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OPEN: Meta-analysis of single-cell and
anaLvsis | single-nucleus transcriptomics
reveals kidney cell type consensus
signatures

Marceau Quatredeniers®'*, Alice S. Serafin(®?, Alexandre Benmerah(®?, Antonio Rausell?,
Sophie Saunier' & Amandine Viau®

© While the amount of studies involving single-cell or single-nucleus RNA-sequencing technologies grows
. exponentially within the biomedical research area, the kidney field requires reference transcriptomic

. signatures to allocate each cluster its matching cell type. The present meta-analysis of 39 previously

: published datasets, from 7 independent studies, involving healthy human adult kidney samples, offers
. aset of 24 distinct consensus kidney cell type signatures. The use of these signatures may help to

- assure the reliability of cell type identification in future studies involving single-cell and single-nucleus

© transcriptomics while improving the reproducibility in cell type allocation.

: Introduction

. The kidney is a vital and highly complex organ responsible for blood filtration, elimination of metabolites and
. waste products, and body homeostasis (oxygen sensing, pH balance, electrolyte levels, systemic blood pressure
. regulation). These critical functions are enabled through its functional subunit, the nephron, an intricate inter-
. play between the nephron sub-structures and some mesenchymal cells, involving the coordinated action of more
* than 20 cell types (immune cells, stromal cells, nephron epithelial cells, and cells from rare populations such as
- the juxtaglomerular apparatus) from the entry of the blood in glomerular capillaries to the urine compartment'.
. Nephron sub-structures are organized following the urine flow: blood arrives to the glomerulus and filtered
. through fenestrated capillaries and the slit-diaphragm (n.b. this active fenestration process is controlled by
: podocytes), then primary urine passes first through the Bowman capsule lined by parietal epithelial cells (PEC)
. and then through the tubule per se, including the proximal tubule (PT; reabsorption of water, sodium, calcium,
potassium, chloride, phosphate, proteins and glucose), the loop of Henle (LoH; reabsorption of water, sodium
. and chloride; urine concentration), the distal tubule consisting in the distal convoluted tubule (DCT) and the
. connecting tubule (CNT; fine tuning of sodium and chloride levels, regulation of H+and HCO3- assuring pH
. balance), and finally flows into the collecting ducts in the cortex (CCD) and medulla (MCD; water reabsorption;
. urine concentration) until its storage in the bladder®?.

: Although bulk transcriptomics have critically promoted the understanding of kidney development,
- physiology and diseases*®, such approach is not suitable for investigating renal cell type-specific features at
. a single cell scale. More recently, advances in high-throughput single-cell (scRNA-seq) and single-nucleus
: (snRNA-seq) transcriptomics allowed to evaluate cell populations and biological processes of different tissues
© at the single-cell/nucleus level’=*. Except for liquid samples (e.g. blood, urines...), scRNA-seq involves tissue
. dissociation, single-cell emulsion and encapsulation, passage in the microfluidics one cell at a time, creation
. of alibrary through high-throughput sequencing, and finally data analysis. As it may be performed on frozen
: tissue, snRNA-seq may overcome some issues observed with scRNA-seq, such as dissociation-induced stress
© response leading to the expression of specific set of genes, poor viability and loss of rare and fragile cell types!®!!.
. Although the heterogeneity between individuals and cell states have been demonstrated'>'?, studies are often
. performed on a reduced number of samples due to the limited availability of human tissue and the cost of
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Data collection

}

Data curation

Exclusion of samples, based on: i) disease, ii) treatment, iii) non-adult samples, iv) unreachable data, v) FACS-purified samples

v v
single-cell procedure single-nucleus procedure
+ LiaoJ, etal. | GSE131685 | n=3 « WuH,etal | GSE118184 | n=1(2)
* ZhangV,etal. | GSE159115 | n=5 (6) n=32 * WuH,etal | GSE114156 | n=1
n=7
* MenonR, etal. | GSE140989 | n=24 * Wilson PC, et al. | GSE131882 | n=3
* MutoY,etal. | GSE151302 | n=2
Droping out low quality cells Droping out low quality nuclei
Batch effect correction (integration) Batch effect correction (integration)
Unsupervised clustering & cell type identification Unsupervised clustering & cell type identification
Computation of consensus signatures (HVG) Computation of consensus signatures (HVG)
| |
v
Procedure-induced effect correction (integration)
Visualisation of the differences between single cell and single nucleus datasets
Validation
|
v v
Enrichment of single cell consensus signatures Enrichment of single nucleus consensus signatures

* KuppeC, etal. | zenodo 4059315 | n=19 * Lake BB, etal. | GSE121862 | n=43

Fig. 1 Meta-analysis workflow. All available scRNA-seq and snRNA-seq data were retrieved and downloaded
from the Gene Expression Omnibus (GEO) or zenedo repository. Single cell RNA-seq and snRNA-seq samples
were analysed separately, quality control metrics were measured and poor quality cells were filtered out in
accordance. Then scRNA-seq samples and snRNA-seq samples were integrated independently. High resolution
unsupervised clustering followed by visualisation of the expression of specific transcriptomic markers allowed
to attribute each cluster a clear cell type (certain cell types were attributed to several clusters), or a cell type
followed by « na » (i.e. not attributed) for the cells that did not show strong enough differenciation markers
expression. Consensus signatures were computed using the Find AllMarkers() function in Seurat. Single

cell RNA-seq and snRNA-seq were then integrated together to evaluate the matching between both datasets
annotations. Finally, consensus signatures were used for cell type enrichments on previously published and
annotated datasets.

scRNA-seq and snRNA-seq experiments. Other critical confounding factors in both experimental and analytical
settings may affect scRNA-seq and snRNA-seq data, including low sequencing depth, context-dependent cell
states, clustering settings, or markers checked for cell type identification.

Still, scRNA-seq and snRNA-seq are very powerful techniques increasingly used within the biomedical field
in general, and in the kidney field in particular'®. To date, scRNA-seq or snRNA-seq studies of human kidneys
have involved different technologies and different data preprocessing and analysis workflows. Cell type labelling
in particular suffers from the lack of a universal definition of known nephron segments and cell types, as well as
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Mean number of features | Mean number of % mitochondrial
Batch ID Sample ID Number of cells | per cell counts per cell genes
GSE118184 GSM3320197-8 4524 1801.88 3933.58 0.27
GSE131882 GSM3823939 6905 2328.92 6722.17 0.61
GSE131882 GSM3823940 4236 1124.52 2090.37 0.62
Before filtering | GSE131882 GSM3823941 6599 1671.81 3684.27 0.09
GSE114156 GSM3135714 4297 1163.80 2028.99 0.92
GSE151302 GSM4572195 4495 1559.68 3417.31 0.11
GSE151302 GSM4572196 4708 1165.47 2194.50 0.11
snRNA-seq
GSE118184 GSM3320197-8 4226 1644.03 3395.02 0.28
GSE131882 GSM3823939 5520 1835.33 4454.69 0.71
GSE131882 GSM3823940 4179 1088.10 1951.29 0.56
After filtering GSE131882 GSM3823941 6274 1539.50 3176.72 0.10
GSE114156 GSM3135714 4234 1118.01 1895.09 0.92
GSE151302 GSM4572195 4307 1447.19 2972.75 0.11
GSE151302 GSM4572196 4672 1142.99 2109.04 0.11
GSE131685 GSM4145204 8098 959.47 2582.13 14.84
GSE131685 GSM4145205 6449 1017.39 2690.40 14.12
GSE131685 GSM4145206 10732 751.89 1843.62 4.08
GSE159115 GSM4819726 839 2586.06 13765.11 35.30
GSE159115 GSM4819728 777 2309.92 11523.01 38.88
GSE159115 GSM4819730-1 1591 1433.38 4667.69 14.86
GSE159115 GSM4819733 1538 884.67 2260.69 9.50
GSE159115 GSM4819735 1854 2203.91 9366.49 20.67
GSE140989 GSM4191941 1229 1005.80 3477.85 15.13
GSE140989 GSM4191942 2456 860.88 2294.43 19.52
GSE140989 GSM4191943 6525 693.38 1553.54 11.42
GSE140989 GSM4191944 412 803.57 2467.24 7.43
GSE140989 GSM4191945 2444 830.86 2315.52 8.91
GSE140989 GSM4191946 6101 571.20 1749.37 3241
GSE140989 GSM4191947 1193 773.52 2367.96 13.12
Before fltering GSE140989 GSM4191948 4848 452.26 1065.57 21.27
GSE140989 GSM4191949 607 576.69 1516.98 7.55
GSE140989 GSM4191950 4666 820.94 2518.52 16.76
GSE140989 GSM4191951 430 707.04 1983.04 8.48
GSE140989 GSM4191952 5683 1023.92 4294.04 58.21
SCRNA-seq GSE140989 GSM4191953 7671 946.94 3914.46 59.53
GSE140989 GSM4191954 4344 861.71 3766.08 57.63
GSE140989 GSM4191955 3519 618.15 1755.23 19.64
GSE140989 GSM4191956 3055 593.53 1661.66 15.96
GSE140989 GSM4191957 3107 597.92 1632.59 15.46
GSE140989 GSM4191958 1221 489.10 1131.03 13.27
GSE140989 GSM4191959 596 561.41 1344.56 9.12
GSE140989 GSM4191960 762 1085.96 3913.73 26.40
GSE140989 GSM4191961 1027 989.01 3418.46 31.97
GSE140989 GSM4191962 1071 1163.96 3972.85 20.18
GSE140989 GSM4191963 771 1483.22 4985.44 26.86
GSE140989 GSM4191964 5815 835.83 2360.71 27.72
GSE131685 GSM4145204 7285 998.90 2662.66 11.86
GSE131685 GSM4145205 5612 1067.32 2762.65 10.27
GSE131685 GSM4145206 10605 754.70 1847.35 3.65
GSE159115 GSM4819726 289 2260.57 8076.82 9.53
After filtering GSE159115 GSM4819728 254 2280.94 7394.10 12.56
GSE159115 GSM4819730-1 1275 1373.87 4012.67 8.59
GSE159115 GSM4819733 1389 896.88 2203.29 5.42
GSE159115 GSM4819735 1170 2017.44 6879.66 5.19
GSE140989 GSM4191941 937 791.90 2247.86 7.79
GSE140989 GSM4191942 1850 856.84 2149.69 12.73
Continued
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Mean number of features | Mean number of % mitochondrial
Batch ID Sample ID Number of cells | per cell counts per cell genes
GSE140989 GSM4191943 5915 645.66 1327.69 9.19
GSE140989 GSM4191944 368 817.72 2356.84 5.10
GSE140989 GSM4191945 2207 872.55 2332.26 4.51
GSE140989 GSM4191946 2953 603.88 1504.32 18.17
GSE140989 GSM4191947 992 711.93 1934.63 6.87
GSE140989 GSM4191948 3420 463.18 1027.92 11.65
GSE140989 GSM4191949 541 556.00 1351.68 5.16
GSE140989 GSM4191950 3675 763.50 1960.04 8.58
GSE140989 GSM4191951 391 666.83 1718.86 525
GSE140989 GSM4191952 531 2049.43 6304.25 23.51
GSE140989 GSM4191953 649 1994.28 6019.57 23.39
GSE140989 GSM4191954 504 1662.21 5190.07 21.80
GSE140989 GSM4191955 2756 635.38 1684.71 12.40
GSE140989 GSM4191956 2521 589.11 1370.54 9.10
GSE140989 GSM4191957 2582 579.20 1316.96 9.09
GSE140989 GSM4191958 1087 494.10 985.52 9.36
GSE140989 GSM4191959 534 572.36 1220.78 6.18
GSE140989 GSM4191960 475 956.46 2781.59 14.44
GSE140989 GSM4191961 523 1026.92 2979.92 18.13
GSE140989 GSM4191962 782 903.26 2358.95 13.12
GSE140989 GSM4191963 457 1318.73 3882.06 18.11
GSE140989 GSM4191964 3499 827.35 2026.18 17.35

Table 2. QC metrics, before and after filtering of low quality cells/nuclei.

Technical characteristics
Ref. GEO accession number | Single cell/nucleus platform | Sequencer Data pre-processing
Wilson PC, etal. | GSE131882 10X Chromium 2(1)‘(;3““3 NovaSeq |, Mis v2.0
WuH, etal. GSE118184 10X Chromium gé%glma HiSeq zZUMIs vl
o Tllumina HiS
. umina HiSeq
WuH, etal. GSE114156 inDrop 2500, NextSeq dropTag, dropEst
Muto Y, et al. GSE151302 10X Chromium é%%g‘ma NovaSeq | celRanger v3.1.0
Liao J, et al. GSE131685 10X Chromium gilelrma Hiseq CellRanger v3.0
sc Zhang Y, et al. GSE159115 10X Chromium glél&nina HiSeq CellRanger v2.1.1
. Tllumina HiSeq
Menon R, et al. GSE140989 10X Chromium 4000 CellRanger

Table 3. Technical characteristics of the datasets included in the meta-analysis.

standard lists of RNA markers depicting each kidney cell types, which may therefore lower the comparison reli-
ability between studies. Chen et al. already reported this issue and proposed a nomenclature for kidney epithelial
cells to better compare studies'>. However, no consensus list of human kidney cell type transcriptomic markers
has been published so far. Thus, the establishment of consensus transcriptomic kidney cell type signatures might
be of utmost importance considering significant batch effects within scRNA-seq and snRNA-seq datasets'®!5.
Here we present a meta-analysis of publicly available scRNA-seq and snRNA-seq datasets from 39 healthy adult
kidneys, consisting in 68,028 single cells and 33,412 single nuclei. As data were taken from different sources,
data were normalized following the SCTransform analysis pipeline in Seurat v4 and batch effects were mitigated
by integration of scRNA-seq and snRNA-seq samples, respectively. Cell types were attributed to clusters using
broad cell type markers, consensus cell type signatures were computed, and labelled scRNA-seq and snRNA-seq
samples were integrated together to map cell types depending on the method used (sc/snRNA-seq). Finally,
single-cell and single-nucleus consensus signatures were benchmarked by enrichment in previously published
and annotated datasets.
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Fig. 2 Integration of scRNA-seq datasets. (a) PCA plots of scRNA-seq samples before any integration (left),
after Harmony integration (middle), and after Seurat v4 integration (right). (b) UMAP plot showing the
dispersion of cells after Seurat v4 integration, according to their sample of origin. (c) UMAP plot showing the
dispersion of cells after Seurat v4 integration, according to their batch of origin (i.e. the publication). (d) UMAP
plot showing the dispersion of cells after Seurat v4 integration, according to the gender; grey shade indicates
that the gender is not known.

Results

Analysis workflow. To determine consensus gene signature associated to each kidney cell type, we first
aimed to collect kidney scRNA-seq and snRNA-seq data available on public databases according to the work-
flow presented in Fig. 1. Data collection ended up with 3 scRNA-seq and 4 snRNA-seq datasets publicly availa-
ble'*~*2, encompassing a total of 101,431 cells and 35,764 nuclei, from 32 and 7 healthy adult kidneys, respectively
(Table 1). Samples from the different datasets were pre-processed with Seurat v4, and cells expressing between
200 and 3500 genes were kept for analysis (discarding cell debris and cell doublets). As some kidney cell popu-
lations highly express mitochondrial genes, the percentage of mitochondrial gene expression threshold to use in
kidney tissue is debating (varying between 20% and 50% across studies)****. We chose to keep cells with less than
30% mitochondrial genes expressed* (Table 2). Despite nuclei should not express mitochondrial genes, nuclei
with less than 5% mitochondrial genes expressed were kept to limit the waste due to possible little contamina-
tion. Since confounding variables may affect the different samples from the different studies and further analysis
(Tables 1, 3), scRNA-seq and snRNA-seq samples were integrated separately using Seurat IntegrateData() func-
tion to mitigate the batch effects, following the newly implemented SCTransform framework for normalization
and count data variance stabilization®. Finally, the integrated datasets consisted in 68,028 single cells and 33,412
single nuclei.
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Fig. 3 Unsupervised clustering of scRNA-seq dataset. (a) UMAP plot of 32 integrated scRNA-seq samples
showing the scattering of the cells and the distribution of the 54 clusters. (b) Heatmap displaying the number of
cells per sample, and the number of cells from each sample in each cluster (scaled by cluster).

Generation of a healthy human kidney consensus scRNA-seq dataset. To generate a healthy
human kidney consensus scRNA-seq dataset, we first assessed the quality of the integration by comparing the dis-
tribution of cells on Principal Component Analysis (PCA) plot, before and after integration using both Harmony
and Seurat v4 correction (Fig. 2a). The correction of PC1 and PC2 by Harmony did not look as good as the one
obtained with Seurat for which PC1 and PC2 did not depend anymore from the origins of the samples after inte-
gration. Thus the Seurat v4 correction was used for further computations. Uniform Manifold Approximation and
Projection (UMAP) of the integrated dataset showed a very good scattering of cells from the different samples and
from the different batches (Fig. 2b,c). In addition, it has been suggested that kidney cells express subsets of genes
that are regulated in a sex-dependent manner in mice*’. However, as the sex was not known for 24 samples among
32, we could not evaluate whether a sex bias may occur in cell type attribution in humans (Fig. 2d).

Unsupervised clustering (Louvain, resolution = 3.4) resulted in 54 distinct clusters (Fig. 3a). Despite a satis-
fying correction of the batch effects, certain clusters were driven by a few samples, which may reflect individual
differences rather than cell types or cell states (Fig. 3a,b and Supp. Table 1). In particular, cluster 17 mostly
belongs to sample GSM4145204 (50.13% of the cells), clusters 20, 48 and 53 to sample GSM4145206 (54.4%,
61.37 and 100%, respectively), and clusters 31, 38 and 44 to sample GSM4191943 (77.93%, 71.28% and 57.57%,
respectively). Of note, these are the top 3 most abundant samples of the dataset (Table 2 and Supp. Table 1).
These clusters were automatically labelled « not-attributed >> (na).
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Fig. 4 Schematic representation of a nephron and its associated cell types. Scheme of a nephron, locating
anatomical structures the cell types described in the study belong to. See Table 4 for more details about the
nomenclature. Keys: Macro.: Macrophages; DC: Dendritic cells; B.cells: B cells; CD4.T.cells: CD4+ T cells;
CD8.T.cells: CD8+ T cells; NK.cells: Natural killer cells; EC.vei: Veinous endothelial cells; EC.glom: Glomerular
endothelial cells; EC.art: Arterial endothelial cells; vSMC: Vascular smooth muscle cells; Mes.: Mesangial cells;
Fibro.: Fibroblasts; PEC: Parietal epithelial cells; Podo.: Podocytes; PTC: Proximal tubule cells; LoH.DTL:
Descending thin limb of the loop of Henle cells; LoH.ATL: Ascending thin limb of the loop of Henle cells; LoH.
TAL: Thick ascending limb of the loop of Henle cells; DCT: Distal convoluted tubule cells; CNT: Connecting
tubule cells; PC.CNT: Principal cells, connecting tubule; PC.CD: Principal cells, collecting duct; IC.A:
Intercalated cells, A-type; IC.B: Intercalated cells, B-type.

Broad cell type markers expression was studied to allocate cell types to clusters®*?>37->* (Table 4, Figs. 4,
5a,b). A total of 29 cell types were retrieved, including nephron epithelial cells, kidney mesenchymal cells, and
immune cells from both myeloid and lymphoid lineages. The nomenclature from Chen et al.'* was used for
nephron epithelial cell labelling, with minor modifications to match our findings (e.g. we were not able to allo-
cate several sub-populations of the descending thin limb nor of the thick ascending limb of the loop of Henle,
and we did not find macula densa cells; please refer to Table 4 and Fig. 4 for a description of the adapted nomen-
clature). Considering the potential differences between sample origins (peritumoral, healthy donor, surveillance
biopsy; Table 1), sampling methods, data pre-processing (Table 3) and distribution among clusters, some clus-
ters were labeled « not-attributed » for ambiguous populations of proximal tubule cells (PTC.na), loop of Henle
cells (LoH.na), principal cells (PC.na) and endothelial cells (EC.na) (Fig. 5b,c; populations in lightgrey). Thus,
the computation of the signatures of PTC, LoH, PC, and EC did not depend on these ambiguous cells. Highly
variable genes (HVG) were computed for every cell type: the corresponding gene lists define the consensus
transcriptomic cell type signatures of kidney cells from healthy adult individuals (Fig. 5c and Supp. Table 2).

Generation of a healthy human kidney consensus snRNA-seq dataset. The evaluation of the mit-
igation of the batch effects for snRNA-seq integrated dataset was not as good as the one obtained for scRNA-seq
dataset, but PC1 and PC2 distribution was more satisfying after integration using Seurat v4 compared to Harmony
(Fig. 6a). Hence Seurat correction was adopted to pursue the analysis. When nuclei are displayed according to the
origin of the sample or the origin of the batch the sample comes from (i.e. the publication), it is clear that sample
GSM3135714 from batch GSE114156 is not well integrated to the dataset (Fig. 6b,c). As there are only 7 samples,
and some of the nuclei from this sample do not mix with the rest of the nuclei from the other samples, we chose to
keep the nuclei from this sample in the analysis and exclude only the non-mixed ones after clustering. By contrast
to scRNA-seq dataset, the gender was known for the 7 snRNA-seq samples and allowed to appreciate differences
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Fig. 5 Healthy human kidney landscape at the single cell level. (a) Cell type attribution to clusters based on
the expression of specific transcriptomic markers. (b) ViolinPlot showing the expression of some of the kidney
cell type-specific transcriptomic markers used to allocate cell types to clusters. (c) Dot plot presenting the
expression of the 3 first genes of each computed signature, for all the signatures; this plot illustrates the list of
consensus signatures for sScCRNA-seq samples.

in sex representation within each identified population, in particular for the principal cells of the collecting duct
(PC.CD) and the cells from both the ascending thin limb (LoH.ATL) and the thick ascending limb of the loop
of Henle (LoH.TAL; Fig. 6d). Unfortunately, with only 5 men and 2 women, we could not assess whether these
differences were due to a real gender bias rather than inter-individual differences or some remaining batch effects.
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Fig. 6 Integration of snRNA-seq datasets. (a) PCA plots of snRNA-seq samples before any integration (left),
after Harmony integration (middle), and after Seurat v4 integration (right). (b) UMAP plot showing the
dispersion of nuclei after Seurat v4 integration, according to their sample of origin. (¢) UMAP plot showing the
dispersion of nuclei after Seurat v4 integration, according to their batch of origin (i.e. the publication).

(d) UMAP plot showing the dispersion of nuclei after Seurat v4 integration, according to the gender; grey shade
indicates that the gender is not known.

Besides this potential sex bias was different from what was shown in mice, where the authors observed discrepan-
cies in the PTC populations while comparing 2 males to 2 females®.

Unsupervised clustering (Louvain, resolution = 3.0) resulted in 53 distinct clusters (Fig. 7a). As expected,
several clusters (i.e. clusters 7, 23, 30, 33 and 34) consisted mainly in nuclei from sample GSM3135714 (account-
ing for 73.4%, 86.5%, 71.6%, 64% and 86.9%, respectively) (Fig. 6b,c, Fig. 7a,b and Supp. Table 1). We also
observed that clusters 3 and 17 mainly belonged to sample GSM4572195 (58.6% and 63%, respectively), cluster
39 to sample GSM3320197-8 (52.5%) and cluster 48 to sample GSM4572192 (51.8%) (Fig. 7b and Supp. Table
1). Again, classical markers were studied to allocate cell types to clusters®*?>*7->* (Fig. 8a,b, Fig. 4 and Table 4).
Sticking as much as possible to the same nomenclature used for scRNA-seq dataset, a total of 22 cell types were
retrieved among nuclei, including nephron epithelial cells, kidney mesenchymal cells, and 4 populations of PTC,
LoH, PC and T cells labeled « not attributed » (Fig. 8a,b).

The computation of HVG for every cell type has been performed, and these gene lists correspond to the
consensus transcriptomic cell type signatures of kidney nuclei from healthy adult individuals (Fig. 8c and Supp.
Table 2).

Joint analysis of scRNA-seq and snRNA-seq labeled datasets. To study the similarities and discrep-
ancies between the results obtained with the two procedures, scRNA-seq and snRNA-seq samples were integrated
together. The mitigation of the batch effects for the integration of 39 samples was overall acceptable, as attested
by the correction of PC1 and PC2 (Fig. 9). Again, Harmony correction was not as satisfying as Seurat v4 one.
Samples looked well merged, but nuclei and cells did not colocalize everywhere (Fig. 10a,b). The allocated cell
types were highly consistent between cells and nuclei (Fig. 10c). Of note, we cannot rule out whether selecting
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Fig. 7 Unsupervised clustering of snRNA-seq dataset. (a) UMAP plot of 7 integrated snRNA-seq samples
showing the scattering of the nuclei and the distribution of the 53 clusters. (b) Heatmap displaying the number
of nuclei per sample, and the number of nuclei from each sample in each cluster (scaled by cluster).

viable cells on the basis of mitochondrial genes expression may influence this observation, since we cannot filter
nuclei on the same basis. However the fact that overall, cell types were allocated at the same coordinates in cells
and nuclei may give further confidence in the identified cell populations in both scRNA-seq and snRNA-seq
datasets. In light of these results, we would not recommand to integrate scRNA-seq and snRNA-seq datasets
before cell types have been allocated to cells and nuclei. Overall, these results demonstrated that snRNA-seq
and scRNA-seq consensus signatures should be used to enrich for cell types within snRNA-seq and scRNA-seq
datasets, respectively.

Validation of the enrichment of consensus signatures for automatic cell type annotation. To
test wether enrichment of consensus signatures are suitable for the identification of cell types within scRNA-seq
and snRNA-seq datasets, we downloaded publicly available annotated datasets from Kuppe et al.>>>¢ (scRNA-seq)
and Lake et al.”” (snRNA-seq). Sample expression matrices were processed and integrated as previously. Then
CelliD v1.0°® was used to perform enrichment analysis for scRNA-seq or snRNA-seq consensus signatures in
every single cell or nucleus respectively, and the results were compared to the original labelling of the authors. To
better evaluate automatic cell type annotation on test datasets, original labels were adapted to match consensus
signatures nomenclature (Table 5).

After filtering out poor quality cells and cell doublets (less than 200 or more than 3500 expressed genes
with more than 30% of mitochondrial genes), scRNA-seq dataset from Kuppe et al.>>® consisted in 81,239
cells from 19 samples, representing a total of 13 chronic kidney disease patients (hypertensive nephroscle-
rosis)® (Fig. 11 and Fig. 12a). Enrichment of consensus scRNA-seq signatures was performed following
Multiple Correspondence Analysis (MCA), and UMAP was computed on the residues of the MCA using the
RunMCUMAP() function implemented in CelliD*%. However, to avoid annotation of cells with the « na » label
that is not informative, signatures for « na » annotated cell types were not tested. Enrichment retrieved cell labels
closely related to the original labels (Fig. 12b,c). Some differences were observed, in particular the non-attributed
endothelial cells were recognized as B cells, a population of macrophages was recognized as dendritic cells,
and the cells of the thick ascending limb of the Loop of Henle labeled as distal tubule cells. As only cell types
belonging to the list of consensus signatures may be attributed, we did not find any schwann cell, urothelial
cell, monocyte or mast cell (dendritic cells instead), myofibroblast or pericyte (vascular smooth muscle cells
instead), macula densa cell (thin ascending limb of the loop of Henle instead) (Fig. 12¢). Overall, automatic cell
type annotation using scRNA-seq consensus signatures pretty matched the original labels from Kuppe et al.>,
demonstrating its suitability and reliability to help in cell type allocation (Fig. 12b,c).

SCIENTIFIC DATA | (2023) 10:361 | https://doi.org/10.1038/s41597-023-02209-9 11


https://doi.org/10.1038/s41597-023-02209-9

www.nature.com/scientificdata/

Kidney cell landscape

DCT

LoH.na

T.cells.na Fibro. ® LoH.ATL PC.CD
EC.vei PEC ® LoH.TAL PC.na
EC.glom ¢ Podo. LoHna o ICA
EC.art » PTC DCT e ICB
vSMC PTC.na CNT

Mes. LoH.DTL @ PC.CNT

0- CNT  Tcells.na

8,

FUPE
jecco &
PC.na Fibro. ECuyei”

ic ¥ . ECant
104 vSMC Mes. !.\ -al
EC.glom

PC. ¢

UMAP_2
o 0 0 00

UMAP_1

LM

ZSHdAN
TTTTTTT] Nano

[TTTTTT

VRT]
NOW3
ON3
dVA1d
HaX
€aH3
v£ad
24937
ZVLOV
8voll
LVZ110D
2v9100
g0a1v
XOIN
£XdO
aVAHO
HAVOA
YNA12
0LNG1D
LVZ1O1S
1V81S
187v0
zdov
£dOv
YAAXd
¥/ €0LA9dLY
LVED1S
ZLHNG
Y| vv9201S

K 1

g4490ad
H40
A r4%en
HXod
HYSNI

L L
T

MAVARL
7T

T
LIS B LI B B

F"TTT7TTTTTT] 4910

| L

r

] oudlid

L

[TTOT]

TP TTT
TTTTTT

[ ] Tcells.na LoH.DTL
EC.vei LoH.ATL
EC.glom LoH.TAL
EC.art LoH.na
vSMC DCcT
Mes. CNT
Fibro. PC.CNT
PEC PC.CD
Podo. PC.na
PTC ICA
PTC.na Ic.B

T T TT

oy
¥
I
T

LI I L B B
T
T T

T T T T T

LoH.na
LoH.TAL
LoH.ATL
LoH.DTL 1

PTC.nat

PTC +
Podo. +
PEC +
Fibro. 1
Mes. +
vSMC +
EC.art
EC.glom+
EC.vei
T.cells.na 4>

2 23 22 2 21522153 31522 23

ML O L

LIS N N R LA B

i;%

R L L L
— T
T
k%2

| B §

T

N AL LU A L

,.
yanm

llllll'lllll"

T T T 717

| AL B B L B L B

rrrrrrrr T rT T T T T T T

I I L B B N B B

LN I A I L A DL N B I B B |
LA LI B I B I
TT [T T T T T T [T T 1]
LI AL B B B B L B B |

TT T T T T [T T71 7T

L 253K 250N L L O L
T v

Y YYS®SOT TV T 17

T

LI LI O L
LA IO L B B L N BN L N B

<
LI N

T T T V¥ 01 1

F- 3§ 95 ¢4 ¥ -8
L L L B
S L B A I
T T T T T T 1]
LI L L
TT T T T T 1T

-

LAYTTTYVYTT

E L L

~
@

32 3223 3234 3221521522 415

C cs
IC.AA
PC.na+
PC.CD 4
PC.CNT 4
CNT 1

B

- 0000-0
e o i

[ ]

[ ]

@00 - -

Qe

N I XX
L ]
cscoc@ece
PR

Sy
C‘Q’b‘
2
(OQ_-,
q’%
%,
2%
N
4/ F
'Y,o
2
%,
'90 V4
Q
&
(Y
%
% -9
7.
4,;(?9 [ B
A'%é
(o]
%a,. &%
%
4
,‘%I
OOO
e
Y,
<,
N
%
7
%
Mo
97
N
7
%
2%
0.
o Ad
Y

%
P
%
<,
o
)
A,
%
A
),
T
Ly
<,
19
K2
(e
%,
%

Fig. 8 Healthy human kidney landscape at the single nucleus level. (a) Cell type attribution to clusters based

on the expression of specific transcriptomic markers. (b) ViolinPlot showing the expression of some of the
kidney cell type-specific transcriptomic markers used to allocate cell types to clusters. (c) Dot plot presenting
the expression of the 3 first genes of each computed signature, for all the signatures; this plot illustrates the list of
consensus signatures for snRNA-seq samples.

Concerning the validation of our identified snRNA-seq signature, Lake et al.>*” snRNA-seq dataset was pro-
cessed as previously described to remove poor quality nuclei, and finally consisted in 17,375 nuclei from 43 sam-
ples that belonged to 16 individuals, including 14 tumor-free regions of nephrectomies and 2 deceased donor
kidneys® (Fig. 13). The nomenclature of the original labels was modified as previously described for scRNA-seq,
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A. scRNA-seq markers
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glomerular
Vascular EC.art fr‘:gr"igl‘ehal cells, EMCN®2297 ENG2297:38 CD3422% VEGFC*
Vascular smooth 941 39 3
vSMC ACTA2> PDGFRB ITGAS
muscle cells
Mes. Mesangial cells PDGFRB** ITGA8>?10 EMCN?* ENG* COL12A1%
Fibro. Fibroblasts COLI12A1% COL6A2%
Podo. Podocytes NPHS2692%37 WT162237
PEC f :ﬁf‘al epithelial | oy g CFH2 WT12 CRYAB2
PTC Proximal tubule cells | MIOX®22%° GPX3% CUBN®® ALDOB?
Descending thin
LoH.DTL limb of theloop of | CRYAB®® VCAMY!® CLDN4* CUBN*
Henle cells
Nephron epithelail cells Ascending thin limb
LoH.ATL of the loop of Henle | SLC12A1* CLDN4* UMOD**
cells
Thick ascending
LoH.TAL limb of theloop of | SLC12A1%%**¥ | UMOD®>*% | KNG1%%*
Henle cells
DCT Distal contourned SLC12A36%5 KNGI2

Continued
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A. scRNA-seq markers
Cell type Markers
CNT i‘ff;““ﬁng tubule | cappiesms | SLCBAIS2 | KNGI
PC.CNT Principal cells, AQP222 SLC8A12 CALBI2
connecting tubule
Principal cells, 6,9,22,37 6,9,22,37 6,9,22,37
PC.CD collecting duct AQP2 AQP3 FXYD4
ICA g‘_tte;;:late‘j cells, g1 c415927 | FOXII992 | DMRT2%2 | ATP6VIG3®
ICB g‘ftetyrlfjlated cellss ' s1co6a427 | INSRRZY | FOXIIZ ATP6V1G3>
Table 4. List of broad cell type marker genes used to allocate cell types to clusters.
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GSM3320197-8 © GSM4191945 © GSM4191953 © GSM4191961 GSM4572196
GSM4145204 © GSM4191946 o GSM4191954 o GSM4191962 GSM4819726
GSM4145205 © GSM4191947 o GSM4191955 GSM4191963 GSM4819728
GSM4145206 © GSM4191948 o GSM4191956 GSM4191964 © GSM4819730-1
GSM4191941 ® GSM4191949 o GSM4191957 GSM4572192 GSM4819733
GSM4191942 ® GSM4191950 o GSM4191958 GSM4572193 GSM4819735
GSM4191943 ® GSM4191951 © GSM4191959 GSM4572194

Fig. 9 Integration of scRNA-seq and snRNA-seq datasets. PCA plots of scRNA-seq and snRNA-seq samples
before any integration (left), after Harmony integration (middle), and after Seurat v4 integration (right).

to match the nomenclature of the consensus cell type signatures (Fig. 14a, Table 5). Again, enrichment of
snRNA-seq consensus signatures was done after computation of MCA and UMAP and signatures for « na »
annotated cell types were not included for enrichment. The annotations were overall conserved between original
labelling and consensus signature-based labelling (Fig. 14b,c). However, a subpopulation of proximal tubule cells
was enriched for the descending thin limb of the loop of Henle (LoH.DTL) and some parietal epithelial cells
(PEC) in the automatic annotation (Fig. 14b). In addition, cells originally labelled as LoH.DTL and some cells
labelled as ascending thin limb of the loop of Henle (LoH.ATL) from samples NK37, NK38, NK45 and NK46,
were still unassigned after consensus signatures enrichment (which means, there is no cell type enriched with a
FDR < 0.01). This important unassigned population, which belonged to 4 samples among 43, may be considered
« non-conventional » cells (although it may be due to remaining batch effects, as the samples were collected
and conserved differently). In an original study, such nuclei would benefit from an in-depth analysis, since they
could belong to non-tested cell types or non-steady cell states.

In conclusion, enrichment of consensus signatures allows the automatic and reliable annotation of kidney
cell types in scRNA-seq and snRNA-seq datasets, and may be used to help in the decision of cell type allocation.

Discussion

Single cell RNA-seq and snRNA-seq are exponentially used within the kidney field. While major kidney cell
types are generally retrieved, cell type identification is unconsistant between studies and therefore lacks repro-
ducibility. It seems legit that every batch of samples, or every single sample, would not allow to identify the exact
same transcriptomic signatures. It is mainly due to the small sample size of most human single-cell studies,
subject to the cost of the technology and the limited availability of healthy human samples, that is in general not
sufficient to generalize the conclusions to the overall population. In addition, scRNA-seq and snRNA-seq sam-
ples still suffer from a very low sequencing depth that may give rise to false positives or false negatives, within
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Fig. 10 Joint analysis of scRNA-seq and snRNA-seq datasets. (a) UMAP plot showing the dispersion of cells
and nuclei after Seurat v4 integration, according to their sample of origin. (b) UMAP plot presenting the batch
effects related to the procedure (scRNA-seq vs snRNA-seq). (c) UMAP plot showing the matching of allocated
cell types between cells and nuclei.

the differentially expressed genes computed between two populations (not to mention that these differentially
expressed genes are calculated on the basis of the raw data, not the matrix normalized by the integration).
Mapping reads to different versions of the reference genome, as well as the pre-processing of the data are also
critical factors participating in batch effects between studies. This results in limited reproducibility and reliability
between the different studies involving human kidney scRNA-seq and snRNA-seq. In this meta-analysis, we per-
formed integration of 32 scRNA-seq and 7 snRNA-seq samples, from 3 and 4 different studies respectively?*—32.
After assessing the mitigation of batch effects, we ran high resolution unsupervised clustering and allocated cell
types to clusters, based on the expression of known markers, before computing consensus cell type signatures.
Despite scRNA-seq and snRNA-seq samples did not equally distribute everywhere on the UMAP, cell type allo-
cation was highly consistent across the two datasets. Finally, we showed that enrichment of consensus signatures
achieved cell type allocation consistent with previously annotated datasets***’. These consensus signatures may
thus help increasing reproducibility and reliability between future studies involving scRNA-seq or snRNA-seq
in the kidney field.

Our present study tried to standardize cell type nomenclature by the way of meta-analysis. Even though
proximal nephron is functionally and anatomically divided in three segments (S1 to S3), our study could not
discriminate these segments and all proximal tubule data is lumped into one proximal category. Same is true
for the three descending thin limbs segments and distal convoluted tubule that is not resolved into DCT1 and
DCT2. One plausible explanation is that these subpopulations are part of the unattributed population, i.e. PTC.
na and LoH.na. There is also a possibility that we did not find these subpopulations because of the sparsity of
the data, especially with such heterogeneity in the data sources. The datasets used in this study are the first pub-
lished in the field, they were pre-processed with different tools and suffer from strong batch effects that prevent
to detect many markers. However, the signatures that we proposed still allow to identify their cell types in the
validation step we did.
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Fig. 11 Scattering of cells depending on each sample in test datasets. UMAP plot showing cell spreading
according to their sample of origin within Kuppe et al. dataset.

Single cell and single nucleus transcriptomics allow to study the expression of every detected gene (i.e. read
count) in every single cell, or every single nucleus, within a suspension of cells. The advantages of sn- over
scRNA-seq have been studied in healthy and fibrotic mouse kidney tissue, and include the following: less dis-
sociation bias, less stressed or dead cells, and the possibility to use frozen tissue pieces which may allow to
process more and better quality biological samples'!. Furthermore, scRNA-seq and snRNA-seq samples may
present too different transcriptomes in certain cell populations to allow a good detection of every cell type in
both kind of experiment. This is not striking since the set of RNA expressed in the nucleus differs from the set of
RNA expressed in an entire cell. In other words, scRNA-seq samples contain nuclear, mitochondrial and cyto-
solic RNA, while snRNA-seq samples only contain nuclear and cytosolic RNA. Therefore, cell type assignment
depending on the expression of canonical marker genes, which is the standard in single cell/nucleus transcrip-
tomics analyses, may differ between scRNA-seq and snRNA-seq. Our analysis confirmed these assumptions
and as a consequence provides two sets of cell type signatures, obtained by scRNA-seq or snRNA-seq strategies.
Besides, we were not able to find immune cells within snRNA-seq datasets except few T cells, which is consistent
with previous reports attesting that snRNA-seq in the kidneys failed to detect immune cells in general®!.
Interestingly, we detected a population of parietal epithelial cells in both scRNA-seq and snRNA-seq datasets
that express pluripotent cell, tubular epithelium and podocyte markers (e.g. SOD2, KRT8, KRT18, WT1, CD24,
PAX2, SOX4, VIM, RACK1, NUPRI...; Supp. Table 2) and may actually correspond to previously described
parietal epithelial stem cells®. These cells look very different from the other clusters, express self-renewal mark-
ers (e.g. CD24, PAX2) and match with the PAX2"™ CD24" population previoulsy observed in the glomerulus®.
By contrast, we failed to detect any CD133* mesenchymal stem cell-like population.

To introduce biological heterogeneity and mitigate technical variability, we encourage authors who would
use previously published healthy kidney datasets as control datasets for their purpose, to integrate several sam-
ples from different studies instead of using the samples from a single study. For those who would add new
healthy human kidney samples to their single-cell or single-nucleus studies, we would advice to compare the
cell type signatures from control cells with the consensus signatures we provide, and to assign cell types in their
dataset using enrichment of consensus signatures (e.g. CelliD*).

However this approach is biaised in the sense that cell type enrichment depends on the tested cell types, and
if a cell type is not tested it could not be attributed to cells/nuclei, even if it should. Thus, one of the main limita-
tion of this method is that every cell or nucleus will be attributed a cell type from the tested list: the enriched cell
type with the lowest p-value will be attributed, which can be misleading (if there is no enriched cell type, then
cell/nucleus is labelled « unassigned »). This further means the consensus signatures we provide only define the
cell types identified in the current meta-analysis. Therefore, depending on the settings, it could make sense to
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Fig. 12 Enrichment of consensus signatures automatically reveals cell type identities within scRNA-seq
datasets. (a) UMAP plot showing the authors’ original cell type annotations. These original annotations were
adapted to match the nomenclatures used for consensus signatures. See also Table 5. (b) UMAP plot presenting
the automatic cell type allocation performed by enrichment of scRNA-seq consensus signatures. (c) Cell count
comparison for each cell type, from both original annotations by authors and consensus signature enrichment.
Of note, certain labels are present in only one of the two labellings, raising counts of 0 for this label in the other
labelling.

use only certain consensus signatures, for instance if the studied cells or nuclei populations have been purified
by FACS prior to the transcriptomics. For the same reason, such cell type enrichment may be used as a decision
helper instead of a decision maker in cell type attribution to cells/nuclei. However, a more unbiased approach is
possible for original studies, based on unsupervised clustering followed by extraction of the cell-specific signa-
tures using CelliD, and finally enrichment of functional terms or pathways of these signatures. A more general
limitation of such single cell studies is the statistical power for the computation of HVG (Wilcoxon Rank Sum
test), that depends on the number of cells allocated for every single cell type. Indeed, the statistical power is
higher for the computation of PTC signature (computed on 29,246 PTC cells vs 38,782 cells within the rest of the
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Dataset from Lake BB., et al.
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Fig. 13 Scattering of nuclei depending on each sample in test datasets. UMAP plot showing nucleus spreading
according to their sample of origin within Lake et al. dataset.

dataset) than for the one of DCT cells (computed on 248 DCT cells vs 67,780 cells) in the scRNA-seq dataset, for
instance. In the future, these signatures may benefit from being updated by integrating newly published healthy
human kidney single cell datasets that may increase the biological variability and the number of cells for every
population while mitigating the batch effects even better. In addition, the very low sequencing depth of these
experiments implies that the results should be interpreted with caution. To solve this issue in cell type identi-
fication while specifically working with kidney tissue and validate the identified cell type-specific signatures, a
bulk transcriptomic analysis of micro-dissected healthy human nephron segments would be really helpful, as it
has been performed in rodents®. Nevertheless, cell type allocation by enrichment of consensus signatures may
depend on the size of the signatures - i.e. the size of the gene lists, spanning between 27 (scRNA-seq signatures,
LoH.TAL) and 311 (snRNA-seq, EC.art) genes in the present meta-analysis. Thus, we recommand to perform
such enrichment with both the complete signatures, and truncated signatures that are close in size.

Studies involving scRNA-seq and snRNA-seq technologies in the kidney are barely comparable, because of
alack of standardized workflow (technically and analytically) and a diversity in the references used for cell type
recognition. In this meta-analysis, 32 scRNA-seq samples from 3 studies, and 7 snRNA-seq samples from 4
studies, were integrated and analysed. This resulted in the computation of 30 consensus cell type signatures for
kidney cell types. Future studies in the field may benefit from the use of these signatures to automatically allocate
cell types to cells/nuclei.

Methods

Data acquisition. Single-cell RNA-seq and snRNA-seq datasets generated from healthy adult kidney samples
were downloaded from the Gene Expression Omnibus database (GEO; https://www.ncbi.nlm.nih.gov/geo/) as
count matrices?~*2. The collection consists of 7 snRNA-seq samples from 4 independent studies (GEO Accession
ID: GSE114156, GSE118184, GSE131882, GSE151302) and 32 scRNA-seq samples from 3 independent studies
(GEO Accession ID: GSE131685, GSE140989, GSE159115)%%-%2. The clinical and technical informations regard-
ing the samples gathered from these studies are provided in Tables 1 and 3. Expression matrices of scRNA-seq
samples GSM4819730 and GSM4819731 from batch GSE159115 were merged together prior to the analysis since
they belong to the same individual, as well as snRNA-seq samples GSM3320197 and GSM3320198 from batch
GSE118184*"*. Data downloaded from GEO were already pre-processed for each dataset, in different ways across
the different studies involved (Table 3). This heterogeneous pre-processing of the samples may biase the analysis.
However since our goal is to provide widely usable and consensus cell type signatures, this technical variation is
important to retain.
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Fig. 14 Enrichment of consensus signatures automatically reveals cell type identities within snRNA-seq
datasets. (a) UMAP plot showing the authors’ original cell type annotations. These original annotations were
adapted to match the nomenclatures used for consensus signatures. See also Table 5. (b) UMAP plot presenting
the automatic cell type allocation performed by enrichment of snRNA-seq consensus signatures. (c) Nucleus
count comparison for each cell type, from both original annotations by authors and consensus signature
enrichment. Of note, certain labels are present in only one of the two labellings, raising counts of 0 for this label
in the other labelling.

To test whether the computed consensus signatures may be useful to automatically allocate cell types to
clusters, we also downloaded available annotated datasets. Thus, Kuppe et al. (#4059315)>° scRNA-seq dataset
was obtained from zenodo repository (https://zenodo.org/), and Lake et al. snRNA-seq dataset was downloaded
from GEO under accession number GSE121862°". These datasets consisted in 19 chronic kidney disease sam-
ples and 43 healthy samples, respectively.

Quality control and filtering out of poor quality cells and nuclei. We used R software v4.1.0
(https://www.r-project.org/) and Seurat v4.0.5 package®® (https://satijalab.org/seurat/) to perform the analysis.
As observed in previous studies, human kidney scRNA-seq datasets generally present with high mitochondrial
gene counts, which may be attributed to the processing time of human kidney samples as well as the processing
itself. Moreover kidney tissue notoriously contains a lot of mitochondria, consistent with the high levels of energy
needed for a proper filtration process. Therefore the standard filtering out of cells with >5% mitochondrial gene
expressed was not suitable for the processing of these scRNA-seq data. Cells with <200 or >3500 (cell debris and
doublets) expressed genes, and >30% mitochondrial gene expressed, were filtered out, whereas nuclei with <200
or >3500 expressed genes, and >5% mitochondrial gene expressed, were filtered out. In total, 68,028 high quality
cells and 33,412 high quality nuclei were obtained after applying these thresholds. Table 2 presents quality control
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scRNA-seq test dataset: Kuppe C, et al. Nature. 2021%7%% snRNA-seq test dataset: Lake BB, ef al. Nat Commun. 2019*%
Original labels Replacement | Original labels Replacement
C1 Arteriolar Endothelium EC.art Cl Epithe%ial Cells Epi.na
(unassigned)
C2 B Cells B.cells C2 Podocytes Podo.
Collecting Duct Principal Proximal Tubule Epithelial
e Cells pcch e Cells (1) pTC
. Proximal Tubule Epithelial
C4 Connecting Tubule CNT C4 Cells (S2) PTC
- Proximal Tubule Epithelial
C5 Dendritic Cells DC C5 Cells - Stress/Inflam PTC.na
. o Proximal Tubule Epithelial
Ce6 Descending Thin Limb LoH.DTL Cé6 Cells - Fibrinogen -+ (3) PTC
c7 Distal Convoluted Tubule | DCT 1% Proximal Tubule Epithelial | b
Cells (S3)
Cc8 Fibroblast 2 Fibro. C8 Decending Limb LoH.DTL
C9 Fibroblast 4 Fibro. [0} Thin ascending limb LoH.ATL
C10 Fibroblast 6 Fibro. C10 Thin ascending limb LoH.ATL
Cl11 Glomerular Capillaries EC.glom C11 Thin ascending limb LoH.ATL
C12 Injured Endothelial Cells | EC.na C12 Thick Ascending Limb LoH.TAL
C13 Injured Proximal tubule PTC.na C13 Thick Ascending Limb LoH.TAL
Cl4 Intercalated Cells 3 IC.na Cl14 Distal Convoluted Tubule | DCT
C15 Intercalated Cells 4 IC.na C15 Connecting Tubule CNT
cl6 Intercalated Cells 5 IC.na ci6 Collecting Duct - PC.CD
Principal Cells (cortex)
Collecting Duct - PCs -
C17 Intercalated Cells 6 IC.na C17 Stressed Dissoc Subset PC.na
C18 Intercalated Cells 7 IC.na C18 Collecting Duct - PC.CD
- Principal Cells (medulla) .
Collecting Duct -
C19 Intercalated Cells 8 IC.na C19 Intercalated Cells Type A | IC.A
(medulla)
Collecting Duct -
C20 Intercalated Cells A IC.A C20 Intercalated Cells Type A | IC.A
(cortex)
Collecting Duct -
C21 Intercalated Cells B IC.B C21 Intercalated Cells Type B IC.B
C22 Lymph Endothelium EC.lym C22 Endothelial Cel}s . EC.glom
glomerular capillaries
C23 Macrophages 1 Macro. C23 Endothelial Cells - AVR | EC.vei
Endothelial Cells - AEA .
C24 Macrophages 2 Macro. C24 &DVR EC.vei
C25 Macrophages 3 Macro. C25 Endot}.lelial Cells EC.na
(unassigned)
C26 Macula Densa Cells MD.cells C26 Mesangial Cells Mes.
C27 Mast Cells Mast.cells C27 Vascular quoth Muscle vSMC
Cells and pericytes
C28 Monocytes Mono. C28 Interstitium Fibro.
Unknown - Novel PT
C29 Myofibroblast 1a Myofibro. C29 CFH -+ Subpopulation PTC
(82)
C30 Myofibroblast 1b Myofibro. C30 ir/[nmune Cells - Macro.
acrophages
C31 Natural Killer Cells NK.cells
C32 Pericytes 1 Pericytes
C33 Pericytes 2 Pericytes
C34 Plasma Cells B.cells
C35 Podocytes Podo.
C36 Proximal Tubule PTC
C37 S1 PTC
C38 S1/21 PTC
C39 S1/22 PTC
C40 S1/23 PTC
Continued
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scRNA-seq test dataset: Kuppe C, et al. Nature. 20213738 snRNA-seq test dataset: Lake BB, ef al. Nat Commun. 2019*%
Original labels Replacement | Original labels Replacement
C41 S31 PTC

C42 S32 PTC

C43 S33 PTC

C44 Schwann Cells Schwann.cells

C45 T Cells T.cells

C46 Thick Ascending Limb 2 LoH.TAL

C47 Thick Ascending Limb 3 LoH.TAL

C48 Thick Ascending Limb 4 LoH.TAL

C49 Uroethlial Cells Uro.

C50 Vasa Recta 1 EC.vasa.recta

C51 Vasa Recta 2 EC.vasa.recta

C52 Vasa Recta 3 EC.vasa.recta

C53 Vasa Recta 4 EC.vasa.recta

C54 Vasa Recta 5 EC.vasa.recta

C55 Vasa Recta 6 EC.vasa.recta

Cs56 gzicsular Smooth Muscle VSMC

C57 Venular Endothelium EC.vei

Table 5. Nomenclature for test datasets.

metrics of every sample (i.e. number of cells/nuclei, mean number of reads per cell/nucleus, mean number of
features expressed per cell/nucleus, % mitochondrial genes, % ribosomal genes), prior to and after filtering. Data
were normalized and scaled (regressing out % mitochondrial genes), and highly variable genes computed using
the SCTransform() function® (Seurat v4) for every scRNA-seq and snRNA-seq sample. Identified HVG were
then used to compute PCA for every sample. SCTransform is a newly implemented statistical method in Seurat
v4, pooled from the sctransform R package (https://github.com/satijalab/sctransform), that aims to better resolve
the technical variability and sequencing depth differencies between cells/nuclei across datasets®. It is particularly
interesting when working with datasets obtained from different sources, which induce important variability.

Integration and dimensional reduction. Single-cell and single-nucleus samples always depend on
confounding variables and may thus present differences that are called batch effects. To allow any comparison
between samples, batch effects need to be mitigated as much as possible, which is done by the integration process
(i.e. normalization step). Because further computations depend on this process, the quality of the integration
deserves to be evaluated. Thus, two integration approaches were considered: the Seurat v4 method that outputs a
corrected expression matrix for a list of genes to consider, and the Harmony v0.1.0 method that directly corrects
the residues of the PCA for each sample.

Integration of 32 scRNA-seq samples on one hand, and 7 snRNA-seq samples on the other, was achieved by
running consecutively PrepSCTIntegration(), FindIntegrationAnchors() and IntegrateData() functions from
Seurat, with 2,500 integration features. Then PCA was computed and the first 30 PCs were inputed for uniform
manifold approximation and projection (UMAP) of integrated scRNA-seq and snRNA-seq datasets. Harmony
ran as well and UMAP was computed on the 30 first corrected PCs of both dataset. The distribution of the cells
or nuclei from the different samples was compared between the two methods. Of note, Seurat and Harmony are
among the best batch effect correction methods to date'”!s.

Clustering and cell type annotation. High resolution clustering is important in such meta-analysis: since
there are still notable batch effects, small batch-dependent clusters may be identified. In addition, more clusters
may identify more cell types when closely related, thus more consensus cell type signatures if so. Unsupervised
clustering was performed using FindClusters() function with Louvain algorithm in both dataset (resolution =3.4
and 3.0 in scRNA-seq and snRNA-seq datasets, respectively). Distribution of samples across clusters was studied
thanks to the pheatmap v1.0.12 R package. The cells were then labelled according to the expression of specific
markers (Table 4). To match the nomenclature adopted for consensus cell type signatures, original labels from
Kuppe C, et al. and Lake BB, et al. were changed (Table 5).

Data availability

The single-cell and single-nucleus datasets generated in the study have been deposited on Figshare®>. These
files contain 4 assay slots (raw counts matrix, sample-dependent SCT-transformed values, post-integration SCT-
corrected values, and the secondary integration SCT-corrected values) and some meta-data slots, including
the dataset of origin (GEO sample accession number), the batch of origin (GEO series accession number), the
method used (scRNA-seq vs snRNA-seq), the clusters, and the cell type labelling. The Figshare repository also
contains supplementary Tables 1 and 264,
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Code availability
The R script allowing to reproduce the entire study is available on Github (https://github.com/
MarceauQuatredeniers/Meta-analysis-of-healthy-human-kidney-single-cell-transcriptomics).
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