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A two-year dataset of energy, 
environment, and system 
operations for an ultra-low energy 
office building
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This paper describes a two-year high-fidelity dataset for an ultra-low energy office building and living 
laboratory called HouseZero®. The building integrates multiple low-energy technologies, such as 
natural ventilation with automatic windows, ground source heat pump, and thermally activated 
building systems. The building’s performance is continuously monitored with an extensive sensor 
network. The dataset consists of breakdown energy end uses, photovoltaic (PV) production, zone-
level indoor environment including indoor air temperature, CO2 concentration, and relative humidity, 
micro-climatical conditions, building façade temperature, and detailed system operations including 
zone-level BTU meter, valve status, slab temperature, window/skylight opening status, heat pump, and 
geothermal well operations. The data can be used to support data analytics of ultra-low-energy building 
operations, and data-driven modeling of low-energy building systems.

Background & Summary
The building sector, including residential and commercial buildings, accounts for approximately one-third of 
global energy consumption and carbon dioxide (CO2) emissions1. To improve the energy efficiency of building 
operations, data-driven approaches have been widely used for building load forecasting2, occupant behavior 
modeling3, machine-learning based control of building systems4–6, building analytics7, and energy manage-
ment8. To support the development of the data-driven approaches, high-fidelity data with detailed building 
operational information becomes essential.

With the equipment of building management systems (BMS) and smart meters in buildings, there are vari-
ous open-source datasets available with different levels of fidelity. Most datasets are focused on building energy 
consumption9–12. Several datasets have been released with a focus on occupancy data13–16. More comprehensive 
datasets have also been proposed that consist of energy consumption, indoor environment, occupancy, weather 
conditions, and HVAC operations17–19. However, very limited number of datasets are reported for ultra-low 
energy buildings with low-energy and passive technologies, such as natural ventilation, ground source heat 
pumps, and thermally active building systems (TABS), which play a crucial role in achieving the carbon-neutral 
goal for the building sector. Agee, Nikdel and Roberts20,21 proposed a dataset for a zero-energy building that 
consists of energy uses, photovoltaic (PV) production, and building air leakage data, but doesn’t include detailed 
heating, ventilation, and air conditioning (HVAC) system operational data. Schweiker, Kleber and Wagner22,23 
introduced a dataset for a naturally ventilated office building. However, the operation status of the manually 
operated windows is recorded as closed or open without specific information about the window opening per-
centage, which may be required to develop natural ventilation prediction and smart window controls. Therefore, 
a dataset containing detailed system operational information of ultra-low energy buildings with low-energy and 
passive technologies is needed.
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This paper describes a high-fidelity dataset which provides granular insights into the performance and oper-
ations of an ultra-low energy building. With its intricate sensor network, the building captures diverse perfor-
mance parameters as listed in Table 3. The dataset includes the following unique aspects compared to existing 
datasets in this area:

•	 It provides data of integrated low-energy building systems, such as natural ventilation with automatic win-
dows combined with geothermal powered TABS for heating and cooling, automatic operable skylights, and 
PV systems. The data of such a low-energy naturally ventilated building combined with geo-powered TABS 
has not been reported in existing datasets to our best knowledge.

•	 It provides data from an extensive sensor network, including not only energy uses and indoor environment 
data as reported in existing datasets, but also detailed system operational data. Examples include window 
openings, temperature and flowrate of both source side and load side water loops of the heat pump, as well 
as outdoor sensors, such as localized weather stations and building façade temperatures that provide the 
boundaries of the microclimate.

•	 It provides data of zone-level BTU meters for the TABS that was rarely reported in existing datasets, which 
helps understand the zone-level thermal load and detailed operations, e.g., water temperature, flowrate and 
valve status, of the TABS for each zone in response to the disturbances.

In summary, this dataset provides high-fidelity data regarding micro-climatic conditions, façade temper-
ature, zone-level TABS, and thermal information with loads for a naturally ventilated building that utilizes 
geothermal heating and cooling. With this dataset, the users will be able to have a better understanding of 
the operations of such integrated low-energy and passive building technologies in a real building and thereby 
develop advanced methods/algorithms to better design and operate such systems. For example, similar to the 
analysis in6, the user can investigate the operational performance of the coupled NV and TABS and identify 
operation issues and potential improvement strategies, which may provide valuable information for researchers 
or operators of other similar buildings.

Methods
The building called HouseZero® (See Fig. 1) was retrofitted from a pre-1940s house into an office building and 
living-laboratory that functions as a prototype for an ultra-efficiency building. It has a total floor area of 356 m2.

HouseZero® consists of four floors: basement (level 0), first floor (level 1), second floor (level 2), and third 
floor (level 3), and all zones are identified in Fig. 2. The basement is located at the underground lower level 
and has a large conference room, a server room, and a kitchenette. The first floor has direct access to the main 
entrance with semi-open spaces, as well as an open lounge which is designed for five occupants. The second 
floor is an open workspace, designed for 16 occupants. Lastly, the third floor is connected to the open lounge, 
with one laboratory (‘Live Lab’) and other workspaces designed for two occupants. The ‘Live Lab’ is designed to 
conduct room-scale experiments with functionality that represents the systems and operation of the building. 
In addition, it has the capability for experimentation with different façade systems, as the entire window system 
is designed to be removed and replaced with other experimental systems.

Sensors Methods

Weather

Air temperature Absolute Difference/Repetition

Relative humidity Absolute Difference/Repetition

Wind speed Absolute Difference/Repetition

Wind direction Absolute Difference/Repetition

Rain Absolute Difference/Repetition

Solar radiation Absolute Difference/Repetition

Building façade Façade temperature Absolute Difference/Repetition

Load

Heating/ Cooling Z-score

Domestic Hot Water Z-score

Lighting Z-score

Plug Z-score

IT Z-score

Control Z-score

Others Z-score

Indoor sensors

Air temperature Absolute Difference/Mahalanobis distance/Repetition

Relative humidity Absolute Difference/Z-score/Repetition

CO2 concentration Absolute Difference/DBSCAN/Repetition

Slab temperature Absolute Difference/Mahalanobis distance/Repetition

Sensors for systems

BTU meters Z-score/Mahalanobis distance

Window openings Absolute Difference

Valve status Absolute Difference

Table 1.  Summary of abnormality detection and filtering methods for different sensors.
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The building integrates multiple low-energy technologies, including natural ventilation with automatic win-
dows and operable skylights, an automatic light system, TABS, a heat pump, a geothermal system, solar PV, and 
a hot water system, as well as a sensor network and advanced controls24. Figure 3 describes the system configura-
tions at HouseZero®. For a detailed description of the network, systems and controls, please refer to7,8,24.

The workflow of data collection and processing is shown in Fig. 4. HouseZero® has dedicated Building 
Automation System (BAS) server networks for controls and performance optimization. The raw dataset was first 
downloaded from the BAS servers and then processed with four steps.

The first step is outlier filtering. Outliers were identified using four methods: Absolute Difference25, 
Z-score26,27, DBSCAN and Mahalanobis distance28. Identifying values with high absolute difference from 
preceding data points helps pinpoint distinct peaks in the initial dataset. Z-score identifies abnormal data; points 
with a Z-score exceeding a certain threshold (typically, standard deviation = 3) were excluded. DBSCAN iden-
tifies dense clusters by grouping data points that are closely packed together and labels those not belonging to a 
cluster with at least 15 neighbors as outliers. The Mahalanobis distance measures a data point’s distance from the 
distribution’s center. Points with a distance exceeding a certain limit are deemed outliers. This limit is derived 
from the Chi-squared distribution, considering the dataset’s significance level (0.05 - 0.01) and variable count. 
This method is especially effective for datasets with correlated variables, and thus applied to zone temperature, 
slab temperature, and other BTU-related data.

The second step is data aggregation. This step is performed to resample data to hourly intervals for several 
reasons. The main reason is that, in practice and research studies, hourly interval data is often used, such as 
typical meteorological year weather files and operational data, for the building energy simulation. Moreover, the 

Fig. 1  The office building HouseZero® in Cambridge, Massachusetts, USA.

Fig. 2  Layout of each floor and thermal zones.
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size of the dataset is reasonable and easier to utilize with hourly intervals. However, it is noteworthy that this may 
lose the fidelity of short-term control dynamics, such as the winter pulse ventilation that occurred in an hourly 
basis with a 30 seconds duration of window opening.

The third step is data imputation. During data resampling to hourly intervals, imputation with a mean fill tech-
nique is employed to handle short-term missing data such as removed values for outliers, and enable the completion 
of the dataset. This technique involves identifying missing intervals in the data and calculating the average between 
the last non-missing value before the gap and the first non-missing value following the gap. This calculated average is 
then used to fill the missing values. For the long-term missing data when the missing period is longer than a thresh-
old, the values of those data points are left blank without imputation in the dataset and the missing data periods are 
documented in the data report. The thresholds to identify the long-term missing data are different for different sen-
sor data, which can be found in detail in the data processing Python code provided in the Section “Code Availability”.

Finally, repetition filtering eliminates values in the dataset when they appear consecutively repeated over a set 
number of hours, based on thresholds tailored to assumptions about sensor errors and data characteristics. Such 
repetition is assumed to indicate a sensor malfunction or servers offline, which was recorded as missing data, 
ensuring data integrity. The repetition filtering was conducted at the last step instead of the first step to avoid the 
filtered repetition data points being filled again in the third step. Table 1 summarizes all of the methodologies for 
different sensor data described in this section.

Fig. 3  Schematics of the building systems in HouseZero®.

Fig. 4  Workflow of the data collection and processing.
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As shown in Table 2, sensor data is organized within the database into three main categories: outdoor sensors, 
indoor sensors, and sensors for systems, each tracking various environmental and system-related parameters. 

Folder Subfolder File Column Description Unit

Outdoor Sensors

Year 1: June 
2022 - May 
2023
Year 2: June 
2023 - May 
2024

Local_weather_hourly Air temperature, Relative humidity, Wind speed, 
Wind direction, Rain, Solar radiation —

Facade_temp_hourly Façade temperature - High, mid, low location (9 
sensors) °C

Indoor Sensors

Zone_temp_hourly Zone air temperature
(17 zones) °C

Slab_temp_hourly Slab temperature
(20 zones) °C

CO2_hourly CO2 concentration
(15 zones) ppm

RH_hourly Relative humidity
(15 zones) %

Sensors for 
Systems

Load_hourly

Breakdown loads - Heat pump, Heat pump Electric, 
Cooling, DHW (Solar hot water/ Electric hot 
water), Lighting, Controls, Others (Exhaust fan/ 
Elevator/ Elevator light/Fire alarm/Sump pump/ 
Battery cabinet/Solar rapid shutdown), Plug load 
(Basement/1st/2nd/3rd) and IT (18 sensors)

kWh

BTU_GEO_hourly
Flowrate, Supply temperature, Return temperature, 
Energy (calculated)
(3 zones for Geothermal 8 zones for Tabs)

°C, GPM, BTUs

BTU_TABS_hourly 8 zones
°C, GPM, BTUs

Window_opening_hourly Window openings
(33 windows) %

Zone_valve_ hourly Valve status
(19 valves) %

Table 2.  Folder Structure of the Dataset.

Sensors/Meters
Number of 
Sensors/Meters

Missing data (%)

Year 1 Year 2

Outdoor sensors
Localized weather stations

Air temperature 1 0% 0%

Relative humidity 1 0% 0%

Wind speed 2 0% 0%

Wind direction 2 0% 0%

Rain 1 0% 1.02%

Solar radiation 1 0% 0%

Building façade Façade temperature 9 6.37% 12.73%

Indoor sensors
Indoor environment

Air temperature 17 6.92% 0.19%

Relative humidity 15 1.95% 0%

CO2 concentration 15 2.04% 0%

Building structure Slab temperature 20 3.13% 0.57%

Sensors for 
systems

Meters

PV production 2 1.96% 0%

Breakdown loads: Heat pump, Heat pump Electric, Cooling, Domestic hot 
water (Solar hot water/ Electric hot water), Emergency Lighting, Lighting, 
Controls, Others (Exhaust fan/ Elevator/ Fire alarm/Sump pump/ Battery 
cabinet/Solar rapid shutdown), Plug load (Basement/1st/2nd/3rd) and IT

19 0% 0%

Net meter 1 0% 0%

Import and export (from Net meter) — 0% 0%

BTU meters

Flowrate 10 0% 0%

Supply water temperature 10 0% 0%

Return water temperature 10 0% 0%

Energy (calculated) — 0% 0%

System status
Window openings 34 0.06% 0%

Valve status 19 0.39% 0%

Table 3.  Summary of released data and missing data percentages.
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Outdoor sensors provide hourly data on local weather conditions and façade temperatures, while indoor sensors 
measure zone and slab temperatures, CO2 concentrations, and relative humidity across different zones. Sensors 
for systems offer detailed insights into the building systems operations, including heat pumps, domestic hot 
water systems, lighting, and other loads, as well as operational data from geothermal systems, Thermal Active 
Building Systems (TABS), window openings, and valve statuses.

To ensure transparency and reproducibility, the missing periods were documented in a data report. The 
missing periods were identified during data processing, which may be due to sensor malfunctions, server offline 
or other technical issues. The report included the start and end dates of each missing period, as well as the names 
of data points. This allows for greater transparency and ensures that the processed data can be used reliably and 
accurately in future analysis.

Data Records
The time-series data with one-hour intervals are in CSV format. The data is hosted at figShare29. A data report 
documenting the detailed description of the dataset is available in the same repository29.

This section provides a description of the data and special events that occurred within the data collection 
period. Table 3 includes all available sensors and missing data percentages. The available periods for the data 
collected are from June 2022 to the end of May 2024. (Year 1: June 2022 to May 2023; Year 2: June 2023 to May 
2024). The last two columns indicate the percentage of data missing across Year 1 and Year 2 for different sensor 
data. In this paper, the outliers and missing data are reported in a separate file.

While the building has more than 300 sensors and meters, this paper releases data from 189 sensors and meters 
that are closely related to the main operational performance of the building. Outdoor sensors include two localized 
weather stations and nine façade temperature sensors on the building’s façades (See Fig. 5 for the locations of the 
façade temperature sensors). There are two localized weather stations with one installed on the roof of HouseZero® 
building and the other installed on the roof of a nearby building. These weather stations independently measure 
outdoor weather conditions, and their readings are cross-checked against each other for consistency.

Indoor sensors monitor zone-level air temperature, CO2, and relative humidity, as well as slab tempera-
ture. Sensors for systems are related to operational status of the integrated building systems shown in Fig. 3. 
Meters have been installed to monitor all load breakdowns from individual breakers, including PV, loads and 
net meters. Multiple meters are installed in the building for cross-validation of the electric loads to enhance 
accuracy and ensure data fidelity. For example, in addition to the electrical provider utility meter, a net meter 
was installed to validate both the PV production and loads as well as to provide the export and import electrical 
data. BTU meters are included for the radiant floor system in each zone, as well as the heat pump and geother-
mal systems. The status of each individual window and valve is also monitored.

Over the course of the data collection period, there were some times when certain meters and sensors had 
temporary interruptions and data loss. Table 4 summarizes issues in operation over the two years. This table is 

Fig. 5  Locations of the building façade temperature sensors.

Starting Date Ending Date Issues

07/02/2022 07/03/2022 PV meter 2 connection issue

07/19/2022 07/21/2022 PV meter 1 and meter 2 connection issues

08/06/2022 08/07/2022 PV meter 2 connection issue

09/29/2022 09/30/2022 PV meter 2 connection issue

01/16/2023 01/16/2023 PV snow covering

02/07/2023 03/11/2023 PV meter #2 was off. To optimize the system for winter operations, the system was changed to one inverter.

3/14/2023 8/16/2023 The solar hot water was offline.

8/16/2023 9/5/2023 The solar hot water was temporarily powered from the basement circuit, this led to 3 kWh total increase on 
the plug loads which was not included in the basement plug loads.

12/04/2023 03/15/2024 PV meter #2 was off. To optimize the system for winter operations, the system was changed to one inverter.

Multiple missing periods, refer 
to the report Façade sensor issue

Table 4.  Summary of the issues causing missing data.
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Fig. 6  An example of outlier filtering using Z-score.

Fig. 7  An example of data repetition filtering.

Fig. 8  Pie chart of the breakdown energy end uses for two years.
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Fig. 9  Daily pattern of electricity end uses in a sample summer day.

Fig. 10  Daily pattern of electricity end uses in a sample winter day.

Fig. 11  Daily pattern of energy rate data from a BTU meter in a sample winter day.
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Fig. 12  Daily pattern of the indoor CO2 concentrations in a sample summer day.

Fig. 13  Daily pattern of relative humidity in a sample summer day.

Fig. 14  Indoor temperature and CO2 with natural ventilation in the passive mode.
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derived from the building operation log that provides additional information to help understand the causes of 
the missing data. The events that may cause missing data include system updates, snow covering, sensor issues, 
server communication issues, database maintenance issues, and other issues as listed in Table 4.

Technical Validation
The datasets ensure completeness by minimizing temporal gaps in the two-year data collection and the neces-
sary sensors are employed to capture critical data of the building such as temperature, weather, system opera-
tions, and window controls.

In this section, examples of data processing results and data samples from different sensors and meters are 
presented to demonstrate the data quality and coverage of the dataset. To ensure the validity and soundness of 
the dataset, the raw data has been processed using the methods as described in the Methods section. Figures 6–7 
show the examples of detection of outliers and data repetition from the raw data, which demonstrate the efficacy 
of our data processing methods, underscoring the dataset’s reliability.

The pie charts in Fig. 8 depict the breakdown of energy end uses over the course of two years. The annual 
energy consumptions are 38.5 kWh/m2 and 36.3 kWh/m2 for Years 1 and 2, respectively. In both years, the IT load 
emerged as the most dominant, with heating and plug load following suit consistently throughout the two years.

Figures 9 and 10 present the daily load trends observed during sample summer and winter days in Year 1. In 
Year 1, the cooling loads were consistently maintained at an average of approximately 0.2 kWh. The largest propor-
tion of the total loads during summer was attributed to IT and plug loads. Meanwhile, cooling, control, and others 
exhibited a constant energy demand. During the winter season, heating energy consumption emerged as the 
highest-demand load and IT loads represented the second-largest contributor to the total load during winter. The 
other loads exhibited stability and remained predominantly similar during both typical summer and winter days.

BTU meters measured the water flowrates (in gallons per minute, GPM), energy rates (in kilo British 
Thermal Units per hour, kBTU/h), and supply and return water temperatures. Figure 11 illustrates the energy 
rate data from BTU meters in different zones in a sample winter day as an example. The energy rate data reflected 

Fig. 15  Monthly PV production of Year 1.

Fig. 16  Operation of the TABS in a sample summer day of Zone 23.
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the heating or cooling demand of different zones. In winter, the variation of the heating demand depends on the 
slab temperature and the slab temperature setpoint.

As shown in Fig. 12, the daily pattern of the indoor CO2 concentration exhibits a diurnal cycle with varying 
concentration levels throughout the day across multiple data series. For most of the zones, the CO2 level rose in 
the morning as occupants entered the office, reached peak in the afternoon, and decreased from the evening. The 
pattern indicates a potential correlation with daily occupancy profile in the building.

Figure 13 presents the relative humidity (RH, %) across various zones in a sample summer day. The RH 
values remained relatively constant, with slight fluctuations during the day. The pattern showed a potential cor-
relation with the occupant schedule.

Figure 14 illustrates the temperature trends and CO2 variation with natural ventilation during the passive mode. 
The windows were controlled based on indoor and outdoor air temperatures as well as indoor CO2 concentration to 
maintain the indoor air temperature and CO2 concentration within the comfortable range or acceptable level. During 
nighttime, the windows were operated for free cooling with night flushing to further improve the energy efficiency.

Figure 15 shows the monthly PV production and solar radiation in Year 1. Overall, the PV production and 
solar radiation follow the same trend throughout the year. A new inverter with higher efficiency was installed in 
early 2023, which contributed to the improved PV efficiency from March 2023.

Figure 16 shows how TABS operated on a sample summer day. The cold water with an average temperature of 
19.6 °C drawn from the geothermal well was directly supplied to the building and circulated through the piping 
systems in the slab. The mean temperature of the return water that carried the heat away from indoors was about 
21.1 °C. The slab temperature is slightly lower than the return water temperature. Thus, the indoor temperature 
was maintained between 24–26 °C.

Figure 17 shows how TABS operated on a sample winter day. The hot water with an average temperature of 
26.7 °C generated from the ground source heat pump was supplied to the slab-embedded piping systems. The 
supply water temperature was controlled as a function of the outdoor temperature. The water returned at a tem-
perature of around 22.7 °C. The slab temperature and indoor temperature remained at approximately 22 °C and 
stayed within the comfort zone.

Fig. 17  Operation of the TABS in a sample winter day of Zone 23.

Fig. 18  Operation of the heat pump in a sample winter day.
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Figure 18 shows how the heat pump operated on a sample winter day. Detailed operational performance of 
the heat pump was monitored, including the power consumption, supply and return water temperature as well 
as flowrates for both house side and geo side, which supports the analysis of heat pump operations and develop-
ment of prediction models and advanced controls. Part of the data was illustrated in this figure as an example.

This dataset contributes to the development of sustainable building practices from the following aspects. 
Firstly, the dataset provides a building energy benchmark for an ultra-efficient building with integrated 
low-energy and passive building technologies. Secondly, the dataset provides a better understanding of the oper-
ations of an ultra-efficient building with integrated natural ventilation and geo-powered TABS systems with 
detailed operational data. This may include load shape analysis, energy prediction, system operational pattern 
analysis as well as data-driven modeling. In addition, it can also be used for validation of building simulation 
models and development of learning-based control algorithms. The operation data of the building demonstrates 
the effectiveness of NV combined with TABS for maintaining a comfortable indoor environment while achiev-
ing high energy efficiency, which help promote the wider adoption of such low-energy technologies.

There are some usage restrictions and limitations for the usage of this dataset due to the specific boundaries 
of the building. First, the dataset is dependent on the configurations and characteristics, such as occupancy, 
design, and envelope/materials, of the subject building. Second, the dataset is dependent on local weather con-
ditions under the 5 A climate zone. Third, the dataset is dependent on sensor settings, such as locations and 
resolution/accuracy.

Code availability
The Python code for data processing is available at https://github.com/Harvard-CGBC-at-GSD/HouseZero-two-
year-dataset-June-2022–May-2024-Processing-Code.
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