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Monthly electricity consumption 
data at 1 km × 1 km grid for 280 
cities in China from 2012 to 2019
Xiaoqin Yan1,2, Zhou Huang1,2 ✉, Shuliang Ren1,2, Ganmin Yin   1,2 & Junnan Qi1,2

High spatio-temporal resolution estimates of electricity consumption are essential for formulating 
effective energy transition strategies. However, the data availability is limited by complex spatio-
temporal heterogeneity and insufficient multi-source feature fusion. To address these issues, this study 
introduces an innovative downscaling method that combines multi-source data with machine learning 
and spatial interpolation techniques. The method’s accuracy showed significant improvements, 
with determination coefficients (R2) increasing by 30.1% and 33.4% over the baseline model in two 
evaluation datasets. With this advanced model, we estimated monthly electricity consumption across 
1 km x 1 km grid for 280 Chinese cities from 2012 to 2019. Our dataset is highly consistent with officially 
released electricity consumption of different industries (Pearson correlation coefficients within 0.83 - 
0.91). Moreover, our data can reflect the electricity consumption patterns of different urban land uses 
compared to other datasets. This study bridges a significant gap in fine-grained electricity consumption 
data, providing a robust foundation for the development of sustainable energy policies.

Background & Summary
To accelerate the transition to a carbon-neutral world powered by emerging energy technologies by 2050, the 
world is required to achieve net-zero emissions1. The electricity sector, attributing 40% of worldwide carbon 
dioxide (CO2) emissions, emerges as a critical focal point for decarbonization2. Consequently, nations have 
implemented policies to transform electricity systems and reduce conventional energy use, thus promoting 
sustainable development3–5. China is the world’s largest consumer of electricity, accounting for 31% of elec-
tricity consumption in 2022, with operational inefficiencies and structural irrationalities2. In this context, high 
spatio-temporal resolution data can help to reveal such problems to formulate regional energy transition pol-
icies6. Official statistic data are only available at the county level and above, which makes it challenging to esti-
mate consumption distribution and analyze spatio-temporal dynamics at fine scales7. Therefore, it is critical to 
use advanced methods to accurately estimate high spatio-temporal resolution electricity data.

High spatio-temporal electricity consumption estimation includes “bottom-up” and “top-down” 
approaches8,9,10. The “bottom-up” method accumulates data from individual units to higher aggregates, ensur-
ing high accuracy at granular levels11. For example, total regional demand is calculated by aggregating electricity 
usage data from buildings12. However, the “bottom-up” approach is labor-intensive and time-consuming, which 
is not practical for processing massive long-term datasets. This becomes particularly challenging when swift data 
generation is essential for decision-making or emergency responses13.

The “top-down” approach offers an effective alternative14,15. This approach utilizes open-source big data, 
such as satellite imagery and socio-economic data (e.g., gross domestic product (GDP), population density), 
serving as proxies for data downscaling16–20. For instance, Zhou et al.21 developed a spatial disaggregation index 
using multi-source variables to estimate high-resolution building energy consumption. Furthermore, machine 
learning techniques effectively extract non-linear relationships between variables, enabling the “top-down” 
method to estimate electricity consumption accurately with minimal loss, thus improving the model’s precision. 
Chen et al.22 used the particle swarm optimization-back propagation (PSO-BP) algorithm to estimate electricity 
consumption at the 1 km × 1 km grid using nighttime lights as a proxy. This study demonstrated the synergy 
between big data and machine learning in downscaling electricity consumption. However, most existing datasets 
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provide only annual data, limiting applications that require monthly data (e.g., energy demand forecasting23 or 
short-term effect analysis24). According to our survey, monthly electricity consumption data with high spatial 
resolution are not currently available in China.

Machine learning can effectively extract non-linear variable relationships25,26 but struggles to capture spatial 
correlations27, which are vital for accurately rendering detailed geographic information in high-resolution anal-
yses28. Spatial correlation implies that geographically proximate objects are more likely to share similar attrib-
utes, and overlooking this factor would lead to increased predictive errors29. Kriging interpolation, an advanced 
technique grounded in spatial statistics, effectively identifies spatial correlations by analyzing distances and rela-
tionships among objects30,31. This method has proven invaluable in various downscaling applications, including 
estimations of population32,33,emission34, precipitation35 and temperature36,37. Therefore, it is crucial to further 
integrate kriging interpolation to address the shortcomings of machine learning and improve prediction accuracy.

To address the aforementioned shortcomings, this study introduces a hybrid downscaling model that integrates 
machine learning with kriging interpolation38. This model estimates the electricity consumption of 280 major 
cities from April 2012 to December 2019 at 1 km × 1 km spatial resolution using multi-source data. This research 
highlights three contributions: (1) we created the first fine-grained electricity consumption dataset with monthly 
1 km × 1 km in China; (2) the proposed method can extract complex variable correlations, which improves 
the estimation accuracy at different spatio-temporal scales; (3) kriging interpolation can characterize the spatial 
correlations, and also address the challenge of mismatch between predicted values and statistical data effectively.

Methods
The workflow of high spatio-temporal resolution of electricity data estimation in China is shown in Fig. 1. 
Firstly, we obtained electricity statistics and high spatio-temporal multi-source data as variables from the open 
platform. Secondly, by integrating machine learning with kriging interpolation techniques, we developed a 
“top-down” hybrid model for generating the final results. Finally, we verify the effectiveness of the data through 
spatio-temporal analysis.

Fig. 1  The framework of the study.
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Data collection and processing.  This section summarizes the data products and corresponding preproc-
essing used to estimate high spatio-temporal electricity consumption data. Table 1 provides information on the 
resolution, source, and role of all datasets.

Statistical electricity data.  Total electricity consumption data comes from Statistical Bureaus across China, 
covering 280 major prefecture-level cities (including urban and rural areas). It comprises three types of 
spatio-temporal resolutions. Firstly, annual electricity data at the prefecture-level city, achieving a coverage rate 
of nearly 95%, with missing values filled in by linear interpolation. The second and third datasets are monthly 
electricity consumption for prefecture-level cities and annual data for counties, respectively, providing more 
detailed spatial or temporal resolution. Only approximately 1,500 and 2,000 records were obtained due to data 
availability limitations.

Multi-source high spatio-temporal data.  Previous studies usually focus on the effect of a single data (e.g., night-
time lights19) on electricity consumption, ignoring the integration of various factors. To accurately estimate 
electricity consumption on a fine scale, we have incorporated seven high spatio-temporal resolution variables: 
nighttime lights, average temperature, CO2, population distribution density, GDP, building height, and building 
surface. These variables characterize the urban economic development, material stock and technological pro-
gress in multiple dimensions. They have demonstrated strong correlations with electricity data and are drivers 
for accurately capturing electricity consumption patterns39–42. In particular, the collected building height and 
surface data span over five years. To address temporal inconsistencies, we use these data to represent two adja-
cent years. For example, 2020 building datasets were used for both 2018 and 2019. This approach accounts for 
building change cycles, minimizing temporal variation impacts and ensuring accurate feature representation43. 
Due to the inconsistencies in coordinate systems and resolutions among different data sources, we converted all 
the data to the Albers equal-area coordinate system and resampled them to 1 km resolution to facilitate attribute 
extraction and model training.

Property calculations.  Considering that electricity consumption is generated almost from built-up land, 
this study filters out built-up areas based on land use data44 to reduce the estimation error. Additionally, given 
the significant quantitative differences in electricity consumption at different spatio-temporal scales, this study 
takes Cheng et al.38 to use electricity intensity (monthly 1 km electricity consumption) as the dependent variable. 
For example, in the annual data electricity dataset, the electricity consumption is divided by the built-up area and 
twelve months. The same approach is applied to the dependent variable. In this way, all variables are in a uniform 
feature space, ensuring that model training is efficient and robust.

Constructing fine spatial and temporal scale methods for electricity estimation.  This section 
introduces a hybrid downscaling model for electricity estimation, combining an improved XGBoost (eXtreme 
Gradient Boosting) algorithm with kriging interpolation (see Supplementary Figure S1 for details). We utilize 
processed electricity data as the dependent variable and multi-source spatio-temporal data as independent var-
iables. The XGBoost model, coupled with incremental learning, is employed to extract features across various 
spatio-temporal scales for training. Subsequently, the output grid results are refined using kriging interpolation 
to capture geographic autocorrelation features and perform corrections, resulting in high-resolution electricity 
data products.

Estimation model of electricity consumption.  The low resolution of annual electricity data may lead to substan-
tial estimation errors when relying solely on these data for model training. Therefore, we employ finer-grained 
electricity data combined with incremental learning approach to progressively process the data streams in order 
to merge, refine and enhance the accumulated information45. This approach enables the model to comprehen-
sively reveal electricity consumption patterns at different spatio-temporal scales.

Dataset Temporal resolution Spatial resolution Description

Annual city electricity Annual City Electricity consumption at multiple spatio-temporal scales, 
including urban and rural areas (data from local statistical 
offices).

Annual county electricity Annual County

Monthly city electricity Monthly City

Nighttime lights Monthly 500 m Reflects human activity on the surface, most notably human 
lighting at night (https://eogdata.mines.edu/products/vnl/).

Temperature Monthly 1 km Average ambient temperature (Peng et al.53).

CO2 Monthly 1 km Open-source data inventory for anthropogenic CO2 (https://
odiac.org/).

Population Annual 100 m Population distribution (http://www.worldpop.org/).

GDP Annual 1 km Economic development of the region (Chen et al.54).

Building height 2010, 2015, 2020 500 m The distribution of the building heights (https://ghsl.jrc.
ec.europa.eu/).

Building surface 2010, 2015, 2020 500 m The distribution of built-up surfaces (https://ghsl.jrc.
ec.europa.eu/).

Table 1.  Information on datasets for high spatio-temporal electricity estimation.
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Specifically, the first step is to build a base model using XGBoost and train it using annual city electricity data. 
The XGBoost is a gradient boosting tree model that integrates multiple weak classifiers, and improves model gener-
alization performance by preventing overfitting through regularization. The second step is spatial feature incremen-
tal learning (XGBoost-SIL). We maintain the trained model’s tree node weights and add several trees to fine-tune 
the model by incorporating annual county data. The same approach was applied in the third step and monthly 
city data is further added for temporal incremental learning (XGBoost-STIL). To analyze the effectiveness of 
spatio-temporal incremental learning of the method, 20% of the annual county data (spatial-test data) and monthly 
city data (temporal-test data) are selected as test datasets for the three models. The study uses parametric grid search 
and five-fold cross-validation to improve the model generalization performance and stability in the training process.

As the kriging interpolation method is only capable of spatial interpolation, is not able to disaggregate the 
annual data into monthly data. Therefore, this study used the above model to generate monthly county electric-
ity density data as an intermediate product. This dataset is further adjusted by dasymetric mapping46 to be used 
as baseline dataset for subsequent area-to-point kriging interpolation.

Electricity correction and mapping.  Machine learning methods excel at capturing nonlinear relationships 
between variables but fall short in capturing the geographical spatial correlations. We used kriging interpolation 
to fill this gap. Specifically, area-to-point kriging is a modification of ordinary kriging that allows for low to high 
resolution redistribution47. This ensures the consistency of residuals across all grids within the same area. The 
residual for each grid is determined through a weighted linear combination of nearby coarse areas, following the 
unbiased weighting constraint.
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where �ep signifies the estimated residual for the grid, K denotes the number of considered counties, e v( )k  is the 
known area residual for county vk, and λ v( )k  represents the weight allocated to each county, calculated as follows: 
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where C v v( , )k l  indicates the covariance between areas vk and vI, while C p v( , )k  describes the covariance 
between the target grid and the county. The covariance is derived from coarse to fine resolution by deconvolu-
tion. Deconvolution is generating variograms from discrete points of input area data by minimizing the vario-
gram difference between the theoretical regularization and the input area data. Post-correction with kriging 
interpolation reduces errors by ensuring that aggregate of estimated results for grids within county matches the 
total electricity consumption.

Accuracy assessment.  The coefficient of determination (R2), the root mean square error (RMSE) and the 
spatio-temporal coefficient (FI) to evaluate the model performance by calculating the error between the pre-
dicted values (yi�) and true values (yi). The coefficient (R) is applied to data correlation analysis. FI drawing inspi-
ration from the F1-score, make R2 and RMSE comprehensive to assess the model’s validity across temporal-test 
data (TD) and spatial-test data (SD): 
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where I is the R2 or RMSE value. The final electricity consumption data are compared with related datasets 
to validate accuracy. Given the unavailability of data on the same scale, the study use national monthly data 
on total, residential, and industrial electricity consumption from statistical yearbooks for quantitative verifi-
cation. Additionally, representative cities from diverse geographic locations–Beijing (North), Shanghai (East), 
Shenzhen (South), Chengdu (West), and Wuhan (Center)–are chosen for spatial comparison analysis with 
annual grid electricity data (AGED) created by Chen et al.22.

Data Records
The study estimated high-resolution total electricity consumption data for 280 major Chinese cities based on 
multi-source data availability, which account for 90.6% of China’s electricity consumption (https://www.stats.
gov.cn/). The dataset is stored in Geotiff (.tif) format in the folder “China_1km_Ele_201204_201912.zip” and 
spatially projected using the Albers equal area method. The folder contains 93 .tif files, each labeled with the 
year and month, describing the monthly electricity consumption in China. Cities details are also provided 
in the folder in .csv format. The dataset48 is publicly available for free on Figshare (https://doi.org/10.6084/
m9.figshare.25398559.v1).

Technical Validation
The technical validation of this study encompasses three main parts: (1) analysis of the correlation between 
independent and dependent variables ; (2) assessment of the model’s performance; and (3) comparative analysis 
between our dataset and existing related datasets; (4) analysis of the spatio-temporal patterns of high-resolution 
electricity consumption in China.
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Variable correlation analysis.  Firstly, the correlation between the independent variables and electricity 
consumption is analyzed to provide a solid foundation for accurate estimation of electricity consumption. As 
shown in Fig. 2, the results indicated that all independent variables have statistically significant correlations with 
the dependent variable, with p-values less than 0.001 and an average correlation coefficient of 0.52. Building 
height (0.65) and nighttime lights (0.64) demonstrated the strongest correlations with electricity consumption, 
underscoring the critical role of urbanization and economic activities in electricity demand. The correlation coef-
ficients for GDP, POP, building surface, and CO2 fall within the range of 0.45 to 0.6, signifying the considerable 
influence of economic development, demographics, urban configuration, and environmental factors on the pat-
terns of electricity consumption. Although the correlation between temperature and electricity consumption was 
lower (0.26) than others, the control variable experiments (Supplementary Table S1) have verified that temper-
ature can further improve accuracy, which may be attributed to the effect of temperature in specific events such 
as summer cooling. Furthermore, controlled variable experiments were conducted to verify the validity of each 
variable, as detailed in the Supplementary Information.

Model performance analysis.  Table 2 shows the performance of the models based on machine learning 
and incremental learning in this study. The baseline model XGBoost achieved R2 of 0.678 and RMSE of 239.561 
on the spatial dataset, and R2 of 0.706 and RMSE of 137.072 on the temporal dataset. Additionally, the FR2 and 
FRMSE were 0.690 and 174.371, respectively. After integrating spatial incremental learning (XGBoost-SIL), the 
performance of the spatial dataset is significantly improved with R2 and FR2 increasing to 0.895 and 0.763, while 
FRMSE decreases to 77.909. Based on this, the XGBoost-STIL model performance is optimized by further integrat-
ing temporal incremental learning, both datasets improved the R2 to above 0.9, while the RMSE was reduced to 
around 60. The comprehensive enhancement is further demonstrated by FR2 of 0.911 and FRMSE of 60.084, high-
lighting the model’s improved ability to accurately capture complex electricity consumption patterns across 
diverse datasets. These improvements underscore the significant impact of integrating spatial and temporal 
incremental learning, offering a robust framework that outperforms traditional methodologies.

Dataset validation.  Further validation and comparisons were conducted using official statistics and exist-
ing datasets from quantitative and qualitative perspectives, respectively. In the absence of electricity data at same 

Fig. 2  Correlation analysis of electricity consumption with (a) Building height, (b) Building surface, (c) GDP, 
(d) POP, (e) Temperature, (f) Nighttime lights, and (g) CO2.

Method RSD
2 RTD

2 F 2R RMSESD RMSETD FRMSE

XGBoost 0.678 0.706 0.690 239.561 137.072 174.371

XGBoost-SIL 0.895 0.667 0.763 54.777 134.864 77.909

XGBoost-STIL 0.905 0.919 0.911 57.863 62.484 60.084

Table 2.  Performance of temporal-test dataset (TD) and spatial-test dataset (SD) in different methods 
(average results of five-fold cross-validation).
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resolutions, we used the total, residential and industrial electricity consumption of the country at monthly peri-
ods for a quantitative correlation analysis. Subsequently, we conducted a comparative validation with the AGED 
to evaluate our dataset’s reliability. Fig. 3 shows the correlation of our results with official statistics for validation. 
The correlation is 0.89 for total electricity consumption, 0.82 for industrial electricity consumption, and 0.93 for 
residential electricity consumption, with all p-values less than 0.001. These results confirm the model’s effective-
ness in accurately reflecting actual electricity consumption patterns across different sectors. Such statistically sig-
nificant correlations affirm the robustness of our dataset when compared with established benchmarks, providing 
a solid foundation for its application in energy research and policy development.

We further compared with the AGED in five large cities in different regions by incorporating land use 
data49. As shown in Fig. 4, we observed that AGED displayed a flat distribution, failing to distinguish ade-
quately between consumption patterns across different regions. A critical shortfall of their dataset is the ina-
bility to differentiate between built-up and non-built-up areas, mistakenly attributing electricity demand to 
non-built-up areas like vegetation and water bodies. In addition, their methodology lacks correction in con-
junction with actual official statistics, which would lead to errors. In contrast, our data can effectively capture 

Fig. 3  Correlation analysis of downscaling results with official statistics on (a) total electricity consumption, 
(b) industrial electricity consumption, and (c) residential electricity consumption.

Fig. 4  Distribution patterns of electricity consumption from this study and AGED in different urban land use: 
Beijing (China’s Capital, Northern), Shanghai (International economic center, Eastern), Shenzhen (China’s 
first special economic zone, Southern), Wuhan (Central Transportation Hub) and Chengdu (Western China’s 
leading city).
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the electricity consumption patterns of different land use types, and avoid incorrectly estimating electricity use 
on non-built-up zones. By incorporating kriging interpolation, our method corrects estimations, and capture 
spatial heterogeneity across high-resolution grids and ensuring our electricity results are precise.

This study also reveals the diversity of electricity consumption patterns in various functional zones 
(e.g., residential, industrial, and commercial zones) within the city. Take shanghai as an example, which has 
the highest China’s GDP in 2019. The high electricity demand areas are mainly located in downtown Shanghai, 
which includes the city’s central business district (CBD) and various commercial centers. The prosperity of 
these areas directly influences their substantial electricity demands. Similarly, Shenzhen, known for its high-tech 
industries, experiences uniformly high levels of electricity consumption across the city. This is particularly 
pronounced in industrial zones and coastal logistics hubs, reflecting the city’s vibrant industrial production 
and international trade activities. The areas in Wuhan with high electricity demand are mainly found along 
the Yangtze River, which is the central hub of the city with clusters of Grade A office buildings. There is also 
high electricity consumption in the northwest, primarily driven by the airport and industrial areas. These 
high-resolution analyses of electricity consumption patterns provide an insight into urban energy consumption 
disparities, which can help optimize the allocation of energy resources.

Spatio-temporal patterns of electricity consumption in China.  In this study, we estimated the elec-
tricity consumption of 1 km × 1 km grid from April 2012 to December 2019. December 2019 was chosen to 
visualize high-resolution electricity distribution patterns in China (Fig. 5). The highly concentrated pattern of 
electricity consumption in the North China Plain reflects a dense population with a thriving service and manu-
facturing industries. Northeastern China, despite economic restructuring, shows a medium density of hotspots as 
a traditional industrial area. The central and southern regions have a dispersed pattern of electricity consumption 
due to terrain.

Additionally, the results also show that high electricity consumption patterns are concentrated in the 
Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) urban agglomerations. The 
electricity demand in these areas not only reflects their advanced levels of industrialization and urbanization but 
also their pivotal role in the national economy. The BTH as a hub of political and cultural significance in China, 
with key industries such as government services, finance, and information technology creating high-energy con-
sumption patterns. The YRD and the PRD, as the centers of China’s manufacturing and export sectors, have high 
electricity consumption pattern, highlighting the concentration of industrial activity and substantial energy needs.

Fig. 5  December 2019 distribution patterns of electricity consumption in China’s 1 km (a) and typical urban 
agglomerations: (b) Beijing-Tianjin-Hebei, (c) Pearl River Delta, and (d) Yangtze River Delta.

https://doi.org/10.1038/s41597-024-03684-4
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In terms of temporal dynamics, our meticulous monthly data analysis has captured the seasonal fluctuations 
and trend variations in electricity consumption across the three urban agglomerations, as shown in Fig. 6. BTH 
and YRD, with an increase from May to October and a subsequent decrease, may reflect the impact of climatic 
variations on electricity demand. In contrast, the PRD demonstrates a stable monthly electricity consumption 
trend, a discrepancy that may be attributed to the distinct industrial structures of each region. Temporal patterns 
of electricity consumption were further analyzed with land use data. Industrial areas recorded the highest pro-
portion of electricity consumption, accounting for 43.2%, indicating that the industrial production has a high 
demand for electricity throughout the year. In particular, residential electricity consumption shows seasonal 
variations, especially during the summer peak season. Commercial and transport facility areas have relatively 
low electricity throughout the year and have no significant seasonal fluctuations.

This study creates a high spatio-temporal resolution electricity data for China, effectively filling an important 
data gap. The dataset reveals the intricate dynamics of electricity consumption, providing a reliable data sup-
port for sustainable development research. Future studies can use this data to explore diverse energy scenarios, 
optimize prediction models, and formulate strategies to shift the world toward a more sustainable and efficient 
energy future.

Uncertainties and limitations.  There are several aspects of uncertainties in this study. Firstly, we mainly 
use socio-economic and environmental variables to estimate electricity consumption, without fully considering 
geographic factors. This may limit the model’s ability to comprehensively capture the electricity consumption 
patterns in diverse regions, such as the differences of electricity consumption in southern and northern China due 
to heating and cooling demands. Northern cities have higher heating demands in winter, while southern cities 
have higher cooling demands in summer50. Although our model considers temperature data, it cannot directly 
reflect these seasonal differences. Future study should consider more geography-related variables, such as Heating 
Degree Days (HDD) and Cooling Degree Days (CDD)51. In addition, regional modeling can be performed based 
on climate zones to reduce geographic uncertainty and improve model accuracy.

Fig. 6  Monthly electricity consumption in the three urban agglomerations in 2019, as well as details in various 
land use types. (a) represents the monthly electricity consumption of the three urban agglomerations. The 
YRD’s electricity consumption outstrips that of the PRD and BTH, a trend driven by its superior GDP of 29.03 
trillion yuan, driven by Shanghai and three prosperous provinces, compared to the PRD’s 7.8 trillion yuan and 
BTH’s 6.9 trillion yuan. (b,d) Represent the monthly electricity consumption of the three urban agglomerations 
under different land use types in streamgraph.

https://doi.org/10.1038/s41597-024-03684-4
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The input dataset uncertainty also challenged this study. Although we considered variables with full-coverage 
and availability as much as possible, there are also some relevant data not included. For example, we combined 
land use data in analysis but without integrating it into the downscaling model, which could improve the results52. 
Energy prices and types should also be considered. Moreover, the spatio-temporal differences in the original var-
iables (e.g., the GHSL data spans 5 years) may affect the results. However, the unavailability of spatio-temporal 
datasets limits the integration of these data in this study. Currently, our dataset covers 2012 to 2019 at the 1 km × 
1 km scale. In the future, we will continue to focus on the availability of relevant data, optimize our approach by 
incorporating more valuable data and dynamically update the spatio-temporal scales of the dataset.

Code availability
The software used to create the dataset were ArcGIS (10.2), Python 3.8, and R 4.3.2. The code is available on 
GitHub (https://github.com/kkxiaoqin/electricity_downscaling).
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