
1Scientific Data |         (2024) 11:1038  | https://doi.org/10.1038/s41597-024-03867-z

www.nature.com/scientificdata

Mapping 10-m harvested area in 
the major winter wheat-producing 
regions of China from 2018 to 2022
Jinkang Hu1,2,3, Bing Zhang   1,2,3 ✉, Dailiang Peng1,2 ✉, Jianxi Huang   4, Wenjuan Zhang5, 
Bin Zhao6, Yong Li7, Enhui Cheng1,2,3, Zihang Lou1,2,3, Shengwei Liu8, Songlin Yang1,2,3, 
Yunlong Tan9 & Yulong Lv1,2,3

Winter wheat constitutes approximately 20% of China’s total cereal production. However, calculations 
of total production based on multiplying the planted area by the yield have tended to produce 
overestimates. In this study, we generated sample points from existing winter wheat maps and 
obtained samples for different years using a temporal migration method. Random forest classifiers were 
then constructed using optimized features extracted from spectral and phenological characteristics 
and elevation information. Maps of the harvested and planted areas of winter wheat in Chinese eight 
provinces from 2018 to 2022 were then produced. The resulting maps of the harvested areas achieved 
an overall accuracy of 95.06% verified by the sample points, and the correlation coefficient between 
the CROPGRIDS dataset is about 0.77. The harvested area was found to be about 13% smaller than the 
planted area, which can primarily be attributed to meteorological hazards. This study represents the 
first attempt to map the winter wheat harvested area at 10–m resolution in China, and it should improve 
the accuracy of yield estimation.

Background & Summary
Wheat is one of the most important cereal crops in the world1,2. According to statistics provided by the Food and 
Agriculture Organization (FAO), the area of wheat harvested worldwide in 2020 was 242 × 106 ha, accounting 
for 34% of the global grain area1. China’s wheat production, consumption, and imports rank the highest globally. 
For example, in 2019–2020, the area harvested in the country account for 11% of the global total – the fourth 
highest worldwide. China also accounted for 18% of global production, second only to the European Union and 
largely due to winter wheat, which constitutes 95% of the country’s total wheat production3.

Satellite remote sensing technology, with its wide spatial coverage and continuous observation capabili-
ties, has emerged as an effective means of rapidly and efficiently mapping winter wheat. The use of remote 
sensing for winter wheat mapping has become significantly more convenient and practical2,4–10. Using remote 
sensing-based approaches, the precise geographical locations of winter wheat can be accurately determined 
and valuable data on growth patterns and yields can be acquired11,12. Numerous studies have employed remote 
sensing technology to map the geographic distribution of areas planted with winter wheat. These studies utilize 
various methods, including phenological methods8,13–17, machine learning18,19, and deep learning19–21, to pro-
vide comprehensive data on crop growth patterns and yields, and this has resulted in the release of related data 
products. Phenological methods require less training data, which means that they depend less on field surveys8. 
However, for expansive study areas, intra- and inter-class variations of crop phenological features would occur 
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due to multiple factors, which leads to fluctuations in the effectiveness of these methods22–24. Contrastingly, 
while machine learning and deep learning while machine learning and deep learning excel in large-scale crop 
classification25–27, they encounter two major challenges. Firstly, there is the requirement for a substantial number 
of accurately labeled samples to train classifiers, typically numbering in the tens of thousands to millions25,26,28–30. 
Secondly, some methodologies rely on high-resolution data at the meter or sub-meter level, which can incur sig-
nificant costs to procure25,31–33. In response to these challenges, researchers have developed models capable of 
operating with limited labeled data, achieving commendable performance34–37.

‘Planted area’ refers to the land area where crops are planted, while the harvested area represents the portion 
harvested from the planted area. From planting to harvesting, crops are susceptible to natural disasters, acci-
dents, and encroachment from construction activity. Consequently, some planted fields do not yield any harvest, 
resulting in a harvested area that is smaller than the initial planted area. U.S. statistics for the period 1970 to 2017 
show that the final harvested area is often less than 85% of the planted area38. As a result, the traditional approach 
of estimating yield by multiplying the planted area by the yield tends to overestimate the actual production. In 
addition, previous research examining variations in winter wheat harvested area has demonstrated its sensitivity 
to climate change39,40. Yield estimates based on the planted area underestimate the true impact of climate change 
on the overall yield41,42. Therefore, it is critical to accurately distinguish between the planted and harvested areas 
when mapping winter wheat. Despite some existing studies that address the difference in crop area between 
planting and harvest, these have predominantly focused on model accuracy without acknowledging the distinc-
tion between planted and harvested areas8,24. Moreover, there is a dearth of research specifically dedicated to 
mapping the harvested area.

In China, the absence of large-scale, high spatial-resolution maps of the harvested winter wheat area persists, 
primarily due to the scarcity of ground crop sample points. This contrasts with some developed countries that 
have successfully implemented national crop type maps that are regularly updated with substantial ground truth 
data43,44. For instance, the United States has established a Cropland Data Layer (CDL), and Canada maintains 
an Annual Crop Inventory (ACI). However, these maps heavily rely on extensive ground sample data, often 
necessitating government involvement, and there is often a lag in the data release, with the maps often becoming 
available up to six months after harvest. One viable approach to address this gap is to generate ground-truth data 
samples for winter wheat and integrate these with existing planted area data products. It is worth noting that a 
decrease in the harvested area may not be solely a result of lower model identification accuracy but also a result 
of various factors, such as floods, drought, wind, hail, and fire occurring in early spring. Additionally, farmers 
may choose to harvest their crops for fodder earlier than usual, leading to a lower-than-expected harvested area. 
Government statistics typically rely on total planted area data, which can sometimes overlook crop failures or 
yield shortfalls in specific regions, which can diminish the accuracy of harvested area data.

As satellite technology continues to advance, offering improved spatial and temporal resolution data, data 
sources have evolved from the previous 500-m resolution of MODIS to the more refined 10-m resolution pro-
vided by Sentinel-2. These technological advances enable the generation of pixel-scale maps of harvested areas, 
in addition to enhancing the accessibility of data45.

The aim of this study was to accurately map the harvested area of winter wheat in China’s major winter 
wheat-producing regions. Firstly, we employed sample generation and sample temporal migration methods to 
generate winter wheat sample points for the period 2018–2022. Subsequently, we utilized winter wheat tem-
poral features extracted from a vegetation index time-series together with auxiliary phenological features and 
elevation/slope information as inputs to a random forest classifier on the Google Earth Engine (GEE) platform. 
This approach allowed us to successfully generate maps of the harvested area of winter wheat with a resolution 
of 10 m.

Methods
Study area.  Based on agricultural statistical data, winter wheat is planted in 30 provinces and municipalities 
in China. This study specially focused on mapping the harvested and planted areas of winter wheat in eight of these 
provinces and municipalities, which together account for nearly 90% of the country’s winter wheat production3. 
These provinces and municipalities are located on the Huang–Huai–Hai Plain and include Anhui, Hebei, Henan, 
Hubei, Jiangsu, Shaanxi, Shandong, and Shanxi (see Fig. 1). In 2020, these eight provinces produced a total of 
118.17 million tons of winter wheat, covering a planted area of 19.52 million hectares (https://www.stats.gov.cn/).

Data acquisition and processing.  Remote sensing data.  In this study, the classification features were 
mainly derived from Sentinel-2A/B (S2) Multi-Spectral Instrument (MSI) top-of-atmosphere (TOA) reflectance 
images (Level-1C) through Google Earth Engine (GEE). All accessible Sentinel-2 TOA images for the period 
October to June for the years 2017–2022 were obtained. Cloud masking was then applied, resulting in the pro-
duction of a precise and comprehensive time-series. Previous studies have demonstrated the reliability to observe 
crops based on TOA reflectance as this captures crucial relative spectral differences among different crop types46. 
Many recent studies have successfully employed S2 TOA images for crop indentification47,48.

Several other land cover datasets were collected, including the European Space Agency’s (ESA’s) land cover 
product, which has a resolution of 10 m49; this was used to generate samples for identifying non-wheat land 
cover types. In addition, three winter wheat planted area datasets were used: ChinaWheat30 data (resolution 
30 m) for the period 2016 to 20208, PTDTW data (resolution 20 m) on the Huang–Huai–Hai Plain in 2018 
(resolution 20 m)13, and ChinaWheat10 data (resolution 10 m) for 2020 to 202224. These datasets vary in terms 
of temporal and spatial resolution as well as coverage (see Table 1). The ChinaWheat30 data were used to gen-
erate samples for the identification of winter wheat. To ensure the accuracy of our planted area product, a 
cross-validation analysis was subsequently conducted using these three datasets.
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Meteorological data.  We collected daily data including the wind speed (at 2 pm), maximum air temperature, 
air pressure, surface temperature, dew point temperature, absolute humidity, and soil moisture from ERA5 data-
sets50 for May to early June for the five years 2018 to 2022. The severity of hot, dry winds during these months 
were derived from these data using Chinese national meteorological standards51,52.

In addition, sunshine and precipitation data for 2018 to 2022 were obtained from local meteorological 
departments. The occurrence of waterlogging in winter wheat was determined by considering factors such as 
the amount of precipitation, number of precipitation days, and number of sunshine hours. These estimates were 
again based on standards issued by the China Meteorological Administration53,54.

Statistical data on winter wheat planted area and harvested area.  Data on the planted area of winter wheat – in 
kilohectares (103ha) – in the relevant provinces and municipalities for 2017 to 2022 were acquired from the 
Chinese National Bureau of Statistics (NBS). Among these provinces and municipalities, statistical data on win-
ter wheat planting areas were available for 530 county-level units. We sorted these units by area size and tallied 
the numbers to determine the grouping for stratified sampling. Based on the histogram shown in Fig. 2(c), we 
ultimately defined four categories: 0–10, 10–20, 20–40, and >40 thousand hectares. Following a ratio of 2:1:1:1, 
we selected 50 counties to gather statistical data for verifying the accuracy of planting area estimations. The 
selected counties are highlighted using polygons on the map shown in Fig. 2(a). The global geo-referenced 

Fig. 1  Location of study area. The solid black lines mark the provincial boundaries; the grey tiles denote the 
sub-districts in which the sample points were located. The green dots indicate the location of winter wheat 
samples, and the blue dots indicate non-wheat samples, including other crops, forest, shrubs, water, buildings, 
and bare land.

Name Study area Resolution Time range Algorithm Reference

PTDTW HHP 20 m 2018 PTDTW 8

ChinaWheat30 HHP, NWR, SCB 30 m 2016–2022 TWDTW 13

ChinaWheat10 HHP, NWR, SCB 10 m 2020–2022 ATDG 24

Table 1.  Details of the winter wheat products used in this study. Note. HHP, NWR, SCB represent the 
agroecological zones of the Huang–Huai–Hai Plain, Northwest Region, and Sichuan Basin, respectively. There 
are no standard names for these three products; in this paper, we use names based on the corresponding 
algorithm or the resolution of the data. TWDTW stands for time-weighted dynamic time warping, PTDTW for 
phenology–time weighted dynamic time warping and ATDG for automated training data generation.
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dataset known as CROPGRIDS has also been collected55, providing area information for 173 crops for the year 
2020 at a spatial resolution of 0.05°. Additionally, 700 random points (as shown in Fig. 2(a) and Table 2) were 
generated to verify the accuracy of the harvested area.

Field survey data.  To verify the accuracy of the planted area mapping results, we collected survey samples from 
multiple sources (Fig. 2 and Table 2): (1) Field surveys were conducted in the sowing years of 2020, and 2022, 
resulting in 4007, and 128 point samples, respectively; (2) the open-access point samples56,57 for the sowing years 
of 2018–2021 were downloaded.

Winter wheat classification method.  The winter wheat classification consisted of the following steps, as 
depicted in Fig. 3.

	(1)	 Generating representative sample points for wheat and non-wheat classes (including other crops, forests, 
shrubs, water, buildings, and bare lands) for the years 2019–2020 using ChinaWheat30 maps and the ESA 
Land Cover product. In our approach, we initially establish a 50-meter radius buffer around each sam-
ple point. A point is retained if the associated land cover type occupies over 90% of the area within this 

Fig. 2  The distribution of field survey samples, generated random points, and selected counties((a) and (b)). 
And the histogram displays the statistical distribution of winter wheat planted areas across 530 administrative 
units at county-level.

https://doi.org/10.1038/s41597-024-03867-z
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buffer (as shown in Fig. 3(b)). To ensure the accuracy of the sample points, we also incorporate manual 
examination.

	(2)	 Conducting temporal migration by constructing time-series curves of the winter wheat Near-Infrared 
Reflectance of vegetation (NIRv) index for different years in each province. The average values for the year 
2019–2020 were used as a reference. Migration of the sample points was achieved by comparing the curves 
for each year except the year 2019–2020 with the reference curve.

	(3)	 Preprocessing the images, which involved cloud removal, temporal compositing, and feature calculation.
	(4)	 Performing classification and accuracy validation by constructing Random Forest classifiers for the iden-

tification of winter wheat in Google Earth Engine. Various provincial- and municipality-level accuracy 
assessment indicators and statistical data were used to evaluate the classification accuracies. Impacts result-
ing from human factors and meteorological hazards were qualitatively analyzed.

Sample generation and sample temporal migration.  We aggregated the data giving the winter wheat 
planted area for the five-year period 2016–2020)8 to identify the areas where winter wheat was consistently 
planted. Then, we established a threshold radius based on the field sizes in different provinces to identify the 
image elements surrounded by wheat and converted these into a point vector file. Given the non-uniform spatial 
distribution of the areas planted with winter wheat, our methodology was designed to ensure the representative-
ness of selected samples while mitigating spatial autocorrelation among them to some extent. This was achieved 
by overlaying the entire study area with a grid of 0.5° × 0.5° quadrangular tiles (see Fig. 1). Subsequently, the 
wheat sample points set were derived in equal proportions based on the number of sample points generated 
within each tile.

In addition, we conducted temporal migration of the sample points because the generated winter wheat sam-
ple points were specific to the year 2019–2020 and could not be directly applied to other years. To accomplish 
this, we employed a phenology-oriented methodology. Firstly, we computed the mean of the NIRv time series 
curves for the all samples for the year 2019–2020 to obtain a representative benchmark time-series curve. Then, 
we compared the sample point curves from earlier years to this reference curve and retained the sample points 
with the highest degree of similarity. The time-series used spanned the period from October 1 to June 30 of the 
subsequent year to guarantee the applicability of the migrated samples to the extraction of data from cultivated 
and harvested areas.

To address the potential errors resulting from variations in climate, agricultural practices, weather condi-
tions, and other factors, we integrated both distance difference and shape similarity metrics to enhance the 
accuracy of the sample temporal migration. For this, we used the composite distance measure Difference and 
Similarity Factor (DSF) (Eq. 1), which combines the distance difference factor and shape similarity factor58. The 
relative distance deviation between two feature sequences (Xi, Yi) is represented by f1 (Eq. 2), with smaller values 
indicating greater similarity between the sequences. The shape similarity factor between the two sequences is 
evaluated by f2 (Eq. 3), with larger values indicating greater similarity. The formula used to calculate the DSF is 
as follows:
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Sowing Year Sample Size

Sample Effect

Sample Type Sample Province Sample SourcePlanted area Harvested area

2018 49 √ Point Hubei 56

2019 5 √ Point Henan 56

2020

26 √ Point Hebei 56

107 √ Point Shandong 57

51 √ Point Shaanxi GPS field survey

3956 √ Point Henan GPS field survey

700 √ Point The whole study area 55

2021 17 √ Point Hebei, Shandong 56

2022 128 √ Point Shandong GPS field survey

Table 2.  Information of field survey samples, generated random points, and selected counties.
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For each sample point, the DSF was calculated between the NIRv time series curve and the reference curve. 
A Gaussian distribution was then fit to the histogram representing the range of similarity scores. In categorizing 
the sample points as post-migration samples, we applied a threshold of one standard deviation above the mean 
to remove outliers. Consequently, samples with a similarity score greater than the threshold (i.e., more than one 

Fig. 3  The workflow for mapping the planted and harvested area of winter wheat; RMSE, root-mean-square 
error; MAE, mean absolute error; R2, the coefficient of determination; UA, user’s accuracy; PA, producer’s 
accuracy; OA, overall accuracy. The process of screening the generated sample points using wheat as an example 
(b), where red checkmarks denote retained samples, and blue crosses indicate discarded ones. And (c) and (d) 
depict the procedure of sample temporal migration using the reference curve.

https://doi.org/10.1038/s41597-024-03867-z
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standard deviation above the mean) were discarded, ensuring that only those with typical similarity character-
istics were retained for further analysis.

Pre-processing of time-series data and calculation of features.  The processing of the time-series 
data consisted of two steps: (1) generating 10-day composites by computing the median values of the valid S2 
observations and (2) filling data gaps through linear interpolation to achieve complete coverage across the tem-
poral domain9. Ultimately, we obtained regular cloud-free and gap-filled 10-day S2 time-series.

Subsequently, we selected ten vegetation indices based on the structure and biochemical characteristics of 
winter wheat for the construction of spectral features. These indices are listed in Table 3. Enhanced Vegetation 
Index (EVI), Green Chlorophyll Vegetation Index (GCVI), and Color Index of Vegetation (CIVE) reflect the 
chlorophyll level in wheat59, while Excess Green (ExG), Woebbecke Index (WI), and Normalized Green-red 
Difference Index (NGRDI) indicate the greenness, which is commonly employed for mapping field crops60; 
Normalized Difference Phenology Index (NDPI) is widely used for extracting winter wheat phenology from 
remote sensing data61; and Soil-adjusted Vegetation Index (SAVI) and Land Surface Water Index (LSWI) are 
known to be sensitive to the total amount of liquid water in vegetation and the soil background62. A strong linear 
relationship exists between the absorbed photosynthetically active radiation, net photosynthetic rate, leaf area 
index, and NIRv63.

We employed the following three groups of feature candidates to distinguish between crop types, as shown 
in Table 4.

	(1)	 Spectral features. We used variations in the time-series data to calculate statistical measures of the spectral 
characteristics of both the planted and harvested areas. The time-series for the planted areas spanned 
the period from sowing to nodulation, which corresponds to early October to early April. Similarly, the 
time-series for the harvested areas covered the period from sowing to maturing, or early October to mid-
June. For each of the five reflectance bands and ten spectral indices, we calculated statistical characteristics, 
including the minimum and maximum values and the standard deviation, as well as the 15th, 50th, and 
90th percentiles47,64. These statistics accurately captured the variations in the surface spectra throughout 
the growing season.

	(2)	 Phenological features. These included the start of the season (SOS)65, growing season length (GSL)65, and 
the phenological feature of winter wheat extracted from peak before winter66. To model the EVI (Enhanced 
Vegetation Index) time-series from October to December, we used a non-linear quadratic polynomial. The 
quadratic coefficient controlled both the direction and magnitude of the fitted curve. A negative coefficient 
indicated that the land cover type associated with the attribute was a winter crop.

	(3)	 Elevation features such as the elevation and slope12,17,24 were also used to assist the classification process.

Classification and accuracy validation.  We employed a random forest (RF) algorithm in GEE to map 
planted and harvested areas of winter wheat. RF classifiers are ensemble classifiers that use a set of decision trees 
to predict classifications or regressions and have the advantage of being highly accurate, efficient, and stable. RF 
classifiers have also been shown to outperform other machine-learning classifiers in GEE in mapping pasture 
and cropland67. In this study, we specified the number of trees in the RF classifier as 500; the values of the other 
parameters were set to their GEE default values. To mitigate minor fluctuations in the outcome resulting from the 
inherent unpredictability of random forest sampling, we fixed the random seed value as 999. All other parameters 
were maintained at their default configurations.

Index Formula Reference

EVI (Enhanced Vegetation Index) ρ ρ ρ ρ ρ= . × − + × − . × +EVI 2 5 ( )/( 6 7 5 1)NIR RED NIR RED BLUE
72

NIRv (Near-Infrared Reflectance of vegetation) ρ ρ ρ ρ ρ ρ= × = × − +NIRv NDVI ( )/( )NIR NIR NIR RED NIR RED
73

NDPI (Normalized Difference Phenology Index) α= = .
ρ α ρ α ρ

ρ α ρ α ρ

− × + − ×

+ × + − ×
NDPI , 0 74NIR RED SWIR

NIR RED SWIR

( (1 ) )
( (1 ) )

74

GCVI (Green Chlorophyll Vegetation Index) = −
ρ

ρ
GCVI 1NIR

GREEN
75

SAVI (Soil-adjusted Vegetation Index) = + = .
ρ ρ

ρ ρ

−

+ +
SAVI L L(1 ), 0 5NIR RED

NIR RED L( )
76

LSWI (Land Surface Water Index) =
ρ ρ

ρ ρ

−

+
LSWI NIR SWIR

NIR SWIR
77

CIVE (Color Index of Vegetation) CIVE 0 441 0 881 0 385 18 78745RED GREEN BLUEρ ρ ρ= . − . + . + . 78

WI (Woebbecke Index) WI GREEN BLUE
RED GREEN

=
ρ ρ

ρ ρ

−

−
79

ExG (Excess Green) ρ ρ ρ= − −ExG 2 GREEN RED BLUE 79

NGRDI (Normalized Green-red Difference Index) =
ρ ρ

ρ ρ

−

+
NGRDI GREEN RED

GREEN RED
80

Table 3.  Vegetation indices selected in this study. Note: ρRED, ρGREEN, ρBLUE, ρNIR,  and ρSWIR represent the 
reflectance of the red, green, blue, near-infrared, and short wavelength infrared bands, respectively.
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The accuracy of the winter wheat identification was evaluated using two methods: (1) validation based on 
sample points and (2) comparison with administrative unit statistics from statistical yearbooks. To establish 
the confusion matrix for the winter wheat map of each province, we divided all winter wheat samples and 
non-winter wheat samples in a 7:3 ratio, with 30% of both the wheat and non-wheat samples allocated for accu-
racy validation, and the other 70% were used for training. The overall accuracy (OA) was used to evaluate the 
validity of the identification methods (Eq. 4). We also calculated the producer’s accuracy (PA) (Eq. 5), which 
indicates the proportion of samples correctly classified as belonging to the target class, as well as the user’s 
accuracy (UA) (Eq. 6), which indicates the number of samples classified as belonging to the target class on the 
classification map as a proportion of the number of samples on the ground that actually belong to that class.

Three further statistical metrics – the mean absolute error (MAE) (Eq. 7), root mean square error (RMSE) 
(Eq. 8), and coefficient of determination (R2) (Eq. 9) – were also employed to evaluate the classification 
performance.
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Fig. 4  Results of the validation of the accuracy of the migrated samples for 2021 (a) and 2022 (b). The 
ChinaWheat30 and ChinaWheat10 products were both used for the validation. The red dotted line depicts the 
90% accuracy threshold.

Feature Type Feature Name Method Quantity Reference

Spectral features EVI\NIRv\NDPI\GCVI\SAVI\LSWI\CIVE\WI\ExG\NGRDI\B5\B6\B7\B11\B12 min, max, std, and 15\50\90th percentile 15 × 6 47,64

Phenological features
Start of season (SOS), growing-season length (GSL), median method 2 65

phenological feature of winter wheat extracted from peak before winter 1 66

Elevation features elevation\slope 2 12,17,24

Table 4.  Summary of the candidate features generated.
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In the above equations, n represents the number of classes (and is also the total number of rows or columns 
in the confusion matrix); Aii represents the number of image elements in the first row and column of the confu-
sion matrix; and N represents the total number of real samples. Ai+ represents the total number of pixels n row 
i, and A+i represents the total number of pixels in column i, yi is the area identified as winter wheat belonging to 
the ith municipal unit, ŷ is the statistical area, and y  is the average value for the identification area.

Finally, we verified the disparity between the harvested and planted areas resulting from meteorological 
hazards and human-induced factors.

Data Records
Our final product, ChinaWheatMap10, is comprised of two components: ChinaWheatMap10_P, which indicates 
the planted area, and ChinaWheatMap10_H, which represents the harvested area. The dataset covers the years 
2018 to 2022 and is available at https://doi.org/10.6084/m9.figshare.2509768468 in GeoTIFF format. A pixel 
value of 1 is assigned to winter wheat. The dataset employs the EPSG: 4326 (GCS_WGS_1984) spatial reference 
system. The maps can be visualized and analyzed using software such as ArcGIS, QGIS, or similar applications.

Technical Validation
The evaluation of the method used in this study and the maps that were produced consisted of three parts: (1) 
the planted area products we collected were used to validate the precision of the temporally migrated samples, 
(2) the planted area products we collected were used to compare to our planted area product, and (3) the overall 
accuracy (OA), user’s accuracy (UA), and producer’s accuracy (PA) were calculated for the annual harvest maps 
based on the ground validation samples.

Validation of temporally migrated winter wheat samples.  We evaluated the accuracy of the tem-
porally migrated winter wheat samples using the ChinaWheat308 and ChinaWheat1024 products. We used the 
2019–2020 winter wheat samples that had been generated and applied the temporal migration method described 
above to obtain samples for 2021 and 2022. We then calculated the accuracy of the migrated samples for each 
province, as depicted in Fig. 4. Validation using the ChinaWheat10 product showed that the accuracy of the 
migrated samples was 97.24%, whereas the accuracy of the 2022 samples was 92.62%. Using ChinaWheat30, the 
accuracy of the migrated 2021 samples was 94.89%, and for the 2022 samples, it was 91.29%. For both products, 
most provinces had sample accuracies of above 90%, demonstrating the validity of our method. Notably, the 

Fig. 5  Comparison between winter wheat planted areas and yearbook data for 2018–2022 at the municipality 
level. Both the root mean square error (RMSE) and mean absolute error (MAE) are measured in 1000 s of 
hectares.
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provinces of Shandong, Henan, Hebei, Anhui, and Shaanxi had the highest accuracies for the migrated samples, 
with the accuracy surpassing 90% for both products. This can be attributed to the widespread cultivation and 
regional concentration of winter wheat on the plains in these provinces. Jiangsu was also found to have a high 
migration accuracy, with the ChinaWheat10 validation accuracy exceeding 90% and the ChinaWheat30 accuracy 
being slightly below 90%. Presumably, this discrepancy was because some of the plots in Jiangsu were narrow, 
meaning that the 30-m spatial resolution of the ChinaWheat30 product is not suited to the area. On the other 
hand, for Hubei and Shanxi, although the validation accuracies were high in 2021, these dropped to about 70% 
in 2022. This decrease may be attributable to increased cloud cover in these provinces in 2022 leading to limited 
availability of optical data and resulting in a bias in the NIRv curves that were obtained. It can be concluded that 
our time-migrated samples had a consistently high level of accuracy and reliability across the study area.

Validation of winter wheat planted area.  The ChinaWheatMap10 product maps the winter wheat 
planted area for eight provinces on the Huang–Huai–Hai Plain. It has an overall accuracy of 94.51%, with a user’s 
accuracy of 96.60% and a producer’s accuracy of 93.03%. With the exception of Hubei and Shanxi, the accuracy 
metrics have values of over 90%, with Anhui province having the highest values – the overall, user’s, and produc-
er’s accuracy are all over 97% for this province.

We compared the estimated winter wheat planted areas at the provincial level with the data reported in 
the statistical yearbook. The statistical yearbook listed an annual wheat cultivation area of approximately 19.5 
million hectares, whereas the total area of our extracted planted areas was around 18.7 million hectares. The 
two sets of data were consistently in alignment, with the yearbook data slightly exceeding our estimated meas-
urements. To conduct a comprehensive comparison between the estimated winter wheat planted area and the 
numbers recorded in the statistical yearbook, we computed the mean absolute error, root mean square error, 
and coefficient of determination at the municipal scale for the years 2018–2022. In addition, we incorporated 
the three winter wheat area datasets (PTDTW13, ChinaWheat308, and ChinaWheat1024) into the analysis, and 
the results for the above indicators are presented in Fig. 5. It can be seen that ChinaWheat30 has the highest R2 
value, the smallest RMSE and MAE values, and the best consistency between the estimated values and statistical 
yearbook data. This can be attributed to the use of provincial-level winter wheat statistical data in the estimation 
of the dissimilarity thresholds8. It can also be seen that our product has the second-highest accuracy because 
ChinaWheatMap10 has the second highest R2 and the second lowest RMSE and MAE. Although the accuracy 
of ChinaWheat10, which is produced using the ATDG method, is similar to that of our product, it has a lower 

Fig. 6  Comparison between winter wheat planted areas and yearbook data for 2018–2022 at the county-level. 
Both the root mean square error (RMSE) and mean absolute error (MAE) are measured in 1000 s of hectares.
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R2 value for the model migration approach, which results in larger RMSE and MAE values and a reduction in 
precision. Hence, it can be inferred that migrating the samples and subsequently plotting the planted area is 
more effective than directly migrating the classification model. The PTDTW results have the lowest accuracy 
and deviate significantly from the statistical yearbook data.

At the county level, the planted area results we extracted demonstrate good consistency with statistical data 
across varying area ranges (as shown in Fig. 6). The extraction accuracy is highest in counties where the planted 
area exceeds 40 thousand hectares. Notably, however, even in counties with smaller planted areas, less than 1 
thousand hectares, the extraction accuracy remains relatively high.

The field survey samples we collected from 2018 to 2022 span multiple provinces within our study area. The 
average accuracy of the harvested area, as verified by these samples, is approximately 95% (as shown in Table 5), 
consistent with the precision confirmed by the test sample set retained during classification.

Finally, we compared the effectiveness of our winter wheat planted area maps with earlier maps in terms 
of the identification of major land cover types. Figure 7(A,B) display the results for areas with the built-up 
and water cover types, and Fig. 7(C,D) compare the results for two representative winter wheat areas. The first 
column shows the Sentinel-2 base map, which was used as a reference; the classification results of PTDTW, 
ChinaWheat30, ChinaWheat10, and ChinaWheatMap10 are shown in columns 2–5. Although the two 
DTW-based maps successfully identify winter wheat within the arable areas, there are instances of misclassifi-
cation in areas with over land cover types. For instance, PTDTW misclassifies numerous forest pixels as win-
ter wheat (see the second column of Fig. 7(B)), whereas ChinaWheat30 misclassifies some built-up and water 
areas as winter wheat; this classification is not observed in the case of ChinaWheatMap10 and ChinaWheat10. 
Furthermore, due to the primary data source being Landsat8, the low spatial resolution of ChinaWheat30 
limits its capability to accurately distinguish neighbouring plots within the area planted with winter wheat. 
Furthermore, it identifies field ridges as winter wheat pixels (see the third column of Fig. 7(C)). While 
ChinaWheat10 exhibits excellent performance in distinguishing winter wheat from different cover types, it can 
suffer from overclassification and misidentify barren land without vegetation as winter wheat (as shown by 
the red boxes in the fourth column of Fig. 7(C,D)). In contrast, our maps exhibit minimal issues of this nature. 
Although these maps were constructed using a pixel-based classification approach for fragmented landscapes, 
our winter wheat maps exhibit promising results that effectively separates winter wheat plots, with only slight 
“pretzel” noise.

Validation of winter wheat harvested area.  Based on the results for the winter wheat planted area, we 
conducted mapping of the harvested area for the same eight provinces. The results indicated an overall accuracy 
of 96.80%, with a user’s accuracy of 97.11% and a producer’s accuracy of 94.10%. The results for the individual 
provinces are shown in Fig. 8(f)–(j). The average total accuracy, user’s accuracy, and producer’s accuracy for the 
eight provinces were determined to be 95.06%, 96.76%, and 93.68%, respectively. We compared these results with 
the data reported in the statistical yearbook for these provinces and found that the areas given in the yearbook 
were smaller than the mapped areas. Details of this comparison are shown in Fig. 8(a)–(e).

To facilitate comparison with the CROPGORIDS dataset, we aggregated both the harvest area results and 
the CROPGORIDS grid to a spatial resolution of 0.1° and aligned them. Using 700 randomly selected sample 
points, we extracted and compared the values within the corresponding pixel ranges, as shown in Fig. 9. The R² 
between the two datasets was 0.77, indicating a high level of agreement, while the RMSE and MAE were 1.27 and 
0.76 thousand hectares, respectively.

On the Huang–Huai–Hai Plain, the wheat harvest is primarily concentrated in specific regions, namely the 
North China Plain (which encompasses south-central Hebei, Henan, western Shandong, northern Anhui, and 
Jiangsu), the Jiang–Han Plain (which covers south-central Hubei), and the Fen–Wei Plain (Fig. 10). There is 
also some small-scale wheat production in the hilly areas of Shandong and southern Anhui. Our analysis shows 
that the total harvested area is approximately 16.3 million hectares, which represents a decrease of 2.4 thousand 
hectares or 12.88% compared to the planted area. Multiple factors, including meteorological hazards and human 
influences, have contributed to this reduction in wheat production.

We mapped the sowed and harvested areas for winter wheat for the years 2018–2022 and the differences 
between these two areas (Fig. 10). These differences were then considered in relation to the most common 
meteorological hazards that are experienced in the study area. These hazards mainly include dry hot wind 

Sowing Year Sample Province Sample Size Accurate Identification Size Accuracy

2018 Hubei 49 46 93.88%

2019 Henan 5 5 100.00%

2020

Hebei 26 25 96.15%

Shandong 107 103 96.26%

Shaanxi 51 50 98.04%

Henan 3956 3779 95.53%

2021 Hebei, Shandong 17 15 88.24%

2022 Shandong 128 125 97.66%

Table 5.  The accuracy as verified by field survey samples.
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and waterlogging. Dry hot winds occur in five of the provinces, namely Henan, Hebei, Shaanxi, Shanxi, and 
Shandong, and waterlogging occurs mainly in the middle and lower reaches of the Yangtze River, including in 
Hubei, Anhui, and Jiangsu (see the third column of Fig. 10). In May and June, heavy rains, gusty winds, and 
hailstorms can also cause damage. Pests and diseases, including powdery mildew and stripe rust, are also fac-
tors that cannot be ignored. Examples of the reduction in the number of pixels corresponding to the harvested 
area of winter wheat due to the above reasons are also shown in Fig. 10. During the study period, relevant inci-
dents included the following: in 2018, Hefei City experienced severe waterlogging69 (see the third column of 
Fig. 10(a)); in 2019, dry hot wind affected Xinji City in Hebei Province70 (see the third column of Fig. 10(b)); in 
2020, Qingdao City in Shandong Province experienced three severe wind and hailstorms (see the third column 
of Fig. 10(c) and https://www.cma.gov.cn/); in 2021, in Qishan County, Shaanxi Province, a large area of wheat 
was affected by a severe outbreak of stripe rust71 (see the third column of Fig. 10(d)); and Jingzhou City, Hubei 
Province, suffered from torrential rain during the wheat harvest in May 2022 (see the third column of Fig. 10(e) 
and http://hb.cma.gov.cn/).

As the main factors contributing to the reduction in harvested areas in the study area are waterlogging and 
dry hot wind, it was important to assess the afflicted probability of winter wheat suffering from waterlogging 
incidents and the frequency and severity of dry hot winds from 2018 to 2022. The relevant data was then classi-
fied according to the severity of the incidents (see the third column of Fig. 10), and the corresponding reduction 
in agricultural area was determined for each class of severity calculated, Fig. 11 illustrates the findings of this 
analysis. In regions with a waterlogging probability exceeding 80%, approximately 40.4% of the planted area 
faced potential harvesting challenges (Fig. 11(a)). For regions where this probability was within the 80–100% 
range, the average reduction in harvested area was approximately 204.7 thousand hectares per year. This reduc-
tion increased to an average of approximately 429.6 thousand hectares per year for areas with a waterlogging 
probability in the 60–80% range, 522.9 thousand hectares per year for areas in the 40–60% range, 443.4 thou-
sand hectares per year for areas in the 20–40% range, and 101.6 thousand hectares per year for regions in the 
0–20% range. Although regions with higher waterlogging probability were more likely to experience reduced 
harvests, the actual reduction in area was not substantial due to the lower winter wheat cultivation rates in 
these regions. The regions that consistently experienced dry hot winds especially the severe type contributed 
most to the reduction in harvestable winter wheat pixels. On average, the regions suffering from severe dry hot 
winds every year had an annual reduction of approximately 56.8 thousand hectares. In contrast, in regions that 
experienced severe dry hot wind only once, the corresponding values were 11.7 thousand hectares (Fig. 11(b)).

Fig. 7  Comparison between PTDTW, ChinaWheat 30, ChinaWheat10, and ChinaWheatMap10 for specific 
areas. The first column consists of Sentinel-2 RGB imagery, which was used as a reference. In the other four 
columns, the areas identified as winter are highlighted in green. Parts (A) and (B) correspond to areas covered 
with built-up and water, and forest land cover types, respectively; parts (C) and (D) are two representative 
winter wheat areas.

https://doi.org/10.1038/s41597-024-03867-z
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Fig. 8  Comparison of estimated winter wheat harvested areas and statistical yearbook data at the provincial 
scale for the years 2018–2022 ((a)–(e)); overall accuracy, user’s accuracy, and producer’s accuracy for the winter 
wheat mapping for 2018–2022.

Fig. 9  Comparison of estimated winter wheat harvested areas and CROPGRIDS harvested areas data at the 0.1° 
spatial resolution for the year 2020.
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Human activities also contribute to the decrease in the harvested area (Fig. 12). For instance, Fig. 12(A) 
shows a comparison between remote sensing images acquired during the jointing and flowering stages. It can be 
seen that a road was constructed in the period between the two stages, resulting in a reduction in the harvested 
wheat area. Similarly, the demolition of a house in the area indicated in Fig. 12(B) led to damage to the adjacent 

Fig. 10  Maps illustrating the planted area, harvested area, and the difference between these areas for winter 
wheat between 2018 and 2022. The bottom graph in the third column presents the frequency of dry hot wind 
and the afflicted probability of waterlogging incidents from 2018 to 2022, as well as examples demonstrating the 
impacts caused by various hazards.
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winter wheat. In addition, the areas highlighted in Fig. 12(C,D) may have been used for cultivating crops other 
than winter wheat.

Code availability
The JavaScript code used to generate the maps of planted and harvested winter wheat areas is available from the 
figshare repository.
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Fig. 11  The percentage reduction in the harvested area of winter wheat compared to the planted area plotted 
against the probability of waterlogging (a) and the reduction in area plotted against the frequency of the 
occurrence of dry hot wind. The values in blue are the average in each case.

Fig. 12  Examples of reductions in winter wheat area due to human activities. Letters A-D mark different 
regions where reductions have occurred. The first and second columns display the reference Sentinel-2 imagery 
at the jointing and flowering stages, respectively. Columns 3–5 show the planted area, harvested area, and the 
difference between these areas, respectively.
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