

scientific data

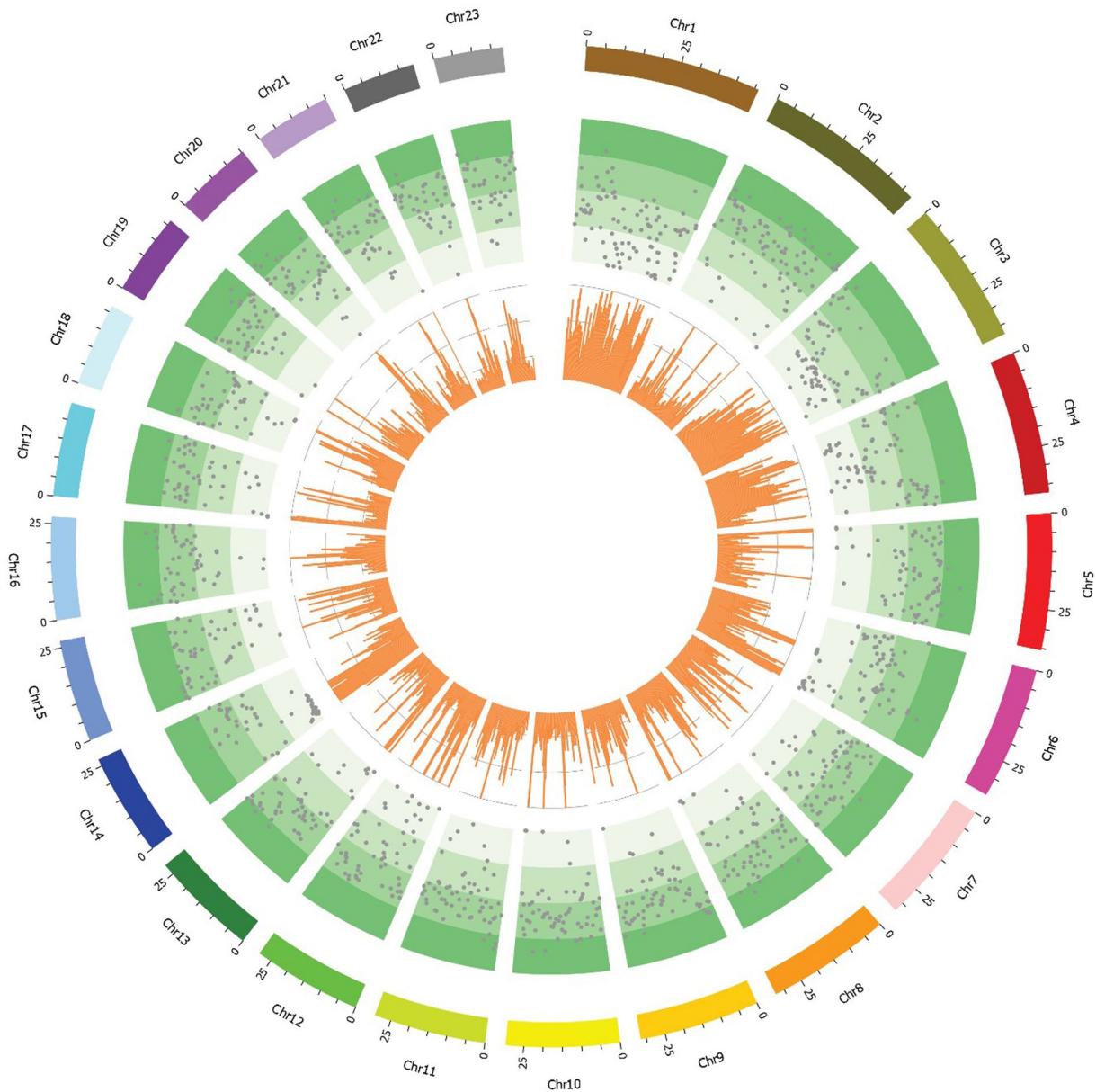
OPEN

DATA DESCRIPTOR

Chromosome-level genome assembly of the sea cucumber *Apostichopus japonicus*

Lina Sun^{1,2,3}✉, Chunxi Jiang^{1,2,3}, Fang Su^{1,2,3}, Wei Cui^{1,2,3} & Hongsheng Yang^{1,2,3}✉

Sea cucumber is a morphologically diverse and ecologically important clade of echinoderms. The sea cucumber *Apostichopus japonicus* is the most economically valuable species of sea cucumber. The initial assembly of the *A. japonicus* genome was released in 2017. However, this genome assembly is fragmented and lacks relative position information of genes on chromosomes. In this study, we produced a high-quality chromosome-level genome of *A. japonicus* using Pacbio HiFi long-reads and Hi-C sequencing data. The assembled *A. japonicus* genome spanned 671.60 Mb with a contig N50 size of 17.20 Mb and scaffold N50 size of 29.65 Mb. A total of 99.9% of the assembly was anchored to 23 chromosomes. In total, 19,828 genes were annotated, and 97.2% of BUSCO genes were fully represented. This high-quality genome of *A. japonicus* will not only aid in the development of sustainable aquaculture practices, but also lay a foundation for a deeper understanding of their genetic makeup, evolutionary history, and ecological adaptation.


Background & Summary

The sea cucumber belongs to Echinodermata, which occupy an important phylogenetic position together with their sister phylum, Hemichordata. Evolutionary studies of sea cucumber are crucial for understanding the origin of chordates¹. Sea cucumbers have evolved special behaviors, including super regenerative capacity, aestivation, and anatomy, among others, to adapt to various oceanic environments. This adaptation has taken place over a long evolutionary history, which can be traced back to the early Cambrian era². Sea cucumbers play crucial roles in maintaining the health of the ocean floor by consuming dead plant and animal matter, which helps to keep the sediment in a balanced state³. In addition, sea cucumbers are important economic aquaculture species and have been deemed as one of the most valuable functional foods in the sea due to their nutritional and pharmacological properties^{4,5}. Among approximately 60 species with exploitation value, *Apostichopus japonicus* is the most economically important species⁶. In China alone, around 200,000 tons of adult *A. japonicus* are produced each year, with an estimated whole industrial chain value of about 15 billion dollars (Sea cucumber Industry Branch of China Fisheries Association, 2010–2022).

For the reasons listed above, *A. japonicus* is one of the most studied echinoderms, and a total of 1,358 research papers on *A. japonicus* were published between 2000 to 2021⁷. Such research occurs in fisheries^{8,9}, immunology^{10,11}, food science and biological medicine^{4,5}, ecological function³, as well as biochemistry and molecular biology^{12–14}. With the deepening of research requirements and development of biological technologies, studies of the mechanisms on phenotype formation, physiological responses, and behavioral regulation is rapidly developing. Hence, the genetic resources of *A. japonicus* have been exploited, including the coding and noncoding RNA transcriptome^{15–17}, proteome¹⁸, epigenome¹⁹, genetic linkage map^{20,21} and genome^{1,22}. Among them, the genome is the most basic data that is essential for most multi-omics analyses.

In 2017, Zhang *et al.* constructed the *A. japonicus* genome with the assembly of 805 Mb (contig N50 of 190 Kb and scaffold N50 of 486 Kb)²² (Table 1). A total of 30,350 protein-coding genes were annotated in that genome version²² (Table 1). In 2018, Li *et al.* published 952 Mb (contig N50 of 45 Kb and scaffold N50 of 196 Kb) of the *A. japonicus* genome with 29,451 protein-coding genes¹ (Table 1). In 2022, Wang *et al.* constructed a chromosome-level *A. japonicus* genome using Hi-C technology based on the 2017 genome assembly version²³. However, the existing genome versions are far behind the growing demand of in-depth study on *A. japonicus*.

¹CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. ²Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China. ³University of Chinese Academy of Sciences, Beijing, 100049, China. ✉e-mail: sunlina@qdio.ac.cn; hshyang@qdio.ac.cn

Fig. 1 A circos plot of 23 chromosomes of *A. japonicus* genome. The tracks from inside to outside are: bar plot for gene density profile, the distributions of transposable element and 23 chromosomes.

biology. Genomes with a low contig N50 are generally highly fragmented, resulting in the poor annotation of protein-coding genes and non-coding sequences²⁴. For example, the sea cucumber breeding industry is currently primarily focused on traditional breeding methods, with molecular marker-assisted breeding playing a supporting role. *A. japonicus* breeding is in the transition from Breeding 2.0 (Statistical and experimental design to improve selection effort) to Breeding 3.0 (Integration of genetic and genomic data)²⁵. Genome-wide association studies (GWAS) and genomic selection (GS) are required to identify genes related to economic traits and accurately evaluate them in *A. japonicus* breeding programs. Therefore, genomes with long contig N50s and long continuity are essential. Moreover, the annotation of functional genes and regulatory elements plays important roles in understanding evolutionary mechanisms and genetic regulation, which depend on the high quality of genome.

We applied multiple sequencing technologies, generating 56.54 Gb of Illumina data, 43.22 Gb of PacBio data, and 3.18 Gb of HiC data, to reconstruct the chromosome-level *A. japonicus* genome (Fig. 1), which is the first known chromosome-level genome of sea cucumber (Table 1). The final assembly was 671.60 Mb in total length with a contig N50 length of 17.20 Mb and scaffold N50 length of 29.65 Mb (Table 1). The assembly quality was much better than those of the previous genome versions. The genome developed herein will be an excellent tool to better investigate the mechanisms that drive evolution and biodiversity²³. By analyzing their genetic basis, researchers can identify the compounds responsible for these benefits and develop new treatments for human diseases⁴. Moreover, scientists can better understand the genetic basis of their responses to

Year	2017	2018	2023
Sequencing instrument	Illumina + PacBio (CLR)	Illumina + PacBio (CLR)	Illumina + Pacbio (CCS)
# Reads	128,784,478	—	10,588,443
# Bases (Gbp)	260 (Illumina) + 64 (Pacbio)	349 (Illumina) + 23 (Pacbio)	56.54 (Illumina) + 43.22 (Pacbio)
Coverage	295 × (Illumina) + 73 × (Pacbio)	346 × (Illumina) + 24 × (Pacbio)	84 × (Illumina) + 64 × (Pacbio)
Hi-C(Gbp)	—	—	3.18
# Chromosomes	—	22	23
Genome size (Mbp)	804.9	952	671.6
# Contigs	4,741	21,303	198
Contig N50 (Mbp)	0.190	0.045	17.20
# Scaffolds	3,281	7,286	34
Scaffold N50 (Mbp)	0.486	0.196	29.65
Repeat rate (%)	27.2	26.6	47.33
GC content (%)	36.75	37.37	38.56
# Genes	30,350	29,451	19,828
miRNAs	137	—	1,066
tRNAs	1,127	—	4,963
rRNAs	75	—	3,379
snRNAs	223	—	1,088

Table 1. Comparison of *A. japonicus* genome assemblies in 2017, 2018 and 2023.

libraries	Total data (G)	Read length (bp)	Sequence coverage (X)
Illumina reads	56.54	150	83.58
PacBio reads	43.22	14,729 (mean)	63.89
Total	99.76	—	147.47

Table 2. Statistical analysis of sequencing reads from Illumina and PacBio.

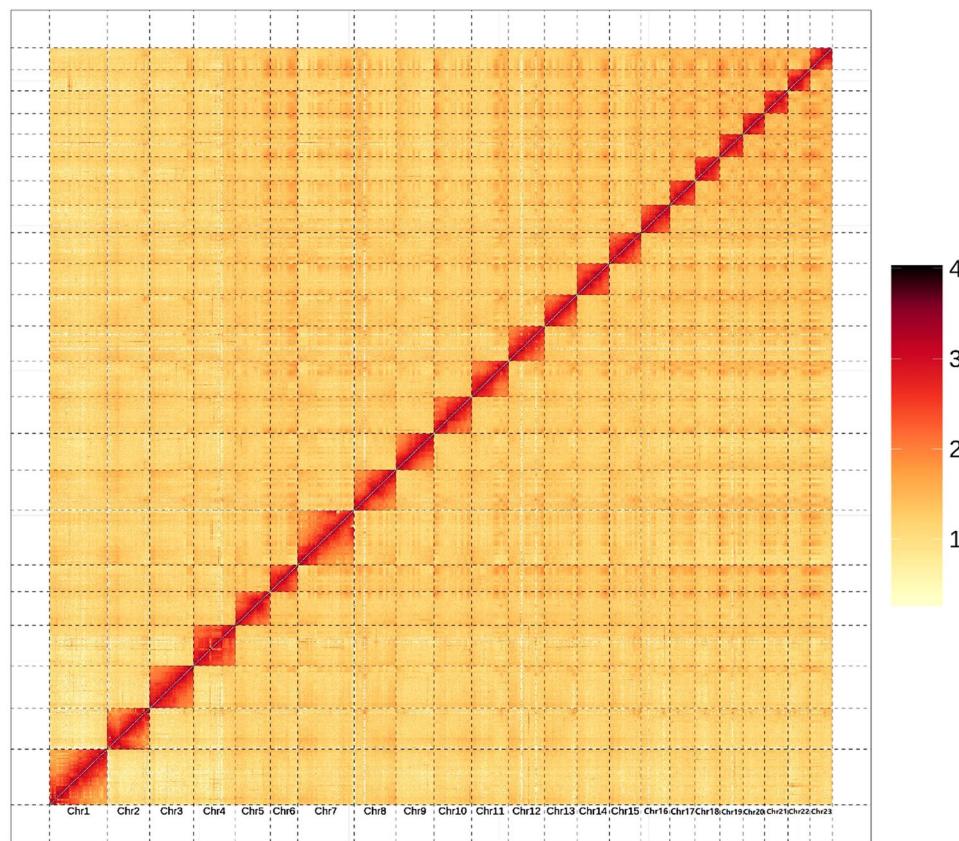

Type	Contig (bp)
Total Number	178
Total Length	671,627,515
Average Length	3,773,188
Max Length	38,087,046
Min Length	18,165
N50 Length	17,200,168
N50 Number	14
N90 Length	9,296,432
N90 Number	35

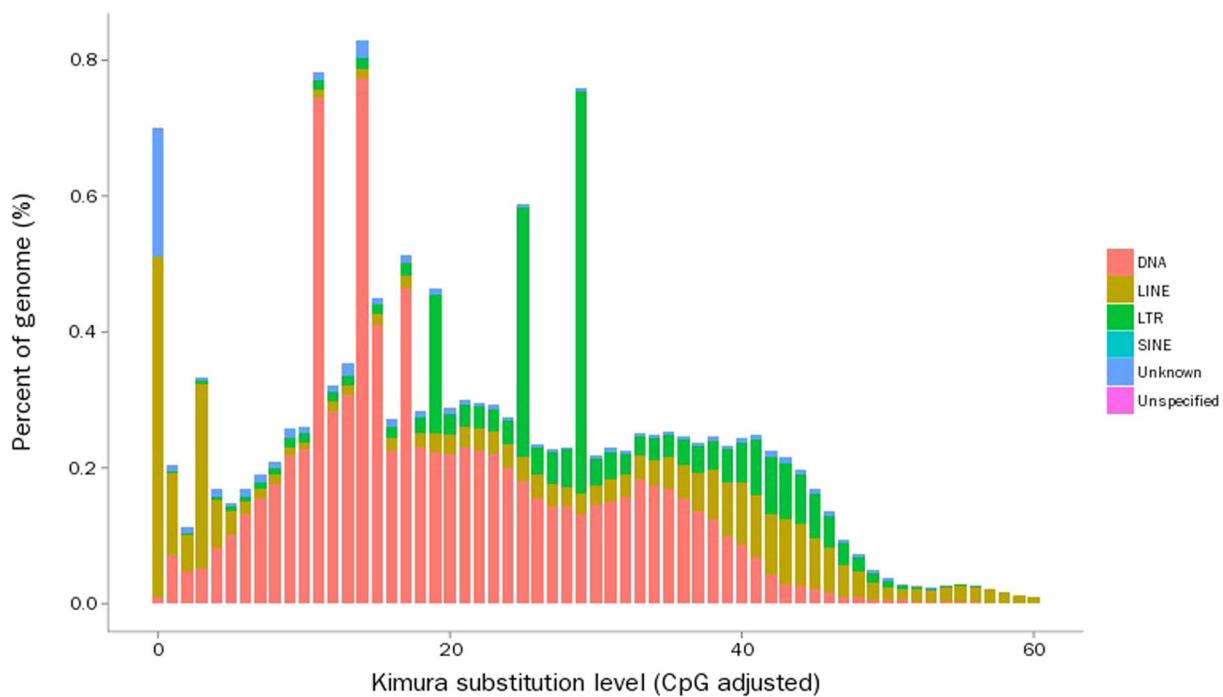
Table 3. Assembly statistics at the contig level.

Type	Data
Raw paired reads	244,997,475
Raw Base(bp)	73,499,242,500
Clean Base(bp)	73,002,860,400
Effective Rate(%)	99.28
Q20(%)	96.28
Q30(%)	91.25
GC Content(%)	38.56

Table 4. Statistical analysis of sequencing data from Hi-C.

environmental stressors by studying their genomes, and develop new tools for monitoring and conserving the ocean's resources²⁶. As an important aquaculture species, the accurate genetic analysis of economic traits can help to improve the genetic stability of target traits and the success rate of genetic improvement operations²⁰.

Fig. 2 Genome-wide Hi-C heatmap of *Apostichopus japonicus*.


Overall, constructing a high-quality genome for sea cucumbers is a crucial step in advancing the understanding of these unique animals and their importance to the health of the ocean and to human well-being.

Methods

Sample collection and sequencing. The longitudinal muscle of a female *A. japonicus* was collected in Rushan, Shandong Province, China, in 2021. The sample was washed three times with phosphate buffered saline (PBS), quickly frozen in liquid nitrogen, and stored at -80°C until DNA extraction. After DNA extraction, a short fragmented library was prepared with an insert size of 350 bp and sequenced using the Illumina Platform to generate 150-bp paired-end reads. For HiFi read generation, high-molecular-weight (HMW) gDNA was sheared to approximately 15 Kb before preparing a PacBio HiFi library. The genomic library was sequenced in CCS mode on the PacBio Sequel II system at Novogene (Beijing, China). After trimming the low-quality reads and adaptor sequences from the raw data, 56.54 Gb of Illumina data and 43.22 Gb of PacBio data with a mean read length of 14.7 Kb were obtained, resulting in 83.58-fold and 63.89-fold coverage of the *A. japonicus* genome respectively (Table 2). Such coverage was sufficient for haplotype-resolved assembly.

Genome assembly. The genome was assembled using the default parameters of Hifiasm (v0.15.4-r343)²⁷. Hifiasm calculates from the uncollapsed genome, allowing it to preserve haplotype information as much as possible. The HiFi long reads were provided to Hifiasm to generate the monoploid and a pair of haplotype-resolved assembly contig graphs. We assembled 178 contigs with a total length of 671.63 Mb. The maximum contig size and N50 were 38.08 and 17.20 Mb (Table 3), respectively.

Hi-C library preparation, sequencing, and chromosome anchoring. A Hi-C library was prepared following the Hi-C library protocol²⁸. After grinding with liquid nitrogen, fresh muscle was cross-linked using 4% formaldehyde solution at room temperature in a vacuum for 30 min. The fixation was terminated using 2.5 M glycine. Following cell lysis, cross-linked DNA was digested using the four-cutter restriction enzyme MboI. The DNA ends were subsequently labeled with biotin-14-dCTP and subjected to blunt-end ligation of the cross-linked fragments. DNA was extracted and purified using the phenol-chloroform extraction method. Sonication was employed to generate fragments ranging from 200 to 600 base pairs, and the ends of these fragments were repaired using a combination of T4 DNA polymerase, T4 polynucleotide kinase, and Klenow DNA polymerase. Streptavidin C1 magnetic beads were utilized for the specific enrichment of biotin-labeled Hi-C samples^{29,30}. Following the addition of A-tails to the fragment ends and ligation with Illumina paired-end (PE) sequencing adapters, Hi-C sequencing libraries were subjected to PCR amplification (12–14 cycles) and subsequently

Fig. 3 Distribution of divergence rates for TEs in the *A. japonicus* genome.

Type	Contig length	Scaffold length	Contig number	Scaffold number
Total	671,627,515	671,643,915	198	34
N50	15,848,779	29,647,521	15	10
N90	8,359,816	20,397,903	38	20
Place	—	671,222,061	—	23
Unplace	—	421,854	—	11

Table 5. Assembly statistics for Hi-C.

sequenced on an Illumina PE150 platform. The raw sequence data were filtered to obtain a total of 73.50 Gb of clean data, with Q20 = 96.28% and Q30 = 91.25% (Table 4), which was used to assist chromosome assembly.

HiCUP (v0.8.1) was used to process the Hi-C data³¹. The clean Hi-C data was assembled using the ALLHiC pipeline, which contained a total of five steps: pruning, partitioning, rescuing, optimizing and building^{32,33}. Finally, 99.94% of the initial assembled sequences were anchored to 23 pseudo-chromosomes (Fig. 2) with lengths ranging from 18.21 to 46.02 Mb. The total length of the genome assembly was 671.63 Mb, with 34 scaffolds and a scaffold N50 of 29.65 Mb (Table 5).

Genomic repeat annotation and ncRNA annotation. Repeat sequences of the *A. japonicus* genome were identified by homology-based and *de novo* strategies³⁴. First, we integrated the repetitive sequence database predicted by Denovo with the homologous repetitive sequence database, Repbase³⁵. Then, we used RepeatScout (v1.0.5)³⁴, RepeatModeler (v2.0.1)³⁶, Piler (v1.0)³⁷ and LTR-FINDER (v1.0.6)³⁸ to identify transposable element (TE) families. Repeatmasker (v4.1.0)³⁶, RepeatProteinMask (v4.1.0) and TRF (v4.0.9)³⁹ were used to identify and classify different repetitive elements by aligning the *A. japonicus* genome sequences against the integrated database. After removing the redundancy results obtained using the above three methods, the total length of the repeat sequences accounted for 47.33% of the *A. japonicus* genome. In addition, the Kimura divergence value of TE was calculated using calcDivergenceFromalign.pl⁴⁰. TE landscapes were drawn using createRepeatLandscape.pl⁴¹ (Fig. 3). Among the repeat elements, short interspersed nuclear elements (SINEs) accounted for 0.02% of the genome and long interspersed nuclear elements (LINEs) accounted for 2.94% of the genome. Long terminal repeats (LTRs) and DNA elements accounted for 27.03% and 3.74% of the genome, respectively (Table 6).

For the annotation of noncoding RNA (ncRNA), tRNAscan (v1.4)⁴² and blast (v2.2.26)⁴³ were used for tRNA and rRNA prediction, respectively. Other noncoding RNAs, including miRNA and snRNA were detected by alignment to the Rfam database⁴⁴ using INFERNAL (v1.0)⁴⁵. Four types of noncoding RNAs, including 1,066 miRNAs, 4,963 tRNAs, 3,379 rRNAs, and 1,088 snRNAs, were identified from the *A. japonicus* genome (Table 6).

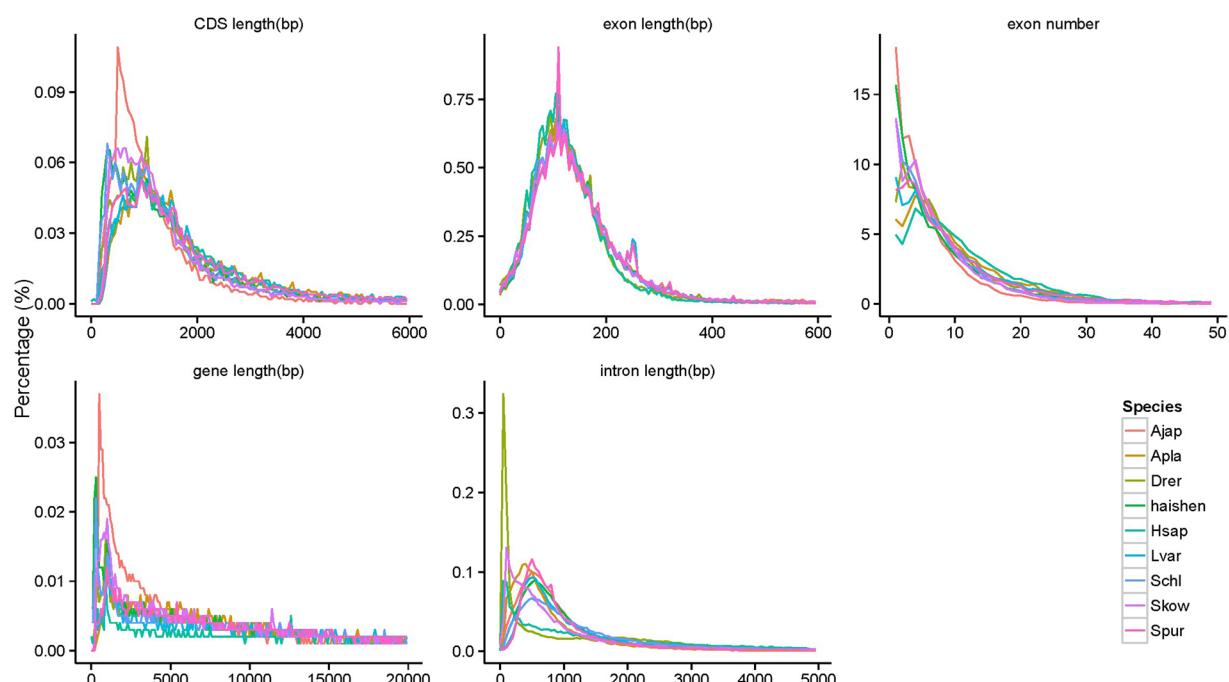

Type	Denovo + Repbase		TE Proteins		Combined TEs	
	Length(bp)	% in Genome	Length(bp)	% in Genome	Length(bp)	% in Genome
DNA	24,861,559	3.70	517,042	0.08	25,141,601	3.74
LINE	16,671,289	2.48	5,258,345	0.78	19,744,382	2.94
SINE	159,644	0.02	0	0	159,644	0.02
LTR	181,153,677	26.97	4,991,945	0.74	181,560,277	27.03
Unknown	78,711,126	11.72	0	0	78,711,126	11.72
Total	287,263,851	42.77	10,766,642	1.60	288,599,322	42.97
Type	Copy number		Total length(bp)		% of genome	
miRNA	1,066		117,207		0.017451	
tRNA	4,963		367,482		0.054714	
rRNA	rRNA	3,379		421,316		0.062729
	18S	558		130,190		0.019384
	28S	703		168,303		0.025058
	5.8S	86		7,311		0.001089
	5S	2,032		115,512		0.017198
snRNA	snRNA	1,088		142,445		0.021208
	CD-box	70		10,703		0.001594
	HACA-box	12		2,126		0.000317
	splicing	996		127,438		0.018974
	scaRNA	4		661		0.000098
	Unknown	6		1,517		0.00022

Table 6. Classification of repetitive sequences and ncRNAs in the *A. japonicus* genome.

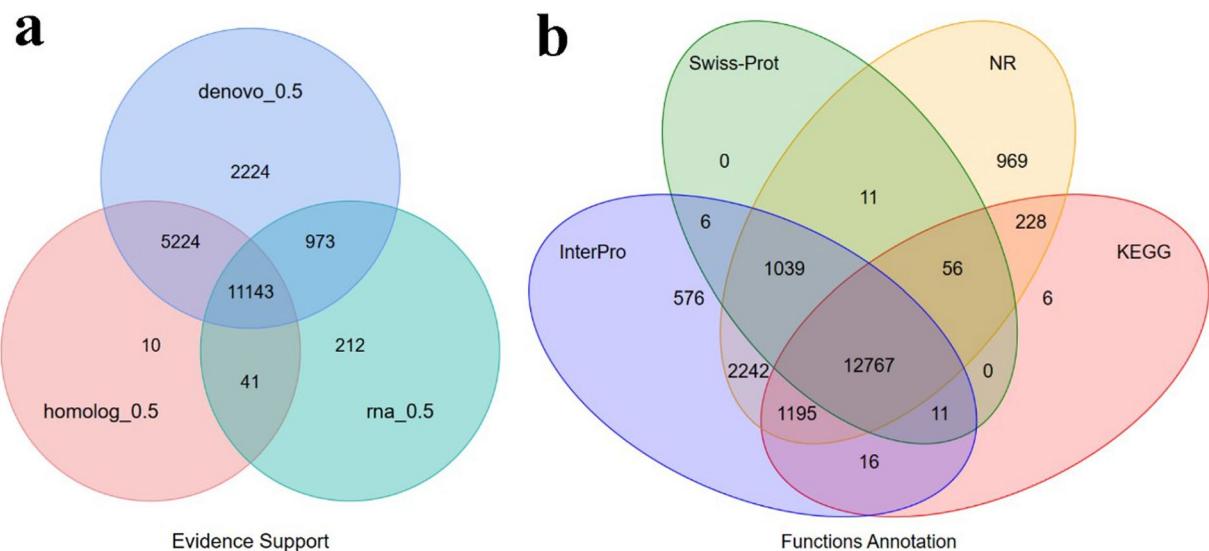

	Gene set	Number	Average transcript length(bp)	Average CDS length(bp)	Average exon length(bp)	Average intron length(bp)
<i>De novo</i>	Augustus	19,684	12,358.41	1,546.20	7.79	1,593.00
	GlimmerHMM	44,287	13,553.26	795.90	4.88	3,290.80
	SNAP	26,032	25,835.92	1,012.99	6.55	4,473.70
	Geneid	17,957	21,083.14	1,702.56	7.69	2,896.45
	Genscan	18,774	23,593.41	1,770.98	8.75	2,816.45
Homolog	Skow	11,377	6,900.30	6,900.30	4.78	1,566.05
	Ajap	19,702	7,316.82	7,316.82	5.86	1,277.02
	Hsap	7,184	8,555.73	8,555.73	5.82	1,549.13
	Apla	9,982	10,725.65	10,725.65	6.86	1,600.22
	Spur	11,249	9,002.69	9,002.69	6.22	1,486.67
	Schl	15,566	11,840.35	11,840.35	7.31	1,645.92
	Lvar	10,707	9,336.09	9,336.09	6.48	1,467.80
RNAseq	Drer	7,374	8,030.81	8,030.81	5.49	1,547.84
	PASA	18,773	17,353.65	17,353.65	7.13	2,615.21
	Transcripts	27,221	33,433.24	33,433.24	8.85	3,775.72
	EVM	19,961	14,204.95	14,204.95	7.96	1,817.50
	Pasa-update*	19,850	14,577.36	14,577.36	8.05	1,844.83
	Final set*	19,827	14,590.03	14,590.03	8.06	1,844.91
	Final set update*	19,828	14,589.57	14,589.57	8.06	1,844.92

Table 7. Statistical analyses of the gene structure annotation of the *A. japonicus* genome.

Protein-coding gene prediction and annotation. Gene structures were predicted using three basic strategies: *de novo*, homology-based, and transcriptome sequencing-based prediction. Based on the genome sequence, we used Augustus (v3.2.3)⁴⁶, GlimmerHMM (v3.0.4)⁴⁷, SNAP (v2013.11.29)⁴⁸, Geneid (v1.4)⁴⁹ and Genscan (v1.0)⁵⁰ for ab initio gene prediction. For homology-based gene prediction, the protein sequences of *L. variegatus*⁵¹, *S. purpuratus*⁵², *A. planci*⁵³, *H. sapiens*⁵⁴, *D. rerio*⁵⁵, *S. chloronotus*⁵⁶ and *S. kowalevskii*⁵⁷ were downloaded from the National Center for Biotechnology Information (NCBI). Blast (v2.2.26)⁴³ and Genewise (v2.4.1)⁵⁸ were used to align the protein sequences of *A. japonicus* to the seven other species for homology-based gene prediction. A total of 10,707, 11,249, 9,982, 7,184, 7,374, 15,566 and 11,377 genes were identified for *L. variegatus*, *S. purpuratus*, *A. planci*, *H. sapiens*, *D. rerio*, *S. chloronotus* and *S. kowalevskii*, respectively (Table 7). We also compared the gene, CDS, and exon and intron lengths to those of the seven other species (Fig. 4). For *A. japonicus*, the average lengths of the transcript, exons, and introns were 7,736.67, 193.65, and 1,286.06 bp, respectively.

Fig. 4 Comparisons of the genomic elements of closely related species.

Fig. 5 Gene prediction and functional annotation of the *A. japonicus* genome. **(a)** Venn diagram of the gene set prediction. **(b)** Venn diagram of functional annotation based on different databases.

The clean RNA-seq data underwent two types of assembly methods. For transcript assembly, we relied on the reference genome, while *de novo* assembly was carried out using Trinity (v2.11.0)⁵⁹. Open reading frames (ORFs) were detected using PASA (v2.1.0)⁶⁰. Based on the predictions, we used EvidenceModeler(v1.1.1)⁶¹ to integrate the gene sets predicted using different strategies into a non-redundant and complete gene set of 19,828 protein-coding genes (Table 7 & Fig. 5a).

To perform functional annotation of protein-coding genes, Blastp (v2.2.26)⁶² and Diamond (v0.8.22)⁶³ were used to align protein-coding genes to the SwissProt⁶⁴, NCBI Non-redundant protein(NR) (<ftp://ftp.ncbi.nih.gov/pub/nrdb/>), KEGG⁶⁵, InterPro⁶⁶, GO Ontology (GO)⁶⁷ and Pfam⁶⁸ protein databases using an E-value threshold of 1E-5. The protein domains and motifs were annotated using InterProScan (v5.52-86.0)⁶⁹. Finally, 19,122 (96.40%) of the 19828 predicted genes were annotated by at least one database (Table 8). Of the functional proteins, 12,767 (64.39%) were supported by all four databases (Fig. 5b).

Database	Number	Percent(%)
Total	19,828	—
Swissprot	13,890	70.10
Nr	18,507	93.30
KEGG	14,279	72.00
InterPro	17,852	90.00
GO	10,781	54.40
Pfam	13,332	67.20
Annotated	19,122	96.40
Unannotated	706	3.60

Table 8. Statistical analysis of the functional gene annotations of the *A. japonicus* genome.

Data Records

The genomic Illumina sequencing data were deposited in the SRA at NCBI SRR22523578⁷⁰.

The genomic PacBio sequencing data were deposited in the SRA at NCBI SRR22799261⁷¹, SRR23640106⁷²-SRR23640107⁷³.

The transcriptomic sequencing data were deposited in the SRA at NCBI SRR17056084⁷⁴.

The Hi-C sequencing data were deposited in the SRA at NCBI SRR23362389- SRR23362392⁷⁵⁻⁷⁸.

The final chromosome assembly and genome annotation files are available in Figshare⁷⁹.

Technical Validation

Evaluation of the genome assembly and annotation. We evaluated the genome assembly quality through the following measures: (i) The BUSCO (V4.1.2)⁸⁰ evaluation was performed using a single-copy orthologous gene library, combined with software tools such as tblastn, augustus, and hmmer, to assess the assembled genome. The result showed that 97.2% of gene orthologs were detected in *A. japonicus*. Among them, 96.7% achieved complete scores, while 0.5% obtained fragment scores. This indicates a relatively comprehensive assembly outcome (Supplementary fig. 1). (ii) Employing the Core Eukaryotic Genes Mapping Approach (CEGMA) (v2.5)⁸¹, we identified 458 core eukaryotic genes, including 248 highly-conserved core genes used to assess genome and annotation completeness (Supplementary table 1). By aligning *A. japonicus* genes to these 248 core genes, we observed homologous genes in the *A. japonicus* gene sets for 228 core genes, accounting for 91.94% of the total. These findings further support the relatively complete assembly results. (iii) By aligning Illumina sequencing reads to the nuclear genome using BWA (v0.7.8)⁸², we determined a read mapping rate of 96.86% and a coverage rate of 99.83%, indicating high mapping efficiency and comprehensive coverage. (iv) The consensus quality value (QV) of genomes representing per-base consensus accuracy was estimated by Merqury⁸³, and the QV of the *A. japonicus* genome exceeded 45 (48.86), which indicated the high accuracy of the genome assembly. Thus, all of the above results indicated that we obtained the high-quality genome of *A. japonicus*.

Code availability

No custom scripts or code were used.

Received: 8 March 2023; Accepted: 5 July 2023;

Published online: 13 July 2023

References

- Li, Y. *et al.* Sea cucumber genome provides insights into saponin biosynthesis and aestivation regulation. *Cell Discovery*. **4**, 29 (2018).
- Topper, T. P., Guo, J., Clausen, S., Skovsted, C. B. & Zhang, Z. A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria. *Nature Communications*. **10**, 1366 (2019).
- Han, Q., Keesing, J. K. & Liu, D. A review of sea cucumber aquaculture, ranching, and stock enhancement in China. *Reviews in Fisheries Science & Aquaculture*. **24**, 326–341 (2016).
- Salininho, N. *et al.* Anticancer and anticholesterol attributes of sea cucumbers: An opinion in terms of functional food applications. *Frontiers in Nutrition*. **9** (2022).
- Bordbar, S., Anwar, F. & Saari, N. High-Value Components and Bioactives from Sea Cucumbers for Functional Foods-A Review. *Marine Drugs*. **9**, 1761–1805 (2011).
- Kinch, J., Purcell, S., Uthicke, S. & Friedman, K. Population status, fisheries and trade of sea cucumbers in the Western Central Pacific. *Sea cucumbers. A global review of fisheries and trade. FAO Fisheries and Aquaculture Technical Paper*. **516**, 7–55 (2008).
- Chen, J., Lv, Z. & Guo, M. Research advancement of *Apostichopus japonicus* from 2000 to 2021. *Frontiers in Marine Science*. **9** (2022).
- Dong, Y., Dong, S. & Ji, T. Effect of different thermal regimes on growth and physiological performance of the sea cucumber *Apostichopus japonicus* Selenka. *Aquaculture*. **275**, 329–334 (2008).
- Yang, H. *et al.* Effects of body size and water temperature on food consumption and growth in the sea cucumber *Apostichopus japonicus* (Selenka) with special reference to aestivation. *Aquaculture Research*. **36**, 1085–1092 (2005).
- Yali, L. *et al.* Two adaptor molecules of MyD88 and TRAF6 in *Apostichopus japonicus* Toll signaling cascade: molecular cloning and expression analysis. *Developmental & Comparative Immunology*. (2013).
- Zhang, P. *et al.* iTRAQ-Based Proteomics Reveals Novel Members Involved in Pathogen Challenge in Sea Cucumber *Apostichopus japonicus*. *PLoS ONE*. **9**, e100492 (2014).
- Wang, Y., Tian, M., Chang, Y., Xue, C. & Li, Z. Investigation of structural proteins in sea cucumber (*Apostichopus japonicus*) body wall. *Scientific reports*. **10**, 1–12 (2020).

13. Li, X. *et al.* Identification and expression characterization of WntA during intestinal regeneration in the sea cucumber Apostichopus japonicus. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology*. **210**, 55–63 (2017).
14. Sun, L. *et al.* Metabolic responses to intestine regeneration in sea cucumbers Apostichopus japonicus. *Comparative Biochemistry and Physiology Part D: Genomics and Proteomics*. **22**, 32–38 (2017).
15. Sun, L. *et al.* Large Scale Gene Expression Profiling during Intestine and Body Wall Regeneration in the Sea Cucumber Apostichopus japonicus. *Comparative Biochemistry and Physiology Part D: Genomics and Proteomics*, 195–205 (2011).
16. Huo, D., Su, F., Yang, H. & Sun, L. Exosomal microRNAs regulate the heat stress response in sea cucumber Apostichopus japonicus. *Ecotoxicology and Environmental Safety*. **249**, 114419 (2023).
17. Mu, C. *et al.* Long Non-Coding RNAs (lncRNAs) of Sea Cucumber: Large-Scale Prediction, Expression Profiling, Non-Coding Network Construction, and lncRNA-microRNA-Gene Interaction Analysis of lncRNAs in Apostichopus japonicus and Holothuria glaberrima During LPS Challenge and Radial Organ Complex Regeneration. *Marine Biotechnology*. 1–15 (2016).
18. Sun, L. *et al.* iTRAQ reveals proteomic changes during intestine regeneration in the sea cucumber Apostichopus japonicus. *Comparative Biochemistry and Physiology Part D: Genomics and Proteomics*. **22**, 39–49 (2017).
19. Yang, Y., Zheng, Y., Sun, L. & Chen, M. Genome-Wide DNA Methylation Signatures of Sea Cucumber Apostichopus japonicus during Environmental Induced Aestivation. *Genes*. **11**, 1020 (2020).
20. Cui, W. *et al.* Construction of a High-Density Genetic Linkage Map for the Mapping of QTL Associated with Growth-Related Traits in Sea Cucumber (Apostichopus japonicus). *Biology*. **11**, 50 (2022).
21. Tian, M. *et al.* Construction of a High-Density Genetic Map and Quantitative Trait Locus Mapping in the Sea Cucumber Apostichopus japonicus. *Scientific reports*. **5** (2015).
22. Zhang, X. *et al.* The sea cucumber genome provides insights into morphological evolution and visceral regeneration. *PLOS Biology*. **15**, e2003790 (2017).
23. Wang, Y. *et al.* Identification of sex determination locus in sea cucumber Apostichopus japonicus using genome-wide association study. *BMC Genomics*. **23**, 391 (2022).
24. Yuan, J. *et al.* Recent advances in crustacean genomics and their potential application in aquaculture. *Reviews in Aquaculture* (2023).
25. Wallace, J., Rodgers-Melnick, E. & Buckler, E. On the Road to Breeding 4.0: Unraveling the Good, the Bad, and the Boring of Crop Quantitative Genomics. *Annual Review of Genetics*. **52** (2018).
26. Chen, B., Feder, M. E. & Kang, L. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. *Molecular ecology*. **27**, 3040–3054 (2018).
27. Cheng, H. Y., Concepcion, G. T., Feng, X. W., Zhang, H. W. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. *Nature Methods*. **18**, 1–6 (2021).
28. Belton, J.-M. *et al.* Hi-C: A comprehensive technique to capture the conformation of genomes. *Methods (San Diego, Calif.)*. **58** (2012).
29. van Berkum, N. L. *et al.* Hi-C: a method to study the three-dimensional architecture of genomes. *J Vis Exp.* (2010).
30. Rao, S. S. *et al.* A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. *Cell*. **159**, 1665–1680 (2014).
31. Wingett, S. *et al.* HiCUP: pipeline for mapping and processing Hi-C data. *F1000Res*. **4**, 1310 (2015).
32. Zhang, X., Zhang, S., Zhao, Q., Ming, R. & Tang, H. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. *Nat Plants*. **5**, 833–845 (2019).
33. Zhang, J. *et al.* Allele-defined genome of the autopolyploid sugarcane *Saccharum spontaneum* L. *Nat Genet*. **50**, 1565–1573 (2018).
34. Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. *Bioinformatics*. **21**(Suppl 1), i351–i358 (2005).
35. Jurka, J. *et al.* Repbase Update, a database of eukaryotic repetitive elements. *Cytogenet Genome Res*. **110**, 462–467 (2005).
36. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. *Curr Protoc Bioinformatics*. Chapter 4, 4.10.11–4.10.14 (2009).
37. Edgar, R. C. & Myers, E. W. PILER: identification and classification of genomic repeats. *Bioinformatics*. **21**(Suppl 1), i152–i158 (2005).
38. Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. *Nucleic Acids Research*. **35**, W265–W268 (2007).
39. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic Acids Res*. **27**, 573–580 (1999).
40. Hubley, R. *GitHub repository* <https://github.com/rmhubley/RepeatMasker/blob/master/util/createRepeatLandscape.pl> (2023).
41. Rosen, J. *GitHub repository* <https://github.com/rmhubley/RepeatMasker/blob/master/util/calcDivergenceFromAlign.pl> (2020).
42. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res*. **25**, 955–964 (1997).
43. Mount, D. W. Using the Basic Local Alignment Search Tool (BLAST). *CSH Protoc.* **2007**, pdb.top17 (2007).
44. Griffiths-Jones, S. *et al.* Rfam: annotating non-coding RNAs in complete genomes. *Nucleic Acids Res*. **33**, D121–124 (2005).
45. Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. *Bioinformatics*. **25**, 1335–1337 (2009).
46. Stanke, M. *et al.* AUGUSTUS: ab initio prediction of alternative transcripts. *Nucleic Acids Res*. **34**, W435–439 (2006).
47. Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. *Bioinformatics*. **20**, 2878–2879 (2004).
48. Korf, I. Gene finding in novel genomes. *BMC Bioinformatics*. **5**, 59 (2004).
49. Blanco, E., Parra, G. & Guigo, R. Using geneid to identify genes. *Curr Protoc Bioinformatics*. Chapter 4, Unit 4.3 (2007).
50. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. *J Mol Biol*. **268**, 78–94 (1997).
51. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR1791184> (2015).
52. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR10002625> (2019).
53. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:DRR248857> (2022).
54. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR22815403> (2022).
55. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:ERR9709336> (2022).
56. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR8499555> (2020).
57. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR9408421> (2020).
58. Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. *Genome Res*. **14**, 988–995 (2004).
59. Grabherr, M. G. *et al.* Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat Biotechnol*. **29**, 644–652 (2011).
60. Haas, B. J. *et al.* Improving the *Arabidopsis* genome annotation using maximal transcript alignment assemblies. *Nucleic Acids Res*. **31**, 5654–5666 (2003).
61. Haas, B. J. *et al.* Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. *Genome Biol*. **9**, R7 (2008).
62. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J Mol Biol*. **215**, 403–410 (1990).
63. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. *Nat Methods*. **12**, 59–60 (2015).
64. Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. *Nucleic Acids Res*. **28**, 45–48 (2000).
65. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. *Nucleic Acids Res*. **44**, D457–462 (2016).

66. Finn, R. D. *et al.* InterPro in 2017—beyond protein family and domain annotations. *Nucleic Acids Res.* **45**, D190–d199 (2017).
67. Ashburner, M. *et al.* Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet.* **25**, 25–29 (2000).
68. Finn, R. D. *et al.* Pfam: the protein families database. *Nucleic Acids Res.* **42**, D222–230 (2014).
69. Mulder, N. & Apweiler, R. InterPro and InterProScan: tools for protein sequence classification and comparison. *Methods Mol Biol.* **396**, 59–70 (2007).
70. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR22523578> (2023).
71. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR22799261> (2023).
72. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR23640106> (2023).
73. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR23640107> (2023).
74. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR17056084> (2021).
75. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR23362389> (2023).
76. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR23362390> (2023).
77. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR23362391> (2023).
78. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR23362392> (2023).
79. Sun, L. Chromosome-level genome assembly of the sea cucumber (*Apostichopus japonicus*). *figshare* <https://doi.org/10.6084/m9.figshare.22140020> (2023).
80. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics*. **31**, 3210–3212 (2015).
81. Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. *Bioinformatics*. **23**, 1061–1067 (2007).
82. Li, H. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. *Bioinformatics (Oxford, England)*. **25**, 1754–1760 (2009).
83. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. *Genome Biology*. **21**, 245 (2020).

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant numbers No. 42076093, 42276143), and Taishan Scholars Program.

Author contributions

L.S. and H.Y. conceived the research project. F.S. and W.C. collected the samples. L.S. and C.J. performed the analyses. L.S., C.J., F.S., W.C. and H.Y. wrote and revised the manuscript. Correspondence and requests for materials should be addressed to L.S. or H.Y.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41597-023-02368-9>.

Correspondence and requests for materials should be addressed to L.S. or H.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit <http://creativecommons.org/licenses/by/4.0/>.

© The Author(s) 2023