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Annotated Pap cell images and 
smear slices for cell classification
David Kupas   1 ✉, Andras Hajdu1, Ilona Kovacs2, Zoltan Hargitai2, Zita Szombathy2  
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Machine learning-based systems have become instrumental in augmenting global efforts to combat 
cervical cancer. A burgeoning area of research focuses on leveraging artificial intelligence to enhance the 
cervical screening process, primarily through the exhaustive examination of Pap smears, traditionally 
reliant on the meticulous and labor-intensive analysis conducted by specialized experts. Despite the 
existence of some comprehensive and readily accessible datasets, the field is presently constrained 
by the limited volume of publicly available images and smears. As a remedy, our work unveils APACC 
(Annotated PAp cell images and smear slices for Cell Classification), a comprehensive dataset designed 
to bridge this gap. The APACC dataset features a remarkable array of images crucial for advancing 
research in this field. It comprises 103,675 annotated cell images, carefully extracted from 107 whole 
smears, which are further divided into 21,371 sub-regions for a more refined analysis. This dataset 
includes a vast number of cell images from conventional Pap smears and their specific locations on each 
smear, offering a valuable resource for in-depth investigation and study.

Background & Summary
Cervical cancer remains the most common type of cancer among women to date. According to Cohen et al.1, 
half a million women are diagnosed with cervical cancer in every year, and more than 300,000 cases are fatal. 
Although the use of an increasingly advanced version of Pap smear screening can reduce severe outcomes in 
many cases2, the difficulty of accessing and performing the diagnostic test, especially in less economically devel-
oped countries, makes the problem even more significant3. The main problem resides in the expensive nature 
of the conventional procedure, combined with it being highly labor-intensive, and requiring multiple expert 
specialists to conduct efficiently while also assuring the highest standards of quality. To decrease the costs of the 
examination and quality assurance, and ultimately reduce fatal outcomes, multiple different methods have been 
developed, where AI-based solutions have been introduced in addition to traditional methods4.

Although public datasets are becoming more and more accessible, there are cases, where machine 
learning-based systems are trained using a private dataset5–7. This is perhaps because producing an annotated 
dataset for training a reliable system is an extremely time-consuming and expensive process, as it requires the 
collaboration of many highly skilled experts, often over up to several years. In cases where it is not possible to 
produce a private dataset, researchers are forced to rely on publicly available ones. In various instances, this 
can cause difficulties, as the currently available datasets are highly limited, especially in terms of the number of 
annotated cell images extracted from smear slices. In the related literature, we could locate three different public 
datasets, which are the Herlev8, SIPaKMeD9, and CRIC Cervix10.

The Herlev dataset is the oldest of the three, released in 2005 to aid the development of further classifi-
cation systems. Unfortunately, the dataset is very small in number, with a total of 917 cell images. The cells 
were classified into seven classes: Squamous cell carcinoma in situ intermediate (SCCIS), Severe squamous 
non-keratinizing dysplasia (SSNKD), Moderate squamous non-keratinizing dysplasia (MSNKD), Mild squa-
mous non-keratinizing dysplasia (MiSNKD), Columnar epithelial (CE), Intermediate squamous epithelial (ISE), 
and Superficial squamous epithelial (SQE). The images were annotated by two cyto-technicians, as well as a 
cytopathologist in difficult cases. When there was no consensus among the experts, the sample was discarded. 
There is no information on how many different smears the cell images were obtained from in total. One positive 
aspect of the dataset is that it contains more abnormal, rarely occurring cells than normal ones. The paper also 
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describes the performance of basic classification systems, which are now significantly outperformed by more 
modern systems, but these usually require more data to learn.

The newer SIPaKMeD dataset published in 2018 is significantly larger than Herlev. It contains a total of 
4,049 cell images extracted from 966 smear slices. The exact number of whole smears from which the data 
was extracted is not provided. The cell images were classified by expert cytopathologists into the following 
five classes: Parabasal (PARA), Superficial-intermediate (SI), Dyskeratotic (DYSK), Koilocytotic (KOIL), and 
Metaplastic (META). The dataset has the advantage that the sample distribution among the classes is almost 
balanced, so it can be easily trained by machine learning-based models.

The CRIC Cervix dataset is the latest and most advanced one currently available. It contains a total of 11,534 
different cell images, which have been classified into six classes according to the Bethesda System nomencla-
ture11: negative for intraepithelial lesion or malignancy (NILM), atypical squamous cells of undetermined sig-
nificance that are possibly non-neoplastic (ASC-US), low-grade squamous cell carcinoma (SCC) intraepithelial 
lesion (LSIL), atypical squamous cells that cannot exclude a high-grade lesion (ASC-H), high-grade squamous 
intraepithelial lesion (HSIL), and squamous cell carcinoma (SCC). The annotation was performed by three 
cytopathologists. The dataset has the advantage of being interactively accessible via a web application and can be 
used to retrieve individual cell images, smear slices, and cell locations. The authors point out that in several cases 
the images in the previously created public datasets are almost too “clean”, which can indicate that a rigorous 
pre-filtering of the images was probably performed before publication. This can be a disadvantage when devel-
oping an automated system if the same type and level of pre-filtering is not feasible.

In this paper, we present a new public dataset, which was gathered in the framework of a research and devel-
opment project in collaboration among experts from the Department of Pathology of the Clinical Center, and 
the Faculty of Informatics of the University of Debrecen. The APACC dataset12 contains a total of 103,675 cell 
images extracted from 107 whole smears (from the same number of patients), that were divided into 21,371 
smaller (2,000 × 2,000) smear slices. During the extraction of the cell images, there was no pre-filtering involved. 
The cell images were segmented automatically using a deep learning-based system; for more details see the 
Methods section. The extracted cells were divided equally among three cytopathologists on a smear basis, fol-
lowed by a random shuffling. There was no overlap regarding the annotation of the cell images between the med-
ical experts. The cytopathologists annotated each cell individually, however, the more difficult cases, where the 
single expert could not indubitably identify the appropriate class, were separated for a second assessment. These 
cases were then discussed during a counsel among the three experts, where they reached a consensus about the 
final annotation of these images.

A numerical comparison between the currently available public datasets and our dataset is presented in 
Table 1. The APACC dataset12 is the largest one, with 103,675 cell images in total. It was composed simultane-
ously with the development of an automatic screening system, so the main goal was to create the most suita-
ble dataset for the development of such machine learning-based solutions. The most noteworthy advantage of 
APACC over the currently available datasets is the large amount of images. Furthermore, the dataset is split into 
train and test subsets, which enables a uniform evaluation for different approaches. It is also worth mentioning 
that the images in the dataset were not manually selected based on their ease of processing. What the system 
automatically extracted was annotated in the same form as it originally appeared in the smear. In our opinion, 
the APACC dataset12 could serve as a basis for many new research projects and could also help in the evaluation 
of existing systems, possibly as a new benchmark dataset that could be widely applied.

Methods
The research conducted at the University of Debrecen, Debrecen, Hungary, received approval from the Scientific 
and Research Ethics Committee of the Health Sciences Council of Hungary, referred to later as IRB, under 
protocol number OGYÉI/65989/2020. The data collected from anonymous samples preclude the identification 
of patients. Consequently, participants were not obligated to provide consent for data sharing. The IRB has 
waived and delegated the authority to publish and approve this work to the project leaders, namely Prof. Dr. 
Andras Hajdu and Dr. Ilona Kovacs. In accordance with the agreements outlined above, publication approval 
necessitates the endorsement of at least one of these project leaders, adhering to the ethical standards set forth 
in the World Medical Association’s Helsinki Declaration and the University of Debrecen’s scientific application 
regulations for ethical requirements in scientific publications.

Traditional Pap smear procedures were executed by extracting cells from the cervix’s squamocolumnar junc-
tion, employing specialized apparatuses such as the Cervex-Brush or Cyto-Brush. Following the extraction, 
these cellular specimens were methodically allocated onto microscopic slides and instantaneously preserved 
using a 95% ethyl alcohol medium or an alternative spray fixative. To enable distinctive cytological scrutiny, 
each specimen was subjected to a staining regimen utilizing the Papanicolaou stain, succeeded by an exhaustive 

Attribute Herlev SIPaKMeD CRIC Cervix APACC

Number of smears used — — — 107

Number of smear slices — 966 400 21,371

Number of cell images 917 4,049 11,534 103,675

Number of classes 7 5 6 4

Annotated by 2 cyto-technicians (+1 doctor) expert cytopathologists 3 cytopathologists 3 cytopathologists

Table 1.  Comparison of the publicly available datasets with the proposed APACC one.
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assessment by expert cytologists, achieving an annotation of the cell images performed individually without 
overlaps between three cytopathologists, employing the fine classifications articulated in the Bethesda 2014 
framework.

Negative as well as abnormal smears were used in compiling the dataset. In the case of negative samples, only 
interpretability was taken into account during the selection, meaning that the technically unsuitable ones were 
not utilized. Following the analysis of abnormal smears, a positive histological examination was a prerequisite 
for selection: CIN2 or more severe cervical intraepithelial neoplasia.

Following the clinical extraction process and the selection of smears, the dataset is built by following a 5-step 
process consisting of the digitization of the smears, the slicing of them, segmentation of cell groups, detailed cell 
image extraction, and finally the manual annotation of the cells. This process is also illustrated in Fig. 1.

Smear Digitization.  The smears are scanned using a 3DHistech Pannoramic 1000 scanner with an Adimec 
Q-12A-180Fc brightfield camera. The scanner creates images with three different focus setups (using 3 microm-
eters step between them), then selects the sharpest layer from each focus level for each image field and combines 
them into a single layer13. A 20x microscope objective is used for scanning, resulting in a digitized image with 
about 100,000 × 220,000 pixels as shown in Fig. 1(a). These images are compressed and saved in a special MRXS 
format including multiple resolution levels. To find specific regions of interest, an area to locate cells is identified 
at the lowest resolution level using intensity values. This setup allows a detailed examination of cells, including 
their nuclear chromatin distribution. It ensures that different patterns are visible in the digital images, and cell 
groupings can be easily identified.

Smear Splitting.  After the digitization of the smear, it is necessary to split the digitized smears to achieve 
efficient data processing. Since the overall size of a smear is exceptionally large, it is divided into smaller slices of 
2,000 × 2,000 pixels as seen in Fig. 1(b). The automatic splitting of the smears is done by first extracting the FOV 
from the lowest resolution level of the image using the intensity values, followed by the decomposition process 
to achieve non-overlapping slices. These procedures, and the total magnification level of 200x (combination of 
the 20x magnification lens and the 10x eyepiece) allow the examination of individual cells as well as cell groups 
with appropriate detail. The resulting smear slices are sufficiently small to be processed with machine learning 
algorithms and comfortably fit into GPU memory.

Segmentation.  The extracted smear slices are processed using a neural network-based algorithm, which can 
segment all cell regions in the slices. Our proposed method uses the fully convolutional network (FCN) ensem-
ble presented in an earlier paper14 to perform the segmentation. The essence of the method is to combine the 
results computed by different FCNs together with the original input images, which results in better performance 
compared to other state-of-the-art solutions. The goal with the application of this system is to create a binary 
mask (see Fig. 1(c)) for each 2,000 × 2,000 smear slice, where white pixels represent cell regions and black pixels 
represent the background ones.

Cell Image Extraction.  Using a combination of the computed binary masks and original input images, 
an algorithm capable of extracting individual cells is developed; for some outputs see Fig. 1(d). The cell extrac-
tion starts by reading the respective binary mask (slice_mask) and removing every large connected component 
from the image based on a previously defined threshold (remove_large_conn_comp). Next, multiple erosions 
are performed on the remaining regions with the goal to maximise the number of individual cell counts on 
the images (perform_erosion). For all individual components the appropriate region properties are calculated 
(calc_individual_region_props). Based on the area and the roundness of the region, cell candidates are selected 

Fig. 1  The whole data extraction process, where (a) is the smear to be digitized, (b) represents the splitting of 
the whole smear into smaller sections, (c) shows a single split and the resulting binary mask, (d) depicts example 
individual cell images extracted using the segmentation mask, and (e) illustrates the annotation process done by 
medical experts.
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(is_cell_candidate). In case of a candidate, the region is located on the original smear slice (smear_slice), then pad-
ded in each direction (pad_region), and finally exported as a cell image (save_image). This process is illustrated in 
Fig. 2. Using this method, smaller images containing potential cell images are extracted efficiently with the exact 
size depending on the particular cell.

Annotation.  The last step was the annotation, where the cytopathologists marked the cells/cell groups 
extracted from the provided digitized sample. A simple IT solution was implemented that is capable of loading 
the image files containing the cells to be annotated directly from a network drive, enabling the examination pro-
cess to be done efficiently. The result images can contain either individual cells or cell conglomerates, especially 
in cases where there is an overlap between the cells. The annotation process involves carefully inspecting the 
automatically loaded images to determine if the cells and their surroundings are in a healthy state, exhibiting signs 
of abnormalities, or if the image does not contain interpretable cells. In some cases, the image can show a mix of 
both healthy and unhealthy cells. By following this procedure, all extracted images are classified into four distinct 
categories, as illustrated in Fig. 1(e).

Once the annotation is complete, the result is also saved to the network drive, from where it can be used to 
build the training database. Using this process, 103,675 images have been annotated by cytopathologists for image 
recognition algorithms. Thus, the experts performed the annotation of the extracted cells/cell groups, classifying 
them as healthy (normal), unhealthy (abnormal), rubbish (not valid), and bothcells (both healthy and unhealthy 
cells are present). To give an impression of these classes and the categories they represent in the Bethesda system, 
we list them as follows. The healthy class represents cells from the Negative for intraepithelial lesion or malig-
nancy (NILM) category. The unhealthy class contains cells from the Epithelial cell abnormality Bethesda category, 
where there was no additional sub-division into the ASC, LSIL, and HSIL categories, the class containing cells 
from each of these. The rubbish class represents the Unsatisfactory for evaluation Bethesda category. The both-
cells class also represents the Epithelial cell abnormality Bethesda category, since it contains malignant cells, how-
ever, these images also contain more healthy cells. Examples of images from the four classes are depicted in Fig. 3.

During the manual annotation process, a randomly selected subset of an equal number of samples was anno-
tated by each cytopathologist. In case of uncertainty, they consulted with each other, and the consensus opinion 
was the result of the evaluation.

Fig. 2  The steps of the cell extraction procedure.

Fig. 3  Example cell images, where the image is labeled as (a) healthy, (b) unhealthy, (c) bothcells, and (d) 
rubbish.
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Data Records
This section gives a detailed description of the APACC dataset12 that has been deposited to the Open Science 
Framework (OSF) platform. The sizes of its cell images vary, depending on the original sizes of the cells. 
However, the sizes of the cell images are relatively small including only the related cell/cell groups. Particular 
care has been taken to ensure that cell surroundings remain visible in the images, as this may affect the classifica-
tion of a cell into a certain class. The images contain all information of their origin in their names, thus a precise 
localization is available. The naming follows the format {smear id}_{smear slice location}_{cell number}_{cell 
location}_{date}.png. For example, the cell image named as 669-15_36000-74000_10_850-1300_2021-07-07.png 
is extracted from the smear having the id 669-15, the location of the smear slice is 36000-74000 representing a 
coordinate pair pointing to the left-top corner of the extracted area, the number of the cell is 10, the location of 
the cell on the particular smear slice is 850-1300, representing a coordinate pair pointing to the center of the cell 
image, and the date of extraction is 2021-07-07 (in a %Y-%m-%d format).

The total number of cell images is 103,675, which were extracted from 21,371 smear slices of 107 whole 
smears belonging to individual patients. In terms of classes, this means 34,721 healthy, 2,942 unhealthy, 62,074 
rubbish, and 3,884 bothcells images. The distribution of the classes among the smear slices is key information we 
use when considering splitting the dataset12 into training and testing subsets. 20 smears are selected for the test 
set such that the distribution of the classes for the two subsets coincides with the original as much as possible. 
The class distributions are also illustrated in Fig. 4. Details about the quantities of images used from each class in 
the respective subsets are presented in Table 2, where the number of smears, smear slices, and cell images can be 
viewed, following the train and test splits.

During the clinical evaluation of cells, the cellular environment is important. The extracted images include 
this environment based on the rules defined during annotation, but there is also the possibility for the precise 
localization of the cells. As such, we include further information about the original location of each cell on its 
corresponding 2,000 × 2,000 smear slice. For each smear slice, a text document is also provided, where one 
record represents a cell located on that particular smear slice. In each record, the class of the cell is mentioned 
followed by the horizontal and vertical coordinates of the center, the width, and the height of the cell, normalized 
to fall between 0 and 1. Using these data, one can decide to explore the localization of the different cell images in 
the smears. In addition to this, we select 34 whole slide images where the number of annotated cell regions are 
the highest, and we include these into the dataset as well.

The APACC dataset12 was made publicly available under the Creative Commons Attribution 4.0 International 
Public License on the Open Science Framework (OSF) platform. We provide an additional GitHub repository 
for ease of use. Please find additional details in the Usage Notes and Code Availability sections.

Technical Validation
In this section, we show an example of a real-world problem that can be solved using deep learning models that 
are currently relatively easy to obtain and apply in combination with the images in the APACC dataset12. In 
essence, we provide a direction for further research and a baseline sample performance value.

The dataset can be mainly used to solve the problem of cell classification in conventional Pap-smear 
images. There are many clinical challenges in the literature where the investigated problem can be solved by an 

Fig. 4  Class distributions regarding the training and test subsets.

Dataset Smear Smear slice healthy cells unhealthy cells rubbish cells bothcells

Train 87 17,387 28,895 2,366 50,371 3,448

Test 20 3,984 5,826 576 11,757 436

Total 107 21,371 34,721 2,942 62,074 3,884

Table 2.  Overview of the APACC dataset.
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automated system capable of classification15. However, in such a case, the basis of generally well-performing sys-
tems is usually a neural network16. We demonstrate the usefulness of the dataset in such cases by training several 
neural networks with different architectures in the same way and comparing their performance. This gives us an 
idea of which architecture might be the right choice for the problem in question, as well as a reasonably detailed 
overview of what performance we can expect in general when using such a system.

The classes presented previously are defined as the labels to be predicted by the models. That is, in the deep 
learning process, the ability to classify images of cells into healthy, unhealthy, rubbish, and bothcells is trained. 
First, 15% of the images in the training set are separated as a validation set, keeping the original distributions 
among the classes.

Simple applicability is a primary consideration in the choice of the architectures, as we aim to give a 
standard that can be a starting point for future research. Accordingly, the following architectures have been 
selected: DenseNet-12117, DenseNet-20117, EffNet-B318, EffNet-B518, EffNet-B618, NasNet-Large19, ResNet-5020, 
Inception-V321, and InceptionResNet-V222. In all cases, the input layer is set to be able to process images of 
size 224 × 224 × 3, and the cell images were symmetrically padded with white pixels to achieve this dimension. 
This is an important step, since using this method, we do not lose the original proportions of the cells, and 
avoid inserting extra dissimilarities between the cell images, since the original smear background is also white. 
Furthermore, at the end of the neural architectures, we add a GlobalAveragePooling2D layer, a fully connected 
layer of 512 neurons (with ReLU activation function), a Dropout layer with probability value 0.5, and an out-
put layer of 4 neurons (with Softmax activation function). Training is performed over 30 epochs using ADAM 
optimizer starting with a learning rate of 1e-3 and decreasing during training using the ReduceLROnPlateau 
tool based on the loss value obtained on the validation set with a patience parameter of 3 and a factor of 0.05. In 
addition, we also use an EarlyStopping callback function, which can stop learning earlier based on the validation 
set if the loss value does not decrease significantly for at least 6 epochs. The batch size values are set to the largest 
possible one considering the used hardware, ranging from 8 to 128 in the different models. To avoid overfitting, 
several augmentation techniques, including flipping, zooming, and rotation, are applied. These methods also 
adhere to the important requirement of maintaining the ratio between the nucleus and cytoplasm.

The individual models are evaluated on the test dataset. To measure the performance comprehensively, 
F1-Score weighted by the number of samples from different classes, Accuracy, and ROC/AUC metrics are cal-
culated. The precise results for each model are presented in Table 3. It can be observed that the variation in the 
performance among the individual models is not significant. Furthermore, it is noticeable that a high num-
ber of parameters does not significantly enhance the performance. The model achieving the best performance 
is EfficientNet-B3, which is relatively small based on the number of parameters, making it a promising base 
architecture.

It is important to point out that during the testing process, we observed that the network performance on the 
class with the lowest number of images is low compared to the overall performance. This might indicate that the 
main difficulty is the imbalanced nature of the dataset. Within the scope of this paper, we do not aim to solve 
this problem, but we suggest how to make the dataset more balanced. One example is the use of images of the 
class bothcells as unhealthy ones. Since these images include examples from both healthy and unhealthy classes, 
we can assume that the learning process will not be driven in the wrong direction, and in return, we eliminate 
the class with the smallest number of cells. Overall, we can claim that one of the main challenges in developing 
an automatic screening system capable of classifying given cell images into different classes is the imbalance in 
the dataset.

Usage Notes
The APACC dataset12 is made public under the Creative Commons Attribution 4.0 International Public License 
using the Open Science Framework (OSF) platform and is available at https://osf.io/fp2xe. A sample is available 
containing the first 100 images from every dataset and category. The full dataset is also available uploaded into 
three folders. One of them contains the cell images, split into training and test sets, and grouped by their classes. 
The second folder contains the smear slices, following the same training-test split, and containing also a text 
document for each smear slice, where one can find information about each annotated cell location. In addition, 
in the third folder, those 34 whole slide images are provided, that contain the most amount of annotated cells.

Along with the main dataset, we provide a collection of assisting source codes. Primarily, the code made 
available can help in reconstructing the cell locations on their original smear slice, using the provided text 

Model name Accuracy F1-Score ROC AUC Parameters

DenseNet-121 0.8144 0.8100 0.8865 7.6M

DenseNet-201 0.8158 0.8113 0.8835 20.2M

EfficientNet-B3 0.8228 0.8204 0.9009 12.0M

EfficientNet-B5 0.8190 0.8087 0.8925 30.0M

EfficientNet-B6 0.8215 0.8167 0.8884 43.0M

NasNet-Large 0.8087 0.7886 0.8404 89.0M

ResNet-50 0.8107 0.7994 0.8795 26.0M

Inception-V3 0.8155 0.8052 0.8816 24.0M

InceptionResNet-V2 0.8177 0.8093 0.8959 56.0M

Table 3.  Classification results for various models and metrics on the test dataset.
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documents. By using this software, annotated smear slices can be constructed, where each labeled cell on the 
slice is indicated by colored borders. The true class of each cell is indicated by color (healthy - green, rubbish - 
blue, unhealthy - red, and bothcells - purple) to make them easy to identify. In addition, the name of the class is 
also shown for each labeled area; an example image can be observed in Fig. 5.

Code availability
The source code is available at https://github.com/david-kupas/apacc-smear-cell-db and can be publicly accessed 
under the GNU General Public License v3.0. The exact details of the usage can also be accessed through the link 
provided, accompanied by example codes. The code was written in Python language using the NumPy, OpenCV, 
Pillow, Matplotlib, and Scikit-Image packages.
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