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High spatio-temporal resolution estimates of electricity consumption are essential for formulating
effective energy transition strategies. However, the data availability is limited by complex spatio-
temporal heterogeneity and insufficient multi-source feature fusion. To address these issues, this study
introduces an innovative downscaling method that combines multi-source data with machine learning
and spatial interpolation techniques. The method’s accuracy showed significant improvements,

with determination coefficients (R?) increasing by 30.1% and 33.4% over the baseline model in two
evaluation datasets. With this advanced model, we estimated monthly electricity consumption across
1km x 1 km grid for 280 Chinese cities from 2012 to 2019. Our dataset is highly consistent with officially
released electricity consumption of different industries (Pearson correlation coefficients within 0.83 -
0.91). Moreover, our data can reflect the electricity consumption patterns of different urban land uses
compared to other datasets. This study bridges a significant gap in fine-grained electricity consumption
data, providing a robust foundation for the development of sustainable energy policies.

Background & Summary

To accelerate the transition to a carbon-neutral world powered by emerging energy technologies by 2050, the
world is required to achieve net-zero emissions'. The electricity sector, attributing 40% of worldwide carbon
dioxide (CO,) emissions, emerges as a critical focal point for decarbonization?. Consequently, nations have
implemented policies to transform electricity systems and reduce conventional energy use, thus promoting
sustainable development®=. China is the world’s largest consumer of electricity, accounting for 31% of elec-
tricity consumption in 2022, with operational inefficiencies and structural irrationalities®. In this context, high
spatio-temporal resolution data can help to reveal such problems to formulate regional energy transition pol-
icies®. Official statistic data are only available at the county level and above, which makes it challenging to esti-
mate consumption distribution and analyze spatio-temporal dynamics at fine scales’. Therefore, it is critical to
use advanced methods to accurately estimate high spatio-temporal resolution electricity data.

High spatio-temporal electricity consumption estimation includes “bottom-up” and “top-down”
approaches®>1%. The “bottom-up” method accumulates data from individual units to higher aggregates, ensur-
ing high accuracy at granular levels''. For example, total regional demand is calculated by aggregating electricity
usage data from buildings'>. However, the “bottom-up” approach is labor-intensive and time-consuming, which
is not practical for processing massive long-term datasets. This becomes particularly challenging when swift data
generation is essential for decision-making or emergency responses'>.

The “top-down” approach offers an effective alternative'*'>. This approach utilizes open-source big data,
such as satellite imagery and socio-economic data (e.g., gross domestic product (GDP), population density),
serving as proxies for data downscaling'®". For instance, Zhou et al.?! developed a spatial disaggregation index
using multi-source variables to estimate high-resolution building energy consumption. Furthermore, machine
learning techniques effectively extract non-linear relationships between variables, enabling the “top-down”
method to estimate electricity consumption accurately with minimal loss, thus improving the model’s precision.
Chen et al.?? used the particle swarm optimization-back propagation (PSO-BP) algorithm to estimate electricity
consumption at the 1 km x 1 km grid using nighttime lights as a proxy. This study demonstrated the synergy
between big data and machine learning in downscaling electricity consumption. However, most existing datasets
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provide only annual data, limiting applications that require monthly data (e.g., energy demand forecasting® or
short-term effect analysis**). According to our survey, monthly electricity consumption data with high spatial
resolution are not currently available in China.

Machine learning can effectively extract non-linear variable relationships®>*® but struggles to capture spatial
correlations?, which are vital for accurately rendering detailed geographic information in high-resolution anal-
yses?®. Spatial correlation implies that geographically proximate objects are more likely to share similar attrib-
utes, and overlooking this factor would lead to increased predictive errors®. Kriging interpolation, an advanced
technique grounded in spatial statistics, effectively identifies spatial correlations by analyzing distances and rela-
tionships among objects**!. This method has proven invaluable in various downscaling applications, including
estimations of population®* ,emission®, precipitation® and temperature®**”. Therefore, it is crucial to further
integrate kriging interpolation to address the shortcomings of machine learning and improve prediction accuracy.

To address the aforementioned shortcomings, this study introduces a hybrid downscaling model that integrates
machine learning with kriging interpolation®. This model estimates the electricity consumption of 280 major
cities from April 2012 to December 2019 at 1 km X 1 km spatial resolution using multi-source data. This research
highlights three contributions: (1) we created the first fine-grained electricity consumption dataset with monthly
1 km x 1 km in China; (2) the proposed method can extract complex variable correlations, which improves
the estimation accuracy at different spatio-temporal scales; (3) kriging interpolation can characterize the spatial
correlations, and also address the challenge of mismatch between predicted values and statistical data effectively.

Methods

The workflow of high spatio-temporal resolution of electricity data estimation in China is shown in Fig. 1.
Firstly, we obtained electricity statistics and high spatio-temporal multi-source data as variables from the open
platform. Secondly, by integrating machine learning with kriging interpolation techniques, we developed a
“top-down” hybrid model for generating the final results. Finally, we verify the effectiveness of the data through
spatio-temporal analysis.
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Dataset Temporal resolution | Spatial resolution | Description

Annual city electricity Annual City Electricity consumption at multiple spatio-temporal scales,
Annual county electricity Annual County including urban and rural areas (data from local statistical
Monthly city electricity Monthly City offices).

TN Reflects human activity on the surface, most notably human
Nighttime lights Monthly 500m lighting at night (https://eogdata.mines.edu/products/vnl/).
Temperature Monthly 1km Average ambient temperature (Peng et al.>?).
co, Monthly 1 km OPen—source data inventory for anthropogenic CO, (https://

odiac.org/).
Population Annual 100 m Population distribution (http://www.worldpop.org/).
GDP Annual 1km Economic development of the region (Chen et al.**).
Building height 2010, 2015, 2020 500 m The distribution of the building heights (https://ghsl.jrc.

ec.europa.eu/).

The distribution of built-up surfaces (https://ghsljrc.

Building surface 2010, 2015, 2020 500 m
ec.europa.eu/).

Table 1. Information on datasets for high spatio-temporal electricity estimation.

Data collection and processing. This section summarizes the data products and corresponding preproc-
essing used to estimate high spatio-temporal electricity consumption data. Table 1 provides information on the
resolution, source, and role of all datasets.

Statistical electricity data. Total electricity consumption data comes from Statistical Bureaus across China,
covering 280 major prefecture-level cities (including urban and rural areas). It comprises three types of
spatio-temporal resolutions. Firstly, annual electricity data at the prefecture-level city, achieving a coverage rate
of nearly 95%, with missing values filled in by linear interpolation. The second and third datasets are monthly
electricity consumption for prefecture-level cities and annual data for counties, respectively, providing more
detailed spatial or temporal resolution. Only approximately 1,500 and 2,000 records were obtained due to data
availability limitations.

Multi-source high spatio-temporal data.  Previous studies usually focus on the effect of a single data (e.g., night-
time lights'®) on electricity consumption, ignoring the integration of various factors. To accurately estimate
electricity consumption on a fine scale, we have incorporated seven high spatio-temporal resolution variables:
nighttime lights, average temperature, CO,, population distribution density, GDP, building height, and building
surface. These variables characterize the urban economic development, material stock and technological pro-
gress in multiple dimensions. They have demonstrated strong correlations with electricity data and are drivers
for accurately capturing electricity consumption patterns®*-*2 In particular, the collected building height and
surface data span over five years. To address temporal inconsistencies, we use these data to represent two adja-
cent years. For example, 2020 building datasets were used for both 2018 and 2019. This approach accounts for
building change cycles, minimizing temporal variation impacts and ensuring accurate feature representation®.
Due to the inconsistencies in coordinate systems and resolutions among different data sources, we converted all
the data to the Albers equal-area coordinate system and resampled them to 1 km resolution to facilitate attribute
extraction and model training.

Property calculations. Considering that electricity consumption is generated almost from built-up land,
this study filters out built-up areas based on land use data* to reduce the estimation error. Additionally, given
the significant quantitative differences in electricity consumption at different spatio-temporal scales, this study
takes Cheng et al.*® to use electricity intensity (monthly 1 km electricity consumption) as the dependent variable.
For example, in the annual data electricity dataset, the electricity consumption is divided by the built-up area and
twelve months. The same approach is applied to the dependent variable. In this way, all variables are in a uniform
feature space, ensuring that model training is efficient and robust.

Constructing fine spatial and temporal scale methods for electricity estimation. This section
introduces a hybrid downscaling model for electricity estimation, combining an improved XGBoost (eXtreme
Gradient Boosting) algorithm with kriging interpolation (see Supplementary Figure S1 for details). We utilize
processed electricity data as the dependent variable and multi-source spatio-temporal data as independent var-
iables. The XGBoost model, coupled with incremental learning, is employed to extract features across various
spatio-temporal scales for training. Subsequently, the output grid results are refined using kriging interpolation
to capture geographic autocorrelation features and perform corrections, resulting in high-resolution electricity
data products.

Estimation model of electricity consumption. 'The low resolution of annual electricity data may lead to substan-
tial estimation errors when relying solely on these data for model training. Therefore, we employ finer-grained
electricity data combined with incremental learning approach to progressively process the data streams in order
to merge, refine and enhance the accumulated information®. This approach enables the model to comprehen-
sively reveal electricity consumption patterns at different spatio-temporal scales.
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Specifically, the first step is to build a base model using XGBoost and train it using annual city electricity data.
The XGBoost is a gradient boosting tree model that integrates multiple weak classifiers, and improves model gener-
alization performance by preventing overfitting through regularization. The second step is spatial feature incremen-
tal learning (XGBoost-SIL). We maintain the trained model’s tree node weights and add several trees to fine-tune
the model by incorporating annual county data. The same approach was applied in the third step and monthly
city data is further added for temporal incremental learning (XGBoost-STIL). To analyze the effectiveness of
spatio-temporal incremental learning of the method, 20% of the annual county data (spatial-test data) and monthly
city data (temporal-test data) are selected as test datasets for the three models. The study uses parametric grid search
and five-fold cross-validation to improve the model generalization performance and stability in the training process.

As the kriging interpolation method is only capable of spatial interpolation, is not able to disaggregate the
annual data into monthly data. Therefore, this study used the above model to generate monthly county electric-
ity density data as an intermediate product. This dataset is further adjusted by dasymetric mapping*® to be used
as baseline dataset for subsequent area-to-point kriging interpolation.

Electricity correction and mapping. Machine learning methods excel at capturing nonlinear relationships
between variables but fall short in capturing the geographical spatial correlations. We used kriging interpolation
to fill this gap. Specifically, area-to-point kriging is a modification of ordinary kriging that allows for low to high
resolution redistribution®”. This ensures the consistency of residuals across all grids within the same area. The
residual for each grid is determined through a weighted linear combination of nearby coarse areas, following the
unbiased weighting constraint.

&= 1 Ame(vy)
Z,I;(\(Vk) =1 (1)

where ¢, signifies the estimated residual for the grid, K denotes the number of considered counties, e (v;) is the
known area residual for county v, and X (v;) represents the weight allocated to each county, calculated as follows:

SEAWCWe v) — X, =Clp,v), k=1,..,K
SLAm) =1 @

where C(v,, v;) indicates the covariance between areas v and v;, while C(p, v;) describes the covariance
between the target grid and the county. The covariance is derived from coarse to fine resolution by deconvolu-
tion. Deconvolution is generating variograms from discrete points of input area data by minimizing the vario-
gram difference between the theoretical regularization and the input area data. Post-correction with kriging
interpolation reduces errors by ensuring that aggregate of estimated results for grids within county matches the
total electricity consumption.

Accuracy assessment. The coefficient of determination (R?), the root mean square error (RMSE) and the
spatio-temporal coefficient (F)) to evaluate the model performance by calculating the error between the pre-
dicted values ( )71 ) and true values (y;). The coeflicient (R) is applied to data correlation analysis. F; drawing inspi-
ration from the F1-score, make R? and RMSE comprehensive to assess the model’s validity across temporal-test
data (TD) and spatial-test data (SD):

F—2x Igp X Ipp
= iy 2]
Igp + Inp (3)

where I is the R? or RMSE value. The final electricity consumption data are compared with related datasets
to validate accuracy. Given the unavailability of data on the same scale, the study use national monthly data
on total, residential, and industrial electricity consumption from statistical yearbooks for quantitative verifi-
cation. Additionally, representative cities from diverse geographic locations-Beijing (North), Shanghai (East),
Shenzhen (South), Chengdu (West), and Wuhan (Center)-are chosen for spatial comparison analysis with
annual grid electricity data (AGED) created by Chen et al.?2.

Data Records

The study estimated high-resolution total electricity consumption data for 280 major Chinese cities based on
multi-source data availability, which account for 90.6% of China’s electricity consumption (https://www.stats.
gov.cn/). The dataset is stored in Geotiff (.tif) format in the folder “China_lkm_Ele_201204_201912.zip” and
spatially projected using the Albers equal area method. The folder contains 93 .tif files, each labeled with the
year and month, describing the monthly electricity consumption in China. Cities details are also provided
in the folder in .csv format. The dataset* is publicly available for free on Figshare (https://doi.org/10.6084/
m9.figshare.25398559.v1).

Technical Validation

The technical validation of this study encompasses three main parts: (1) analysis of the correlation between
independent and dependent variables ; (2) assessment of the model’s performance; and (3) comparative analysis
between our dataset and existing related datasets; (4) analysis of the spatio-temporal patterns of high-resolution
electricity consumption in China.
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Fig. 2 Correlation analysis of electricity consumption with (a) Building height, (b) Building surface, (c) GDP,
(d) POP, (e) Temperature, (f) Nighttime lights, and (g) CO,.

Method RS, IRZN Fp2 RMSEg;, RMSE;;, Fruse

XGBoost 0.678 0.706 0.690 239.561 137.072 174.371
XGBoost-SIL 0.895 0.667 0.763 54777 134.864 77.909
XGBoost-STIL 0.905 0.919 0.911 57.863 62.484 60.084

Table 2. Performance of temporal-test dataset (TD) and spatial-test dataset (SD) in different methods
(average results of five-fold cross-validation).

Variable correlation analysis. Firstly, the correlation between the independent variables and electricity
consumption is analyzed to provide a solid foundation for accurate estimation of electricity consumption. As
shown in Fig. 2, the results indicated that all independent variables have statistically significant correlations with
the dependent variable, with p-values less than 0.001 and an average correlation coeflicient of 0.52. Building
height (0.65) and nighttime lights (0.64) demonstrated the strongest correlations with electricity consumption,
underscoring the critical role of urbanization and economic activities in electricity demand. The correlation coef-
ficients for GDP, POP, building surface, and CO, fall within the range of 0.45 to 0.6, signifying the considerable
influence of economic development, demographics, urban configuration, and environmental factors on the pat-
terns of electricity consumption. Although the correlation between temperature and electricity consumption was
lower (0.26) than others, the control variable experiments (Supplementary Table S1) have verified that temper-
ature can further improve accuracy, which may be attributed to the effect of temperature in specific events such
as summer cooling. Furthermore, controlled variable experiments were conducted to verify the validity of each
variable, as detailed in the Supplementary Information.

Model performance analysis. Table 2 shows the performance of the models based on machine learning
and incremental learning in this study. The baseline model XGBoost achieved R? of 0.678 and RMSE of 239.561
on the spatial dataset, and R? of 0.706 and RMSE of 137.072 on the temporal dataset. Additionally, the F2 and
Fryse were 0.690 and 174.371, respectively. After integrating spatial incremental learning (XGBoost-SIL), the
performance of the spatial dataset is significantly improved with R* and Fp: increasing to 0.895 and 0.763, while
Fruse decreases to 77.909. Based on this, the XGBoost-STIL model performance is optimized by further integrat-
ing temporal incremental learning, both datasets improved the R? to above 0.9, while the RMSE was reduced to
around 60. The comprehensive enhancement is further demonstrated by Fpz of 0.911 and Fyys of 60.084, high-
lighting the model’s improved ability to accurately capture complex electricity consumption patterns across
diverse datasets. These improvements underscore the significant impact of integrating spatial and temporal
incremental learning, offering a robust framework that outperforms traditional methodologies.

Dataset validation. Further validation and comparisons were conducted using official statistics and exist-
ing datasets from quantitative and qualitative perspectives, respectively. In the absence of electricity data at same
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Fig. 4 Distribution patterns of electricity consumption from this study and AGED in different urban land use:
Beijing (China’s Capital, Northern), Shanghai (International economic center, Eastern), Shenzhen (China’s
first special economic zone, Southern), Wuhan (Central Transportation Hub) and Chengdu (Western China’s
leading city).

resolutions, we used the total, residential and industrial electricity consumption of the country at monthly peri-
ods for a quantitative correlation analysis. Subsequently, we conducted a comparative validation with the AGED
to evaluate our dataset’s reliability. Fig. 3 shows the correlation of our results with official statistics for validation.
The correlation is 0.89 for total electricity consumption, 0.82 for industrial electricity consumption, and 0.93 for
residential electricity consumption, with all p-values less than 0.001. These results confirm the model’s effective-
ness in accurately reflecting actual electricity consumption patterns across different sectors. Such statistically sig-
nificant correlations affirm the robustness of our dataset when compared with established benchmarks, providing
a solid foundation for its application in energy research and policy development.

We further compared with the AGED in five large cities in different regions by incorporating land use
data®. As shown in Fig. 4, we observed that AGED displayed a flat distribution, failing to distinguish ade-
quately between consumption patterns across different regions. A critical shortfall of their dataset is the ina-
bility to differentiate between built-up and non-built-up areas, mistakenly attributing electricity demand to
non-built-up areas like vegetation and water bodies. In addition, their methodology lacks correction in con-
junction with actual official statistics, which would lead to errors. In contrast, our data can effectively capture
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Fig. 5 December 2019 distribution patterns of electricity consumption in Chinas 1 km (a) and typical urban
agglomerations: (b) Beijing-Tianjin-Hebei, (¢) Pear]l River Delta, and (d) Yangtze River Delta.

the electricity consumption patterns of different land use types, and avoid incorrectly estimating electricity use
on non-built-up zones. By incorporating kriging interpolation, our method corrects estimations, and capture
spatial heterogeneity across high-resolution grids and ensuring our electricity results are precise.

This study also reveals the diversity of electricity consumption patterns in various functional zones
(e.g., residential, industrial, and commercial zones) within the city. Take shanghai as an example, which has
the highest China’s GDP in 2019. The high electricity demand areas are mainly located in downtown Shanghai,
which includes the city’s central business district (CBD) and various commercial centers. The prosperity of
these areas directly influences their substantial electricity demands. Similarly, Shenzhen, known for its high-tech
industries, experiences uniformly high levels of electricity consumption across the city. This is particularly
pronounced in industrial zones and coastal logistics hubs, reflecting the city’s vibrant industrial production
and international trade activities. The areas in Wuhan with high electricity demand are mainly found along
the Yangtze River, which is the central hub of the city with clusters of Grade A office buildings. There is also
high electricity consumption in the northwest, primarily driven by the airport and industrial areas. These
high-resolution analyses of electricity consumption patterns provide an insight into urban energy consumption
disparities, which can help optimize the allocation of energy resources.

Spatio-temporal patterns of electricity consumption in China. In this study, we estimated the elec-
tricity consumption of 1 km X 1 km grid from April 2012 to December 2019. December 2019 was chosen to
visualize high-resolution electricity distribution patterns in China (Fig. 5). The highly concentrated pattern of
electricity consumption in the North China Plain reflects a dense population with a thriving service and manu-
facturing industries. Northeastern China, despite economic restructuring, shows a medium density of hotspots as
a traditional industrial area. The central and southern regions have a dispersed pattern of electricity consumption
due to terrain.

Additionally, the results also show that high electricity consumption patterns are concentrated in the
Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) urban agglomerations. The
electricity demand in these areas not only reflects their advanced levels of industrialization and urbanization but
also their pivotal role in the national economy. The BTH as a hub of political and cultural significance in China,
with key industries such as government services, finance, and information technology creating high-energy con-
sumption patterns. The YRD and the PRD, as the centers of China’s manufacturing and export sectors, have high
electricity consumption pattern, highlighting the concentration of industrial activity and substantial energy needs.
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Fig. 6 Monthly electricity consumption in the three urban agglomerations in 2019, as well as details in various
land use types. (a) represents the monthly electricity consumption of the three urban agglomerations. The
YRD’s electricity consumption outstrips that of the PRD and BTH, a trend driven by its superior GDP of 29.03
trillion yuan, driven by Shanghai and three prosperous provinces, compared to the PRD’s 7.8 trillion yuan and
BTH’s 6.9 trillion yuan. (b,d) Represent the monthly electricity consumption of the three urban agglomerations
under different land use types in streamgraph.

In terms of temporal dynamics, our meticulous monthly data analysis has captured the seasonal fluctuations
and trend variations in electricity consumption across the three urban agglomerations, as shown in Fig. 6. BTH
and YRD, with an increase from May to October and a subsequent decrease, may reflect the impact of climatic
variations on electricity demand. In contrast, the PRD demonstrates a stable monthly electricity consumption
trend, a discrepancy that may be attributed to the distinct industrial structures of each region. Temporal patterns
of electricity consumption were further analyzed with land use data. Industrial areas recorded the highest pro-
portion of electricity consumption, accounting for 43.2%, indicating that the industrial production has a high
demand for electricity throughout the year. In particular, residential electricity consumption shows seasonal
variations, especially during the summer peak season. Commercial and transport facility areas have relatively
low electricity throughout the year and have no significant seasonal fluctuations.

This study creates a high spatio-temporal resolution electricity data for China, effectively filling an important
data gap. The dataset reveals the intricate dynamics of electricity consumption, providing a reliable data sup-
port for sustainable development research. Future studies can use this data to explore diverse energy scenarios,
optimize prediction models, and formulate strategies to shift the world toward a more sustainable and efficient
energy future.

Uncertainties and limitations. There are several aspects of uncertainties in this study. Firstly, we mainly
use socio-economic and environmental variables to estimate electricity consumption, without fully considering
geographic factors. This may limit the model’s ability to comprehensively capture the electricity consumption
patterns in diverse regions, such as the differences of electricity consumption in southern and northern China due
to heating and cooling demands. Northern cities have higher heating demands in winter, while southern cities
have higher cooling demands in summer®. Although our model considers temperature data, it cannot directly
reflect these seasonal differences. Future study should consider more geography-related variables, such as Heating
Degree Days (HDD) and Cooling Degree Days (CDD)>". In addition, regional modeling can be performed based
on climate zones to reduce geographic uncertainty and improve model accuracy.
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The input dataset uncertainty also challenged this study. Although we considered variables with full-coverage
and availability as much as possible, there are also some relevant data not included. For example, we combined
land use data in analysis but without integrating it into the downscaling model, which could improve the results®2.
Energy prices and types should also be considered. Moreover, the spatio-temporal differences in the original var-
iables (e.g., the GHSL data spans 5 years) may affect the results. However, the unavailability of spatio-temporal
datasets limits the integration of these data in this study. Currently, our dataset covers 2012 to 2019 at the 1 km X
1 km scale. In the future, we will continue to focus on the availability of relevant data, optimize our approach by
incorporating more valuable data and dynamically update the spatio-temporal scales of the dataset.

Code availability
The software used to create the dataset were ArcGIS (10.2), Python 3.8, and R 4.3.2. The code is available on
GitHub (https://github.com/kkxiaoqin/electricity_downscaling).
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