?x; lized data (log2 txt files 49,386 probes 246 GEO/UB-DD h;g:z/slllii%t;(;ers.org/ org/10.34810/
geo: DATA169
summary by gene (PC1) txt file 20,070 genes 246 UB-DD }I;tg);l:\//l%(;iorgllo.ﬂs 10/
. https://identifiers.org/
raw data idat files 485,512 CpGs 240 GEO ¢e0:GSE131013 —
Methylation probes annotations txt file 430,086 CpGs — UB-DD g{t\plfx/lcégi-org/ 1034810/ —
m . https://doi.
normalized data (betas) txt file 430,086 CpGs 240 GEO/UB-DD h;ga.sc.;/sllladleanlt(l)fllgrs.org/ org/10.34810/
geor DATA169
https://ega-archive.org/datasets/
SNPs raw data CEL files 1M SNPs 146 EGA EGADO00010001253
CNV segment data txt file 54,002 segments 99 UB-DD g?;x/fégi‘org/ 1034810/ —
https://ega-archive.org/datasets/
- raw data fastq file probes 250 EGA EGAD00001004827
mi s
. https://doi.org/10.34810/
count data txt file 2,641 miRNAs 250 UB-DD DATA169 —
fastq files https://ega-archive.org/datasets/
‘Whole Exome raw data (2 x sample) reads 84 EGA EGAD00001004826
. . . . https://doi.org/10.34810/
Somatic Mutations mutation data txt file 13,015 mutations 42 UB-DD DATA169 —
. . . https://doi.org/10.34810/
Clinical data clinical data txt file covariates 250 UB-DD DATA169 —
Expression Predictive - . https://doi.org/10.5281/
M(I)Jdels predictive model txt/db files | gene/SNP info — ZENODO zefo 40.633 47gﬁS —
Methylation Predictive - . https://doi.org/10.5281/
Models predictive model txt/db files | CpG/SNP info — ZENODO zenodo.6334768 —
miRNAs Predictive - . . https://doi.org/10.5281/
Mi) dels redictiv predictive model txt/db files | miRNA/SNP info — ZENODO zer?o do. 6313 47g68 —
49,534 expression
. . probes/430,086 .
MultiAssayCLX.Rdata ggg.‘xsa”hpe“mem Rdata methylation CpGs/2,641 | — UB-DD }]‘)‘g’;ﬁi‘;""rg’ 1034810/ -
) miRNAs/38,905 CNV
segments/Clinical data

Table 2. Data accession summary table.

Raw genotyped SNP data can be obtained, under controlled access, at the European Genome-phenome
Archive (EGA) through accession number EGAD00010001253%2 It includes 146 CEL files that corresponds to
47 M and 99 patients of colon cancer.

The processed CNV data of 99 T samples is accessible in the UB-DD?. It includes 54,002 segments: 15,646
losses, 10,777 gains and 27,579 segments that are not gains nor losses.

Raw small RNA sequencing data is also available under request in EGA through accession number
EGAD00001004827%. We provide 250 fastq files, one for each sample (50 M, 100N and 100 T). Count data of
the 2,641 miRNAs and the 250 samples are accessible at UB-DD?.

Raw whole exome sequencing data of 84 samples (42N and 42 T) with 2 fastq files per sample are accessible
in EGA under request through accession number EGAD00001004826. The tumors mutations identified are
available at UB-DD’.

SNPs, miRNAs and whole exome data are in the EGA repository under the Data Access Committee through
accession number GAC000010006623°.

Finally, somatic mutations of the 42 samples can be downloaded from UB-DD?. 13,015 somatic variants were
included.

In addition to raw and preprocess multiomics data, clinical information of the samples is also upload at
UB-DD?. This file is txt formatted and contains a row for each sample and a column for each variable. The
variables included are: id_clx: the identifier of the Colonomics sample; type: tissue type (Mucosa, Normal or
Tumor); id_clx_individual: the individual identifier; stage: the stage of the tumor (IIA or IIB); sex: (Female or
Male); age; site: the site of the colon (Left/Right); event_free: a binary variable that indicates if the patient has a
recurrence of colon cancer (1) or not (0); time_free: a continuous variable that indicates the time from surgery
to recurrence of colon cancer; event_global: a binary variable that indicates if the patient is still alive (1) or not
(0); time_global: a continuous variable that indicates the time from surgery to death; metastasis_site: the organ
where a metastasis has appear; BRAF_mutated: a binary variable that indicates if the tumor is BRAF mutated
(Yes) or not (No); KRAS_mutated: a binary variable that indicates if the tumor is KRAS mutated (Yes) or not
(No); stromal_score: stromal score to predict the level of infiltrating stromal cells in tumor samples obtained
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using ESTIMATE package (version 1.0.13)"* from R and CMS: consensus molecular subtype classification of the
tumoral samples in 4 groups (CMS1, CMS2, CMS3 or CMS4) obtained using CMScaller package (version 0.1)*
from R and based on the paper of Guinney et al.”.

To facilitate working with all these data and to avoid downloading each dataset individually, a
MultiAssayExperiment object from R (version 1.22)%® has also been created. This object includes clinical data,
data from gene expression, methylation, miRNAs and copy number variation and it is accessible in UB-DD?.

In addition to clinical and multiomics data, gene expression prediction models from SNP data, useful for
Transcriptome-Wide Association Studies (TWAS), can be download from Zenodo through accession number
6334768%. These models were built for normal colon tissue (samples N + M) using elastic net regression, follow-
ing the PredictDB pipeline**!. They include significant prediction for 1,758 genes, 17,281 CpG probes and 39
miRNAs. See the usage notes section for more details.

Technical Validation

We performed technical validations and results replication in other datasets for some of the Colonomics
assays. For gene expression, a selected group of genes were assessed with multiplexed RT-qPCR using BioMark
Dynamic Array 96 x 96 Plates (Fluidigm Corporation, San Francisco, CA). ACTB, TPT1, and UBC were used
as control genes in the assay, see Solé et al.* for details. Also, differentially expressed genes were validated using
45N/T paired samples from The Cancer Genome Atlas (TCGA) data*?, obtaining that the 97.86% of our differ-
entially expressed genes were also differentially expressed in TCGA data*. Differentially expressed genes were
found using limma R package (version 3.42)*. Genes with an absolute log fold change >1 and a Bonferroni
adjusted P-value < 0.05 were defined as differentially expressed.

Regarding DNA methylation data, the list of the differentially methylated CpGs obtained using Colonomics
data was compared with the one obtained using the 45 N/T paired samples from TCGA data obtaining that the
99.96% of the common CpGs were also differentially methylated in TCGA data*. Also, CNV was validated
using TCGA data. In this case, 222 colon cancer samples were used to compare the obtained 13,279 minimal
recurrent regions and 66% of these regions were also found in TCGA data'®.

In the analysis of whole exome sequencing data, 13 SNPs in the 84 samples were genotyped using KASPar
genotyping assays (KASP-By-Design; LGC Group) on the Fluidigm genotyping platform (48.48 Dynamic
Array IFG, Fluidigm). These data were used to assess concordance between samples. All 42 N samples correctly
matched with their corresponding T sample®. Also, to validate recurrent mutations found in AMERI gene,
sanger sequencing was used. All mutations were validated.

As avalidation of the discovery pipeline of SNVs, 6 mutations in KRAS (Q61H, A146T, G12V, G12D, G12S,
G13D) and 7 in TP53 (G245D, R248Q, R237H, R273C, R175H, R282W, R213_, G245S) were tested using
KASPar genotyping assays in the Fluidigm Biomark platform (dynamic arrays). A 65% of concordance were
achieved. It is noteworthy that 10 out of 11 no concordant mutations were only found by exome sequencing thus
confirming the higher sensitivity of this technique.

Usage Notes

Re-use of the data and study limitations. All the data in the Colonomics project has been analyzed
and used in published papers except for miRNAs data. The first paper involving Colonomics data was published
eight years ago in 2014. The data were analyzed with the best algorithms and programs at that time, but nowadays
there may exist improved analysis pipelines. That's why we have shared raw data for each omic layer in addition
to preprocessed data. Specifically, for the case of whole exome sequencing data that was processed 8 years ago, we
are aware that the calling algorithms may have produced some false positive mutations.

When re-using Colonomics data we also need to consider that all samples were confirmed adenocarcinoma
of the colon, diagnosed in stage IT and the tumor was microsatellite stable. Colonomics data is a very homogene-
ous cohort, but the absence of rectal tumors, colon tumors in other stages rather than stage IT and microsatellite
instable samples may limit building generalizable hypothesis of colorectal cancer. Patients were selected to have
received only radical surgery, without adjuvant chemotherapy, which also reduces potential analysis to prognosis
but not prediction.

Web browsers. In order to visualize the different types of data, we developed different intuitive and user
friendly shiny*” web applications that are freely accessible at https://www.colonomics.org/data-browser. There are
four different web applications: the expression browser, the methylation browser, the expression quantitative trait
loci (eQTL) browser and the regulatory networks browser. In these browsers, expression, methylation, and geno-
typing data have been exploited developing different types of analysis. A web browser integrating all the types of
omics datasets available would be an interesting future application.

Genetic prediction models for normal mucosal biopsies. The genetic prediction models represent
reference imputation panels for normal colon tissue methylation and gene and miRNA expression, which are of
high interest for performing TWAS studies for colon-related diseases.

We provided significant prediction models for 1,758 genes, 17,281 CpG probes and 39 miRNAs obtained
from normal biopsy samples. These features can be predicted from SNPs located within + 1 Mb, which we
assumed they act through cis mechanisms. We included the model’s summary statistics and corresponding SNP
weights in SQLite objects®. Models were trained using the elastic net procedure employed in the PredictDB
pipeline***!, according to which only models with a predictive performance p-value < 0.05 and R? >0.1 are
considered significant. We adjusted the models by basic covariates, i.e., sex, age, tissue type and colon anatomic
location where biopsies were collected (left and right colon). Genome coordinates refer to GRCh37/hg19.
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Prediction models for gene expression were trained using 144 normal mucosal biopsy samples (97 N and
47 M), the common samples between gene expression and SNPs. We trained models for 13,939 genes (including
protein coding, long non-coding and pseudogenes), which had more than 3 sequencing reads in more than 10%
of the samples. In cases where multiple probes mapped to a single gene, the first principal component from PCA
was used to capture the largest common variability. Trimmed Mean of M-values (TMM) normalization was
applied. TMM:s were transformed with inverse normal transformation.

Prediction models for CpG probes were trained using 132 normal mucosal biopsies (95N and 37 M). Only
CpG annotated in islands, shores and shelves were taken into account as CpGs in open-sea are not functionally
interesting. We also filter in CpGs which had more than 3 sequencing reads in more than 5% of the samples.
After these filters, 257,809 CpG remained for the analysis. Inverse normal transformation on Beta MIxture
Quantile (BMIQ)-normalized values was applied. In addition to the basic covariates for adjustment, we adjusted
the models by 10 probabilistic estimation of expression residuals (PEER) factors* to capture additional technical
variability.

Prediction models for miRNAs were trained using 146 normal mucosal biopsies (99N and 47 M), the com-
mon samples between miRNAs and SNPs. From the 2,641 miRNAs, we included 739 miRNAs, which had more
than 3 sequencing counts in more than 10% of the samples. TMM normalization was applied and transformed
with inverse normal transformation. As SNP data is in hg19 genome built, annotations of miRNAs refer to the
miRBase release 20'7%.

Code availability
Code used to process and analyze the data is available upon request. Some R scripts can be downloaded from
https://github.com/odap-ico/colonomics.
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