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. This paper describes a two-year high-fidelity dataset for an ultra-low energy office building and living

. laboratory called HouseZero®. The building integrates multiple low-energy technologies, such as
natural ventilation with automatic windows, ground source heat pump, and thermally activated
building systems. The building’s performance is continuously monitored with an extensive sensor
network. The dataset consists of breakdown energy end uses, photovoltaic (PV) production, zone-
level indoor environment including indoor air temperature, CO, concentration, and relative humidity,

: micro-climatical conditions, building facade temperature, and detailed system operations including

. zone-level BTU meter, valve status, slab temperature, window/skylight opening status, heat pump, and

geothermal well operations. The data can be used to support data analytics of ultra-low-energy building

. operations, and data-driven modeling of low-energy building systems.

: Background & Summary

. The building sector, including residential and commercial buildings, accounts for approximately one-third of
. global energy consumption and carbon dioxide (CO,) emissions'. To improve the energy efficiency of building
. operations, data-driven approaches have been widely used for building load forecasting?, occupant behavior
. modeling’, machine-learning based control of building systems*, building analytics’, and energy manage-
. ment®. To support the development of the data-driven approaches, high-fidelity data with detailed building
. operational information becomes essential.

: With the equipment of building management systems (BMS) and smart meters in buildings, there are vari-
: ous open-source datasets available with different levels of fidelity. Most datasets are focused on building energy
: consumption® 2 Several datasets have been released with a focus on occupancy data'*~'%. More comprehensive
. datasets have also been proposed that consist of energy consumption, indoor environment, occupancy, weather
. conditions, and HVAC operations!’~'. However, very limited number of datasets are reported for ultra-low
. energy buildings with low-energy and passive technologies, such as natural ventilation, ground source heat
. pumps, and thermally active building systems (TABS), which play a crucial role in achieving the carbon-neutral
- goal for the building sector. Agee, Nikdel and Roberts*>*! proposed a dataset for a zero-energy building that
. consists of energy uses, photovoltaic (PV) production, and building air leakage data, but doesn’t include detailed
. heating, ventilation, and air conditioning (HVAC) system operational data. Schweiker, Kleber and Wagner?>?*
* introduced a dataset for a naturally ventilated office building. However, the operation status of the manually
. operated windows is recorded as closed or open without specific information about the window opening per-
: centage, which may be required to develop natural ventilation prediction and smart window controls. Therefore,
© adataset containing detailed system operational information of ultra-low energy buildings with low-energy and
: passive technologies is needed.
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Sensors Methods
Air temperature Absolute Difference/Repetition
Relative humidity Absolute Difference/Repetition
Weather Wind speed Absolute Difference/Repetition
Wind direction Absolute Difference/Repetition
Rain Absolute Difference/Repetition
Solar radiation Absolute Difference/Repetition
Building fagade Fagade temperature Absolute Difference/Repetition
Heating/ Cooling Z-score
Domestic Hot Water Z-score
Lighting Z-score
Load Plug Z-score
IT Z-score
Control Z-score
Others Z-score
Air temperature Absolute Difference/Mahalanobis distance/Repetition
Indoor sensors Relative humidity Absolute Difference/Z-score/Repetition
CO, concentration Absolute Difference/DBSCAN/Repetition
Slab temperature Absolute Difference/Mahalanobis distance/Repetition
BTU meters Z-score/Mahalanobis distance
Sensors for systems | Window openings Absolute Difference
Valve status Absolute Difference

Table 1. Summary of abnormality detection and filtering methods for different sensors.

This paper describes a high-fidelity dataset which provides granular insights into the performance and oper-
ations of an ultra-low energy building. With its intricate sensor network, the building captures diverse perfor-
mance parameters as listed in Table 3. The dataset includes the following unique aspects compared to existing
datasets in this area:

« It provides data of integrated low-energy building systems, such as natural ventilation with automatic win-
dows combined with geothermal powered TABS for heating and cooling, automatic operable skylights, and
PV systems. The data of such a low-energy naturally ventilated building combined with geo-powered TABS
has not been reported in existing datasets to our best knowledge.

o It provides data from an extensive sensor network, including not only energy uses and indoor environment
data as reported in existing datasets, but also detailed system operational data. Examples include window
openings, temperature and flowrate of both source side and load side water loops of the heat pump, as well
as outdoor sensors, such as localized weather stations and building fagade temperatures that provide the
boundaries of the microclimate.

« It provides data of zone-level BT'U meters for the TABS that was rarely reported in existing datasets, which
helps understand the zone-level thermal load and detailed operations, e.g., water temperature, flowrate and
valve status, of the TABS for each zone in response to the disturbances.

In summary, this dataset provides high-fidelity data regarding micro-climatic conditions, fagade temper-
ature, zone-level TABS, and thermal information with loads for a naturally ventilated building that utilizes
geothermal heating and cooling. With this dataset, the users will be able to have a better understanding of
the operations of such integrated low-energy and passive building technologies in a real building and thereby
develop advanced methods/algorithms to better design and operate such systems. For example, similar to the
analysis in®, the user can investigate the operational performance of the coupled NV and TABS and identify
operation issues and potential improvement strategies, which may provide valuable information for researchers
or operators of other similar buildings.

Methods
The building called HouseZero® (See Fig. 1) was retrofitted from a pre-1940s house into an office building and
living-laboratory that functions as a prototype for an ultra-efficiency building. It has a total floor area of 356 m?.
HouseZero® consists of four floors: basement (level 0), first floor (level 1), second floor (level 2), and third
floor (level 3), and all zones are identified in Fig. 2. The basement is located at the underground lower level
and has a large conference room, a server room, and a kitchenette. The first floor has direct access to the main
entrance with semi-open spaces, as well as an open lounge which is designed for five occupants. The second
floor is an open workspace, designed for 16 occupants. Lastly, the third floor is connected to the open lounge,
with one laboratory (‘Live Lab’) and other workspaces designed for two occupants. The ‘Live Lab’ is designed to
conduct room-scale experiments with functionality that represents the systems and operation of the building.
In addition, it has the capability for experimentation with different fagade systems, as the entire window system
is designed to be removed and replaced with other experimental systems.
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Fig. 2 Layout of each floor and thermal zones.

The building integrates multiple low-energy technologies, including natural ventilation with automatic win-
dows and operable skylights, an automatic light system, TABS, a heat pump, a geothermal system, solar PV, and
a hot water system, as well as a sensor network and advanced controls®*. Figure 3 describes the system configura-
tions at HouseZero®. For a detailed description of the network, systems and controls, please refer to”%%,

The workflow of data collection and processing is shown in Fig. 4. HouseZero® has dedicated Building
Automation System (BAS) server networks for controls and performance optimization. The raw dataset was first
downloaded from the BAS servers and then processed with four steps.

The first step is outlier filtering. Outliers were identified using four methods: Absolute Difference®,
Z-score*®?”, DBSCAN and Mahalanobis distance?. Identifying values with high absolute difference from
preceding data points helps pinpoint distinct peaks in the initial dataset. Z-score identifies abnormal data; points
with a Z-score exceeding a certain threshold (typically, standard deviation = 3) were excluded. DBSCAN iden-
tifies dense clusters by grouping data points that are closely packed together and labels those not belonging to a
cluster with at least 15 neighbors as outliers. The Mahalanobis distance measures a data point’s distance from the
distribution’s center. Points with a distance exceeding a certain limit are deemed outliers. This limit is derived
from the Chi-squared distribution, considering the dataset’s significance level (0.05 - 0.01) and variable count.
This method is especially effective for datasets with correlated variables, and thus applied to zone temperature,
slab temperature, and other BTU-related data.

The second step is data aggregation. This step is performed to resample data to hourly intervals for several
reasons. The main reason is that, in practice and research studies, hourly interval data is often used, such as
typical meteorological year weather files and operational data, for the building energy simulation. Moreover, the
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size of the dataset is reasonable and easier to utilize with hourly intervals. However, it is noteworthy that this may
lose the fidelity of short-term control dynamics, such as the winter pulse ventilation that occurred in an hourly
basis with a 30 seconds duration of window opening.

The third step is data imputation. During data resampling to hourly intervals, imputation with a mean fill tech-
nique is employed to handle short-term missing data such as removed values for outliers, and enable the completion
of the dataset. This technique involves identifying missing intervals in the data and calculating the average between
the last non-missing value before the gap and the first non-missing value following the gap. This calculated average is
then used to fill the missing values. For the long-term missing data when the missing period is longer than a thresh-
old, the values of those data points are left blank without imputation in the dataset and the missing data periods are
documented in the data report. The thresholds to identify the long-term missing data are different for different sen-
sor data, which can be found in detail in the data processing Python code provided in the Section “Code Availability”

Finally, repetition filtering eliminates values in the dataset when they appear consecutively repeated over a set
number of hours, based on thresholds tailored to assumptions about sensor errors and data characteristics. Such
repetition is assumed to indicate a sensor malfunction or servers offline, which was recorded as missing data,
ensuring data integrity. The repetition filtering was conducted at the last step instead of the first step to avoid the
filtered repetition data points being filled again in the third step. Table 1 summarizes all of the methodologies for
different sensor data described in this section.
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Folder Subfolder | File Column Description Unit

Air temperature, Relative humidity, Wind speed,

Local_weather_hourly Wind direction, Rain, Solar radiation

Outdoor Sensors

Facade_temp_houtly f:ggs:s ;emperature - High, mid, low location (9 oC
Zone_temp_hourly (210711: oﬁz St)e mperature °C
Slab_temp_hourly (S;?)bzfl?zf)e rature °C

Indoor Sensors -
CO, concentration

CO,_hourly (15 zones) ppm
Year 1: June | RH_hourly ﬁeslaztgleeg)u midity %
2022 - May
2023 Breakdown loads - Heat pump, Heat pump Electric,
Year 2: June Cooling, DHW (Solar hot water/ Electric hot
2023 - May water), Lighting, Controls, Others (Exhaust fan/
2024 Load_hourly Elevator/ Elevator light/Fire alarm/Sump pump/ kwh
Battery cabinet/Solar rapid shutdown), Plug load
(Basement/1st/2nd/3rd) and IT (18 sensors)
Flowrate, Supply temperature, Return temperature,
Sensors for BTU_GEO_hourly Energy (calculated) °C, GPM, BTUs
Systems (3 zones for Geothermal 8 zones for Tabs)

8 zones

BTU_TABS_hourly °C, GPM, BTUs

Window openings %

Window_opening_hourly (33 windows)

Valve status

Zone_valve_ hourly %

(19 valves)
Table 2. Folder Structure of the Dataset.
Number of Missing data (%)
Sensors/Meters Sensors/Meters | Year1 | Year 2
Air temperature 1 0% 0%
Relative humidity 1 0% 0%
Wind speed 2 0% 0%
Localized weather stations
Outdoor sensors Wind direction 2 0% 0%
Rain 1 0% 1.02%
Solar radiation 1 0% 0%
Building fagade Fagade temperature 9 6.37% | 12.73%
Air temperature 17 6.92% |0.19%
Indoor environment Relative humidity 15 1.95% | 0%
Indoor sensors
CO, concentration 15 2.04% | 0%
Building structure Slab temperature 20 3.13% | 0.57%
PV production 2 1.96% | 0%
Breakdown loads: Heat pump, Heat pump Electric, Cooling, Domestic hot
water (Solar hot water/ Electric hot water), Emergency Lighting, Lighting, 19 0% 0%
Meters Controls, Others (Exhaust fan/ Elevator/ Fire alarm/Sump pump/ Battery ? 0
cabinet/Solar rapid shutdown), Plug load (Basement/1*!/2"%/3rd) and IT
Net meter 1 0% 0%
Sensors for Import and export (from Net meter) — 0% 0%
systems Flowrate 10 0% 0%
Supply water temperature 10 0% 0%
BTU meters PPy P
Return water temperature 10 0% 0%
Energy (calculated) — 0% 0%
Window openings 34 0.06% | 0%
System status
Valve status 19 0.39% | 0%

Table 3. Summary of released data and missing data percentages.

As shown in Table 2, sensor data is organized within the database into three main categories: outdoor sensors,
indoor sensors, and sensors for systems, each tracking various environmental and system-related parameters.
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Fig. 5 Locations of the building facade temperature sensors.

Starting Date | Ending Date | Issues

07/02/2022 07/03/2022 PV meter 2 connection issue

07/19/2022 07/21/2022 PV meter 1 and meter 2 connection issues
08/06/2022 08/07/2022 PV meter 2 connection issue

09/29/2022 09/30/2022 PV meter 2 connection issue

01/16/2023 01/16/2023 PV snow covering

02/07/2023 03/11/2023 PV meter #2 was off. To optimize the system for winter operations, the system was changed to one inverter.
3/14/2023 8/16/2023 The solar hot water was offline.

The solar hot water was temporarily powered from the basement circuit, this led to 3 kWh total increase on

8/16/2023 91512023 the plug loads which was not included in the basement plug loads.

12/04/2023 03/15/2024 PV meter #2 was off. To optimize the system for winter operations, the system was changed to one inverter.

Multiple missing periods, refer

to the report Fagade sensor issue

Table 4. Summary of the issues causing missing data.

Outdoor sensors provide hourly data on local weather conditions and fagade temperatures, while indoor sensors
measure zone and slab temperatures, CO, concentrations, and relative humidity across different zones. Sensors
for systems offer detailed insights into the building systems operations, including heat pumps, domestic hot
water systems, lighting, and other loads, as well as operational data from geothermal systems, Thermal Active
Building Systems (TABS), window openings, and valve statuses.

To ensure transparency and reproducibility, the missing periods were documented in a data report. The
missing periods were identified during data processing, which may be due to sensor malfunctions, server offline
or other technical issues. The report included the start and end dates of each missing period, as well as the names
of data points. This allows for greater transparency and ensures that the processed data can be used reliably and
accurately in future analysis.

Data Records
The time-series data with one-hour intervals are in CSV format. The data is hosted at figShare*. A data report
documenting the detailed description of the dataset is available in the same repository®.

This section provides a description of the data and special events that occurred within the data collection
period. Table 3 includes all available sensors and missing data percentages. The available periods for the data
collected are from June 2022 to the end of May 2024. (Year 1: June 2022 to May 2023; Year 2: June 2023 to May
2024). The last two columns indicate the percentage of data missing across Year 1 and Year 2 for different sensor
data. In this paper, the outliers and missing data are reported in a separate file.

While the building has more than 300 sensors and meters, this paper releases data from 189 sensors and meters
that are closely related to the main operational performance of the building. Outdoor sensors include two localized
weather stations and nine fagade temperature sensors on the building’s fagades (See Fig. 5 for the locations of the
facade temperature sensors). There are two localized weather stations with one installed on the roof of HouseZero®
building and the other installed on the roof of a nearby building. These weather stations independently measure
outdoor weather conditions, and their readings are cross-checked against each other for consistency.

Indoor sensors monitor zone-level air temperature, CO,, and relative humidity, as well as slab tempera-
ture. Sensors for systems are related to operational status of the integrated building systems shown in Fig. 3.
Meters have been installed to monitor all load breakdowns from individual breakers, including PV, loads and
net meters. Multiple meters are installed in the building for cross-validation of the electric loads to enhance
accuracy and ensure data fidelity. For example, in addition to the electrical provider utility meter, a net meter
was installed to validate both the PV production and loads as well as to provide the export and import electrical
data. BTU meters are included for the radiant floor system in each zone, as well as the heat pump and geother-
mal systems. The status of each individual window and valve is also monitored.

Over the course of the data collection period, there were some times when certain meters and sensors had
temporary interruptions and data loss. Table 4 summarizes issues in operation over the two years. This table is
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Fig. 11 Daily pattern of energy rate data from a BT'U meter in a sample winter day.
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Fig. 16 Operation of the TABS in a sample summer day of Zone 23.

derived from the building operation log that provides additional information to help understand the causes of
the missing data. The events that may cause missing data include system updates, snow covering, sensor issues,
server communication issues, database maintenance issues, and other issues as listed in Table 4.

Technical Validation

The datasets ensure completeness by minimizing temporal gaps in the two-year data collection and the neces-
sary sensors are employed to capture critical data of the building such as temperature, weather, system opera-
tions, and window controls.

In this section, examples of data processing results and data samples from different sensors and meters are
presented to demonstrate the data quality and coverage of the dataset. To ensure the validity and soundness of
the dataset, the raw data has been processed using the methods as described in the Methods section. Figures 6-7
show the examples of detection of outliers and data repetition from the raw data, which demonstrate the efficacy
of our data processing methods, underscoring the dataset’s reliability.

The pie charts in Fig. 8 depict the breakdown of energy end uses over the course of two years. The annual
energy consumptions are 38.5 kWh/m? and 36.3 kWh/m? for Years 1 and 2, respectively. In both years, the IT load
emerged as the most dominant, with heating and plug load following suit consistently throughout the two years.

Figures 9 and 10 present the daily load trends observed during sample summer and winter days in Year 1. In
Year 1, the cooling loads were consistently maintained at an average of approximately 0.2 kWh. The largest propor-
tion of the total loads during summer was attributed to IT and plug loads. Meanwhile, cooling, control, and others
exhibited a constant energy demand. During the winter season, heating energy consumption emerged as the
highest-demand load and IT loads represented the second-largest contributor to the total load during winter. The
other loads exhibited stability and remained predominantly similar during both typical summer and winter days.

BTU meters measured the water flowrates (in gallons per minute, GPM), energy rates (in kilo British
Thermal Units per hour, kBTU/h), and supply and return water temperatures. Figure 11 illustrates the energy
rate data from BTU meters in different zones in a sample winter day as an example. The energy rate data reflected
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Fig. 18 Operation of the heat pump in a sample winter day.

the heating or cooling demand of different zones. In winter, the variation of the heating demand depends on the
slab temperature and the slab temperature setpoint.

As shown in Fig. 12, the daily pattern of the indoor CO, concentration exhibits a diurnal cycle with varying
concentration levels throughout the day across multiple data series. For most of the zones, the CO, level rose in
the morning as occupants entered the office, reached peak in the afternoon, and decreased from the evening. The
pattern indicates a potential correlation with daily occupancy profile in the building.

Figure 13 presents the relative humidity (RH, %) across various zones in a sample summer day. The RH
values remained relatively constant, with slight fluctuations during the day. The pattern showed a potential cor-
relation with the occupant schedule.

Figure 14 illustrates the temperature trends and CO, variation with natural ventilation during the passive mode.
The windows were controlled based on indoor and outdoor air temperatures as well as indoor CO, concentration to
maintain the indoor air temperature and CO, concentration within the comfortable range or acceptable level. During
nighttime, the windows were operated for free cooling with night flushing to further improve the energy efficiency.

Figure 15 shows the monthly PV production and solar radiation in Year 1. Overall, the PV production and
solar radiation follow the same trend throughout the year. A new inverter with higher efficiency was installed in
early 2023, which contributed to the improved PV efficiency from March 2023.

Figure 16 shows how TABS operated on a sample summer day. The cold water with an average temperature of
19.6°C drawn from the geothermal well was directly supplied to the building and circulated through the piping
systems in the slab. The mean temperature of the return water that carried the heat away from indoors was about
21.1°C. The slab temperature is slightly lower than the return water temperature. Thus, the indoor temperature
was maintained between 24-26°C.

Figure 17 shows how TABS operated on a sample winter day. The hot water with an average temperature of
26.7°C generated from the ground source heat pump was supplied to the slab-embedded piping systems. The
supply water temperature was controlled as a function of the outdoor temperature. The water returned at a tem-
perature of around 22.7 °C. The slab temperature and indoor temperature remained at approximately 22 °C and
stayed within the comfort zone.
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Figure 18 shows how the heat pump operated on a sample winter day. Detailed operational performance of
the heat pump was monitored, including the power consumption, supply and return water temperature as well
as flowrates for both house side and geo side, which supports the analysis of heat pump operations and develop-
ment of prediction models and advanced controls. Part of the data was illustrated in this figure as an example.

This dataset contributes to the development of sustainable building practices from the following aspects.
Firstly, the dataset provides a building energy benchmark for an ultra-efficient building with integrated
low-energy and passive building technologies. Secondly, the dataset provides a better understanding of the oper-
ations of an ultra-efficient building with integrated natural ventilation and geo-powered TABS systems with
detailed operational data. This may include load shape analysis, energy prediction, system operational pattern
analysis as well as data-driven modeling. In addition, it can also be used for validation of building simulation
models and development of learning-based control algorithms. The operation data of the building demonstrates
the effectiveness of NV combined with TABS for maintaining a comfortable indoor environment while achiev-
ing high energy efficiency, which help promote the wider adoption of such low-energy technologies.

There are some usage restrictions and limitations for the usage of this dataset due to the specific boundaries
of the building. First, the dataset is dependent on the configurations and characteristics, such as occupancy,
design, and envelope/materials, of the subject building. Second, the dataset is dependent on local weather con-
ditions under the 5 A climate zone. Third, the dataset is dependent on sensor settings, such as locations and
resolution/accuracy.

Code availability
The Python code for data processing is available at https://github.com/Harvard-CGBC-at-GSD/HouseZero-two-
year-dataset-June-2022-May-2024-Processing-Code.
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