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The high incidence of oil spills in port areas poses a serious threat to the environment, prompting the
need for efficient detection mechanisms. Utilizing automated drones for this purpose can significantly
improve the speed and accuracy of oil spill detection. Such advancements not only expedite cleanup
operations, reducing environmental harm but also enhance polluter accountability, potentially
deterring future incidents. Currently, there’s a scarcity of datasets employing RGB images for oil spill
detection in maritime settings. This paper presents a unique, annotated dataset aimed at addressing
this gap, leveraging a neural network for analysis on both desktop and edge computing platforms.
The dataset, captured via drone, comprises 1268 images categorized into oil, water, and other, with a
convolutional neural network trained using an Unet model architecture achieving an F1 score of 0.71
for oil detection. This underscores the dataset’s practicality for real-world applications, offering crucial
resources for environmental conservation in port environments.

Background & Summary

The topic of oil spills stands out in the discourse on environmental disasters, highlighted by extensive analyses
in various seminal works'2. These oil spills have brought widespread devastation to ecosystems. While such
large-scale spills often dominate media narratives, it is important to note that most oil spills are actually smaller
in scale (under 700 tonnes) and tend to occur in or near ports. Recent data reveals that about 66% of oil spills
are of medium size, ranging from 7 to 700 tonnes, and more than half of these incidents are reported within
the confines of port areas, as indicated by the latest oil tanker spill statistics®. This prevalence of medium-sized
spills in such critical areas underscores the need for focused research and improved response strategies in port
environments.

Presently, oil spill detection in ports relies largely on accidental discovery by port authority inspectors, lead-
ing to delays in reporting and clean-up. This delay is critical, as oil slicks in ports can move at speeds of 0.4 to
0.75 cm/s, potentially travelling over 2 km within an hour, making swift identification (within 30 minutes)
crucial for the following benefits*. Due to the extended area that a port area can take up, using fixed cameras, is
not a feasible option. Therefore drone based measurements are much more suitable as they can traverse a large
area, autonomously and signal if there is an oil spill detected. There are implementations. Additionally, the added
detection rate has the following advantages:

o Reduced environmental harm due to quicker clean-up.

o More efficient containment and clean-up of the oil.

« Minimal disruption to port operations, reducing economic losses.
o Insome cases, clearer identification of the responsible polluter.

Past studies have predominantly concentrated on monitoring large-scale oil spills through satellite imagery
and Synthetic Aperture Radar (SAR)> techniques. While these methods are effective in open sea conditions,
their effectiveness is compromised within port environments due to several limitations. SAR technology, in
particular, is less efficient in ports where wave action is minimal and oil spills typically manifest as thin layers,
not providing the significant dampening effect needed for SAR detection.
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Furthermore, the use of satellite and high-altitude aerial imagery presents challenges in port settings. These
methods, while beneficial for broad surveillance, do not offer the fine spatial resolution necessary for identifying
smaller spills common in the intricate and bustling nature of port areas. Additionally, the financial implications
of satellite usage are substantial, with the high costs becoming a barrier to the routine and detailed monitoring
required for managing the complex dynamics of ports.

The integration of RGB and hyperspectral imaging technologies’™ has also been explored, yet these
approaches introduce constraints in low-budget commercial scenarios. Given these considerations, there is a
pressing demand for alternative strategies better tailored to the specific demands of port environments. These
strategies must balance cost-efficiency with the capability to provide accurate, high-resolution monitoring for
effective oil spill detection and management.

In our previous work'?, we demonstrated the potential benefits of combining RGB and infrared imagery for
oil spill detection. However, the practical application of this approach has been hindered by the high minimum
requirements for thermal cameras, rendering it economically unviable at present. Addressing this challenge,
this paper introduces a pioneering solution: the first annotated dataset of RGB images specifically captured in a
port environment.

This dataset represents a significant advancement in the field of oil spill detection in a port environment.
The dataset consists of 1268 images that are fully annotated into three categories: oil, water, and other. Offering
an invaluable resource for training and validating detection models. While there exists a body of research and
datasets'"'2, that focuses on the segmentation of ships and port infrastructure, these studies notably omit the
consideration of oil spills within the port environment.

Utilizing this dataset, we have developed a segmentation model that showcases the practical viability of
drone-based RGB imaging for oil spill detection. The model demonstrates an f1 score of 0.72, 0.91 and 0.75 for
the oil, water and other category respectively. This marks an overall effective classification, underscoring the
feasibility of this approach. Our findings reveal that drone-based RGB imaging, without the need for thermal
imaging, is not only feasible but also efficient for oil spill detection in port environments.

This research opens up new avenues for cost-effective and accurate oil spill monitoring, leveraging the agility
and extensive reach of drone technology combined with the simplicity and effectiveness of RGB imaging. The
results from this study are poised to make a significant impact on environmental protection strategies in port
areas, offering a ready-to-deploy solution for timely and reliable oil spill detection.

Methods

Data collection. The dataset for this study was meticulously gathered using a drone (Dronematrix YACOB
and DJI Mavic2) equipped with high-resolution cameras (4000%2250 and 3840%2160 pixels). The drone flights,
conducted from 09/2021 to 09/2023, captured a wide array of images under different environmental condi-
tions. This strategy guaranteed a varied and exhaustive dataset, mirroring a multitude of situations that might
arise within a port context. The deliberate selection of the periods for capturing images, encompassing differ-
ent months and times throughout the day. This ensured the inclusion of a wide spectrum of lighting scenarios,
weather changes, and the array of operational tasks characteristic of a port setting.

During the capturing of the images, the height was varied between 30 and 70 meters. Also the camera angle
was varied, from a top town approach to a slight incline. This was done on purpose to be able to generalize the
dataset.

To align with privacy and confidentiality guidelines, we implemented specific alterations to the raw data, a
vital measure to facilitate the dataset’s broad utilization without compromising privacy. Critical adjustments
involved identifying and processing text'®, people, and logos. All elements that could reveal individual identi-
ties and specific locations within the images. These identified areas were subsequently inpainted'* to generate
anonymized images, ensuring they remain suitable for image processing, without impacting its efficacy.

Furthermore, specific identifiable markings on ships and dockside were also blurred. This measure was taken
to ensure that no sensitive information about the port’s operations or the identities of the vessels within the port
was disclosed. Such modifications are essential in maintaining the integrity and confidentiality of the operations
within the port, as well as respecting the proprietary rights of shipping companies.

These modifications, while necessary for privacy and ethical considerations, were implemented in a manner
that did not compromise the quality of the data for its intended use in oil spill detection. The alterations were
carefully executed to ensure that the key elements necessary for identifying and analyzing oil spills - such as the
texture, spread, and coloration of the oil against the water - remained intact and discernible in the images.

Data annotation. The annotation process for our dataset was meticulously carried out using the software
platform CVAT (Computer Vision Annotation Tool), accessible at https://cvat.ai. To ensure comprehensive cov-
erage and accuracy, the images were divided into several subsets. Each subset was then assigned to different
members of the InViLab research group for initial annotation. This division of labour allowed for a more focused
and detailed approach to the annotation process, as each researcher could concentrate on a manageable portion
of the dataset, thereby enhancing the overall quality and consistency of the annotations.

After the initial annotation phase, a rigorous quality control process was implemented. Senior researchers
within the group undertook a thorough review of the annotated images. This step was crucial to ensure the high-
est level of accuracy and reliability of the annotations. The senior researchers meticulously double-checked each
annotation, making corrections and adjustments where necessary. This collaborative and multi-tiered approach
to annotation and quality assurance ensured the quality of the dataset, with annotations that accurately repre-
sented the various aspects and characteristics of oil spills in a port environment.

Each pixel is categorised into one of either these categories: oil, water or other. The other class is a combina-
tion of ships, quays, buildings and air. The choice of such an encompassing super category is made because the
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Fig. 1 Top row: Three randomly chosen images from the dataset. Bottom row: the annotated masks of the
respective images.

Category

0il Water Other
# Images 994 929 1106
# Annotated Pixels 527361085 835851102 939502502
Relative Annotation (%) | 22.9 36.3 40.8

Table 1. Dataset Overview by Category. This table provides a comprehensive breakdown of the dataset across
three categories: Oil, Water, and Other. The first row indicates the total number of images featuring each
respective category. The second row details the count of annotated pixels labelled under each category, reflecting
the extent of detailed annotations provided. The final row presents the percentage of relative annotations per
category, thereby illustrating their proportional representation in the entire dataset.

goal of the dataset is to distinguish between oil and water, not to identify the different other elements in a port
environment. An overview of three randomly selected images, together with the annotated regions can be found
in Fig. 1:

Data Records

The dataset is publicly available and has been contributed to the open-source community, accessible via
Zenodo®. It comes pre-partitioned into training, testing, and validation subsets, following a 70/15/15 percent-
age split, respectively, to facilitate immediate use in machine learning workflows. Annotation data is provided
in three formats to ensure compatibility with various training paradigms: the CamVid format'¢, which was also
employed during the networK’s training phase, as well as the widely recognized COCO' and ImageNet'® for-
mats. These multiple annotation formats enhance the dataset’s versatility, allowing for seamless integration with
different models and frameworks.

Dataset statistics. In Table 1, we present essential statistics of our dataset, segmented into three key catego-
ries: Oil, Water, and other. This comprehensive overview is critical for understanding the scope and distribution
of our data.

The first row of the table indicates the total number of images in which each category appears. The count of
994 images for Oil, 929 for Water, and 1106 for other reflects the dataset’s diversity and the varying frequency of
these elements within our collected imagery.

Moving to the second row, we detail the number of annotated pixels for each category. With 527,361,085
annotated pixels for Oil, 835,851,102 for Water, and 939,502,502 for other, these figures demonstrate the exten-
sive level of detail that has been captured in our annotations. This granularity is pivotal for accurate analysis and
application in related fields, such as machine learning and environmental monitoring.

The final row presents the percentage of relative annotations for each category, illustrating their proportional
representation in the entire dataset. Here, Oil annotations constitute 22.9%, Water 36.3%, and Other 40.8%.
These percentages are indicative of the emphasis placed on each category within our dataset and underscore the
balanced yet distinct focus on each element, providing a multifaceted perspective on the environmental subjects
at hand.

Neural network architecture. We utilized a modified U-Net architecture!® featuring an EfficientNet
encoder for image segmentation tasks. This combination harnesses EfficientNet’s efficient feature extraction capa-
bilities and U-Net’s precision in segmentation application®.
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Category
Metric 0il Water Other
F1 Score 0.72 091 0.75
Precision 0.77 0.91 0.85
Recall 0.79 0.98 0.77
IoU 0.69 0.86 0.62

Table 2. This table provides a detailed breakdown of key performance indicators for the used multiclass image
segmentation model. For each category, the table displays the F1 Score, Precision, Recall, and Intersection over
Union (IoU), offering a comprehensive view of the model’s effectiveness in accurately identifying and classifying
each specific category within the images.

[ Water Other mEE Unlabelled

Image A Image B Image C

Predicted Image A Predicted Image B Predicted Image C

Fig. 2 Predictions on three images from the dataset. The top row represents the annotated mask, and the
bottom row is the predicted mask by the neural network.

Encoder. 'The encoder is based on EfficientNet b4?!, starting with a convolutional layer for initial feature extrac-
tion and followed by batch normalization. The core consists of Mobile Inverted Bottleneck Convolution Blocks
with depthwise separable convolutions, incorporating Squeeze-and-Excitation layers for channel-wise feature
recalibration and the MemoryEfficientSwish activation function for balance between performance and memory
efficiency. The encoder was pretrained on the ImageNet Database'®.

Decoder. 'The U-Net decoder includes multiple DecoderBlocks with convolutional layers and ReLU activation,
designed to upsample the feature maps to the original image size. Attention mechanisms are integrated to focus
on salient features.

Segmentation head. The final part of the network, the Segmentation Head, transforms decoded features into a
segmentation map through a convolutional layer, followed by a softmax activation for multiclass classification.

Segmentation results. Table 2 offers a detailed evaluation of the multiclass image segmentation model
used in our study. For each category - Oil, Water, and Other - the model’s performance is assessed using four
critical metrics: F1 Score, Precision, Recall, and Intersection over Union (IoU). These metrics collectively provide
a multifaceted view of the model’s accuracy and efficiency in correctly identifying and classifying each category
within the dataset.

As observed, the model demonstrates strong performance across all categories, with particularly high
scores in Precision and Recall for the “Water’ category. The F1 Score, which balances Precision and Recall, is
notably high for ‘Water’ and ‘Oil, indicating a robust capability of the model in handling these categories. The
Intersection over Union (IoU) metric, which assesses the overlap between predicted and ground truth areas, also
shows commendable results, especially for ‘Water’

While the model achieves a good overall accuracy, a closer inspection of its predictions, as shown in Fig. 2,
reveals notable limitations in distinguishing between specific classes. A significant challenge is observed in dif-
ferentiating ‘oil’ from ‘water; especially in areas where these substances coexist or are in close proximity. The
model frequently struggles to accurately delineate the boundaries between oil and water, resulting in a high rate
of misclassifications in these regions. This difficulty is compounded by the nature of the transitions between oil
and water, which often appear as gradual rather than sharp, well-defined borders. Such transitions are particu-
larly problematic for the model in scenarios where the boundary is subtle or where oil has partially dispersed
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on the water surface, creating a blended zone that does not distinctly represent either category. This lack of clear
demarcation poses a significant challenge to the model’s ability to accurately classify these overlapping or closely
related regions.

Overall, while the model’s general accuracy is commendable, these observed discrepancies underscore the
need for further refinement. Enhancing the model could involve adjusting the model’s architecture and hyper-
parameters to better capture the nuances between different categories.

Technical Validation
Our dataset was carefully curated through the deployment of drones equipped with cameras, ensuring the cap-
ture of a wide array of images across varying environmental conditions and locations. These varying environ-
mental conditions are primarily related to weather, particularly the sun’s position and brightness. Variations in
sunlight intensity, angle, and shadow can alter the appearance of objects in images, affecting contrast, color, and
texture. In this dataset, these varying conditions are present, making it a representable for real-life cases.

To uphold privacy while retaining the dataset’s efficacy for oil spill detection, specific alterations were imple-
mented. This included the use of advanced inpainting techniques and selective blurring to anonymize identifia-
ble features effectively, ensuring the resulting images remained highly relevant for analytical purposes.

Annotation validation. The annotation process was a collaborative effort led by the InViLab research
group, with equitable distribution of images among members for initial annotation. Dr. Sels played a pivotal role
in reviewing and refining these annotations to guarantee precision. Post-annotation, the images were anonymized
and further processed using inpainting to preserve the integrity of the dataset without compromising network
performance. This careful anonymization process was meticulously reviewed by both Dr. Sels and Dr. De Kerf,
ensuring the highest standards of data quality and reliability were maintained.

Influence of the inpainting process. To assess the impact of our anonymization technique on model
performance, we conducted a comparative analysis. Initially, a model was trained using the original dataset,
which had not been subjected to the anonymization process. This model’s accuracy was validated against a dis-
tinct validation set to establish a performance benchmark. Subsequently, the same model was evaluated using the
anonymized dataset, ensuring consistency in testing conditions. Remarkably, the comparative analysis revealed
no discernible difference in the validation results between the anonymized and non-anonymized datasets. This
finding demonstrates that our inpainting-based anonymization process does not compromise the model’s ability
to detect oil spills, affirming the integrity of our data processing methodology.

Code availability

The data for this study was generated independently of any coding process. For reproducibility and further
research, the complete code base for our analysis, figures, and tables creation is available on GitHub at https://
github.com/thomasdekerf/OilSpillDataset_Analysis. This repository also contains the code for training and
evaluating our neural network, alongside the optimally trained model saved in a .pth file format, facilitating direct
use and exploration by other researchers.
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