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A dataset of drone-captured, 
segmented images for oil spill 
detection in port environments
Thomas De Kerf   1,3 ✉, Seppe Sels1,3, Svetlana Samsonova1,2 & Steve Vanlanduit1

The high incidence of oil spills in port areas poses a serious threat to the environment, prompting the 
need for efficient detection mechanisms. Utilizing automated drones for this purpose can significantly 
improve the speed and accuracy of oil spill detection. Such advancements not only expedite cleanup 
operations, reducing environmental harm but also enhance polluter accountability, potentially 
deterring future incidents. Currently, there’s a scarcity of datasets employing RGB images for oil spill 
detection in maritime settings. This paper presents a unique, annotated dataset aimed at addressing 
this gap, leveraging a neural network for analysis on both desktop and edge computing platforms. 
The dataset, captured via drone, comprises 1268 images categorized into oil, water, and other, with a 
convolutional neural network trained using an Unet model architecture achieving an F1 score of 0.71 
for oil detection. This underscores the dataset’s practicality for real-world applications, offering crucial 
resources for environmental conservation in port environments.

Background & Summary
The topic of oil spills stands out in the discourse on environmental disasters, highlighted by extensive analyses 
in various seminal works1,2. These oil spills have brought widespread devastation to ecosystems. While such 
large-scale spills often dominate media narratives, it is important to note that most oil spills are actually smaller 
in scale (under 700 tonnes) and tend to occur in or near ports. Recent data reveals that about 66% of oil spills 
are of medium size, ranging from 7 to 700 tonnes, and more than half of these incidents are reported within 
the confines of port areas, as indicated by the latest oil tanker spill statistics3. This prevalence of medium-sized 
spills in such critical areas underscores the need for focused research and improved response strategies in port 
environments.

Presently, oil spill detection in ports relies largely on accidental discovery by port authority inspectors, lead-
ing to delays in reporting and clean-up. This delay is critical, as oil slicks in ports can move at speeds of 0.4 to 
0.75 cm/s, potentially travelling over 2 km within an hour, making swift identification (within 30 minutes) 
crucial for the following benefits4. Due to the extended area that a port area can take up, using fixed cameras, is 
not a feasible option. Therefore drone based measurements are much more suitable as they can traverse a large 
area, autonomously and signal if there is an oil spill detected. There are implementations. Additionally, the added 
detection rate has the following advantages:

•	 Reduced environmental harm due to quicker clean-up.
•	 More efficient containment and clean-up of the oil.
•	 Minimal disruption to port operations, reducing economic losses.
•	 In some cases, clearer identification of the responsible polluter.

Past studies have predominantly concentrated on monitoring large-scale oil spills through satellite imagery 
and Synthetic Aperture Radar (SAR)5,6 techniques. While these methods are effective in open sea conditions, 
their effectiveness is compromised within port environments due to several limitations. SAR technology, in 
particular, is less efficient in ports where wave action is minimal and oil spills typically manifest as thin layers, 
not providing the significant dampening effect needed for SAR detection.
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Furthermore, the use of satellite and high-altitude aerial imagery presents challenges in port settings. These 
methods, while beneficial for broad surveillance, do not offer the fine spatial resolution necessary for identifying 
smaller spills common in the intricate and bustling nature of port areas. Additionally, the financial implications 
of satellite usage are substantial, with the high costs becoming a barrier to the routine and detailed monitoring 
required for managing the complex dynamics of ports.

The integration of RGB and hyperspectral imaging technologies7–9 has also been explored, yet these 
approaches introduce constraints in low-budget commercial scenarios. Given these considerations, there is a 
pressing demand for alternative strategies better tailored to the specific demands of port environments. These 
strategies must balance cost-efficiency with the capability to provide accurate, high-resolution monitoring for 
effective oil spill detection and management.

In our previous work10, we demonstrated the potential benefits of combining RGB and infrared imagery for 
oil spill detection. However, the practical application of this approach has been hindered by the high minimum 
requirements for thermal cameras, rendering it economically unviable at present. Addressing this challenge, 
this paper introduces a pioneering solution: the first annotated dataset of RGB images specifically captured in a 
port environment.

This dataset represents a significant advancement in the field of oil spill detection in a port environment. 
The dataset consists of 1268 images that are fully annotated into three categories: oil, water, and other. Offering 
an invaluable resource for training and validating detection models. While there exists a body of research and 
datasets11,12, that focuses on the segmentation of ships and port infrastructure, these studies notably omit the 
consideration of oil spills within the port environment.

Utilizing this dataset, we have developed a segmentation model that showcases the practical viability of 
drone-based RGB imaging for oil spill detection. The model demonstrates an f1 score of 0.72, 0.91 and 0.75 for 
the oil, water and other category respectively. This marks an overall effective classification, underscoring the 
feasibility of this approach. Our findings reveal that drone-based RGB imaging, without the need for thermal 
imaging, is not only feasible but also efficient for oil spill detection in port environments.

This research opens up new avenues for cost-effective and accurate oil spill monitoring, leveraging the agility 
and extensive reach of drone technology combined with the simplicity and effectiveness of RGB imaging. The 
results from this study are poised to make a significant impact on environmental protection strategies in port 
areas, offering a ready-to-deploy solution for timely and reliable oil spill detection.

Methods
Data collection.  The dataset for this study was meticulously gathered using a drone (Dronematrix YACOB 
and DJI Mavic2) equipped with high-resolution cameras (4000*2250 and 3840*2160 pixels). The drone flights, 
conducted from 09/2021 to 09/2023, captured a wide array of images under different environmental condi-
tions. This strategy guaranteed a varied and exhaustive dataset, mirroring a multitude of situations that might 
arise within a port context. The deliberate selection of the periods for capturing images, encompassing differ-
ent months and times throughout the day. This ensured the inclusion of a wide spectrum of lighting scenarios, 
weather changes, and the array of operational tasks characteristic of a port setting.

During the capturing of the images, the height was varied between 30 and 70 meters. Also the camera angle 
was varied, from a top town approach to a slight incline. This was done on purpose to be able to generalize the 
dataset.

To align with privacy and confidentiality guidelines, we implemented specific alterations to the raw data, a 
vital measure to facilitate the dataset’s broad utilization without compromising privacy. Critical adjustments 
involved identifying and processing text13, people, and logos. All elements that could reveal individual identi-
ties and specific locations within the images. These identified areas were subsequently inpainted14 to generate 
anonymized images, ensuring they remain suitable for image processing, without impacting its efficacy.

Furthermore, specific identifiable markings on ships and dockside were also blurred. This measure was taken 
to ensure that no sensitive information about the port’s operations or the identities of the vessels within the port 
was disclosed. Such modifications are essential in maintaining the integrity and confidentiality of the operations 
within the port, as well as respecting the proprietary rights of shipping companies.

These modifications, while necessary for privacy and ethical considerations, were implemented in a manner 
that did not compromise the quality of the data for its intended use in oil spill detection. The alterations were 
carefully executed to ensure that the key elements necessary for identifying and analyzing oil spills - such as the 
texture, spread, and coloration of the oil against the water - remained intact and discernible in the images.

Data annotation.  The annotation process for our dataset was meticulously carried out using the software 
platform CVAT (Computer Vision Annotation Tool), accessible at https://cvat.ai. To ensure comprehensive cov-
erage and accuracy, the images were divided into several subsets. Each subset was then assigned to different 
members of the InViLab research group for initial annotation. This division of labour allowed for a more focused 
and detailed approach to the annotation process, as each researcher could concentrate on a manageable portion 
of the dataset, thereby enhancing the overall quality and consistency of the annotations.

After the initial annotation phase, a rigorous quality control process was implemented. Senior researchers 
within the group undertook a thorough review of the annotated images. This step was crucial to ensure the high-
est level of accuracy and reliability of the annotations. The senior researchers meticulously double-checked each 
annotation, making corrections and adjustments where necessary. This collaborative and multi-tiered approach 
to annotation and quality assurance ensured the quality of the dataset, with annotations that accurately repre-
sented the various aspects and characteristics of oil spills in a port environment.

Each pixel is categorised into one of either these categories: oil, water or other. The other class is a combina-
tion of ships, quays, buildings and air. The choice of such an encompassing super category is made because the 
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goal of the dataset is to distinguish between oil and water, not to identify the different other elements in a port 
environment. An overview of three randomly selected images, together with the annotated regions can be found 
in Fig. 1:

Data Records
The dataset is publicly available and has been contributed to the open-source community, accessible via 
Zenodo15. It comes pre-partitioned into training, testing, and validation subsets, following a 70/15/15 percent-
age split, respectively, to facilitate immediate use in machine learning workflows. Annotation data is provided 
in three formats to ensure compatibility with various training paradigms: the CamVid format16, which was also 
employed during the network’s training phase, as well as the widely recognized COCO17 and ImageNet18 for-
mats. These multiple annotation formats enhance the dataset’s versatility, allowing for seamless integration with 
different models and frameworks.

Dataset statistics.  In Table 1, we present essential statistics of our dataset, segmented into three key catego-
ries: Oil, Water, and other. This comprehensive overview is critical for understanding the scope and distribution 
of our data.

The first row of the table indicates the total number of images in which each category appears. The count of 
994 images for Oil, 929 for Water, and 1106 for other reflects the dataset’s diversity and the varying frequency of 
these elements within our collected imagery.

Moving to the second row, we detail the number of annotated pixels for each category. With 527,361,085 
annotated pixels for Oil, 835,851,102 for Water, and 939,502,502 for other, these figures demonstrate the exten-
sive level of detail that has been captured in our annotations. This granularity is pivotal for accurate analysis and 
application in related fields, such as machine learning and environmental monitoring.

The final row presents the percentage of relative annotations for each category, illustrating their proportional 
representation in the entire dataset. Here, Oil annotations constitute 22.9%, Water 36.3%, and Other 40.8%. 
These percentages are indicative of the emphasis placed on each category within our dataset and underscore the 
balanced yet distinct focus on each element, providing a multifaceted perspective on the environmental subjects 
at hand.

Neural network architecture.  We utilized a modified U-Net architecture19 featuring an EfficientNet 
encoder for image segmentation tasks. This combination harnesses EfficientNet’s efficient feature extraction capa-
bilities and U-Net’s precision in segmentation application20.

Fig. 1  Top row: Three randomly chosen images from the dataset. Bottom row: the annotated masks of the 
respective images.

Category

Oil Water Other

# Images 994 929 1106

# Annotated Pixels 527361085 835851102 939502502

Relative Annotation (%) 22.9 36.3 40.8

Table 1.  Dataset Overview by Category. This table provides a comprehensive breakdown of the dataset across 
three categories: Oil, Water, and Other. The first row indicates the total number of images featuring each 
respective category. The second row details the count of annotated pixels labelled under each category, reflecting 
the extent of detailed annotations provided. The final row presents the percentage of relative annotations per 
category, thereby illustrating their proportional representation in the entire dataset.
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Encoder.  The encoder is based on EfficientNet b421, starting with a convolutional layer for initial feature extrac-
tion and followed by batch normalization. The core consists of Mobile Inverted Bottleneck Convolution Blocks 
with depthwise separable convolutions, incorporating Squeeze-and-Excitation layers for channel-wise feature 
recalibration and the MemoryEfficientSwish activation function for balance between performance and memory 
efficiency. The encoder was pretrained on the ImageNet Database18.

Decoder.  The U-Net decoder includes multiple DecoderBlocks with convolutional layers and ReLU activation, 
designed to upsample the feature maps to the original image size. Attention mechanisms are integrated to focus 
on salient features.

Segmentation head.  The final part of the network, the Segmentation Head, transforms decoded features into a 
segmentation map through a convolutional layer, followed by a softmax activation for multiclass classification.

Segmentation results.  Table 2 offers a detailed evaluation of the multiclass image segmentation model 
used in our study. For each category - Oil, Water, and Other - the model’s performance is assessed using four 
critical metrics: F1 Score, Precision, Recall, and Intersection over Union (IoU). These metrics collectively provide 
a multifaceted view of the model’s accuracy and efficiency in correctly identifying and classifying each category 
within the dataset.

As observed, the model demonstrates strong performance across all categories, with particularly high 
scores in Precision and Recall for the ‘Water’ category. The F1 Score, which balances Precision and Recall, is 
notably high for ‘Water’ and ‘Oil’, indicating a robust capability of the model in handling these categories. The 
Intersection over Union (IoU) metric, which assesses the overlap between predicted and ground truth areas, also 
shows commendable results, especially for ‘Water’.

While the model achieves a good overall accuracy, a closer inspection of its predictions, as shown in Fig. 2, 
reveals notable limitations in distinguishing between specific classes. A significant challenge is observed in dif-
ferentiating ‘oil’ from ‘water,’ especially in areas where these substances coexist or are in close proximity. The 
model frequently struggles to accurately delineate the boundaries between oil and water, resulting in a high rate 
of misclassifications in these regions. This difficulty is compounded by the nature of the transitions between oil 
and water, which often appear as gradual rather than sharp, well-defined borders. Such transitions are particu-
larly problematic for the model in scenarios where the boundary is subtle or where oil has partially dispersed 

Metric

Category

Oil Water Other

F1 Score 0.72 0.91 0.75

Precision 0.77 0.91 0.85

Recall 0.79 0.98 0.77

IoU 0.69 0.86 0.62

Table 2.  This table provides a detailed breakdown of key performance indicators for the used multiclass image 
segmentation model. For each category, the table displays the F1 Score, Precision, Recall, and Intersection over 
Union (IoU), offering a comprehensive view of the model’s effectiveness in accurately identifying and classifying 
each specific category within the images.

Fig. 2  Predictions on three images from the dataset. The top row represents the annotated mask, and the 
bottom row is the predicted mask by the neural network.
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on the water surface, creating a blended zone that does not distinctly represent either category. This lack of clear 
demarcation poses a significant challenge to the model’s ability to accurately classify these overlapping or closely 
related regions.

Overall, while the model’s general accuracy is commendable, these observed discrepancies underscore the 
need for further refinement. Enhancing the model could involve adjusting the model’s architecture and hyper-
parameters to better capture the nuances between different categories.

Technical Validation
Our dataset was carefully curated through the deployment of drones equipped with cameras, ensuring the cap-
ture of a wide array of images across varying environmental conditions and locations. These varying environ-
mental conditions are primarily related to weather, particularly the sun’s position and brightness. Variations in 
sunlight intensity, angle, and shadow can alter the appearance of objects in images, affecting contrast, color, and 
texture. In this dataset, these varying conditions are present, making it a representable for real-life cases.

To uphold privacy while retaining the dataset’s efficacy for oil spill detection, specific alterations were imple-
mented. This included the use of advanced inpainting techniques and selective blurring to anonymize identifia-
ble features effectively, ensuring the resulting images remained highly relevant for analytical purposes.

Annotation validation.  The annotation process was a collaborative effort led by the InViLab research 
group, with equitable distribution of images among members for initial annotation. Dr. Sels played a pivotal role 
in reviewing and refining these annotations to guarantee precision. Post-annotation, the images were anonymized 
and further processed using inpainting to preserve the integrity of the dataset without compromising network 
performance. This careful anonymization process was meticulously reviewed by both Dr. Sels and Dr. De Kerf, 
ensuring the highest standards of data quality and reliability were maintained.

Influence of the inpainting process.  To assess the impact of our anonymization technique on model 
performance, we conducted a comparative analysis. Initially, a model was trained using the original dataset, 
which had not been subjected to the anonymization process. This model’s accuracy was validated against a dis-
tinct validation set to establish a performance benchmark. Subsequently, the same model was evaluated using the 
anonymized dataset, ensuring consistency in testing conditions. Remarkably, the comparative analysis revealed 
no discernible difference in the validation results between the anonymized and non-anonymized datasets. This 
finding demonstrates that our inpainting-based anonymization process does not compromise the model’s ability 
to detect oil spills, affirming the integrity of our data processing methodology.

Code availability
The data for this study was generated independently of any coding process. For reproducibility and further 
research, the complete code base for our analysis, figures, and tables creation is available on GitHub at https://
github.com/thomasdekerf/OilSpillDataset_Analysis. This repository also contains the code for training and 
evaluating our neural network, alongside the optimally trained model saved in a .pth file format, facilitating direct 
use and exploration by other researchers.
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