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The Materials Provenance Store
Michael J. Statt   1 ✉, Brian A. Rohr1 ✉, Dan Guevarra   2,3, Santosh K. Suram   4, 
Thomas E. Morrell   5 & John M. Gregoire   2,3 ✉

We present a database resulting from high throughput experimentation, primarily on metal oxide 
solid state materials. The central relational database, the Materials Provenance Store (MPS), manages 
the metadata and experimental provenance from acquisition of raw materials, through synthesis, to 
a broad range of materials characterization techniques. Given the primary research goal of materials 
discovery of solar fuels materials, many of the characterization experiments involve electrochemistry, 
along with optical, structural, and compositional characterizations. The MPS is populated with all 
information required for executing common data queries, which typically do not involve direct query 
of raw data. The result is a database file that can be distributed to users so that they can independently 
execute queries and subsequently download the data of interest. We propose this strategy as an 
approach to manage the highly heterogeneous and distributed data that arises from materials science 
experiments, as demonstrated by the management of over 30 million experiments run on over  
12 million samples in the present MPS release.

Background & Summary
Two primary modalities for public release of large quantities of experimental materials science data are exem-
plified by (i) the Materials Data Facility1,2, which seeks to aggregate data from practically any materials science 
experiment, and (ii) the High Throughput Experimental Materials (HTEM)3,4 and Materials Experiment and 
Analysis Database (MEAD)5 databases, which focus on data management from high throughput experiments 
within a single institution. This latter type of data management has to-date been accessible through a web inter-
face, which does not provide the requisite flexibility for a breadth of use cases. For example, specific subsets of 
the MEAD database have been curated6 to enable adoption of machine learning methods7, which contribute to 
the larger vision of transforming experimental science with modern data science tools8–10. Assembling such a 
dataset via a web interface is impractical, motivating our effort to enable a representation of the data that sup-
ports a breadth of use cases. Based on the recently reported event sourced architecture for materials provenance 
management (ESAMP)11, we have transformed the MEAD dataset, including additional data acquired since 
the original dataset publication, into a new database. The resulting database is the Materials Provenance Store 
(MPS), whose schema, contents, and usage is introduced herein. The MPS name reflects not only that it is liter-
ally a data store, but also that users may shop for a desired experimental materials provenance via PostgreSQL 
queries. The materials provenance refers to the entire experimental history of each material, which entails the 
sequence of experimental processes that are each described by metadata. The data origination as described by 
MEAD combined with the DBGen ingestion workflow provide the data provenance of each piece of experimen-
tal data, and the encoded sequence of experimental processes additional provides the experimental materials 
provenance that collectively resulted in the given piece of experimental data.

By modelling each experimental “Process” and its application to a given materials “Sample”, the high 
throughput experiments are tracked via a central “Sample Process” table, which contains ca. 30 million entries 
from ca. 24 million combinations of sample and process-type, a high level description of the type of experimen-
tal process. A breakdown of the number of entries for the 13 process types is shown in Table 1. Due to variability 
in the experimental workflows, different samples may be subject to different types of processes. A summary 
of the number of unique materials samples for each combination of the primary 4 process types for materials 
characterization is shown in Fig. 1.

Batches of raw and analyzed data are stored in a separate repository, enabling a relatively small PostgreSQL 
database file, whose downloadable compressed size is 4.5 GB and uncompressed size is 20 GB. This file is rel-
atively portable compared to the entire dataset, which includes 1.1 TB of compressed raw and analyzed data. 
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These data are packaged as a matter of convenience during their generation, with each package receiving a 
unique digital object identifier (DOI). The 26,105 DOIs hosted by CaltechData (data.caltech.edu) are provided 
as a supporting document. We provide examples of programmatic access to the open-source raw and analyzed 
data based on the results of a given query of the MPS, demonstrating our strategy for agile data exploration and 
efficient utilization of the open source data repository.

Methods
The experimental methods for generating the data are described previously, with individual implementations 
of these methods encoded in the Process Details table within the database. For the process types shown in 
Table 1, the originating process for each sample is a “print”, which includes sputter deposition from our cus-
tom Kurt J. Lesker combinatorial deposition system12 and inkjet printing of mixed precursors using a JetLab 
Microfab13 or C2Fast14 printer. The “anneal” process involves heating in a box furnace with ambient air, a tube 
furnace with controlled atmosphere, or a rapid thermal processing instrument15. A “metr” process entails optical 
imaging of combinatorial libraries for quality control, and “imag” entails the imaging of an individual sample 

Process Num. Sample Num. unique

type Processes Samples

print 14,351,200 11,243,172

anneal 10,464,567 9,699,800

eche 2,513,044 640,836

metr 1,104,039 942,062

imag 1,001,728 855,151

uvis 753,627 619,939

ecqe 153,092 74,923

xrfs 152,736 130,915

pets 140,800 71,424

ssrl 125,27 12,527

xrds 8,641 8,538

ecms 360 76

xtrn 7 2

Table 1.  The 13 types of experimental processes in the database are listed with the respective number of 
entries in the Sample Process table. Since a given sample may undergo several processes of the same type, the 
number of unique samples represented by each set of sample processes is also shown. The brief descriptions 
of process types are as follows: deposition of materials onto a substrate (print), thermal annealing (anneal), 
electrochemistry (eche), optical imaging for quality control (metr), imaging for colorimetric characterization 
(imag), ultraviolet-visible optical spectroscopy (uvis), 2-electrode photoelectrochemical characterization 
(ecqe), x-ray fluorescence (xrfs), parallel electrochemical treatment (pets), synchrotron x-ray diffraction (ssrl), 
x-ray diffraction (xrds), integrated electrochemistry and mass spectroscopy (ecms), and externally-sourced 
experiments (xrtn).

Fig. 1  Four-way Venn diagram for the 4 primary types of experimental processes showing how many unique 
materials samples in the dataset have undergone each combination of process types. The process types are 
electrochemical characterization (ECHE), ultraviolet-visible optical spectroscopy (UVIS), x-ray diffraction 
(XRDS), and x-ray fluorescence (XRFS).
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for colorimetric characterization16. The primary materials property characterization are “eche”, electrochemical 
characterization in a scanning droplet cell17; “ecqe”, photoelectrochemical characterization with facile redox 
couples18; “uvis”, ultraviolet-visible optical spectroscopy19; “pets”, parallel electrochemical operation of catalyst 
libraries20; and “ecms”, electrochemical measurements with on-line mass spectroscopy data for product anal-
ysis21. The processes intended to characterize the composition and structure of materials include “xrds”, x-ray 
diffraction using a Bruker DISCOVER D8; “ssrl”, synchrotron x-ray diffraction22; and “xrfs”, x-ray fluorescence 
using a EDAX Orbis Micro-XRF. The final type is “xtrn”, which describes a process that was performed by an 
external collaborator.

To summarize the types of experimental provenances in the database, we briefly summarize the high 
throughput experiment workflows. A workflow typically commences with a “print” process wherein material is 
deposited onto a substrate, also known as a library plate. The material is typically reactively annealed to form a 
metal oxide sample via an “anneal” process. A “metr” optical imaging process is performed to ensure that mate-
rial is deposited in the correct location on the library plate. From here, the workflows have considerable varia-
bility due to the different types of research being conducted with these high throughput tools. An electrocatalyst 
screening workflow could include an “xrfs” process to measure composition, a sequence of “eche” processes to 
characterize activity, and an additional “xrfs” process to see if the electrochemistry changed the composition. 
To discover solar light absorbers, a “uvis” process characterizes the spectral absorption with “xrfs” and “xrds” 
processes to characterize the composition and structure.

Data Records
The dataset is available from CaltechDATA23. Fig. 2 shows the database schema as the relationships among 
tables that are described below. The full schema contains additional tables that originate from the ingestion of 
the MEAD5 database, as shown in Fig. 3. This database adheres to the FAIR principles (“Findable, Accessible, 
Interoperable, and Reusable”). The data records are findable because a SQL query can be used to concisely and 
efficiently filter for records of interest. Since the database is publicly available for anyone to download, it is acces-
sible. By using PostgreSQL, a common, free database management system that is compatible with all major oper-
ating systems, the data is interoperable. Finally, the data is reusable because the metadata for each experiment 
and the provenance of each sample is formally tracked, which enables users to query the database to answer a 
wide variety of questions as their research interests change over time.

Sample table.  A sample is an individual material whose creation is defined upon the first process in which 
it can be uniquely identified in the lab. When processes are applied to the sample, intentional or unintentional 
changes to the material may occur, but its sample number remains in tact, with its provenance being the sequence 
of processes applied to it.

Fig. 2  Schema diagram for the Materials Provenance Store. Each rectangle represents a database table, and each 
arrow represents a relationship between two tables. A single-headed arrow represents a many-to-one relationship, 
which is stored in the database as a foreign key. For example, the blue arrow pointing from Process to Process Detail 
indicates that there is a foreign key column in the Process table called process_detail_id, which references the ID 
column in the Process Detail table. Therefore, many rows in the Process table can be linked to one row in the Process 
Detail table. Each double-headed arrow represents a many-to-many relationship, which is stored in the database as 
a mapping table. For example, the double headed yellow arrow between Process Data and Analysis indicates that 
there is a mapping table (called process_data_analysis), which has only two columns: a foreign key to the Process 
Data table and a foreign key to the Analysis table. Tables and relationships are colored as follows: red for materials 
samples, blue for processes, green for process data, and yellow for analyses. The Sample Process table and its 
relationships, which are core to the fundamental concept of this database, are shown in purple.
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Processes table.  A Process is any procedure that is done to a sample. This may be a step in its preparation, 
or it may be an experiment intended to characterize the sample.

Sample process table.  The sample-process table underlies the core concept of this database: when a sample 
undergoes a process, this event can generate one or many pieces of process data. There is a many-to-many relation 
between samples and processes because a sample can (and usually does) undergo many processes over the course 
of its life, and a process can be run on many samples simultaneously. This is shown in the bottom row of the dia-
gram below; the connections between samples and processes are represented by the purple arrows, and the table 
names are shown in bold font.

Process data table.  When samples undergo processes, and data does result from the experiment, this out-
put data is stored in the ProcessData table. There is row in the Process Data table for every output file from exper-
iments done in the lab.

Analysis table.  This Process Data can be used as the input to Analyses. A row in the analysis table repre-
sents the output of a function that accepts Process Data of a certain type as an input and returns a figure of merit 
(abbreviated as FOM) as its output.

Collections.  Collections are simply groups of samples. Each sample in this database is printed onto a plate. 
Each plate contains a few thousand samples, and although samples are often analyzed independently, it is useful 
to keep track of which samples are on which plate.

Process details.  Processes often have some controllable parameters like the temperature or choice of solvent, 
etc. These input parameters are stored in the Process Detail table. Process details are stored in a separate table to 
make it easy to query for processes that were run with the same set of input parameters. Two of the columns in 
this table, named “type” and “technique,” specify the type of experiment performed. The “details” column contains 
a dictionary in json format that contains all of the metadata that was recorded for that experiment. This is meant 
to include all relevant experimental input parameters, like the solution pH or current density set point. For each 
type and technique, the schema of the json column is consistent across all rows. Therefore, the metadata schema 
for each type of experiment can be found by querying for any row in the Process Details table with the type and 
technique of interest.

Technical Validation
The database entries result from high throughput experiments and analyses of the resulting data. For experimen-
tal data describing the synthesis and characterization of materials, the technical quality of the data is monitored 
via standard operating procedures of the instruments. A core tenet of the database presented herein is that 
further technical validation must be done in the context of a specific research purpose, and to avoid injection 
of data quality assumptions into data analysis, the database contains all raw output from the instruments to 
increase transparency and allow modifications to any quality control and validation algorithms. Validation of 
specific subsets of data are provided in previous work, typically via replication of high throughput screening 

Fig. 3  Schema diagram for the ingestion tables in the Materials Provenance Store. This figure can be read in the 
same way as Fig. 2. The “ingestion” tables, shown in tan, are not meant to be accessed by most users. They exist 
because the process of getting data into the Materials Provenance Store is quite complex, and it was useful to 
store intermediate intermediate linkages and results as a part of the data ingestion pipeline. Note that the JCAP 
Analysis table contains the DOIs for some of the underlying raw data; however, the data in these files is stored in 
a more accessible manner in the main tables (shown in Fig. 2).

https://doi.org/10.1038/s41597-023-02107-0


5Scientific Data |          (2023) 10:184  | https://doi.org/10.1038/s41597-023-02107-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

results using traditional experimental methods for catalysts14,24–26, photocatalysts27,28, and integrated photoan-
odes29–31. For each of these examples, the instrument control software was written to validate metadata tracking 
by 2 primary methods, automated metadata recording and manual data entry with validation. Instrument set-
tings comprise the majority of metadata, and extraction and storage of instrument settings was performed by the 
instrument control software, with the resulting metadata file manually checked against instrument settings after 
each modification to the control software. Some manual data entry was required for select instruments, most 
commonly entry of the sample number, whose manually entry was protected against single keystroke errors 
(and most multi-keystroke errors) via a checksum. The other primary type of manual data entry is numerical 
calibration of instrument components, most notable the reference electrode in electrochemical experiments. 
The lab maintains a data log of all reference electrodes and their history of calibrations to ensure continuity and 
validation against the entries encoded in the metadata.

Usage Notes
The data is available in a PostgreSQL database. This format requires three steps to make use of. It also provides 
the ability to use SQL queries to access specific subsets of the data. This makes it easier for researchers to ask 
specific questions of the data. Additionally, when a researcher writes a SQL query to acess a specific subset of the 
data for a given project, they can simply publish the query, and which data they used is very transparent.

•	 Download the compressed SQL database dump file (.tar.gz format) from CaltechDATA at https://data.caltech.
edu/records/4kk39-69x7623.

•	 Install PostgreSQL by following the instructions at https://www.postgresql.org/download/.
•	 Extract the.tar.gz file, which will yield a.sql file.
•	 Follow the PostgreSQL documentation to create a new database from the.sql file.

This will create a local copy of the database that we present in this work. The data can be browsed using the 
DBeaver user interface, and SQL queries can be written to return specific portions of the database that are of 
interest to the researcher.

Code availability
The MPS database was generated using DBgen (v1.0.0a7) (https://github.com/modelyst/dbgen), an open-source 
framework for building scientific databases and pipelines available at https://github.com/modelyst/dbgen.  
A python API, a command-line interface (CLI), and a Jupyter notebook with example queries are available in the 
Materials Provenance Store Client repository (https://github.com/modelyst/mps-client).

Received: 22 November 2022; Accepted: 27 March 2023;
Published: xx xx xxxx

References
	 1.	 Blaiszik, B. et al. The Materials Data Facility: Data Services to Advance Materials Science Research. JOM 68, 2045–2052, https://doi.

org/10.1007/s11837-016-2001-3 (2016).
	 2.	 Blaiszik, B. et al. A Data Ecosystem to Support Machine Learning in Materials Science. MRS Communications 9, 1125–1133, https://

doi.org/10.1557/mrc.2019.118. ArXiv: 1904.10423 (2019).
	 3.	 Zakutayev, A. et al. An open experimental database for exploring inorganic materials. Scientific Data 5, 180053, https://doi.

org/10.1038/sdata.2018.53 (2018).
	 4.	 Talley, K. R. et al. Research data infrastructure for high-throughput experimental materials science. Patterns 2, 100373, https://doi.

org/10.1016/j.patter.2021.100373 (2021).
	 5.	 Soedarmadji, E., Stein, H. S., Suram, S. K., Guevarra, D. & Gregoire, J. M. Tracking materials science data lineage to manage millions 

of materials experiments and analyses. npj Computational Materials 5, 1–9, https://doi.org/10.1038/s41524-019-0216-x (2019).
	 6.	 Stein, H. S., Soedarmadji, E., Newhouse, P. F., Dan, G. & Gregoire, J. M. Synthesis, optical imaging, and absorption spectroscopy data 

for 179072 metal oxides. Scientific Data 6, 9, https://doi.org/10.1038/s41597-019-0019-4 (2019).
	 7.	 Stein, H. S., Guevarra, D., Newhouse, P. F., Soedarmadji, E. & Gregoire, J. M. Machine learning of optical properties of materials - 

predicting spectra from images and images from spectra. Chemical Science 10, 47–55, https://doi.org/10.1039/C8SC03077D (2018).
	 8.	 Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 

547–555, https://doi.org/10.1038/s41586-018-0337-2. Number: 7715 Publisher: Nature Publishing Group (2018).
	 9.	 Yano, J. et al. The case for data science in experimental chemistry: examples and recommendations. Nature Reviews Chemistry 6, 

357–370, https://doi.org/10.1038/s41570-022-00382-w. Number: 5 Publisher: Nature Publishing Group (2022).
	10.	 Gomes, C. P., Selman, B. & Gregoire, J. M. Artificial intelligence for materials discovery. MRS Bulletin 44, 538–544, https://doi.

org/10.1557/mrs.2019.158 (2019).
	11.	 Statt, M. et al. Esamp: Event-sourced architecture for materials provenance management and application to accelerated materials 

discovery. chemrxiv https://doi.org/10.26434/chemrxiv.14583258.v1 (2021).
	12.	 Suram, S. K. et al. Combinatorial Discovery of Lanthanum-Tantalum Oxynitride Solar Light Absorbers with Dilute Nitrogen for 

Solar Fuel Applications. ACS Combinatorial Science https://doi.org/10.1021/acscombsci.7b00143 (2017).
	13.	 Newhouse, P. et al. Solar Fuels Photoanodes Prepared by Inkjet Printing of Copper Vanadates. Journal of Materials Chemistry A 

https://doi.org/10.1039/C6TA01252C (2016).
	14.	 Haber, J. A. et al. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy & 

Environmental Science 7, 682–688, https://doi.org/10.1039/C3EE43683G (2014).
	15.	 Zhou, L. et al. Combining reactive sputtering and rapid thermal processing for synthesis and discovery of metal oxynitrides. Journal 

of Materials Research 30, 2928–2933, https://doi.org/10.1557/jmr.2015.140 (2015).
	16.	 Mitrovic, S. et al. Colorimetric screening for high-throughput discovery of light absorbers. ACS Comb Sci 17, 176–181 (2015).
	17.	 Gregoire, J. M., Xiang, C., Liu, X., Marcin, M. & Jin, J. Scanning droplet cell for high throughput electrochemical and 

photoelectrochemical measurements. Review of Scientific Instruments 84, 024102, https://doi.org/10.1063/1.4790419 (2013).
	18.	 Xiang, C. et al. Mapping Quantum Yield for (Fe-Zn-Sn-Ti)Ox Photoabsorbers Using a High Throughput Photoelectrochemical 

Screening System. ACS Combinatorial Science 16, 120–127, https://doi.org/10.1021/co400081w. Publisher: American Chemical 
Society (2014).

https://doi.org/10.1038/s41597-023-02107-0
https://data.caltech.edu/records/4kk39-69x76
https://data.caltech.edu/records/4kk39-69x76
https://www.postgresql.org/download/
https://github.com/modelyst/dbgen
https://github.com/modelyst/dbgen
https://github.com/modelyst/mps-client
https://doi.org/10.1007/s11837-016-2001-3
https://doi.org/10.1007/s11837-016-2001-3
https://doi.org/10.1557/mrc.2019.118
https://doi.org/10.1557/mrc.2019.118
https://doi.org/10.1038/sdata.2018.53
https://doi.org/10.1038/sdata.2018.53
https://doi.org/10.1016/j.patter.2021.100373
https://doi.org/10.1016/j.patter.2021.100373
https://doi.org/10.1038/s41524-019-0216-x
https://doi.org/10.1038/s41597-019-0019-4
https://doi.org/10.1039/C8SC03077D
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41570-022-00382-w
https://doi.org/10.1557/mrs.2019.158
https://doi.org/10.1557/mrs.2019.158
https://doi.org/10.26434/chemrxiv.14583258.v1
https://doi.org/10.1021/acscombsci.7b00143
https://doi.org/10.1039/C6TA01252C
https://doi.org/10.1039/C3EE43683G
https://doi.org/10.1557/jmr.2015.140
https://doi.org/10.1063/1.4790419
https://doi.org/10.1021/co400081w


6Scientific Data |          (2023) 10:184  | https://doi.org/10.1038/s41597-023-02107-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

	19.	 Mitrovic, S. et al. High-throughput on-the-fly scanning ultraviolet-visible dual-sphere spectrometer. The Review of scientific 
instruments 86, 013904, https://doi.org/10.1063/1.4905365 (2015).

	20.	 Jones, R. J. R. et al. Parallel electrochemical treatment system and application for identifying Acid-stable oxygen evolution 
electrocatalysts. ACS Combinatorial Science 17, 71–5, https://doi.org/10.1021/co500148p (2015).

	21.	 Lai, Y., Jones, R. J. R., Wang, Y., Zhou, L. & Gregoire, J. M. Scanning Electrochemical Flow Cell with Online Mass Spectroscopy for 
Accelerated Screening of Carbon Dioxide Reduction Electrocatalysts. ACS Combinatorial Science 21, 692–704, https://doi.
org/10.1021/acscombsci.9b00130 (2019).

	22.	 Gregoire, J. M. et al. High-throughput synchrotron X-ray diffraction for combinatorial phase mapping. Journal of Synchrotron 
Radiation 21, 1262–1268, https://doi.org/10.1107/S1600577514016488 (2014).

	23.	 Statt, M. et al. The materials provenance store. CaltechDATA https://doi.org/10.22002/4kk39-69x76 (2022).
	24.	 Haber, J. A. et al. High-Throughput Mapping of the Electrochemical Properties of (Ni-Fe-Co-Ce)Ox Oxygen-Evolution Catalysts. 

ChemElectroChem 1, 524–528, https://doi.org/10.1002/celc.201300229 (2014).
	25.	 Haber, J. A., Guevarra, D., Jung, S., Jin, J. & Gregoire, J. M. Discovery of New Oxygen Evolution Reaction Electrocatalysts by 

Combinatorial Investigation of the Ni-La-Co-Ce Oxide Composition Space. ChemElectroChem 1, 1613–1617, https://doi.
org/10.1002/celc.201402149 (2014).

	26.	 Zhou, L. et al. Rutile Alloys in the Mn-Sb-O System Stabilize Mn3+ To Enable Oxygen Evolution in Strong Acid. ACS Catalysis 8, 
10938–10948, https://doi.org/10.1021/acscatal.8b02689 (2018).

	27.	 Newhouse, P. F. et al. Multi-modal optimization of bismuth vanadate photoanodes via combinatorial alloying and hydrogen 
processing. Chemical Communications 55, 489–492, https://doi.org/10.1039/C8CC07156J (2019).

	28.	 Richter, M. H. et al. Band Edge Energy Tuning through Electronic Character Hybridization in Ternary Metal Vanadates. Chemistry 
of Materials https://doi.org/10.1021/acs.chemmater.1c01415. Publisher: American Chemical Society (2021).

	29.	 Zhou, L. et al. Balancing Surface Passivation and Catalysis with Integrated BiVO4/(Fe-Ce)Ox Photoanodes in pH 9 Borate 
Electrolyte. ACS Applied Energy Materials https://doi.org/10.1021/acsaem.8b01377 (2018).

	30.	 Shinde, A. et al. Discovery of Fe-Ce Oxide/BiVO4 Photoanodes through Combinatorial Exploration of Ni-Fe-Co-Ce Oxide 
Coatings. ACS Appl. Mater. Interfaces 8, 23696–23705, https://doi.org/10.1021/acsami.6b06714 (2016).

	31.	 Guevarra, D. et al. Development of solar fuels photoanodes through combinatorial integration of Ni-La-Co-Ce oxide catalysts on 
BiVO4. Energy Environ. Sci. 9, 565–580, https://doi.org/10.1039/C5EE03488D (2016).

Acknowledgements
This material is primarily based on work performed by the Liquid Sunlight Alliance, which is supported by the 
U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Fuels from Sunlight Hub under 
Award DE-SC0021266. Development of the database schema was supported by Toyota Research Institute. 
Much of the underlying data was generated by research in the Joint Center for Artificial Photosynthesis, a DOE 
Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy (Award No. 
DE-SC0004993). Storage was provided by the Open Storage Network via XSEDE allocation INI210004. Use of 
the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the 
U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-
76SF00515.

Author contributions
M.J.S., B.A.R., D.G., S.K. and J.M.G. designed the MPS schema and its ingestion of MEAD. M.J.S., B.A.R. and D.G. 
implemented MPS. T.E.M. facilitated implementation of DOI-based linkages between MPS and CaltechDATA. 
Quality checks were performed by all authors. M.J.S., B.A.R. and J.M.G. were the primary authors of the 
manuscript.

Competing interests
Modelyst LLC implements custom data management systems in a professional context.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.
org/10.1038/s41597-023-02107-0.
Correspondence and requests for materials should be addressed to M.J.S., B.A.R. or J.M.G.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2023

https://doi.org/10.1038/s41597-023-02107-0
https://doi.org/10.1063/1.4905365
https://doi.org/10.1021/co500148p
https://doi.org/10.1021/acscombsci.9b00130
https://doi.org/10.1021/acscombsci.9b00130
https://doi.org/10.1107/S1600577514016488
https://doi.org/10.22002/4kk39-69x76
https://doi.org/10.1002/celc.201300229
https://doi.org/10.1002/celc.201402149
https://doi.org/10.1002/celc.201402149
https://doi.org/10.1021/acscatal.8b02689
https://doi.org/10.1039/C8CC07156J
https://doi.org/10.1021/acs.chemmater.1c01415
https://doi.org/10.1021/acsaem.8b01377
https://doi.org/10.1021/acsami.6b06714
https://doi.org/10.1039/C5EE03488D
https://doi.org/10.1038/s41597-023-02107-0
https://doi.org/10.1038/s41597-023-02107-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	The Materials Provenance Store

	Background & Summary

	Methods

	Data Records

	Sample table. 
	Processes table. 
	Sample process table. 
	Process data table. 
	Analysis table. 
	Collections. 
	Process details. 

	Technical Validation

	Usage Notes

	Acknowledgements

	Fig. 1 Four-way Venn diagram for the 4 primary types of experimental processes showing how many unique materials samples in the dataset have undergone each combination of process types.
	Fig. 2 Schema diagram for the Materials Provenance Store.
	Fig. 3 Schema diagram for the ingestion tables in the Materials Provenance Store.
	Table 1 The 13 types of experimental processes in the database are listed with the respective number of entries in the Sample Process table.




