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Long-term daily 
hydrometeorological drought 
indices, soil moisture, and 
evapotranspiration for ICOS sites
Felix Pohl   1 ✉, Oldrich Rakovec   1,2, Corinna Rebmann   1, Anke Hildebrandt   1,3,4, 
Friedrich Boeing   1, Floris Hermanns1, Sabine Attinger1,5, Luis Samaniego   1,5  
& Rohini Kumar   1

Eddy covariance sites are ideally suited for the study of extreme events on ecosystems as they allow 
the exchange of trace gases and energy fluxes between ecosystems and the lower atmosphere to be 
directly measured on a continuous basis. However, standardized definitions of hydroclimatic extremes 
are needed to render studies of extreme events comparable across sites. This requires longer datasets 
than are available from on-site measurements in order to capture the full range of climatic variability. 
We present a dataset of drought indices based on precipitation (Standardized Precipitation Index, 
SPI), atmospheric water balance (Standardized Precipitation Evapotranspiration Index, SPEI), and soil 
moisture (Standardized Soil Moisture Index, SSMI) for 101 ecosystem sites from the Integrated Carbon 
Observation System (ICOS) with daily temporal resolution from 1950 to 2021. Additionally, we provide 
simulated soil moisture and evapotranspiration for each site from the Mesoscale Hydrological Model 
(mHM). These could be utilised for gap-filling or long-term research, among other applications. We 
validate our data set with measurements from ICOS and discuss potential research avenues.

Background & Summary
Europe has been hit by a series of droughts and hot spells in recent years1, with climatic conditions in the last 
decade among the most extreme in more than 250 years2. Quantifying the impact of these events on the terres-
trial carbon sequestration capacity is crucial for understanding how future climate change may alter the terres-
trial carbon cycle3,4. This requires direct measurements of the exchange of greenhouse gases between the lower 
atmosphere and the terrestrial surface performed using the eddy covariance technique5. Due to the high tech-
nical investment and site requirements alongside the complexity of the measurements, the application of eddy 
covariance is only possible at certain locations. Research infrastructure networks such as the Integrated Carbon 
Observation System (ICOS-RI) aim to ensure that measurements are representative and comparable through 
standardization and quality control6,7. ICOS also advances research on relevant topics. In response to the 2018 
extreme compound drought and heat event in Europe, for example, the Drought-2018 initiative published an 
aggregated dataset of affected stations8, which strongly facilitated the study of the extreme event impacts9–23.

Despite the efforts of research infrastructure networks such as ICOS, there is still a lack of standardized 
datasets for quantifying drought severity. This partly arises from the lack of a uniform definition of drought 
severity24,25, preventing holistic assessment of extreme droughts and their impact26. For example, a meta-analysis 
of 564 ecological drought studies27 found that conditions in ~50% of all studies were within the range of normal 
climatic variability and therefore could not be classified as drought, and at least 30% of studies confused aridity 
with drought. This highlights the urgent need for uniform and standardized definitions.
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To support research into drought impact on ecosystems, we provide a dataset of daily standardized drought 
indices tailored to each ICOS ecosystem station. We calculate three indices: the Standardized Precipitation Index 
(SPI)28,29, which is based on precipitation anomalies only, the Standardized Precipitation Evapotranspiration 
Index (SPEI30), which is based on a simplified water balance, and a Standardized Soil Moisture Index (SSMI), 
which is based on modelled soil moisture anomalies31. While a variety of other indices can be found in the 
literature24,32–34, probabilistic indices such as these allow standardized comparisons as they express the current 
conditions with respect to the long-term climatology of the respective location. Such standardized indices enable 
comparison even across larger spatial areas or between climate zones33,35.

While the probabilistic approach is a robust and widely used method34, it comes with a challenge. Robust 
estimation of the climatic distribution of the target variable requires 30 years of data at least28, and preferably as 
much as 50 to 80 years36. The first eddy covariance stations were established only in the late 1990s, with many 
stations being much younger. Therefore, in order to estimate the climatology, external data sources are neces-
sary. Here, we combine long-term observational data with simulations from the mesoscale Hydrological Model 
(mHM)37,38 to provide a comprehensive drought description. Both observational and model data are compared 
to ICOS measurements to ensure that the data provided accurately represents the meteorological conditions at 
each site.

In summary, we provide a consistent long-term hydrometeorological database of drought indices that allows 
the comparative analysis of e.g. ecosystem responses based on standardized drought severity across different 
ICOS ecosystem stations. We additionally provide simulated long-term data of soil moisture and evapotranspi-
ration, and demonstrate exemplary use-cases. We hope that the database, with its daily temporal resolution and 
a wide range of aggregation periods ranging from a few days to two years, will facilitate future studies on the 
impact of droughts on European ecosystems and ensure comparability of research results.

Methods
Data source and workflow.  Drought indices were calculated based on the European Climate Assessment 
& Dataset (ECA&D) E-OBS gridded dataset v.25.0e39 and soil moisture simulations realized with the mesoscale 
Hydrologic Model v5.11.1 (mHM)37,38. The workflow is presented in Fig. 1. For each ICOS ecosystem site, the 
respective meteorological forcing data were extracted from the corresponding E-OBS grid cell (~10 × 10 km2) and 
used to calculate indices directly (in the case of SPI and SPEI) or to run mHM to derive soil moisture simulations 
for SSMI. mHM was set up with the same resolution as E-OBS and the digital elevation model from USGS40, 
the soil map from SOILGRIDS41, the land cover from ESA42 and LAI climatology from NASA Global Inventory, 
Monitoring, and Modelling Studies (GIMMS)43. The underlying parameterization of the European-wide mHM 
setup was based on established settings, which have been evaluated in previous studies2,44,45.

SPI and SPEI were calculated using nonparametric kernel density estimation (KDE) with aggregation times 
ranging from 5 to 365 days (in steps of 5 days) and 370 to 720 days (in steps of 10 days). No aggregation was 
performed for the SSMI because soil moisture itself naturally reflects past meteorological conditions. The SSMI 

Fig. 1  Schematic overview of the workflow. For each site, temperature and precipitation data are extracted 
from the E-OBS dataset and gap-filled with the nearest neighbour approach where necessary. Standardized 
Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) are calculated using 
observational data for different aggregation periods ranging from 5 to 720 days. The E-OBS data are also used 
to run mHM along with information on elevation, soil, leaf area index, and land cover type to simulate long-
term soil moisture data for the Standardized Soil Moisture Index (SSMI). All variables were compared to the 
respective ICOS site measurements using the WarmWinter 2020 dataset46.
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was calculated based on two different mHM soil layers, one from the upper soil layer (SSMI_top, ~30 cm), 
reflecting shorter meteorological fluctuations, and the other considering the entire soil layer up to 2 m soil depth 
(SSMI_full, ~200 cm).

Figure 2 illustrates the spatial coverage of our data set. Stations were selected using the ICOS station network 
overview (https://www.icos-cp.eu/observations/station-network) and filtering by THEME = “ecosystem”. The 
most recent observational data product for eddy covariance fluxes from ICOS, the Warm Winter 2020 dataset46 
(WW20 hereafter), was used as ground truth for the technical validation. Stations included in WW20, but not in 
the ICOS station network, were also used (indicated by the dark blue on the map). Stations in Greenland, Israel, 
Congo and French Guiana were removed as E-OBS does not cover those locations. In total, we provide drought 
indices for 101 stations in Europe, of which 74 are validated against ICOS observational data.

Standardized drought indices.  Since its introduction in the 1990s28,29, the SPI has been widely applied as 
a robust method to compare precipitation anomalies objectively across different climate zones47–50, and is recom-
mended by the World Meteorological Organization as a key drought indicator51. The SPEI30 is an extension of the 
SPI which additionally accounts for changes in Potential Evapotranspiration (PET), and is therefore better suited 
for the detection of droughts which are induced by increased air temperature34,52,53. In contrast to the SPI and 
SPEI, the SSMI is not based on observational data directly, as sufficient historical records for soil moisture do not 
exist. Probabilistic soil moisture indices are usually constructed from model-based soil moisture estimates54–57. 
The soil moisture index based on mHM, which is used in this study to simulate long-term soil moisture time 
series at the respective sites, is used in the German Drought Monitor58 and the South Asian Drought Monitor59 
and has been validated and utilized for multiple applications60,61.

Probability-based indices are traditionally derived by fitting the variable of interest to a suitable probabil-
ity density function (pdf). The corresponding standard normal deviation can be obtained from the resulting 
cumulative density probability (cdf) using the equiprobability transformation. The choice of the most suitable 
pdf is non-trivial and has been a matter of debate since the development of probability indices29,62–64. Instead 
of assuming a parametric distribution function, one can determine the density distribution from the empirical 
data itself65–68. The advantages of this approach are that no assumptions need to be made about the functional 
form, thus avoiding possible bias due to an inappropriate parametric model. Therefore, in this study we apply 
non-parametric kernel density estimation (KDE) for estimating the drought indices for all variables: P, P-PET, 
and SM.

We calculated daily drought indices (i.e., SPI, SPEI, and SSMI) using KDE. For a given time series of the 
target variable X i n( 1, , )i j

k
, = …  with j being the time step (here, daily) and k the number of previous time steps 

used for aggregation to the current time step, the kernel density for each j can be obtained using a Gaussian 
kernel by:

Fig. 2  Map of ICOS ecosystem stations in Europe and data visualization for one selected station (FI-Hyy). 
Our dataset includes indices and simulations for each station on the map, but only the filled circles are 
included in the WarmWinter 2020 dataset from ICOS and were therefore used for validation. The validation 
dataset includes some FLUXNET stations, which are also included here. The time series for precipitation, 
air temperature and soil moisture shows the relative length of the validation period to the full time series we 
provide. Note that the validation period varies from station to station because they were established in different 
years.
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where n represents the sampling size and h the bandwidth. In kernel density estimation, the bandwidth selection 
is the highest source of uncertainty69. A common approach is unbiased cross-validation (CV)31,70:
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) yields the least-squares CV criterion. Finally, to 
facilitate the comparison with classic drought categories found in the literature (e.g. in Table 2), derived based 
on the standard scores, we transform the KDE-based quantiles into standardized normal scores. These standard-
ized values can be obtained from the cumulative density function F(x) by an approximation of the normal 
quantiles71:
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with P = 1-F(x) and C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, d3 = 0.001308.
Kernel estimators are known to perform poorly for bounded random variables, e.g. precipitation, in which 

f(x) is only supported on R+ = (0,+∞), as kernels can extend past such boundaries, causing leakage of proba-
bility mass72. To avoid erroneous estimations for x = 0 precipitation, we extend the non-parametric estimation 
for the probability of zero precipitation, similarly to the original SPI method:

� �= + − ⋅f x q q f x( ) (1 ) ( ) (5)prec

where q is the empirical probability of x = 0 precipitation.

Estimation of potential evapotranspiration.  The potential evapotranspiration required for the SPEI 
determination was calculated using the Hargreaves-Samani equation (H-S)73:

PET RG TX TN TG0 00023 ( ) ( 17 8) (6)0 5= . ⋅ ⋅ − + ..

where TG, TX and TN are the average, minimum and maximum temperature, respectively, and RG is the global 
radiation, i.e. the total of the shortwave solar radiation reaching the ground. Several methods have been pro-
posed for estimating PET, ranging from simple empirical models with few parameters, such as the Thornthwaite 
model74, which requires only the daily or monthly average temperature, to more complex physical models, such 
as the Penman-Monteith (P-M) model75. The H-S model is a parsimonious option with low data demand and 
reasonable accuracy76, and was therefore chosen here. PET is also provided directly from E-OBS, based on the 
Makkink77 or the P-M model, but it is calculated based on an older E-OBS version and therefore covers a shorter 
time period than our dataset.

Global radiation is estimated based on latitude as proposed in the original SPEI publication30. Global radia-
tion is also available from the E-OBS dataset, but with poorer spatial coverage and more gaps than the tempera-
ture variables. To have a consistent estimate of PET and soil moisture, we estimated global radiation as:

π ω δ δ ω= ⋅ ⋅ . ⋅ ⋅ ∗ ⋅ + ⋅ ⋅RG dr lat lat(24 60)/ 0 082 ( sin( ) sin( ) cos( ) cos( ) sin( )) (7)

where dr represents the inverse relative distance between Earth and the sun, ω is the sunrise hour angle, lat is the 
latitude, δ is the sun declination in radians, and doy is the day of the year. The solar declination can be calculated 
as follows:

0 409 sin(2 doy/365 25 1 39) (8)δ π= . ⋅ ⋅ . − .

The inverse relative distance between Earth and the sun, corrected for the eccentricity of Earth’s orbit around 
the sun, can be calculated as follows:

π= . + . ⋅ ⋅ .dr 1 0 0 033 cos(2 doy/365 25) (9)
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and the sunrise hour angle as follows:

arg argarccos( )with tan(lat) tan( ) (10)ω δ= = − ⋅

Data Records
The dataset can be obtained from a Zenodo repository78 and comprises four files for each of the 101 sites. “[site_
name]_input.csv” contains the observational data extracted from E-OBS gridded dataset v.25.0e39, PET esti-
mates as well as the simulated soil water storage and actual evapotranspiration from the mesoscale Hydrologic 
Model v5.11.1 (mHM)37,38; and the remaining files contain the drought indices (“SSMI_[site_name].csv”, 
“SPI_[site_name].csv”, “SPEI_[site_name].csv”). Details of the variables, their units and their origin are given in 
Table 1. For the SPI and SPEI, the file of each site contains the estimates for various aggregation times, ranging 
from 5 to 720 days in steps of 5 days from 5 to 365 and steps of 10 days from 370 to 720. Each data file has a daily 
temporal resolution and covers the time span from 1950 to 2021.

Technical Validation
The accuracy of drought indices depends largely on the reliability of the meteorological variables used for their 
calculation. The E-OBS data have been extensively used and validated39,79. Nevertheless, we compared the meas-
urements at the ICOS stations with the extracted grid cells from E-OBS, with the results shown in Fig. 3a–d. 
The temperature variables show high agreement between E-OBS and ICOS data. Precipitation showed low error 
on average (in terms of normalized RMSE), but the calculated Pearson’s correlation coefficient is almost half of 
those obtained for the temperature variables. We find that smaller precipitation events show higher uncertainty. 
This is not unexpected, since precipitation is notoriously difficult to estimate at high spatial or temporal resolu-
tion80. However, since the indices are calculated using aggregated data from the last x days, this uncertainty is 
offset by the aggregation.

PET estimated with E-OBS data is generally higher than the observations from ICOS because the radiation 
is estimated from latitude only, and therefore does not include information on cloud cover. However, it has been 
shown that this is less relevant than the temporal consistency for SDI due to the standardization30,81, which 
is estimated by the R2 of 0.85. Figure 3e,f shows modelled water fluxes (namely, evapotranspiration (ET) and 
soil moisture) from mHM. Both modelled variables have low performance compared to the observations from 
ICOS. The mHM setup has a resolution of approximately 10 × 10 km2 and can therefore only approximately 

Variable Description Source unit

file 1: [site_name]_input

Date Gregorian calendar date – YYYY-MM-DD

Doy Day of year – –

lon Longtitude ICOS degree (°)

lat Latitude ICOS degree (°)

PREC Precipitation E-OBS mm

TG Average temperature E-OBS °C

TN Minimum temperature E-OBS °C

TX Maximum temperature E-OBS °C

PET Potential Evapotranspiration Eq. 6 mm

RG Global radiation Eq. 7 Wm−2

AET Actual Evapotranspiration mHM mm

SM_top Soil moisture (top soil, 30 cm) mHM dimensionless (0–1)

SM_full Soil moisture (full soil, 200 cm) mHM dimensionless (0–1)

file 2: SSMI_[site_name]

Date Gregorian calendar date – YYYY-MM-DD

SSMI_top Standardized Soil Moisture Index (top soil, 30 cm) Eqs. 1,3 standard deviation of N[0, 1]

SSMI_full Standardized Soil Moisture Index (full soil, 200 cm) Eqs. 1,3 standard deviation of N[0, 1]

file 3: SPI_[site_name]

Date Gregorian calendar date – YYYY-MM-DD

SPI_x Standardized Precipitation Index Eqs. 5,3 standard deviation of N[0, 1]

with x = aggregation time (5,10,15...720 days)

file 4: SPEI_[site_name]

Date Gregorian calendar date – YYYY-MM-DD

SPEI_x Standardized Precipitation Evapotranspiration 
Index Eqs. 1,3 standard deviation of N[0,1]

with x = aggregation time (5,10,15...720 days)

Table 1.  Variable description of the files contained in this data record. Each variable is available with a daily 
temporal resolution from 1950 to 2021.
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represent the conditions at specific locations. On the other hand, the soil moisture index does not require tem-
poral aggregation, and its implications may be more straightforward because it is based directly on soil moisture 
information, while SPI and SPEI are only proxies for the water available to the ecosystem.

To demonstrate the information contained in the mHM output, we trained regression models for each ICOS 
site from the WW20 dataset using the eddy covariance fluxes from the sites as the target variable. More precisely, 
we trained regression models separately to predict net ecosystem exchange (NEE_VUT_MEAN), gross primary 
productivity (GPP_NT_VUT_MEAN), ecosystem respiration (RECO_NT_VUT_MEAN) and latent heat flux 
(LE_F_MDS) for the growing seasons (here May–September). In each model, we used shortwave incoming 
radiation (SW_IN_F) as a predictor and alternative soil moisture information as a covariate, namely soil water 
content measurements (from the ICOS sites, SWC_MDS_F_3) or simulated soil water content (from mHM, 
SM_top or SM_full). The regression models were trained using restricted cubic spline regression from the 
R-package “rms”82 with 5 knots per variable.

Figure 4 illustrates that the models achieve similar performance regardless of whether the soil moisture infor-
mation provided comes from observations or simulation, and regardless of whether soil moisture is of higher 
or lower importance to the model. We assume that the comparable performance can be attributed to a similar 
level of uncertainty in the datasets, despite the fact that this uncertainty arises from different causes. Uncertainty 
in the results from mHM is may be due to the coarse resolution representing the soil moisture conditions at the 
specific sites less accurately, while the observed data from ICOS contains greater noise. For a fair comparison, 
we only used data from days in which soil moisture measurements were available. The great advantage of the 
simulations, however, is that they provide gap-free time series over many years.

Usage Notes
In the following, we illustrate how the derivation of drought indices from climate data facilitates their utility. 
An exemplary transformation of observational data to a drought index is shown in Fig. 5. Here, we calculate the 
SPEI with an aggregation time of 30 days (as an equivalent to the SPEI of one month) for July 1 for the ICOS 
station “FI-Hyy”. In other words, we aim to estimate the climatic conditions on July 1 based on meteorology 
from the previous 30 days. To do this, we sum the water balance for the last 30 days of each year for which we 
obtained data (here 1950–2021). This allows us to estimate the empirical distribution function (cf. Figure 5a) of 
the atmospheric water balance on July 1 with Eq. (1). Figure 5c shows how the histogram of the sample relates to 
the estimated probability function of the KDE from Eq. (1).
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Fig. 3  Comparison of ICOS measurements using the Warm Winter 2020 dataset and E-OBS observational data 
(a–c), estimated potential evapotranspiration (d) and simulations of actual evapotranspiration and soil moisture 
(e,f) from mHM. Note that ICOS PET is based on direct measurements of solar radiation while E-OBS PET is 
based on radiation estimated from latitude. Note also that soil moisture was standardized before comparison 
due to the difference in units between ICOS data and mHM output. Normalized RMSE and R2 for all variables 
are shown in (g) and (h).
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In the next step, the empirical probabilities are transformed equi-probabilistically into the standard normal 
probabilities using Eq. (3). For example, the sum of the water balance on July 1, 2004 was 0.78 mm in FI-Hyy. 
The corresponding cumulative probability is highlighted in Fig. 5a. After the transformation, the probability of 
a given summed water balance on July 1 can be read as the standard deviation of a normal distribution as shown 
in Fig. 5b. A cumulative water balance of 0.78 mm corresponds to a standard deviation of −0.796, and therefore 
does not classify as drought (cf. Table 2). Note that this applies only to July 1. The exact value of the water deficit 
is less important for the calculation of the SPEI than the probability of occurrence. Rain or water deficits of equal 
magnitude can correspond to drought or non-drought conditions depending on the time of year of occurrence. 
Therefore, these steps must be repeated for each day of the year to obtain a complete time series.

The results of the drought index allow the definition of drought categories. Different approaches can be found 
in the literature, which we summarise in Table 2. McKee28 originally proposed a division into mild (over −1),  
moderate (over −1.5), severe (over −2) and extreme (below −2) drought. Agnew83 criticized the fact that 
any sub-zero SDI (e.g. below average water availability) would be classified as a drought under this definition.  
They suggest a classification anchored on probabilities rather than deviations. In the Agnew’s classes, moderate, 
severe, and extreme droughts have probabilities of 20%, 10%, and 5%, respectively, while in the original classi-
fication, they have probabilities of 15.9%, 6.7%, and 2.3%, respectively (cf. Table 2). The two different classifica-
tions are visualized in Fig. 5, both for the probabilities and the standard deviation. The U.S. Drought Monitor84 
uses similar probability classes to those Agnew proposed, with one additional class.

These classification differences, although seemingly minor, can have a strong impact on drought assessment. 
As an example, the daily time series of the proportion of ecosystem ICOS sites affected by drought is shown in 
Fig. 6. We used all three drought indices with an aggregation time of 365 days for the SPI and SPEI, and applied 
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Fig. 4  Performance of regression models for each ICOS site using eddy covariance measurements from May 
to September as target variable and shortwave incoming radiation as predictor, with different soil moisture 
products as a covariate. Panel A shows the R2 for each target variable and Panel B shows the corresponding 
feature importance based on χ2 for each soil moisture product. For mHM soil moisture, “top” refers to 0–30 cm 
and “full” refers to 0–200 cm.

SDI Probability McKee (1993)28 Agnew (2000)83 U.S. Drought Monitor (2002)84

<−2.00 0.023 Extreme Exceptional (D4)

<−1.65 0.050 Extreme Extreme (D3)

<−1.50 0.067 Severe

<−1.28 0.100 Severe Severe (D2)

<−1.00 0.159 Moderate

<−0.84 0.200 Moderate Moderate (D1)

<−0.50 0.300 Abnormally dry (D0)

<0.00 0.500 Mild No drought

Table 2.  Proposed transformation of probabilities into drought categories.
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both classification schemes described above. During the recent 2018–2020 drought and heat wave in Europe, 
extreme drought affected up to 40–50% of all sites during the most intense period in 2019 according to the 
Agnew classification, compared to only 20–25% drought according to the McKee classification. Although the 
number of sites affected by drought is similar, the number of sites affected by “extreme” drought is very different. 
This emphasizes the importance of specifying the classification scheme used to characterise drought severity 
levels to facilitate the comparison of research results from different studies.

We anticipate that the daily temporal resolution of this dataset will enable more detailed examinations of 
ecosystem response to drought, as drought indices are predominantly used with monthly resolution in current 
research (cf. e.g. https://spei.csic.es/index.html). To get a first insight, we plotted the correlation between GPP 

Fig. 5  Example transformation from observational data to drought index using data from the ICOS station FI-
Hyy. The sample used here is the 30-day water balance on July 1 from 1950 to 2021. Panel A shows the empirical 
cumulative density function (ECDF) and the estimated function using the kernel density approach (KDE). The 
arrow in Panel A shows the 30-day water balance on July 1, 2004, and its corresponding cumulative probability. 
Panel B shows how the value for the drought index (here SPEI_30) can be read for the day after the normal 
probabilities have been approximated. Panel C shows the histogram of the sample and the KDE, and Panel D 
shows the normalized density after the transformation.
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Fig. 6  Time series of drought occurrence for the past 10 years (2011–2021) at ICOS ecosystem sites for 
SPI_365, SPEI_365 and SSMI_full using the two different classification approaches described.
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and SPEI as a two-dimensional time series for several sites in Fig. 7. We applied a z-transformation of GPP for 
each day of the year to remove seasonal phenology effects, and then calculated a running Pearson’s correlation 
coefficient using a rolling window size of 14 days with all available aggregation levels of SPEI. Consequently, the 
x-axis represents the temporal development of GPP (as anomalies) during the growing season, while the y-axis 
represents the SPEI with increasing aggregation time, or in other words, an increasing amount of information 
on past conditions. As this is only an exemplary analysis of what could be done with the high-resolution dataset 
provided, rather than a comprehensive analysis, a more sophisticated analysis is needed to better understand 
how ecosystems respond to shorter and longer droughts.

In summary, we provide a long-term dataset with information on drought conditions for ICOS ecosystem 
sites in Europe, which additionally includes long-term simulations of soil moisture and evapotranspiration for 
each site. Depending on community feedback on the applicability of the data provided, we plan to update the 
dataset annually to provide a consistent dataset for drought research on European ecosystems. We believe that 
the use of the standardized drought indices provided in this dataset will improve the comparability of studies on 
the impacts of extreme events across the various ICOS ecosystem sites.

Code availability
Code for calculation of the drought indices as well as all statistical analysis within this publication is publicly 
available at the zenodo repository85. The mesoscale Hydrologic Model is an open source model and is available at 
https://mhm-ufz.org/.
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