
1Scientific Data |          (2023) 10:161  | https://doi.org/10.1038/s41597-023-02062-w

www.nature.com/scientificdata

Large scale crowdsourced 
radiotherapy segmentations across 
a variety of cancer anatomic sites
Kareem A. Wahid   1,9, Diana Lin2,9, Onur Sahin1, Michael Cislo   2, Benjamin E. Nelms3, 
Renjie He1, Mohammed A. Naser1, Simon Duke4, Michael V. Sherer5, John P. Christodouleas6,7, 
Abdallah S. R. Mohamed   1, James D. Murphy5, Clifton D. Fuller   1 ✉ & Erin F. Gillespie2,8 ✉

Clinician generated segmentation of tumor and healthy tissue regions of interest (ROIs) on medical images 
is crucial for radiotherapy. However, interobserver segmentation variability has long been considered a 
significant detriment to the implementation of high-quality and consistent radiotherapy dose delivery. 
This has prompted the increasing development of automated segmentation approaches. However, 
extant segmentation datasets typically only provide segmentations generated by a limited number of 
annotators with varying, and often unspecified, levels of expertise. In this data descriptor, numerous 
clinician annotators manually generated segmentations for ROIs on computed tomography images across 
a variety of cancer sites (breast, sarcoma, head and neck, gynecologic, gastrointestinal; one patient per 
cancer site) for the Contouring Collaborative for Consensus in Radiation Oncology challenge. In total, 
over 200 annotators (experts and non-experts) contributed using a standardized annotation platform 
(ProKnow). Subsequently, we converted Digital Imaging and Communications in Medicine data into 
Neuroimaging Informatics Technology Initiative format with standardized nomenclature for ease of use. 
In addition, we generated consensus segmentations for experts and non-experts using the Simultaneous 
Truth and Performance Level Estimation method. These standardized, structured, and easily accessible 
data are a valuable resource for systematically studying variability in segmentation applications.

Background & Summary
Since the advent of contemporary radiation delivery techniques for cancer treatment, clinician generated seg-
mentation (also termed contouring or delineation) of target structures (e.g., primary tumors and metastatic 
lymph nodes) and organs at risk (e.g., healthy tissues whose irradiation could lead to damage and/or side effects) 
on medical images has become a necessity in the radiotherapy workflow1. These segmentations are typically pro-
vided by trained medical professionals, such as radiation oncologists. While segmentations can be performed on 
any imaging modality that provides sufficient discriminative capabilities to visualize regions of interest (ROIs), 
the current radiotherapy workflow prioritizes the use of computed tomography (CT) for ROI segmentation due 
to its ubiquitous nature and use in radiotherapy dose calculations. Subsequently, clinicians spend a large fraction 
of their time and effort generating ROI segmentations on CT imaging necessary for the radiotherapy workflow.

Interobserver and intraobserver variability are well-documented byproducts of the use of manual 
human-generated segmentations2,3. While consensus radiotherapy guidelines to ensure ROI segmentation 
quality have been developed and shown to reduce variability4, these guidelines are not necessarily followed by 
all practicing clinicians. Therefore, segmentation variability remains a significant concern in maintaining radi-
otherapy plan quality and consistency. Recent computational improvements in machine learning, particularly 
deep learning, have prompted the increasing development and deployment of accurate ROI auto-segmentation 
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algorithms to reduce radiotherapy segmentation variability5–7. However, for auto-segmentation algorithms to 
be clinically useful, their input data (training data) should reflect high-quality “gold-standard” annotations. 
While research has been performed on the impact of interobserver variability and segmentation quality for 
auto-segmentation training8–11, it remains unclear how “gold-standard” segmentations should be defined and 
generated. One common approach, consensus segmentation generation, seeks to crowdsource multiple segmen-
tations from different annotators to generate a high-quality ground-truth segmentation. While multi-observer 
public medical imaging segmentation datasets exist12–17, there remains a lack of datasets with a large number of 
annotators for radiotherapy applications.

The Contouring Collaborative for Consensus in Radiation Oncology (C3RO) challenge was developed to 
engage radiation oncologists across various expertise levels in cloud-based ROI crowdsourced segmentation18. 
Through this collaboration, a large number of clinicians generated ROI segmentations using CT images from 
5 unique radiotherapy cases: breast, sarcoma, head and neck, gynecologic, and gastrointestinal. In this data descrip-
tor, we present the curation and processing of the data from the C3RO challenge. The primary contribution of this  
dataset is unprecedented large-scale multi-annotator individual and consensus segmentations of various ROIs 
crucial for radiotherapy planning in an easily accessible and standardized imaging format. These data can be lever-
aged for exploratory analysis of segmentation quality across a large number of annotators, consensus segmentation 
experiments, and auto-segmentation model benchmarking. An overview of this data descriptor is shown in Fig. 1.

Methods
Patient population.  Five separate patients who had undergone radiotherapy were retrospectively collected 
from our collaborators at various institutions. Each patient had received a pathologically confirmed diagnosis of 
cancer of one of the following sites: breast (post-mastectomy intraductal carcinoma), sarcoma (malignant periph-
eral nerve sheath tumor of the left thigh), head and neck (oropharynx with nodal spread, [H&N]), gynecologic 
(cervical cancer, [GYN]), and gastrointestinal (anal cancer, [GI]). Clinical characteristics of these patients are 
shown in Table 1. Of note, these five disease sites were included as part of the C3RO challenge due to being among 
the most common disease sites treated by radiation oncologists; additional disease sites were planned but were 
not realized due to diminishing community participation in C3RO. Specific patient cases were selected by C3RO 
collaborators on the basis of being adequate reflections of routine patients a generalist radiation oncologist may 
see in a typical workflow (i.e., not overly complex). Further details on the study design for C3RO can be found in 
Lin & Wahid et al.19.
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Fig. 1  Data descriptor overview. Multi-annotator segmentations were generated for the Contouring 
Collaborative for Consensus in Radiation Oncology (C3RO) challenge. Imaging and segmentation data were 
extracted from the ProKnow cloud-based platform in Digital Imaging and Communications in Medicine 
(DICOM) format, which were then converted to Neuroimaging Informatics Technology Initiative (NIfTI) 
format for ease of use. Consensus segmentation data were then generated from the available multi-annotator 
segmentations. The provided data collection contains all original DICOM files along with converted NIfTI files.
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Imaging protocols.  Each patient received a radiotherapy planning CT scan which was exported in Digital 
Imaging and Communications in Medicine (DICOM) format. CT image acquisition characteristics are shown in 
Table 2. All images were acquired on scanners that were routinely used for radiotherapy planning at their cor-
responding institutions with appropriate calibration and quality assurance by technical personnel. The sarcoma, 
H&N, and GI cases received intravenous contrast, the GU case received oral contrast, and the breast case did not 
receive any contrast. Of note, the H&N case had metal streak artifacts secondary to metallic implants in the upper 
teeth, which obscured anatomy near the mandible. No other cases contained noticeable image artifacts. Notably, 
the sarcoma case also received a magnetic resonance imaging (MRI) scan, while the H&N and GI cases received 
full body positron emission tomography (PET) scans. The sarcoma MRI scan was acquired on a GE Signa HDxt 
device and corresponded to a post-contrast spin echo T1-weighted image with a slice thickness of 3.0 mm and 
in-plane resolution of 0.35 mm. The H&N PET scan was acquired on a GE Discovery 600 device with a slice thick-
ness of 3.3 mm and in-plane resolution of 2.73 mm. The GI PET scan was acquired on a GE Discovery STE device 
with a slice thickness of 3.3 mm and in-plane resolution of 5.47 mm.

IRB exemption and data storage.  The retrospective acquisition, storage, and use of these DICOM files 
have been reviewed by the Memorial Sloan Kettering (MSK) Human Research Protection Program (HRPP) 
Office on May 26, 2021 and were determined to be exempt research as per 45 CFR 46.104(d)(3),(i)(a), (ii) and  
(iii), (i)(b),(ii) and (iii), (i)(c), (ii) and (iii) and 45.CFR.46.111(a)(7). A limited IRB review of the protocol  
X19-040 A(1) was conducted via expedited process in accordance with 45 CFR 46.110(b), and the protocol was 
approved on May 26, 2021. DICOM files were obtained and stored on MIMcloud (MIM Software Inc., Ohio, 
USA), which is a HIPAA-compliant cloud-based storage for DICOM image files that has been approved for use at 
MSK by MSK’s Information Security team.

DICOM anonymization.  For each image, the DICOM header tags containing the patient name, date of birth, 
and patient identifier number were consistently removed from all DICOM files using DicomBrowser v. 1.5.220. The 
removal of acquisition data and time metadata (if available in DICOM header tags) caused compatibility issues 
with ProKnow so were kept as is. Moreover, if institution name or provider name were available in the DICOM  
file, they were not removed as they were not considered protected health information. Select cases (breast, GYN, GI)  
were previously anonymized using the DICOM Import Export tool (Varian Medical Systems, CA, USA).

Participant details.  To register for the challenge, participants completed a baseline questionnaire that 
included their name, email address, affiliated institution, country, specialization, years in practice, number of 

Clinical 
Characteristic Breast Sarcoma H&N GYN GI

Age 51 40 60 67 50

Sex Female Female Male Female Male

T-stage T2 T1 T3 T3b T2

N-stage N1 N0 N1 N1 N1c

M-stage M0 M0 M0 M0 M0

Misc.* ER-/PR-/HER2- FNCLCC grade 3 HPV+ FIGO Stage IIIC1 Moderately differentiated

Table 1.  Clinical characteristics for cases included in this data descriptor. Cases included breast, sarcoma, 
head and neck (H&N), gynecologic (GYN), and gastrointestinal (GI) cancer. *Miscellaneous clinical 
characteristics specific to each cancer type are provided. ER-/PR-/HER2- = triple negative breast cancer. 
FNCLCC = Fédération Nationale des Centres de Lutte Contre le Cancer. HPV = human papillomavirus. 
FIGO = International Federation of Gynaecology and Obstetrics.

CT Acquisition Parameter Breast Sarcoma H&N GYN GI

Manufacturer GE SIEMENS SIEMENS GE GE

Model Discovery 
CT590 RT

SOMATOM 
Confidence Sensation Open Discovery 

CT590 RT
Discovery 
CT590 RT

Slice Thickness (mm) 2.5 3 3 2.5 2.5

KVP (kV) 120 120 120 120 120

Exposure Time (ms) 891 1000 1000 856 856

X-Ray Tube Current (mA) 154 111 32 167 277

Rows 512 512 512 512 512

Columns 512 512 512 512 512

In-plane Resolution (mm) 1.26 1.26 0.98 0.98 0.98

Reconstruction diameter (mm) 650 650 500 500 500

Number of axial slices 140 229 143 195 196

Table 2.  Computed tomography (CT) acquisition parameters for cases included in this data descriptor. Cases 
included breast, sarcoma, head and neck (H&N), gynecologic (GYN), and gastrointestinal (GI) cancer.
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disease sites treated, volume of patients treated per month for the designated tumor site, how they learned about 
this challenge, and reasons for participation. Registrant intake information was collected through the Research 
Electronic Data Capture (REDCap) system - a widely used web application for managing survey databases21; an 
example of the intake form can be found at: https://redcap.mskcc.org/surveys/?s=98ARPWCMAT. The research 
conducted herein was approved by the HRRP at MSK (IRB#: X19-040 A(1); approval date: May 26, 2021).  
All subjects prospectively consented to participation in the present study, as well as to the collection, use, and 
disclosure of de-identified aggregate subject information and responses. Participants were categorized as recog-
nized experts or non-experts. Recognized experts were identified by our C3RO team (EFG, CDF, DL) based on 
participation in the development of national guidelines or other extensive scholarly activities. Recognized experts 
were board-certified physicians with expertise in the specific disease site. Non-experts were any participants not 
categorized as an expert for that disease site. All non-experts had some knowledge of human anatomy, with the 
majority being composed of practicing radiation oncologists but also included resident physicians, radiation ther-
apists, and medical physicists. Worthy of note, a participant could only be considered an expert for one disease 
site, but could have participated as a non-expert for other disease sites. Out of 1,026 registrants, 221 participated 
in generating segmentations, which were used for this dataset; due to the low participation rate, participants may 
represent a biased sample of registrants. Of note, participants could provide segmentations for multiple cases. 
Additional demographic characteristics of the participants can be found in Lin & Wahid et al.19.

ProKnow segmentation platform.  Participants were given access to the C3RO workspace on ProKnow 
(Elekta AB, Stockholm, Sweden). ProKnow is a commercially available radiotherapy clinical workflow tool that 
allows for centralization of data in a secure web-based repository; the ProKnow system has been adopted by sev-
eral large scale medical institutions and is used routinely in clinical and research environments. Anonymized CT 
DICOM images for each case were imported into the ProKnow system for participants to segment; anonymized 
MRI and PET images were also imported for select cases as available. Each case was attributed a short text prompt 
describing the patient presentation along with any additional information as needed. Participants were allowed 
to utilize common image manipulation (scrolling capabilities, zooming capabilities, window leveling, etc.) and 
segmentation (fill, erase, etc.) tools for generating their segmentations. No auto-segmentation capabilities were 
provided to the participants, i.e., all segmentations were manually generated. Notably, for the sarcoma case, an 
external mask of the patient’s body and a mask of the left femur was provided to participants. Screenshots of the 
ProKnow web interface platform for the various cases are shown in Fig. 2.

Segmentation details.  For each case, participants were requested to segment a select number of ROIs cor-
responding to target structures or OARs. Notably, not all participants generated segmentations for all ROIs. ROIs 
for each participant were combined into one structure set in the ProKnow system. ROIs were initially named in 
a consistent, but non-standardized format, so during file conversion ROIs were renamed based on The Report of 
American Association of Physicists in Medicine Task Group 263 (TG-263) suggested nomenclature22; TG-263 
was chosen due its ubiquity in standardized radiotherapy nomenclature. A list of the ROIs and the number of 
available segmentations stratified by participant expertise level is shown in Supplementary Table 1.

Image processing and file conversion.  For each case, anonymized CT images and structure sets for each 
annotator were manually exported from ProKnow in DICOM and DICOM radiotherapy structure (RTS) format, 
respectively. The Neuroimaging Informatics Technology Initiative (NIfTI) format is increasingly used for repro-
ducible imaging research23–27 due to its compact file size and ease of implementation in computational models28. 
Therefore, in order to increase the interoperability of these data, we converted all our DICOM imaging and 
segmentation data to NIfTI format. For all file conversion processes, Python v. 3.8.829 was used. An overview of 
the image processing workflow is shown in Fig. 3a. In brief, using an in-house Python script, DICOM images 
and structure sets were loaded into numpy array format using the DICOMRTTool v. 0.4.2 library30, and then 
converted to NIfTI format using SimpleITK v. 2.1.131. For each annotator, each individual structure contained 
in the structure set was separately converted into a binary mask (0 = background, 1 = ROI), and was then con-
verted into separate NIfTI files. Notably, voxels fully inside and outside the contour are included and not include 
in the binary mask, respectively, while voxels that overlapped the segmentation (edge voxels) were counted as 
surface coordinates and included in the binary mask; additional details on array conversion can be found in the 
DICOMRTTool documentation30. Examples of random subsets of five expert segmentations for each ROI from 
each case are shown in Fig. 4.

Consensus segmentation generation.  In addition to ground-truth expert and non-expert segmenta-
tions for all ROIs, we also generated consensus segmentations using the Simultaneous Truth and Performance 
Level Estimation (STAPLE) method, a commonly used probabilistic approach for combining multiple segmenta-
tions32–35. Briefly, the STAPLE method uses an iterative expectation-maximization algorithm to compute a prob-
abilistic estimate of the “true” segmentation by deducing an optimal combination of the input segmentations 
and incorporating a prior model for the spatial distribution of segmentations as well as implementing spatial 
homogeneity constraints36. For our specific implementation of the STAPLE method, we utilized the SimpleITK 
STAPLE function with a default threshold value of 0.95. For each ROI, all available binary segmentation masks 
acted as inputs to the STAPLE function for each expertise level, subsequently generating binary STAPLE seg-
mentation masks for each expertise level (i.e., STAPLEexpert and STAPLEnon-expert). An overview of the consensus 
segmentation workflow is shown in Fig. 3b. Examples of STAPLEexpert and STAPLEnon-expert segmentations for each 
ROI are shown in Fig. 5.
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Data Records
Medical images and multi-annotator segmentation data.  This data collection primarily consists of 
1985 3D volumetric compressed NIfTI files (.nii.gz file extension) corresponding to CT images and segmenta-
tions of ROIs from various disease sites (breast, sarcoma, H&N, GYN, GI). Analogously formatted MRI and PET 
images are available for select cases (sarcoma, H&N, GI). ROI segmentation NIfTI files are provided in binary 
mask format (0 = background, 1 = ROI); file names for each ROI are provided in TG-263 notation. All medical 
images and ROI segmentations were derived from original DICOM and DICOM RTS files (.dcm file extension) 
respectively, which for completeness are also provided in this data collection. In addition, Python code to rec-
reate the final NIfTI files from DICOM files is also provided in the corresponding GitHub repository (see Code 
Availability section).

Consensus segmentation data.  Consensus segmentations for experts and non-experts generated using 
the STAPLE method for each ROI have also been provided in compressed NIfTI file format (.nii.gz file extension). 
Consensus segmentation NIfTI files are provided in binary mask format (0 = background, 1 = ROI consensus). 
Python code to recreate the STAPLE NIfTI files from input annotator NIfTI files is also provided in the corre-
sponding GitHub repository (see Code Availability section).

Annotator demographics data.  We also provide a single Microsoft Excel file (.xlsx file extension) con-
taining each annotator’s gender, race/ethnicity, geographic setting, profession, years of experience, practice 
type, and categorized expertise level (expert, non-expert). Geographic setting was re-coded as “United States” 
or “International” to further de-identify the data. Each separate sheet corresponds to a separate disease site  
(sheet 1 = breast, sheet 2 = sarcoma, sheet 3 = H&N, sheet 4 = GU, sheet 5 = GI). Moreover, in order to foster sec-
ondary analysis of registrant data, we also include a sheet containing the combined intake data for all registrants 
of C3RO, including those who did not provide annotations (sheet 6).

a b

c d

e
Fig. 2  Examples of ProKnow segmentation platform used by participants for the breast (a), sarcoma (b), head 
and neck (c), gynecologic (d), and gastrointestinal (e) cases. Participants were given access to the standard 
image visualization and segmentation capabilities for generating their segmentations of target structures and 
organs at risk. Participants were also given access to a short prompt describing the patient presentation along 
with any additional information as needed. For the sarcoma case, an external mask of the patient’s body (green) 
and a mask of the left femur (pink) was provided to participants. Subplots for breast, sarcoma, head and neck, 
gynecologic, and gastrointestinal cases are outlined in pink, red, blue, purple, and green borders, respectively.

https://doi.org/10.1038/s41597-023-02062-w


6Scientific Data |          (2023) 10:161  | https://doi.org/10.1038/s41597-023-02062-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

Folder structure and identifiers.  Each disease site is represented by a top-level folder, containing a sub-
folder for images and segmentations. The annotator demographic excel file is located in the same top-level loca-
tion as the disease site folders. Image folders contain separate subfolders for NIfTI format and DICOM format 
images. Segmentation folders contain separate subfolders for expert and non-expert segmentations. Each exper-
tise folder contains separate subfolders for each annotator (which contains separate subfolders for DICOM and 
NIfTI formatted files) and the consensus segmentation (only available in NIfTI format). The data have been 
specifically structured such that for any object (i.e., an image or segmentation), DICOM and NIfTI subdirectories 
are available for facile partitioning of data file types. An overview of the organized data records for an example 
case is shown in Fig. 6. Segmentation files (DICOM and NIfTI) are organized by anonymized participant ID 
numbers and can be cross referenced against the excel data table using this identifier. The raw data, records, 
and supplemental descriptions of the meta-data files are cited under Figshare doi: https://doi.org/10.6084/
m9.figshare.2107418237.

Technical Validation
Data annotations.  Segmentation DICOM and NIfTI files were manually verified by study authors (D.L., 
K.A.W., O.S.) to be annotated with the appropriate corresponding ROI names.

Segmentation interobserver variability.  We calculated the pairwise interobserver variability (IOV) for 
each ROI for each disease site across experts and non-experts. Specifically, for each metric all pairwise combina-
tions between all available segmentations in a given group (expert or non-expert) were calculated; median and 
interquartile range values are reported in Supplementary Table 2. Calculated metrics included the Dice Similarity 
coefficient (DSC), average surface distance (ASD), and surface DSC (SDSC). SDSC was calculated based on ROI 
specific thresholds determined by the median pairwise mean surface distance of all expert segmentations for 
that ROI as suggested in literature38. Metrics were calculated using the Surface Distances Python package38,39 and 
in-house Python code. For specific equations for metric calculations please see corresponding Surface Distances 
Python package documentation39. Resultant values are broadly consistent with previous work in breast40, sar-
coma41, H&N35,42,43, GYN44, and GI44–46 IOV studies.

Usage Notes
The image and segmentation data from this data collection are provided in original DICOM format (where 
applicable) and compressed NIfTI format with the accompanying excel file containing demographic information 
indexed by annotator identifiers. We invite all interested researchers to download this dataset for use in segmen-
tation, radiotherapy, and crowdsourcing related research. Moreover, we encourage this dataset’s use for clinical 
decision support tool development. While the individual number of patient cases for this dataset is too small for 
traditional machine learning development (i.e., deep learning auto-segmentation training), this dataset could 
act as a benchmark reference for testing existing auto-segmentation algorithms. Importantly, this dataset could 
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Fig. 3  Image processing Python workflows implemented for this data descriptor for an example case (head 
and neck case, parotid glands). (a) Original Digital Imaging and Communications in Medicine (DICOM) 
formatted images and DICOM radiotherapy structure (RTS) formatted region of interest (ROI) segmentations 
are transformed to Neuroimaging Informatics Technology Initiative (NIfTI) format. (b). ROIs from multiple 
annotators are combined into a single consensus segmentation using the Simultaneous Truth and Performance 
Level Estimation (STAPLE) method.
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also be used as a standardized reference for future interobserver variability studies seeking to investigate further 
participant expertise criteria, e.g., true novice annotators (no previous segmentation or anatomy knowledge)  
could attempt to segment ROI structures on CT images, which could then be compared to our expert and 
non-expert annotators. Finally, in line with the goals of the eContour collaborative47, these data could be used to 
help develop educational tools for radiation oncology clinical training.
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Fig. 4  Examples of a random subset of five expert segmentations for each region of interest (ROI) provided 
in this data descriptor. Segmentations are displayed as green, yellow, blue, red, and orange dotted lines 
corresponding to annotators 1, 2, 3, 4, and 5, respectively, and overlaid on zoomed-in images for each case. 
Subplots for breast, sarcoma, head and neck, gynecologic, and gastrointestinal cases are outlined in pink, red, 
blue, purple, and green borders, respectively. Notably, the gastrointestinal case only had four expert annotators, 
so only four lines are displayed.

https://doi.org/10.1038/s41597-023-02062-w


8Scientific Data |          (2023) 10:161  | https://doi.org/10.1038/s41597-023-02062-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

The segmentations provided in this data descriptor have been utilized in a study by Lin & Wahid et al.48. 
This study demonstrated several results that were consistent with existing literature, including: (1). target ROIs 
tended to exhibit greater variability than OAR ROIs35, (2). H&N ROIs exhibited higher interobserver varia-
bility compared to other disease sites43,49, and (3). non-expert consensus segmentations could approximate 
gold-standard expert segmentations50.
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Fig. 5  Examples of consensus segmentations using the simultaneous truth and performance level estimation 
(STAPLE) method for each region of interest (ROI) provided in this data descriptor. STAPLE segmentation 
generated by using all available expert segmentations (STAPLEexpert) and STAPLE segmentation generated by 
using all available non-expert segmentations (STAPLEnon-expert) are displayed as green and red dotted outlines, 
respectively, and overlaid on zoomed in images for each case. Subplots for breast, sarcoma, head and neck, 
gynecologic, and gastrointestinal cases are outlined in pink, red, blue, purple, and green borders, respectively.
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Original DICOM format images and structure sets may be viewed and analyzed in radiation treatment plan-
ning software or select digital image viewing applications, depending on the end-user’s requirements. Current 
open-source software for these purposes includes ImageJ51, dicompyler52, ITK-Snap53, and 3D Slicer54 with the 
SlicerRT extension55.

Processed NIfTI format images and segmentations may be viewed and analyzed in any NIfTI viewing appli-
cation, depending on the end-user’s requirements. Current open-source software for these purposes includes 
ImageJ51, ITK-Snap53, and 3D Slicer54.

Code availability
Segmentations were performed using the commercially-available ProKnow (Elekta AB, Stockholm, Sweden) 
software. The code for NIfTI file conversion of DICOM CT images and corresponding DICOM RTS 
segmentations, along with code for consensus segmentation generation, was developed using in-house Python 
scripts and is made publicly available through GitHub: https://github.com/kwahid/C3RO_analysis.
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