www.nature.com/scientificdata

scientific data

OPEN © Annual Impervious Surface Data
DATA DESCRIPTOR from 2001-2020 for West African
Countries: Ghana, Togo, Benin and
Nigeria
Andrews Korah@® ™ & Michael C. Wimberly

. Impervious surface data are increasingly important for research and planning. Despite the availability

. of global and local urban land cover maps, regional data are lacking in Africa. We generated annual 30m
. impervious cover data from 2001-2020 for Ghana, Togo, Benin, and Nigeria using the Landsat archive.

' We used random forest to predict impervious cover using 11 spectral indices and applied pixel-level

. temporal segmentation with the LandTrendr algorithm. Processing with LandTrendr improved the

* accuracy of the random forest predictions, with higher predicted-observed r? (0.81), and lower mean
error (—0.03), mean absolute error (5.73%), and root mean squared error (9.93%). We classified pixels

: >20% impervious as developed and < =20% impervious as undeveloped. This classification had 93%

© overall accuracy and similar producer’s (79%) and user’s (80%) accuracies for developed area. Our maps
. had higher accuracy and captured more developed areas than comparable global datasets. This is the

. first regionally calibrated 30 m resolution impervious dataset in West Africa, which can support research
. ondrivers and impacts of urban expansion and planning for future growth.

. Background & Summary

: Globally, the number of people living in cities is increasing rapidly, with most of this growth occurring in urban-
. izing Asia and Africa'~>. Future projections are that Africa alone will add 930 million urban residents by 2050*.
. 'The growth of urban populations results in the expansion of impervious surfaces, including building roofs,
: glass, concrete, asphalt, and paved roads. These increases in developed areas have altered many of Earth’s surface
© processes, including energy balance, hydrological cycle, atmospheric circulation, and phenology®. These changes
. manifest through increased heat stress, urban fires, and floods combined with losses of cropland, natural habi-
. tats, and biodiversity®~'°. With increasing urbanization in low-income countries, urban impervious surface data
: isneeded to support governments, planners, and policymakers in managing the resulting impacts of impervious
. surface expansion. However, there is currently a lack of data on urban land cover change with 30 m or higher
. spatial resolution, broad-scale regional coverage, and consistent thematic content for Africa'l.

Satellite Earth observations are increasingly used to develop data products for monitoring and evaluating
. urban expansion at global, regional, and local scales over a range of temporal and spatial resolutions. Commonly
- used data sources include daytime optical imagery, nighttime lights, and synthetic aperture radar from missions
. such as MODIS, VIIRS, Landsat, and Sentinel 1 and 2'2-'7. Several global data products are available, includ-
. ing Global Impervious Surface Area'®, Global Human Settlement Layers'®?, Global Man-Made Impervious
. Surface?!, Global Human Built-up and Settlement Extent??, Multi-temporal Global Impervious Surfaces?,
. Global 30-m Impervious Surface Map**?, and the Global Artificial Impervious Area®. Although these global
urban change datasets are often used for assessments at continental, national, and landscape scales, their local
© accuracies can be highly variable and are usually unknown®. Most of them are only available for a few time
* points separated by periods of 5-10 years, and none fully encompasses the numerous small cities that are critical
. components of the urban system. There are also a variety of national and local level urban land cover data-
© sets throughout Africa, but differences in classification schemes and inconsistent processing methods hinder
© their usage across countries and cities'””. Many of the impacts of global change manifest at the regional level;
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Fig. 1 Study area countries and ecological zones. These ecological zones were generated by merging smaller
terrestrial ecoregions into larger ones based on proximity and similar biophysical characteristics.

therefore, planning and policy interventions need to respond at this scale’®. Thus, regionally optimized and con-
sistent urban cover data are needed to support large-scale research, regional planning, future projections, and
assessment of urban expansion impacts across multiple study areas.

Advances in machine learning and change detection algorithms create opportunities for improved regional
land use and land cover monitoring compared with traditional classifiers such as maximum likelihood, mini-
mum distance, and k-means**-*°. Newer machine learning techniques such as support vector machines, neu-
ral networks, and random forests are more robust and computationally efficient, resulting in higher accuracy
when used for land cover mapping®-3*. Additionally, time series algorithms applied at the individual pixel
level, including breaks for additive season and trend (BFAST)*, continuous change detection and classification
(CCDC)*, and Landsat-based detection of Trends and Recovery (LandTrendr)*-%, can improve land cover
change detection. BFAST and CCDC detect land cover change as deviations from long-term and seasonal trends
using harmonic regression models, whereas Land Trendr estimates change trajectories by fitting segmented lin-
ear regression models to annual data.

Open access to the Landsat archive combined with machine learning and time series algorithms through the
cloud-based Google Earth Engine (GEE) platform have revolutionized urban impervious surface cover mapping
over large areas?>*>%%, Studies in North America and Asia have leveraged the GEE cloud computing platform
to generate regional impervious cover datasets®>*7404!. However, there are currently no regionally calibrated
and publicly available historical impervious surface data for West Africa, which is one of the fastest urbanizing
regions in the world"'. A major reason is limited internet resources, including unstable and slow bandwidth that
limits the processing of thousands of images over large areas*>. Impervious surface data that reflect neighbor-
hood patterns and capture annual growth are particularly needed to support future projections and regional
assessments of urban change impacts on people and the environment.

We addressed this gap by developing an accurate and consistent 20-year time series of continuous impervi-
ous surface data from 2001-2020 at a 30 m grid cell size using all available Landsat images. These data covered
four heavily urbanized countries in West Africa: Ghana, Togo, Benin and Nigeria. In addition, we classified
developed areas based on an impervious surface threshold and generated a separate product of their change
over time. We carried out a comprehensive validation of both datasets to quantify their accuracies and compare
them with currently available global impervious surface datasets. Our data products have been made available
as TTFF images that can be used in standard software for geospatial data processing, and the code is available for
updating the datasets and refining and extending the approach to new areas.

Materials and Methods

Study area. The coverage is 1.3 million square kilometers across four West African countries, consisting
of Ghana, Togo, Benin, and Nigeria. These countries contain 73% of the 165 million urban population in West
Africa and are rapidly expanding their developed area, with an annual urban expansion rate of 4.70% in Nigeria,
4.46% in Ghana, 4.19% in Benin, and 3.89% in Togo from 2001-2020*-*>. Most (70%) of the cities in West Africa
are in these four countries, with 1231 in Nigeria, 209 in Ghana, 110 in Benin, and 53 in Togo. Within these coun-
tries, natural population increase, rural-urban migrations, reclassification of rural areas into urban centers, une-
ven distribution of resources, and ethnic and political conditions increase demand for housing and other urban
infrastructure and drive high rates of urban expansion*®¥.

Each country has several ecological zones with different climates, soil moisture, vegetation, and land cover
patterns (Fig. 1). The Western Sudanian Savannah (WSS) mainly consists of grasslands with short, dispersed trees
with 600 mm to 1000 mm precipitation annually, resulting in semi-arid conditions during the dry season. The
Guinea Forest Savannah (GFS) is a transitional zone with a mixture of dense tree cover and open grassland. This
zone mostly receives 1600 to 2000 mm per year. The Eastern Guinea Forest (EGF) and Nigerian Lowlands Forest
(NLF) receive more precipitation, ranging from 1500 mm to 2500 mm per year, and support dense tropical forests.
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Fig. 2 Technical workflow for generating the impervious cover dataset. The data at each stage is bounded in
blue, processing methods in red, validation in dashed red, and final outputs in black.
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Fig. 3 Availability of Landsat 7 and 8 images from 2001-2020. Each bar shows the number of images in each
year for Ghana in blue, Benin and Togo in orange and Nigeria in gray.

Technical framework. The workflow for generating the impervious cover dataset is shown in Fig. 2. Step
one involves processing Landsat imagery to remove clouds and cloud shadows and generating annual composites
of spectral indices from 2001-2020. Step two is training random forest models with impervious surface obser-
vations from very high-resolution images and using them to predict impervious cover with the Landsat imagery.
Step three is temporally segmenting the impervious cover time series for each pixel with LandTrendr. Step four
involves classifying the LandTrendr processed impervious cover into developed and undeveloped areas. The fol-
lowing sections describe in detail the major workflow steps.

Landsatdata. We used Landsat 7 and 8 Collection 2 level-2 surface reflectance science products from 2001~
2020. There was a total of 35065 images, including 7051 in Ghana, 6755 in Benin and Togo, and 21259 in Nigeria
(Fig. 3). There was a mean of 850 Landsat 7 images per year from 2001-2012, and the addition of Landsat 8
increased the mean to 3110 images per year since 2013 (Fig. 3). We masked all clouds and cloud shadows using
the pixel-quality layer with the C-function of the mask algorithm (CFMASK)*#.

Spectral indices and annual composites. Due to varying phenological and biophysical conditions
across ecological regions, we used a combination of built-up, vegetation, burned area, and soil-based indices.
Because the spectral properties of land surfaces vary geographically, we used diverse indices to minimize back-
ground noise and reduce errors. Previous comparisons of LandTrendr time series models found that using more
than eight explanatory variables in land cover predictions resulted in lower errors than models based on fewer
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Spectral Index Abbreviation Equation Source

Built-up area extraction index BAEI baei — —Red+03 51
Green + Swirl

Biophysical composition index BCI bei = JCBHTCW =2 - TCG 2

TCB + TCW = 24 TCG
Band ratio for built-up area index BRBA brba = SR?dl 53
WY
Bare soil index BSI bsi — (Red + Swirl) — (Nir + Blue) 59
" (Red + Swirl) + (Nir + Blue)

Combinational biophysical composition index | CBCI cbei = 1.5*mbsi — osavi + 0.5 4

Normalized built-up area index NBAI nbai — Swirz=Swirl) | Green 53
(Swir2 + Swirl) / Green

Normalized burned ratio index NBRI nbri = Nir— Swirl 60
Nir + Swirl

Normalized difference built-up index NDBI ndbi — Swirl = Nir 55
Swirl + Nir

Normalized difference vegetation index NDVI ndyi — Nir—Red 58
Nir + Red

Urban index Ul wid — Swir—Nir 56

Swir2 + Nir

Visible red-based built-up index VRBI vrbi — Red = Nir 57

Red + Nir

Table 1. Spectral indices used to model impervious cover across the four countries. Tasseled cap indices,
including brightness index (TCB), tasseled cap wetness index (TCW), tasseled cap greenness index (TCG),
were used to generate biophysical composition index (BCI). Modified bare soil index (MBSI) and optimized soil
adjusted vegetation index (OSAVI) were used to generate CBCI.

Spectral Eastern Guinea Forest/ | Guinea Forest | Western Sudan
Index Nigeria Lowlands Forest | Savannah Savannah
BAEI 15 10 10

BCI 10 10 10

BRBA 5 5 5

BSI 25 10 10

CBCI 15 5 5

NBAI 5 5 5

NBRI 15 40 15

NDBI 5 5 5

NDVI 55 85 75

Ul 10 5 5

VRBI 40 40 40

Table 2. Percentiles used to generate annual compositions by major ecological zones. Spectral index codes are
described in Table 1.

explanatory variables®. We computed 11 spectral indices (Table 1). They included 8 impervious surface indi-
ces: built-up area extraction index (BAEI)*!, biophysical composition index (BCI)*2, band ratio for built-up area
index (BRBA)*, combinational biophysical composition index (CBCI)**, CBCI), normalized built-up area index
(NBAI)*?, normalized difference built-up index (NDBI), urban index (UI)* and visible red based built-up index
(VRBI)*. We also included the normalized difference vegetation index (NDVI)®, the bare soil index (BSI)*, and
the normalized burn ratio index (NBRI)®,

These indices were computed for all cloud-free pixels in all available Landsat images. Then, annual temporal
metrics were generated for each index by summarizing across all cloud-free observations in a year®%2. These
metrics were based on percentiles ranging from 5 to 95 at 5% intervals. We manually selected the best percentile
for each spectral index by systematically varying the thresholds and visually comparing the resulting metrics with
high-resolution data for cities with known changes (Table 2). The spectral signature of impervious surfaces is rel-
atively stable, whereas the spectral characteristics of vegetation and soils vary seasonally with climate. Therefore,
annual composites of impervious surface indices were generated using low percentiles (mostly 5-15%) to identify
pixels where these indices remained high throughout the entire year. Conversely, higher percentiles were used for
NDVTI to distinguish areas where greenness remained low for most of the year. The percentiles were also varied
across ecoregions to account for geographic variation in the spectral characteristics of urban and non-urban areas.

Training and validation data. To ensure we had sufficient sample points in both urban and non-urban
areas, we created random sample points within two strata: inside the Africapolis city boundaries* and outside of
Africapolis city boundaries. We also used three country strata consisting of Ghana, Togo and Benin combined,
and Nigeria, and four ecological zone strata. We randomly selected 300 points for each combination of the three
strata, resulting in 600 points for each ecological zone within each country. In Ghana, we selected a total of 1800
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Fig. 4 Temporal distribution of training and validation plots. The black dots are the total number of plots in
each year. The Nigeria Lowlands Forest and Guinea Forest Savannah is NLF-GFS, and the Western Sudanian

Savannah is WSS.
Default Study

LandTrendr Parameters Par ters Par ters
maxSegments 6 6
spikeThreshold 0.9 0.75
vertexCountOvershoot 3 2
PreventOneYearRecovery TRUE TRUE
recoveryThreshold 0.25 0.01
pvalThreshold 0.05 0.05
bestModelProportion 0.75 0.5
minObservationsNeeded 6 6

Table 3. LandTrendr segmentation parameters to process random forest impervious surface cover.

points, consisting of 900 within cities and 900 outside cities across three ecological zones. Likewise, in Benin and
Togo, we selected a total of 1200 points, consisting of 600 within cities and 600 outside cities across two ecological
zones. In Nigeria, we also selected 1200 total points consisting of 600 within cities and 600 outside cities across the
Nigeria Lowlands Forest and Guinea Forest Savannah ecological zones. Because there were typically fewer years
of historical images in the Western Sudanian Savannah ecological zone in Nigeria, we selected 350 points in each
city strata, resulting in 700 points.

We generated a square of size 30 m for each sample location and overlaid a 5 x 5 grid of points. Each point
on the grid represented a land cover of 4%. We overlaid these plots on all available very high-resolution (VHR)
images in Google Earth Pro. There are geographical and temporal variations in the availability and quality of
VHR images in Google Earth Pro. We collected training and validation for all years and locations where data
were available and not obscured by clouds. We visually estimated the impervious cover as the number of points
in each gridded polygon that covered impervious surfaces such as buildings, glass, concrete, and asphalt. The
number of estimated points were multiplied by four to calculate the percent impervious cover for each plot. The
total number of interpreted plots was 46,790, including 25,153 in Nigeria, 12,277 in Ghana, and 9,360 in Benin
and Togo. We fitted the impervious surface models with 75% of the interpreted data and tested the accuracy
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Fig. 5 Continuous impervious surface cover and developed area classification for Kumasi and surrounding
smaller cities in the southern portion of Ghana. The top row shows the continuous data, and the bottom row
shows the classified data.

Temporal Coordinate
Data Spatial Extent | Resolution Spatial Resolution System Format | Data Type Pixel values
. Ghana, Togo, o o WGS 1984 8 Bit unsigned
Impervious Cover Benin, Nigeria Annual 0.00027° x 0.00027 (ESPG: 4326) TIFF integer 0-100
Ghana, Togo, o o WGS 1984 8 Bit unsigned | 0: Undeveloped
Developed Benin, Nigeria Annual 0.000277x 0.00027 (ESPG: 4326) TIFE integer 1: Developed

Table 4. Details of impervious cover and developed area data.

using the remaining 25% as an independent validation dataset. The training and validation plots were distrib-
uted across all four countries from 2001-2020 (Fig. 4).

Random forest regression. We used random forest regression to generate impervious cover using annual
composites of spectral indices as predictors and percent impervious cover estimates from VHR as training data.
Random forest is a machine learning algorithm that uses bootstrap sampling of the training data with random
subsets of predictors to generate tree-based models and aggregates the results to generate ensemble predictions®>.
This approach decreases correlations among the trees and improves accuracy of predictions. Using the 35,231 train-
ing plots, we extracted the spectral index values corresponding to each year and sampled location. To reduce com-
putational time, we trained four separate random forest models, including one in Ghana, one in Togo and Benin
together, and two in Nigeria (one for the Nigeria Lowlands Forest and Guinea Forest Savannah ecological zones
and one for the Western Sudanian Savannah ecological zone). We used the GEE smileRandom() function to fit each
model with 1000 trees, 0.65 bag fraction, 6 predictors per split, 7 minimum leaf population, and output mode set to
regression. These parameters were used to predict annual continuous impervious surface cover from 2001 to 2020.

LandTrendr temporal segmentation. We applied LandTrendr to the annual impervious cover predic-
tions from random forest to process the time series at individual pixel levels. We used the LandTrendr time series
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Fig. 6 Importance of spectral indices in random forest predictions using percent increase in mean squared
error (%InMSE). The % increase in mean squared error represents the increase in prediction errors (out-of-bag)
resulting from the permutation of a random predictor. Spectral index codes are described in Table 1.

Country Metric Random Forest | Random Forest + LandTrendr
Predicted-Observed r* 0.67 0.79
Mean Error 0.22 —0.30
Ghana
Mean Absolute Error 8.19 6.73
Root Mean Squared Error 13.40 11.03
Predicted-Observed r* 0.62 0.81
Mean Error 0.38 0.44
Togo and Benin
Mean Absolute Error 6.14 4.78
Root Mean Squared Error 10.89 8.01
Predicted-Observed r* 0.71 0.81
Mean Error 0.46 0.34
Nigeria: Nigeria Lowlands Forest and Guinea Forest Savannah
Mean Absolute Error 6.59 4.36
Root Mean Squared Error 12.17 8.05
Predicted-Observed r* 0.70 0.82
Mean Error 0.13 —0.47
Nigeria: Western Sudan Savannah
Mean Absolute Error 8.62 6.88
Root Mean Squared Error 14.53 11.65
Predicted-Observed r* 0.60 0.81
Mean Error 0.28 —0.03
All
Mean Absolute Error 7.81 5.73
Root Mean Squared Error 13.45 9.93

Table 5. Accuracy for Random Forest and LandTrendr fitted continuous impervious surface cover.

algorithm because it is less computationally demanding than CCDC and directly models annual change as a con-
tinuous variable, which was our desired output®. Although CCDC and BFAST offer the potential for monitoring
sub-annual timing of changes®***, previous studies of urban impervious surfaces show little to no variability
across seasons®%°, Thus, LandTrendr was better suited for our application because it uses annual composites,
reducing computation time and filling data gaps.

LandTrendr uses a temporal segmentation approach that fits linear regression models to annual values for
each pixel with breakpoints and segments representing change history**=*’. We used the fitted values from the
segmented regression models generated by LandTrendr as our final estimated values of percent impervious
cover. The reason for this step was to reduce noise in the random forest predictions of impervious cover and gen-
erate interpolated estimates for missing data points. Although the LandTrendr algorithm is designed to capture
rapid declines in vegetation indices resulting from ecological disturbance, we adapted it to model increases in
impervious cover resulting from urban expansion. We did this by reversing the numerical order of the imper-
vious cover values so that zero represented 100% cover and hundred represented 0% cover. To accomplish this
conversion, the random forest predictions of impervious cover were subtracted from 100, the LandTrendr algo-
rithm was applied to these transformed data, and the resulting fitted values were subtracted from 100 to return
them to their original order. We selected the best-fit parameters to run LandTrendr for our study area by con-
ducting a sensitivity analysis, starting with the default parameters and systematically adjusting them by visually
inspecting locations with known change histories (Table 3).
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Fig. 7 Associations between observed and predicted impervious surface cover estimates from Random Forest
(RF) and processed LandTrendr. The outliers are the individual points, the 25% percentile is the lower box edges,
the 75% percentile is the upper box edges, and the 50% percentile is the line separating the lower and upper boxes.

Developed area classification. We classified LandTrendr fitted continuous impervious cover into devel-
oped and undeveloped. Impervious surface cover pixels values greater than 20% were classified as developed,
and pixels less than or equal to 20% as undeveloped. We selected this threshold based on visual comparison
of different thresholds with very high-resolution imagery. We applied a no-loss rule, which states that pixels
remained developed even if the impervious surface cover for preceding years dropped below 20%. Similar rules
are commonly used in urban land cover analysis to reduce false changes since impervious surfaces are mostly
permanent®!. We have provided an example for the continuous and developed area classification for Kumasi,
Ghana, one of the cities in the study area with rapid urban expansion (Fig. 5).

Model validation. We used 11,559 independent observations to evaluate impervious surface cover predic-
tions from random forest and LandTrendr segmentation. We measured the association between observations
and predictions using the predicted-observed r2. We measured prediction bias with mean error and quantified
differences between observations and predictions using mean absolute error and root mean squared error. For
the classification of developed areas, we computed a standard confusion matrix with overall accuracy, user’s and
producer’s accuracies, and commission and omission errors.

Additionally, we used validation data for 2001-2018 to compare the accuracy of WADISC with exist-
ing global datasets with similar temporal and spatial resolution, consisting of global artificial impervious
area (GAIA)?® and global impervious surface area (GISA)®. GAIA and GISA have binary classes consist-
ing of impervious and non-impervious at 30 m resolution. GISA is available from 1972-2019, and GAIA
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Observation
Country Class Undeveloped | Developed | User Commission
Undeveloped | 2210 154 0.93.49 6.51
Developed 165 534 76.39 23.61
Ghana
Producer 93.05 77.62 89.59
Omission 6.95 22.38 10.41
Undeveloped 1868 63 96.74 3.26
Developed 84 282 77.05 22.95
Togo and Benin
Producer 95.70 81.74 93.60
Omission 4.30 18.26 6.40
Undeveloped | 2910 74 97.52 2.48
Developed 79 396 83.37 16.63
Prediction | Nigeria: Nigeria Lowlands & Guinea Forest Savannah
Producer 97.36 84.26 95.58
Omission 2.64 15.74 4.42
Undeveloped | 2175 134 94.20 5.80
Developed 73 398 84.50 15.50
Nigeria: Western Sudan Savannah
Producer 96.75 74.81 92.55
Omission 3.25 25.19 7.45
Undeveloped | 9163 425 95.57 4.43
All Developed 401 1610 80.06 19.94
Producer 95.81 79.12 92.88
Omission 4.19 20.88 7.12

Table 6. Confusion matrix of developed and undeveloped areas classifications from 2001-2020. The overall
accuracy of the data is in bold, and the misclassified error is in bold italics.

Observation
Dataset | Class Undeveloped | Developed | User | Commission | F-score
Undeveloped | 7909 318 96.13 | 3.87
Developed 361 1336 78.73 | 21.27 0.7974
WADISC
Producer 95.63 80.77 93.16
Omission 4.37 19.23 6.84
Undeveloped | 7714 412 94.93 | 5.07
Developed 556 1242 69.08 | 30.92 0.7196
Prediction | GISA
Producer 93.28 75.09 90.25
Omission 6.72 2491 9.75
Undeveloped | 7728 522 93.67 |6.33
Developed 542 1132 67.62 | 32.38 0.6803
GAIA
Producer 93.45 68.44 89.28
Omission 6.55 31.56 10.72

Table 7. Accuracy comparison with global impervious datasets from 2001-2018. The overall accuracy of the
data is in bold, and the misclassified error is in bold italics.

has annual data from 1985-2018. We computed the average accuracies and errors for only these eight-
een years because these are when data were available in all the impervious datasets we examined. We also
compared the total developed area extents from these datasets across the four ecological zones: Eastern
Guinea Forest (EGF), Guinea Forest Savannah (GFS), Nigeria Lowlands Forest (NLF) and Western Sudanian
Savannah (WSS).

Data Records

The West Africa Dataset of Impervious Surface Change (WADISC) comprises 30-m resolution continuous
impervious cover and classified developed area datasets and is publicly accessible through Figshare: https://
doi.org/10.6084/m9.figshare.24716481.v3%. The dataset consists of 40 Tiff files, including 20 continuous and
20 binary classifications, each containing developed area information across the four countries. The continuous
impervious cover pixel values are percentages from 0 to 100, and the classified developed area values are 1 and
0, indicating presence or absence (Table 4).
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Fig. 8 Developed area of the GAIA and GISA datasets compared to WADISC across ecological zones in the
study area. The red line shows the WADISC developed area from 2001-2020, the blue line shows the GAIA
developed area from 2001-2018, and the purple line shows the GISA developed area from 2001-2019. The
ecological zones are Eastern Guinea Forest (EGF), Guinea Forest Savannah (GFS), Nigeria Lowlands Forest
(NLF), and Western Sudanian Savannah (WSS).

Technical Validation

We used all 11 spectral indices to generate random forest impervious cover estimates because models using all the
predictors had higher accuracies than those based on subsets. This finding was consistent with previous assessments
of land cover change models that found models with more predictors had lower errors®. Across the four random
forest models employed in this study, the relative importance of spectral indices varied, with BCI the most impor-
tant predictor of impervious surface cover in Ghana, NBAI in Benin and Togo, NDVI in Nigeria Lowlands Forest
and Guinea Forest Savannah in Nigeria, and CBCI in Western Sudanian Savannah in Nigeria (Fig. 6). BSI had rel-
atively low importance, suggesting that the urban indices effectively discriminated impervious surfaces from soils.

Using LandTrendr for temporal segmentation of the random forest predictions of impervious cover resulted
in higher accuracies than predictions based on random forests alone (Table 5). The high predicted-observed r?
values indicated a strong linear association between the predictions and observations of impervious cover in the
validation dataset. The strength of this association can also be seen in scatterplots of the predicted-observed rela-
tionship (Fig. 7). The magnitude of the mean error was close to zero when summarized across the entire study
area, indicating that the predictions were unbiased. The overall mean absolute error was less than 6% cover and
the root mean squared error was less than 10% cover, giving us confidence that the predictions can effectively
distinguish areas with high versus low impervious cover.

The overall accuracy of the developed area classification was high, with a value of 93% across the entire study
area, and 90% in Ghana, 94% in Togo-Benin, 96% in Nigeria Lowlands Forest and Guinea Forest Savannah,
and 93% in Nigeria Western Sudan Savannah (Table 6). Class-level accuracy statistics were generally higher for
non-developed areas than for developed areas. However, the overall producer’s and user’s accuracies for devel-
oped areas were still relatively high at ~80%. The errors of omission and commission had similar magnitudes for
each class, indicating that there was not a strong bias toward overpredicting or underpredicting developed areas.

Comparison with global impervious data. The average overall accuracy from 2001 to 2018 was highest
in WADISC with 93.16%, whereas GISA was 90.25%, and GAIA was 89.28% (Table 7). Also, the omission error,
representing the probability of misclassifying developed areas in the reference data, was 19.23% in WADISC but
increased to 24.91% in GISA and 31.56% in GAIA. The commission error, indicating the probability of misclas-
sifying undeveloped areas, was 21.27% in WADISC but increased considerably to 30.92% in GISA and 32.38 in
GAIA. In addition, the F-score representing the harmonic mean between the producer and user’s accuracy was
highest for WADISC followed by GISA and GAIA.

The developed area comparison across the various datasets shows that GISA and GAIA were similar, and
WADISC was higher (Fig. 8). Examples of developed area in primary cities with over a million population
and secondary cities with between ten thousand and one million population in different ecological zones are
shown in Fig. 9. Developed area extent in all three datasets were similar in the Eastern Guinea Forest (EGF).
The developed area for WADISC, however, was higher than GAIA and GISA in the Guinea Forest Savannah
(GFS), Nigeria Lowlands Forest (NLF), and Western Sudanian Savannah (WSS). Our findings are consistent
with previous studies that indicate most existing global datasets underestimate urban extent in the study area®!!.

The global datasets we examined have longer temporal extents, allowing for historical developed area analysis
as far back as 1972 for GAIA and 1985 for GISA. Although WADISC covers only four countries, it encompasses
the majority of cities in West Africa, and it is the first annual regional impervious cover dataset with higher
accuracies and lower errors than existing global datasets. The accuracy of WADISC was also high even in the
Western Sudanian Savannah ecological zone with semi-arid conditions where urban areas are often difficult to
classify with remote sensing data'. The WADISC calibration accounted for sub-regional ecological differences in
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Fig. 9 Comparison across cities in different ecological zones. The primary cities with over one million urban
populations are Accra, Abuja, Ibadan, and Kano, and the smaller cities with between ten thousand and one million
population are Bekwai, Bali, Ikom, and Gudumbali. The numbers in parenthesis are the longitudes and latitudes.

urban morphology and background conditions, resulting in higher accuracy and better detection of developed
areas than the global datasets (Fig. 9). Additionally, the WADISC data captured smaller settlements that are often
excluded or misclassified in global datasets (Fig. 9).

Usage Notes

Change analysis. We demonstrated the potential uses of this data by quantifying and comparing the rates of
developed area changes across countries and comparing the patterns of developed area changes for selected cities.
The total developed area in each country more than doubled between 2001 and 2020, with a 2.2-fold increase in
Benin, 2.3 in Ghana, 2.4 in Nigeria, and 2.1 in Togo (Table 8). Thus, Nigeria had the highest annual increase in
developed areas, followed by Ghana, Benin, and Togo.
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Benin 217.52 474.33 4.19
Ghana 690.75 1583.14 4.46
Nigeria 2931.72 7012.58 4.70
Togo 160.75 331.77 3.89
All 4001.73 9401.81 4.60

Table 8. Total developed area and percentage annual expansion rate from 2001-2020.
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Fig. 10 Change in developed area for subset of cities in each country for three-time points. The gray shows the
initially developed area in 2001, the orange shows the developed area in 2010, and the red shows the developed
area in 2020. The numbers in parenthesis are the longitudes and latitudes of each city, respectively.
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Maps of the developed area extent for the largest primary city and secondary city each in Ghana, Togo, Benin, and
Nigeria with rapid urban growth shows that new developed areas rapidly filled open spaces and expanded outwards
from the initial developed area (Fig. 10). A recent study used WADISC and quantified the expansion patterns across
cities of varying population sizes, and found cities mostly sprawled faster than infilled, especially in smaller sec-
ondary cities®’. Different growth patterns are influenced by differences in national urban development plans, rates
of urbanization, land tenure systems, and foreign direct investments. The sprawling outward expansion and high
expansion rates are challenging to manage due to limited resources. Although urban expansion occurs locally, the
impacts are much broader, meaning regional-level analysis can better inform sustainable development decisions.

WADISC can support research and assessment of urban expansion impact on heat stress®®®, urban malaria inci-
dence’®72, greenhouse gas emission’>”%, urban floods”, cropland loss’®”’, biodiversity loss and habitat fragmenta-
tion*®, within and across countries. For example, Van Vliet (2019) found urban expansion resulted in 122 million
tons decrease in cereal production per year from 1992-2015. Also, urban areas are susceptible to increased risk of
heat stress in the Sydney region®®. These studies mostly found that urban expansion negatively impacts people and the
environment. However, some studies found that compact urban expansion had a negative association with air pollu-
tion”® and energy and resource usage” but was positively associated with economic productivity®’. Thus, WADISC
can support diverse research and policy assessments across multiple scales in Ghana, Togo, Benin, and Nigeria.

Potential limitations. When classifying change in developed area, we applied a rule of no-developed area loss,
which states that developed pixels are irreversible. This is a standard approach in land cover change analysis and had
a relatively minor effect on the predictions of developed areas and their accuracy. There were only a few cities where
this rule had a noticeable effect, correcting for false transitions of developed to non-developed areas that arose from
noise in the spectral data. However, there are other areas, particularly in the northern portions of the study area,
where climate fluctuations or conflict may result in abandonment of developed areas with a resulting transition to
non-developed.

Additionally, all Landsat 7 data collected after May 31, 2003 have data gaps resulting from the scan line
corrector (SLC) off. The scan line corrector removes the zigzag motion produced by across and along track
movement of the sensor. Despite the SCL failure, these data are still geometrically and radiometrically correct
and are measured at the same precision as prior to the anomaly. Although most SLC gaps are filled in the process
of generating the annual temporal metrics, the process sometimes results in different values in the SLC gaps,
particularly between 2003 and 2013 when only Landsat 7 images are available. These spatial anomalies in the
temporal metrics influence the patterns of developed pixels in some locations. However, the overall accuracy of
the continuous impervious surface estimates and developed area classification is still high.

We have provided access to the underlying continuous impervious surface data as well as the classi-
fied developed area data®. These data can be used to generate developed area classifications using different
impervious surface thresholds and to analyze change using different types of transition rules. All land cover
datasets contain some error, but our rigorous quantitative validation combined with visual assessment of
the predicted changes indicate that the predictions of impervious surfaces and developed areas accurately
capture their patterns and magnitudes of change. We have provided access to the underlying code for gener-
ating the data products in Google Earth Engine and GitHub, and users are thus able to conduct more detailed
evaluations of the underlying techniques and potentially update and extend the methods to improve their
accuracy.

Code availability

The scripts used to generate the impervious surface cover data are available and accessible in fighshare®”. The
scripts are available in Google Earth Engine: https://code.earthengine.google.com/?accept_repo=users/
korahandrews/WADISC, and on GitHub through this link: https://github.com/Kora0003/WADISC.
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