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Integrated microbiome-
metabolome-genome axis data of 
Laiwu and Lulai pigs
Xueshuang Lai1,2, Zhenyang Zhang2, Zhe Zhang2, Shengqiang Liu2,3, Chunyan Bai4, Zitao Chen2, 
Qamar Raza Qadri1, Yifei Fang1,2, Zhen Wang2, Yuchun Pan   2,3 ✉ & Qishan Wang   2,3 ✉

Excessive fat deposition can trigger metabolic diseases, and it is crucial to identify factors that can break 
the link between fat deposition and metabolic diseases. Healthy obese Laiwu pigs (LW) are high in fat 
content but resistant to metabolic diseases. In this study, we compared the fecal microbiome, fecal 
and blood metabolome, and genome of LW and Lulai pigs (LU) to identify factors that can block the link 
between fat deposition and metabolic diseases. Our results show significant differences in Spirochetes 
and Treponema, which are involved in carbohydrate metabolism, between LW and LU. The fecal and blood 
metabolome composition was similar, and some anti-metabolic disease components of blood metabolites 
were different between the two breeds of pigs. The predicted differential RNA is mainly enriched in lipid 
metabolism and glucose metabolism, which is consistent with the functions of differential microbiota and 
metabolites. The down-regulated gene RGP1 is strongly negatively correlated with Treponema. Our omics 
data would provide valuable resources for further scientific research on healthy obesity in both human and 
porcine.

Background & Summary
Excessive fat deposition can lead to chronic damage to organs and metabolic diseases1–3. However, genetic fac-
tors alone cannot fully explain these conditions4. The role of metabolic factors, such as gut microbiota and 
metabolites5–8, has gained increasing attention in understanding the causes of obesity-induced chronic meta-
bolic diseases9–11. Changes in gut microbiota composition have been shown to trigger chronic metabolic dis-
eases, including hypertension, atherosclerosis, and type 2 diabetes mellitus (T2DM)12–14. Microbiota produce 
essential metabolites such as trimethylamine N-oxide (TMAO) is directly linked with chronic metabolic dis-
eases, such as atherosclerosis, T2DM, cardiovascular diseases (CVD) and stroke15–18. Moreover, Gut microbiota 
can ferment unabsorbed/undigested carbohydrates to produce aliphatic organic acids like short chain fatty acids 
(SCFAs)19,20. SCFAs can protect the host from diet-induced obesity through G protein-coupled receptors, and 
microbiota indirectly regulate host lipid metabolism through SCFAs21–23. Thus, gut microbes act as an endocrine 
organ, producing bioactive metabolites that affect host physiology7,24–26. Conversely, recent studies have shown 
that host genome can influence related phenotypes by altering the gut microbiota. For example, ABO genotypes 
can influence the gut microbiota structure by regulating N-acetylgalactosamine (GalNAc)27. Therefore, integrat-
ing omics analysis may help to identify key factors that protect individuals against metabolic diseases.

Pigs tend to resistant to metabolic diseases such as non-alcoholic fatty liver disease (NAFLD), T2DM  
and CVD though fed diets high in fat, fructose, and carbohydrates28,29. This phenomenon is similar to meta-
bolic healthy obesity (MHO) who are obese but protect against metabolic diseases30. The Chinese demostic 
Laiwu pig (LW) is known for its high fat content, including subcutaneous fat and intramuscular fat (IMF)31–34. 
In particular, the IMF of LW was up to more than 7%, the average was up to 11.6%, and the highest individual 
was up to 21%. LW was crossed with the western commercial pig Yorkshire pig (YS) to breed the Lulai pig (LU) 
which has 50% LW gene infiltration35. The fat content of LU was lower than that of LW, and the IMF was about 
5%. In this study, we chose eight LW and eight LU pigs with similar diet, hygiene, and environmental conditions 
for centralized management over two years (Table 1). We processed the fecal microbiome, fecal metabolome, 
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blood metabolome, and whole genome of the target pigs (as shown in Fig. 1) to identify key factors that protect 
individuals against metabolic diseases through omics integration analysis.

In conclusion, our study generated a high-quality dataset of fecal metagenome, fecal metabolome,  
blood metabolome, and whole-genome sequences from LW and LU pigs. The fecal metagenome produced 
34.5 gigabyte (Gb) and 35 Gb of unassembled raw reads and revealed significant differences in the abun-
dance of Spirochetes and Treponema, which are involved in carbohydrate metabolism. We identified a total of  
1,220 metabolites in the fecal metabolome and 713 metabolites in the blood metabolome, both of which were 
rich in medium and long-chain fatty acids. Blood metabolome contained some anti-metabolic disease com-
ponents, such as hydroxy fatty acids, tanshinone IIA, and betaine. The whole genome obtained an average of 
21.9 Gb paired-end reads with a total number of 23.5 millions single nucleotide polymorphisms (SNPs) from 
18 autosomes. The Fst analysis (fixation index, Wright’s F-statistics) of SNPs identified 4 KEGG (kyoto encyclo-
pedia of genes and genomes) pathways, including bile secretion and fat digestion and absorption, which were 
enriched in the top 1% of Fst. The RNA expression analysis of adipose tissues of 16 pigs identified 412 differ-
entially expressed genes, which were enriched in 9 KEGG pathways, including starch and sucrose metabolism 
and glycerophospholipid metabolism. The functional annotation of differential genes showed that lipid and glu-
cose metabolism were the main enriched functions, consistent with the functions of differential microbiota and 
metabolites. Furthermore, the down-regulated gene RGP1 was found to be strongly negatively correlated with 
Treponema, indicating that the expression of RGP1 was closely related to the change of Treponema abundance.  
In summary, our study provides new insights into the role of gut microbiota, metabolites, and host genetics 
in the development of metabolic diseases. The identification of anti-obesity or anti-metabolic disease factors 
through the integration of microbiomic-metabolomic-genomic data has the potential to lead to the development 
of new therapeutic strategies for these diseases.

Methods
Animal rearing and samples collection.  Our experiment was designed to compare eight female Laiwu pigs 
(LW) with eight female Lulai pigs (LU) which crossbred between LW and Yorkshire breeds. All pigs were born and 
raised for approximately two years (715 ± 33 days, Table 1) under uniform housing and feeding conditions at Jing-Qi-
Shen pig farm in Jilin province, China. Temperature, humidity, and light varied with the natural climate conditions. 
Piglets from different mothers were used, and one piglet per litter was randomly chosen. Piglets were similar in age, 
with the oldest and youngest pigs in the experiment separated by 66 days. During the suckling period, piglets stayed 
with their mother, and then they were transferred to a pigsty with automatic feeders. Piglets were fed five times a day, 
three times before mating and once in the morning and evening after pregnancy. When the sows were sexually mature, 
they participated in normal sexual mating and birth. The sows were not pregnant at the time of sample collection.

Pig poop times were irregular and sample collection ranged from 10 a.m. to 5 p.m. Sampling was conducted 
for fecal and blood samples. To keep fecal samples free of contamination, we wear clean disposable sterile gloves 
and capture pig manure before it touches the ground. The fresh fecal samples were immediately preserved in 
sample collection tubes that were prepared and pre-filled with a bacterial DNA protective agent. The fecal sam-
ples were then placed into liquid nitrogen for rapid cooling. Two tubes of fecal samples were collected from each 
pig, one for microbiome profiling and another for metabolome profiling. The same group of pigs underwent 
an overnight fast of 14 hours before blood sample collection. Five milliliters of blood were collected from the 
jugular vein of each pig using a syringe. The fresh blood was preserved in a blood procoagulant tube and placed 
at room temperature for one hour. The blood mixture was then centrifuged at 3,000 g at 4 °C for 10 minutes. 
The upper serum of blood was transferred to a clean 1.5 mL tube. All fecal and blood samples were labeled and 
transported with dry ice to the laboratory for further processing.

Microbe DNA extraction and sequencing.  We used the E.Z.N.Asoil DNA isolation kit (OMEGA, 
Norcross, GA, U.S) to extract microbiota DNA following the manufacturer’s instructions. Absorbance at opti-
cal density (OD) 1.8 to 2.0 and 1% agarose gel electrophoresis were used to assess the DNA integrity and DNA 
quality, and our sample DNA met these criteria. The whole DNA sequence was cut into short fragments using a 
Covaris M220 system (Qsonica, USA). The 300 bp fragments were constructed into a pair-ends (PE) library using 
a TruSeq™ DNA sample preparation kit (Illumina, San Diego, CA). The PE library was assessed using Truseq PE 
cluster kit v3-cBot-HS (Illumina, San Diego, CA), and the library fragment amplification was performed using 
polymerase chain reaction (PCR). We used 1.5 μg samples for next generation sequencing (NGS) in an Illumina 
NovaSeq. 6000 platform.

Sample ID Gender Age (days) Sample ID Gender Age (days)

LW_F_1 Female 679d LU_F_1 Female 743d

LW_F_2 Female 733d LU_F_2 Female 748d

LW_F_3 Female 723d LU_F_3 Female 741d

LW_F_4 Female 682d LU_F_4 Female 737d

LW_F_5 Female 675d LU_F_5 Female 737d

LW_F_6 Female 703d LU_F_6 Female 714d

LW_F_7 Female 715d LU_F_7 Female 743d

LW_F_8 Female 684d LU_F_8 Female 728d

Table 1.  Gender and age information for each sample.
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Microbiome data processing.  The output NGS sequencing data were preserved in fastq format. Raw data 
were checked for quality control using Trimmomatic36 (v0.39) and processed using the following criteria: (a), if 
the average mass value was lower than 20 within the setting 50 bp sliding window, the tail of the unconformity 
quality reads were abandoned; (b), those sequences containing two unknown nucleotides (marked with N) were 
abandoned; (c), sequences with adaptor contamination were excluded; (d), sequence lengths below 50 bp and tail 
mass values lower than 20 were excluded. After trimming, high quality sequences remained. In order to exclude 
those sequences obtained from the host genome, the remaining sequences were mapped to the porcine DNA 
reference genome (Sscrofa 11.1), and Burrows-Wheeler Aligner37 (v0.7.17) was used to remove the high simi-
larity reads. The remaining sequences were de novo assembled into contigs using Megahit38 (v1.1.1). Finally, the 
assembling contigs had their open reading frames (ORFs) predicted using MetaGeneMark39 (v3.25). Sequences 
were clustered using CD-HIT40 with parameters set at 95% consistency and 90% coverage. The longest sequences 
of each cluster were selected to construct a non-redundant gene catalog. Then, the above remaining high-quality 
sequences were compared to the non-redundant gene catalog (set at 95% identity) using SOAPaligner41, and we 
obtained a particular gene set and gene abundance. The gene set was compared to the Non-Redundant Protein 
Sequence database (NR database) using BLAST (v2.2.28) to obtain the taxonomic annotation and abundance 
(alignment parameter e-value was set as 1e-5). Finally, the taxonomic abundances of the six classification levels of 
kingdom, phylum, class, order, family, genus, and species were analyzed.

Fecal and blood metabolite extraction.  Fecal and blood samples were extracted and analyzed separately. 
Before sample processing, we preliminarily prepared 3 quality control (QC) samples which were mixed LW and 
LU samples in equal amounts. Then, LW, LU and QC samples were separated to 100 μl by mixing with 100 μl 

Fig. 1  Schematic representation of the workflow for microbiome-metabolome-genome omics sample 
collection, sample processing, and data processing.
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pre-cooled water and 800 μl precooled methanol/acetonitrile (1:1, v/v). The mixtures were placed on the ice bath 
and subjected to ultrasound for 60 minutes. To precipitate out the proteins, the mixtures were transferred to a 
refrigerator at −20 °C and incubated for 1 hour. The supernatant was transferred to clean sterile tubes and was 
centrifuged at 16,000 g, 4 °C for 20 minutes. Next, we used a high-speed vacuum enrichment centrifuge to dry the 
supernatant. The dried powder was resuspended by adding 100 μL acetonitrile/water solution (1:1, v/v), and this 
solution was centrifuged at 16,000 g, 4 °C for 15 minutes.

Chromatographic separation and mass spectrometry.  Chromatographic separation was performed 
by Agilent 1290 Infinity LC Ultra-High Performance Liquid Chromatography (UHPLC) platform with a quad-
rupole time-of-flight mass spectrometry (AB Sciex Triple TOF 5600) and HILIC column (Agilent 1290 infinity).  
QC samples which were used to evaluate the system stability and data reliability were inserted into the sample queue.  
The column temperature was 25 °C, and the flow rate was 0.3 mL/min. There were two mobile phases, phase A 
contained water, 25 mM ammonium acetate, and 25 mM ammonia water, Phase B only contained acetonitrile. 
The mobile phase system running procedure was set as follows: 95% B at 0–0.5 min; 95% to 65% of B at 0.5–7 min; 
65% to 40% of B at 7–9 min; 40% B maintained at 9–10 min; 40% to 95% of B at 10–11.1 min; 95% B maintained 
at 11.1–16 min.

The positive or negative ion mode of components was detected using electrospray ionization (ESI). ESI 
source condition was set as follows: ion source gas1 (Gas1), 60 psi; ion source gas2 (Gas2), 60 psi; curtain gas 
(CUR), 30 psi; source temperature, 600 °C; ionsapary voltage floating (ISVF), ±5500 V; TOF MS scan m/z range, 
60–1200 Da; product ion scan m/z range, 25–1200 Da; TOF MS scan accumulation time, 0.15 s/spectra; prod-
uct ion scan accumulation time, 0.03 s/spectra. Secondary mass spectrometry was obtained using information 
dependent acquisition (IDA) and was used in high sensitivity mode, declustering potential (DP), ±60 V; colli-
sion energy, 30 eV. IDA was set as follows: exclude isotopes within 4 Da; candidate ions to monitor per cycle, 6.

Metabolite data processing.  The raw mass spectrometry (MS) data were converted into mzXML files by 
ProteoWizard. The program XCMS in MSDIAL software was used for peak alignment, retention time correc-
tion, and extraction of peak area. For the extracted data, removed the ion peaks with missing values >50% in 
the group. The positive and negative ion peaks then were integrated, and the software SIMCA-P 14.1 (Umetrics, 
Umea, Sweden) was used for pattern recognition. Accurate mass matching (<25 ppm) and secondary spec-
trum matching were used for metabolite structure identification, and the database such as Human Metabolome 
Database (HMDB) and Massbank Database were searched. After retrieving metabolites, metabolites were classi-
fied using MSDIAL search software. The data was normalized by Pareto-scaling for subsequent analysis.

Blood DNA extraction and sequencing.  Blood DNA extraction was carried out in accordance with the 
TruSeq DNA LT Sample Prep Kit (Illumina, San Diego, CA) protocol. DNA quality was assessed by measuring 
absorbance at OD 1.6 to 1.8 using a NanoDrop 2000 Spectrophotometer (Thermo Fischer Scientific, USA), while 
DNA integrity was confirmed via 1% agarose gel electrophoresis. Subsequently, the DNA sequence was frag-
mented into 350–450 bp fragments using Covaris M220. The fragment ends were repaired and phosphorylated, 
followed by the connection of the adaptor using the NextFlexTM Rapid DNA-Seq Kit (Bioo Scientific, USA). 
Finally, the library was amplified via 15 cycles of PCR to enrich small fragments. The quality and concentration of 
the library were determined using Qubit (Thermo Fischer Scientific, USA), and PE150 sequencing was performed 
on the Illumina NovaSeq. 6000 platform.

Genome data processing.  The sequencing data was saved in the fastq format. The Fastp42 (v0.20.0) was 
used with default parameters to read, filter and profile the quality of the reads. BWA37 (v0.7.17) was used to 
map high-quality reads to the pig reference genome (Sscrofa11.1). SAM files were converted to BAM files by 
SamTools43 (v1.10). Duplicate reads were removed using Sambamba44 (v0.7.1). The data coverage and depth were 
calculated using Mosdepth45 (v0.2.9). GATK46 (v4.1.6) Haplotypecalle was used to process each sample and gen-
erate an intermediate GVCF, which was used for joint genotyping of all samples in genotype GVCFs. Finally, 
SNPs were filtered based on the following criteria: (1) QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum <−12.5, 
ReadPosRankSum <−8.0, SOR > 3.0; (2) minor allele frequency (MAF) < 0.01; (3) call rate of GATK vari-
ants < 0.9. The number of SNPs obtained is shown in Table 4. Genotype density distribution was mapped using 
the CMplot R package. Principal components analysis (PCA) was calculated using Plink47 (v1.9). Population 
genetic structure analysis was performed using Admixture48 (v1.3.0). PCA and Admixture analyses included 
the SNPs of Yorkshire pigs (YS), Duroc pigs (DU) and Landrace pigs (LR) were obtained from the PHARP data-
base49 (http://alphaindex.zju.edu.cn/PHARP/index.php). FST analysis was performed using VCFtools50 (v0.1.13,–
fst-window-size 50,000–fst-window-step 10,000. Window size 50 K, step size 10 K). Gene expression prediction 
was performed using the FarmGTEx TWAS-server51,52 (http://twas.farmgtex.org/). Functional annotation for 
gene ontology (GO) and KEGG was performed using http://kobas.cbi.pku.edu.cn/.

Metagenomic data analysis.  The fecal metagenome generated 34.5 Gb and 35 Gb of unassembled raw 
reads from LW and LU samples, respectively. After quality control, the sequence Q20 ratio (bases with a mass 
value of 20 as a percentage of the total number of bases) exceeded 96.99% and Q30 ratio exceeded 91.67%,  
indicating that the data quality was suitable for further analysis. On average, 5.5 million and 5.7 million clean 
reads were obtained from LW and LU datasets, respectively (Table 2). The intergroup diversity of the sequences 
between the two porcine breeds was calculated using shannon and simpson diversity index, and there was no 
notable difference in the overall sequences (Fig. 2C,D). The LU group was infiltrated with 50% of LW genes and 
maintained in a consistent environment for approximately two years, which may account for the indiscriminate 
microbial composition of the two groups of pigs. Clean reads were assembled into contigs and clustered based on  
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95% similarity and 90% coverage to generate a non-redundant gene catalog comprising a total of 4.2 million 
ORFs with an average length of 622 base pairs. Gene annotation revealed that 262,645 genes were unique to LU 
and 350,102 genes were unique to LW (Fig. 2A). Despite having more sequences and contigs than LW, LU had 
fewer annotated genes. In contrast to previous reports on the lower gene counts and bacterial diversity in obese 
individuals53–55, our results show that the more obese pigs have a higher gene count, which is contrary to the pre-
vious finding. The cumulative frequency statistics of gene abundances from the two porcine breeds showed no 
significant difference in most intervals, but genes with a count of nearly 40 were significantly more abundant in 
LW than in LU (Fig. 2B). This finding indicates that the two porcine breeds have different compositions, mainly 
located in this interval.

Microbiota taxonomic assessment.  The highly similar microbial environment of LW and LU may be 
attributed to the high degree of gene infiltration and rearing environment. However, the remaining differential 
microorganisms are likely to be involved in fat deposition, leading to differences in the fat content of the two 
pig breeds. Therefore, we conducted further analysis to identify the microbial differences between LW and LU. 
We summarized the microbiome at six taxonomic classification levels, including phylum, class, order, family, 
genus, and species. In LW, we detected a total of 146 phyla, 90 classes, 323 orders, 304 families, 2,691 genera, and 
14,570 species (Table 3). Meanwhile, LU showed 145 phyla, 90 classes, 321 orders, 306 families, 2,651 genera, 
and 14,324 species (Table 3). Due to unknown taxonomic annotations at the class and family levels, the statistics 
were lower. At the phylum classification level, Firmicutes (66.94%), Bacteroidetes (17.93%) and Proteobacteria 
(5.69%) were the predominant phyla, with Actinobacteria (2.38%), Spirochaetes (1.46%), Fibrobacteres (0.62%), 
and Planctomycetes (0.5%) also being present in significant amounts (Fig. 3A, Supplementary Table S5). The total 
proportion of Firmicutes, Bacteroidetes, and Proteobacteria reached 91%, with the strongest niche competition, 
as the ratio was trading off (Supplementary Table S1). At the genus classification level, the predominant genera 
were Clostridium (6.55%), Bacteroides (4.93%), Prevotella (7.15%), Streptococcus (4.2%), Oscillibacter (4.05%), 
Ruminococcus (3.39%), Faecalibacterium (1.8%), and Eubacterium (1.8%) (Fig. 3B, Supplementary Table S2). We 
conducted a wilcoxon rank-sum test to analyze the differences between the phylum and genus taxonomic levels 
of LW and LU. The results revealed a significant difference in Spirochaetes abundance between LW and LU at the 
phylum classification level (Fig. 4A). Spirochaetes have been reported to be involved in the metabolic process 
of carbohydrates56–59. At the genus taxonomic level, there was a significant difference in Treponema abundance 
between LW and LU (Fig. 4B). Treponema is a genus belonging to Spirochaetes.

Metabolites data profiling.  The total ion flow patterns (TIC) of the quality control (QC) samples were 
compared under positive and negative ion detection modes. The response strength and retention time of each 
chromatographic peak overlapped, indicating that the variation caused by instrument error is minimal and the 
data quality is reliable. For the fecal metabolome, we extracted 12,226 positive ion peaks and 6,891 negative ion 
peaks, of which 703 positive ion peaks and 517 negative ion peaks were annotated. The 1,220 annotated metabo-
lites were categorized into 453 classes, including triterpenoids, long-chain fatty acids, and xanthophylls, with 53, 
19, 13 kinds of metabolites, respectively (Fig. 5A, Supplementary Table S3). In the blood metabolome, we detected 
5,977 positive ion peaks and 3,081 negative ion peaks, of which 368 positive ion peaks and 345 negative ion 
peaks were annotated. The 713 annotated metabolites were categorized into 360 classes, including triterpenoids, 
aconitane-type diterpenoid alkaloids, and alpha amino acids, with 15, 14, 11 metabolites, respectively (Fig. 5B, 
Supplementary Table S4). It is worth noting that long-chain and medium-chain fatty acids were the major fatty 
acids in both the fecal and blood metabolomes. These fatty acids are easily oxidized and hydrolyzed, and can 
reduce blood lipids and cholesterol, which may be related to the lower susceptibility of pigs to obesity-related 

Sample ID Clean reads Error% Q20% Q30% GC% Contigs (number) ORFs (number)

LW-F-1 25,742,676 0.0237 98.49 95.50 50.82 204,891 369,142

LW-F-2 31,905,416 0.0242 98.29 95.03 52.5 244,783 449,000

LW-F-3 37,403,822 0.0236 98.53 95.62 53.85 306,291 538,258

LW-F-4 60,663,316 0.0265 97.42 92.68 52.84 380,835 739,118

LW-F-5 64,310,816 0.0267 97.33 92.52 52.74 427,285 834,279

LW-F-6 84,473,838 0.0264 97.47 92.79 53.71 449,988 937,422

LW-F-7 57,571,190 0.0264 97.51 92.82 50.49 411,427 791,341

LW-F-8 76,238,898 0.0256 97.82 93.46 52.63 540,800 1,036,977

LU-F-1 33,028,042 0.0240 98.4 95.18 52.1 251,573 461,917

LU-F-2 29,230,424 0.0238 98.48 95.44 50.94 238,659 424,624

LU-F-3 31,118,364 0.0235 98.6 95.78 52.93 199,744 371,059

LU-F-4 74,557,864 0.0257 97.78 93.39 52.62 414,445 826,178

LU-F-5 63,920,876 0.0262 97.57 93.00 52.54 480,887 915,972

LU-F-6 71,637,054 0.0277 96.99 91.67 54.26 401,994 841,977

LU-F-7 67,836,418 0.0256 97.87 93.52 50.46 470,125 927,982

LU-F-8 80,789,052 0.0262 97.56 92.95 51.87 413,080 849,927

Table 2.  Statistics of sequences, contigs, ORFs, and the mass value of clean reads for each sample.
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metabolic diseases. The composition of the fecal metabolome was similar to that of the blood metabolome, con-
taining triterpenoids, xanthophylls, long-chain fatty acids, medium-chain fatty acids, lipids, and alpha amino 
acids (Fig. 5A,B). The composition of the main metabolites of the two metabolomes is highly similar, and some 
of their substances are likely related.

Comparison of blood metabolites.  Blood metabolites play a crucial role in regulating physiological 
health, and understanding their influence can provide insight into how pigs are protected from metabolic dis-
eases. To investigate this, we analyzed the blood metabolome and measured the influence intensity and explan-
atory ability of metabolite expression patterns using variable importance for the projection (VIP) obtained 
through an OPLS-DA model. We selected metabolites with VIP >1 and Pvalue < 0.05 (one-way ANOVA for 
multi-group comparison) to identify those with significant differences. Our results revealed 81 metabolites that 
differed significantly between the two porcine groups (Supplementary Table S5). Of these, 41 metabolites were 
more abundant in LW, including angelicin, securinine, hypoxanthine, betaine, cytidine, homocysteine, curdione, 
inosine, isopimpinellin, 5-methoxypsoralen, palmitoylcarnitine, citrate, stearic acid, cytarabine, licochalcone A,  

Fig. 2  Microbial gene statistics and diversity comparison between LW and LU. (A) Gene statistics. (B) Cumulative 
frequency statistics of genes. (C) Shannon diversity index. (D). Simpson diversity index.

Levels Laiwu pigs Lulai pigs Laiwu-only Lulai-only

Phylum 146 145 1 0

Class 90 90 0 0

Order 323 321 2 0

Family 304 306 2 4

Genus 2,691 2,651 50 10

Specie 14,570 14,324 255 9

Table 3.  Number of microbiota at six taxonomic levels in LW and LU.
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and N-acetylneuraminic acid. On the other hand, 40 metabolites were more abundant in LU, including nitraz-
epam, acetaminophen, icosanoic acid, gabapentin, spegatrine, juarezic acid, dehydroeffusol, gomisin H, and 
DL-2-hydroxyvaleric acid. Notably, some of these changing blood metabolites may be related to the fat content of 
pigs, as they have been shown to have anti-adipogenesis and anti-chronic metabolic disease effects. For instance, 
hydroxy fatty acids have been reported to exhibit anti-diabetic and anti-inflammatory effects60, and tanshinone 
IIA is used to treat cardiovascular diseases and has anti-adipogenesis effects61–63. Betaine has anti-fatty liver and 
anti-inflammatory properties, which can prevent hyperglycemia and reduce insulin resistance64–66.

Fig. 3  Composition of high-abundance microbiota in LW and LU. (A) Phylum classification level. (B) Genus 
classification level.
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Genomic data analysis.  The LW and LU samples yielded an average of 22 Gb and 21.9 Gb paired-end 
reads, respectively, from which 144.6 million and 143.5 million clean reads were obtained after quality control. 
The genomic data quality was high, with all sequence Q20 ratios above 95.69% and Q30 ratios above 89.27% 
(Supplementary Table S6). The average genomic sequencing depth was 6.8-fold, with coverage reaching 97%, and 
a total of 22.7 million SNPs (minor allele frequency ≥ 0.05) were obtained from 18 autosomes after assembly, SNP 
calling, and SNPs filtering (Table 4). The high-density of nucleotide diversity in 1 mbyte (Mb) non-overlapping 
window covers all genomes (Fig. 6). PCA and admixture analyses revealed clear differences in the pedigree of LW 
and LU, with LW and LU pig breeds being well-distinguished from Yorkshire pig breed (Fig. 7A,B). Additionally, 
the Fst method was used to detect the selection signatures between LW and LU. The Fst peak value was up to  
0.8, which means that their group differentiation is relatively high (Fig. 7C). Top 1% Fst can be annotated to 811 
genes (Supplementary Table S7). These genes were annotated by functional enrichment, resulting in 6 GO path-
ways and 4 KEGG pathways, including bile secretion and fat digestion and absorption (Supplementary Table S10).  
RNA expression analysis using the FarmGTEx TWAS-server predicted a total of 2,930 genes in individual adipose 
tissues in LW and LU, of which 146 were up-regulated and 266 were down-regulated (Supplementary Table S8). 
The differential gene functions were annotated, resulting in 6 GO pathways and 9 KEGG pathways, including 
starch and sucrose metabolism and glycerophospholipid metabolism (Supplementary Table S10). Additionally, 
spearman correlation analysis identified 42 genes strongly associated with the differential microbiota Treponema 
at the genus taxonomic level, including 2 upregulated genes (ENSSSCG00000025565 and ENSSSCG00000049578) 
and 1 downregulated gene RGP1 (| Cor | > 0.6, Pvalue < 0.05, Supplementary Table S9).

Data Records
This study presents four distinct datasets: fecal metagenome, fecal metabolome, blood metabolome, and whole 
genome. Raw data for the metagenome and genome are stored in the NCBI Sequence Read Archive in fastq for-
mat. We have conducted preliminary quality control and statistical analyses. Supplementary tables containing 
taxonomic ratio are provided.

FASTQ data.  The raw fastq files for metagenomic sequencing data are available in the NCBI SRA database 
under BioProject PRJNA74789367 (NCBI Accession column in Supplementary Table S11), with the project title 
“Metagenomic Data of Laiwu Pigs and Lulai Pigs”. The raw fastq files for whole-genome sequencing (WGS) data 
are also available in the NCBI SRA database under BioProject PRJNA74911568 (NCBI Accession column in 
Supplementary Table S12), with the project title “Whole Genome Sequencing Data of LW and LL”.

Metabolome data.  The raw files for fecal metabolome and blood metabolome data are stored in the 
MetaboLights database69 under the study unique identifier MTBLS39776970. The project title is “Integrated 
Microbiome-Metabolome-Genome Axis Data of Laiwu and Lulai Pigs in China”.

Metadata statistics.  We conducted quality control and preliminary analysis on raw data from multiple 
omics to facilitate more rapid reuse by scholars. The preliminary statistical data can be accessed through supple-
mentary information. At the same time, the Excel version attachment has been uploaded to http://alphaindex.zju.
edu.cn/ALPHADB/download.html. The supplementary information includes:

	 1.	 Table S1: Phylum classification ratio for each sample.
	 2.	 Table S2: Genus classification ratio for each sample.

Fig. 4  Differential microbiota at the phylum and genus taxonomic levels in LW and LU. (A) Phylum 
classification level. (B) Genus classification level.
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	 3.	 Table S3: Complete list of fecal metabolites for Laiwu pigs and Lulai pigs.
	 4.	 Table S4: Complete list of blood metabolites for Laiwu pigs and Lulai pigs.
	 5.	 Table S5: 81 different blood metabolites between Laiwu pigs and Lulai pigs.
	 6.	 Table S6: Clean data information for the whole genome.
	 7.	 Table S7: 811 annotated genes for top 1% Fst.
	 8.	 Table S8: 2,930 genes for adipose tissues predicted from SNPs using FarmGTEx TWAS-server.
	 9.	 Table S9: Strong correlation between predicted genes and Treponema.

Fig. 5  Classification of fecal and blood metabolome metabolites. (A) Fecal metabolome metabolites. (B) Blood 
metabolome metabolites. The number of metabolite components is ranked in descending order. The numerical 
values indicate the number of metabolites per class.
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	10.	 Table S10: Functional enrichment annotation for Fst and RNA using GO and KEGG.
	11.	 Table S11: NCBI SRA accession column for PRJNA747893.
	12.	 Table S12: NCBI SRA accession column for PRJNA749115.

Technical Validation
To ensure sample authenticity and prevent contamination during the sampling process, disposable PE gloves 
were used to collect fecal samples immediately after defecation by the target pigs. Samples were then transferred 
to specific fecal sample preservation tubes, and their unique sample IDs were matched with DNA extraction 
and sequencing IDs. The quality of the DNA was confirmed using a NanoDrop 2000 spectrophotometer and 
agarose gel electrophoresis. High-quality DNA sequencing was performed using NovaSeq. 6000 sequencing 
technology. Raw data obtained from metagenomic and whole-genome sequencing were subjected to quality 
control to obtain high-quality reads for further analysis. The Q30 values for the raw metagenomic sequencing 
data of 16 samples ranged from 91.65% to 95.8%. After quality control, the Q30 values ranged from 91.67% to 
95.78%. For whole-genome raw data, the Q30 range was 88.55% to 90.45%, while the Q30 range of clean reads 
after quality control was 89% to 91%. To control metagenomic gene abundance, transcripts per million (TPM)  

Fig. 6  Distribution of SNPs on chromosomes. The x-axis shows the chromosomal position (in Mb), and the 
y-axis represents chromosomes. Different colors correspond to the number of SNPs in each 1 Mb genome block.

Chromosomes Num_total Num_filter Num_pass

Chr1 2,285,394 29,787 2,237,351

Chr2 1,425,932 22,513 1,392,987

Chr3 1,459,802 15,900 1,434,774

Chr4 1,345,484 15,208 1,321,148

Chr5 1,243,806 15,421 1,221,213

Chr6 1,663,634 21,691 1,630,207

Chr7 1,404,598 20,442 1,375,680

Chr8 1,435,381 16,227 1,410,026

Chr9 1,541,622 22,400 1,510,094

Chr10 1,035,035 13,280 1,017,191

Chr11 965,732 9,157 951,359

Chr12 832,849 11,737 816,548

Chr13 1,321,298 18,608 1,288,998

Chr14 1,454,835 19,616 1,425,439

Chr15 1,262,841 15,796 1,237,265

Chr16 943,461 9,972 928,273

Chr17 858,256 12,570 841,122

Chr18 691,507 6,542 681,053

Table 4.  Number of SNPs on 18 autosomes.
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normalization was used. The total ion current mode (TIC) of QC samples in positive and negative ion detection 
modes were imposed and compared. The response strength and retention time of each chromatographic peak 
were coincidental, indicating that the instrument error was minimal and that the data quality was reliable.

Code availability
The software required for data processing and analysis and image generation in this study are accessible, the 
software versions as follows:

1. Trimmomatic (v0.39, http://www.usadellab.org/cms/index.php?page=trimmomatic)
2. BWA(v0.7.17, http://bio-bwa.sourceforge.net)
3. Megahit (http://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud/)
4. MetaGeneMark (v3.25, http://exon.gatech.edu/meta_gmhmmp.cgi)
5. CD-HIT (http://www.bioinformatics.org/cd-hit/)
6. SOAPaligner (http://soap.genomics.org.cn/)
7. BLASTP (BLAST v2.2.28+, http://blast.ncbi.nlm.nih.gov/Blast.cgi)
8. MSDIAL (v4.7, http://prime.psc.riken.jp/compms/msdial/main.html)
9. SIMCA-P (v14.1)

10. Fastp (v0.20.0, http://opengene.org/fastp/fastp)
11. Samtools (v1.10)

Fig. 7  Pedigree and group differentiation between LW and LU. (A) Principal component analysis results of 
LW, LU, YS, LR and DU pig breeds. Blue, orange, red, pruple and green markers represent LW, LU, YS, LR and 
DU pigs, respectively. (B) Ancestry composition results with the assumed number of ancestries at K = 2. K is 
an adjustable parameter representing the number of possible ancestral varieties. Through the calculation of the 
cross validation error, we obtained K = 2 as the best K value. (C) Manhattan plot based on Fst of LW and LU.
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12. Sambamba (v0.7.1)
13. Mosdepth (v0.2.9)
14. Picard Tools (v2.0.1)
15. Bcftools (v1.939)
16. GATK (v4.1.6)
17. Plink (v1.9, Complete flag index - PLINK 1.9 (cog-genomics.org))
18. Admixture (v 1.3.0)
19. VCFtools (v0.1.13)
20. FarmGTEx TWAS-server (http://twas.farmgtex.org/)
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