

scientific data

OPEN

DATA DESCRIPTOR

Clinical benchmark dataset for AI accuracy analysis: quantifying radiographic annotation of pelvic tilt

Yuan Chai ¹✉, A. Mounir Boudali¹, Vincent Maes^{2,3} & William L. Walter^{1,3,4}

Radiographic landmark annotation determines patients' anatomical parameters and influences diagnoses. However, challenges arise from ambiguous region-based definitions, human error, and image quality variations, potentially compromising patient care. Additionally, AI landmark localization often presents its predictions in a probability-based heatmap format, which lacks a corresponding clinical standard for accuracy validation. This Data Descriptor presents a clinical benchmark dataset for pelvic tilt landmarks, gathered through a probabilistic approach to measure annotation accuracy within clinical environments. A retrospective analysis of 115 pelvic sagittal radiographs was conducted for annotating pelvic tilt parameters by five annotators, revealing landmark cloud sizes of 6.04 mm–17.90 mm at a 95% dataset threshold, corresponding to 9.51°–16.55° maximum angular disagreement in clinical settings. The outcome provides a quantified point cloud dataset for each landmark corresponding to different probabilities, which enables assessment of directional annotation distribution and parameter-wise impact, providing clinical benchmarks. The data is readily reusable for AI studies analyzing the same landmarks, and the method can be easily replicated for establishing clinical accuracy benchmarks of other landmarks.

Background & Summary

Landmark annotation is commonly used in radiographs to evaluate skeletal concerns^{1,2}. Accurate annotation is crucial for determining anatomical parameters and influencing diagnostic decisions³. Traditionally, patient-specific skeletal parameters were annotated on physical radiographs for personalized surgery^{2,4}. With technological advancements, electronic radiographs have emerged as a reliable alternative to the manual ruler method, while providing image augmentation benefits such as zooming, contrast adjustment, and coordinate calculation^{5,6}. Nonetheless, this process remains labor-intensive and prone to human error. Consequently, the adoption of artificial intelligence (AI) for automatic landmarking has gained popularity in recent years^{4,7,8}.

Despite advancements, achieving consistent annotation remains challenging due to the ambiguity of region-based landmark definitions, human error, and variations in image quality, which may potentially result in substandard patient care². Definitions of radiographic landmarks often lack a definitive "ground truth" point, and the selection of each landmark can influence the associated anatomical parameters, subsequently affecting surgical decisions and leading to non-uniform diagnoses^{9–11}. Quantifying the regions of these landmarks is challenging due to ambiguities in their definition and variations in patient anatomies, radiographic qualities, and pixel sizes. Consequently, comparing landmarks between radiographs remains a difficult task¹². On the other hand, developing an AI landmarking algorithm necessitates a "gold standard" training dataset, which itself is subject to landmark ambiguity and human error¹³. The incorporation of label noise into AI models is inevitable. Studies often report "precise" outcomes by comparing AI results to "gold standard" datasets obtained through manual image annotation¹². However, such comparisons often overlook uncertainties in annotation

¹Sydney Musculoskeletal Health and The Kolling Institute, Northern Clinical School, Faculty of Medicine and Health and the Northern Sydney Local Health District, Sydney, NSW, Australia. ²University Hospitals Leuven, Department of Orthopedic Surgery, Leuven, Belgium. ³Department of Orthopedics and Traumatic Surgery, Royal North Shore Hospital, St Leonards', NSW, Australia. ⁴The Orthopaedic Department, St Vincent's Hospital, Darlinghurst, NSW, Australia. ✉e-mail: yuanchai95@gmail.com

and landmark ambiguities, attributing deviations from the gold standard solely to AI error, while the “gold standard” itself may contain errors originating from human annotation⁴. Consequently, studies often rely on parameter-based accuracy analyses, such as length or angle measurements between paired landmarks, calculated using the highest possible pixel values^{11,12,14}. The accuracy of such analyses is often reported using statistical summaries such as mean absolute error (MAE) or Intraclass Correlation Coefficient (ICC)^{11,14–19}. Therefore, human and AI accuracy are reported in different formats, making it challenging to compare them under the same framework. There is currently a lack of suitable methods to assess human error on a landmark-specific basis^{7,8}.

Based on clinical standard, this Data Descriptor introduces a clinical benchmark dataset focused on pelvic tilt (PT) landmarks, which is routinely evaluated in hip and spine surgeries. The dataset was compiled through a probabilistic methodology, addressing the aforementioned challenges by presenting results in a probability distribution format. This approach mirrors AI techniques that commonly incorporate pseudo-probabilities to predict landmark locations and generate point-wise estimations^{7,8,11,20}. By adopting a comparable strategy, this Data Descriptor establishes accuracy benchmarks for PT landmarks across various confidence thresholds within clinical contexts. The intent of this dataset is to validate alternative landmark annotation methods, including those rooted in AI technology²¹.

Methods

Imaging dataset. The imaging dataset used in this Data Descriptor was sourced from an ethically approved research database (2019/ETH09656, St Vincent’s Hospital Human Research Ethics Committee, Sydney, Australia) and is shared under a CC-BY license. To validate the proposed method’s feasibility, this retrospective study designed a streamlined example focusing on the measurement of the pelvic tilt parameter. We sourced a total of 115 consecutive sagittal radiographs (EOS Imaging, France) from our research database (ethics ID: 2019/ETH09656)²². The ethics committee approved the publication of the anonymized datasets in this study under CC-BY license. These images were collected from 93 unique patients (62 males and 31 females, with an average age of 64.6 ± 11.4 years) admitted between November 2020 and July 2021 awaiting their hip surgeries. All participating patients provided informed consent for the use of their de-identified data for research purposes. The DICOM images were converted to JPG format to remove all metadata. The files were then renamed in a randomized numerical order for each patient. In cases where a patient had more than one image, the date the image was taken was appended to the patient number in the filename.

Proposed probabilistic method. The proposed method of evaluating landmarking accuracy requires multiple observers to annotate a landmark. The centroid of the annotations (averaged location) from multiple annotators of a specific landmark will be considered as the “ground-truth” point. In order to ensure a consistent scale of annotation distributions, skeletal sizes between images needed to be assimilated. Therefore, an image-specific length parameter was used to scale the different images to a similar size. Next, the ground-truths from all radiographs were collected and superimposed to display all annotations on the same map. The annotation distribution at the orientation of interest (distribution vector) is then used to calculate the probability distribution and its parameter-wise impact.

Calculation of the probabilistic model. Firstly, an image-specific length parameter was proposed as the scaling factor η to standardize the skeletal size across different images and patients, as shown in Eq. (1)²³:

$$\eta_i = \frac{\sum_{i=1}^m L_i}{m L_i} \quad (1)$$

where the η_i is the ratio between the standardized skeletal size $\frac{\sum_{i=1}^m L_i}{m}$ and the current skeletal size L_i of image i , and m is the total amount of images. The length parameter L is selected from a measurement that is identifiable across all images.

To visualize the distribution of landmarks for all images, the centroid of the scaled coordinates was superimposed. The coordinates of landmark j on image i , as annotated by annotator s , can be expressed as Eq. (2).

$$\begin{aligned} \hat{x}_{ij}^{(s)} &= \eta_i \left(x_{ij}^{(s)} - \frac{\sum_{s=1}^n x_{ij}^{(s)}}{n} \right) \\ \hat{y}_{ij}^{(s)} &= \eta_i \left(y_{ij}^{(s)} - \frac{\sum_{s=1}^n y_{ij}^{(s)}}{n} \right) \end{aligned} \quad (2)$$

where n is the total number of annotators, $(x_{ij}^{(s)}, y_{ij}^{(s)})$ and $(\hat{x}_{ij}^{(s)}, \hat{y}_{ij}^{(s)})$ represent the original and centralized coordinates of landmark j on image i labeled by annotator s , respectively.

The 2D landmarks were subsequently transformed to a coordinate system that represents the orientation of interest θ , as illustrated in Fig. 1 (PT_{ave} in our case). The transformation can be expressed as Eq. (3).

$$\begin{aligned} \tilde{x}_{ij}^{(s)} &= \hat{x}_{ij}^{(s)} \times \cos(\theta) - \hat{y}_{ij}^{(s)} \times \sin(\theta) \\ \tilde{y}_{ij}^{(s)} &= \hat{y}_{ij}^{(s)} \times \cos(\theta) + \hat{x}_{ij}^{(s)} \times \sin(\theta) \end{aligned} \quad (3)$$

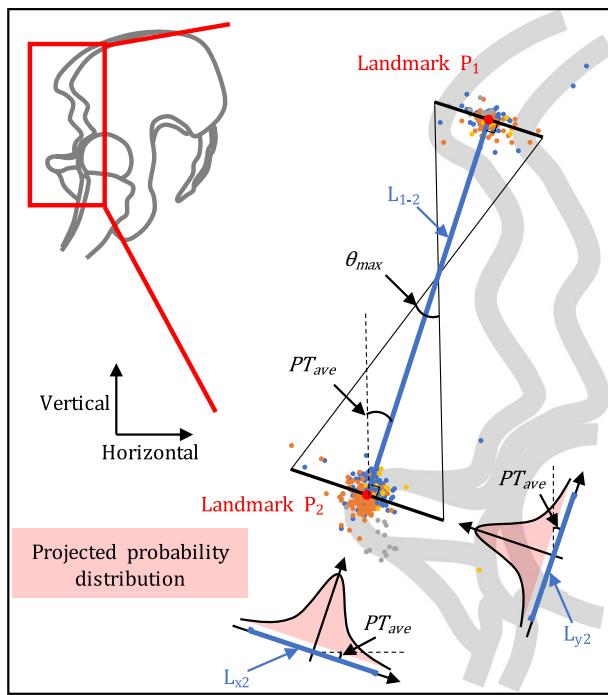


Fig. 1 Diagram of calculating the coordinate of each landmark annotation. Using the pelvic tilt defined by Landmark 1 and Landmark 2 as an example, the average distance between the two landmarks is L_{1-2} , and the average pelvic tilt is PT_{ave} . The projected error density in the red shadow is obtained by projecting the cloud point distribution of Landmark 2 to the orientation of PT_{ave} , and the probability distribution of Landmark 2 can be calculated from the density vector L_2 . Based on the probability distributions of landmarks, their maximum impact on the pelvic tilt parameter at a certain probability threshold can be calculated as θ_{max} .

where $(\tilde{x}_{ij}^{(s)}, \tilde{y}_{ij}^{(s)})$ represents the transformed coordinate of the already scaled and centralized landmarks following the direction of interest θ . Similar to the concept of an heatmap in AI representing the confidence of a landmark, $(\tilde{x}_{ij}^{(s)}, \tilde{y}_{ij}^{(s)})$ serves as the density vector of landmark ambiguity at different confidence levels.

The landmark accuracy is calculated from the maximum impact of the point cloud diameter of $k\%$ data points from two landmark ends (P_1 and P_2), $\tilde{x}_{ij}^{(s)}$ approximately equivalent to the impact on angles (θ_{max}^k) and $\tilde{y}_{ij}^{(s)}$ approximately equivalent to the impact on lengths (L_{max}^k), as shown in Eq. (4).

$$\begin{aligned} \theta_{max}^k &= 2 \tan^{-1} \left(\frac{L_{x1}^k + L_{x2}^k}{L_{P1P2}} \right) \\ L_{max}^k &= L_{P1P2} + \frac{L_{y1}^k + L_{y2}^k}{2} \end{aligned} \quad (4)$$

where the $k\%$ is the percentage of landmarks that define the accuracy threshold, L_{max}^k and θ_{max}^k denotes the maximum length and angular disagreement of the parameters within $k\%$ data points; L_{P1P2} corresponds to the average distance between the two landmarks (P_1 and P_2) that define the L and θ ; $L_{x1/y1}^k$ and $L_{x2/y2}^k$ are the lengths of $k\%$ data points at the direction of interest (x/y) for point 1 and point 2, respectively, which are calculated from \tilde{x} and \tilde{y} .

Annotation dataset. Five independent annotators, including one senior surgeon (WW), two orthopedic fellows (JF and VM), and two orthopedic engineers (YC and MB), were equally trained to label the points that defined the PT using a custom-designed MATLAB GUI program²⁴. Two different definitions of PT were used (Fig. 2): the anatomical pelvic tilt (PT_a), defined by the anterior pelvic plane (APP), and the mechanical pelvic tilt (PT_m), defined by the line connecting the midpoint of the sacral plate and the center of the two femoral heads²⁵. Before annotating an image, it was zoomed in until the annotator was confident in their ability to view and label all the landmarks. Then, each of the landmarks were labeled by clicking on the corresponding locations.

For the annotation of PT_a , one point was labeled for the center of the anterior superior iliac spines (ASISs, labeled as P_a), and one point for the anterosuperior pubic tubercle (P_p). For the annotation of PT_m , two methods of labeling were performed. The first, calculation method used six points on each image to define the round femoral head contours (three points each) in order to calculate the center of the femoral heads (P_h), as well as two points to define the anterior (P_{sa}) and posterior (P_{sp}) ends of the sacral plate to calculate the sacral plate midpoint

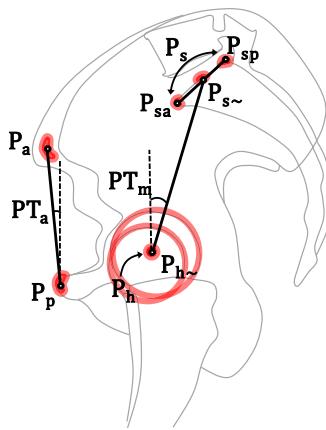


Fig. 2 The pelvic tilt landmarks and parameters. PT_m is the mechanical pelvic tilt defined by the vertical line and the line connecting the center of femoral heads and the midpoint of sacral plate. The two points defining the latter line can either be calculated from annotating the bone contours, with six points defining the two femoral head contours and calculating their center (P_h), and two points annotating the anterior (P_{sa}) and posterior (P_{sp}) ends of sacral plate and calculating its midpoint (P_s), or be estimated directly with one point for the center of femoral heads ($P_{h\sim}$) and one point for the midpoint of sacral plate ($P_{s\sim}$). PT_a is the anatomical pelvic tilt defined by the anterior pelvic plane, which was annotated by one point for the pubic tubercles (P_p) and one point for the center of anterior superior iliac spines (P_a).

(P_s). The second, estimation method ($PT_{m\sim}$) used only two points, one to estimate the center of the femoral heads ($P_{h\sim}$), and one to estimate the midpoint of the sacral plate ($P_{s\sim}$). The annotators YC and MB repeated these two rounds of measurements for intra-annotator reproducibility, with at least a six-week interval²⁴.

Benchmark dataset. In our dataset, two image-specific length parameters were selected to scale the anatomies of pelvis to a similar size. Thus, the Eq. (1) was modified to:

$$\eta_i = \frac{1}{2m} \times \left(\frac{\sum_{i=1}^m L_i}{L_i} + \frac{\sum_{i=1}^m \hat{L}_i}{\hat{L}_i} \right)$$

where L_i and \hat{L}_i are the distances between P_a and P_p , P_h and P_s , respectively (Fig. 2).

According to Eq. 2 to Eq. 4, the coordinate of each landmark on each image was scaled, centralized, and transformed to the orientation at interest for their density distribution. In our dataset, the orientation at interest θ is PT_{ave} (Fig. 1). Thus, the distribution of $\tilde{x}_{ij}^{(s)}$ in Eq. (3) represents the distribution vector of landmark ambiguity that impact the angular measurement θ_{max}^k at $k\%$ confidence level. They are provided as the benchmark dataset for the clinical accuracy benchmark of measuring PT.

The distributions of landmark clouds, both prior to transformation and after centralization, are visualized in Fig. 3. This visualization aids in identifying variations in landmark distributions (random errors) and annotator biases (systematic errors, e.g., P_p). For the measurement of PT_m , the calculation method proved superior to the estimation method, and as such, it was chosen as the clinical benchmark accuracy for P_s and P_h landmarks. The diameters of the point clouds and their impact on PT parameters at different probability densities (50%, 75%, and 95%) are depicted in Fig. 4. Notably, at a 95% probability density, the cloud diameters for P_h , P_s , P_p , and P_a were 6.05 mm, 9.10 mm, 6.04 mm, and 17.90 mm, respectively. These measurements correspond to maximum angular disagreements of 16.55° for PT_a and 9.51° for PT_m ²⁴.

Data Records

The dataset is available at figshare^{22,24}, which comprises three distinct data records and a MATLAB code file that are published under CC-BY license:

1. Imaging Dataset: This consists of 115 de-identified lateral pelvic radiographs, stored in the *.jpg format²².
2. Annotation Dataset: This is a.csv file where the first column corresponds to the file names in the 'Imaging dataset'. The remaining columns in each row represent the coordinates of the landmarks for the corresponding image file²⁴.
3. Benchmark Dataset: This is a.csv data file that includes the maximum length and angular disagreement of the parameters at different data probability thresholds²⁴.
4. MATLAB Code: This is a.m file that encapsulates all the codes utilized to record the coordinates of the landmark annotations²⁴.

Additionally, comprehensive documentation and tutorials related to this Data Descriptor are accessible on our project website at <https://landmarkaccuracy.com/>.

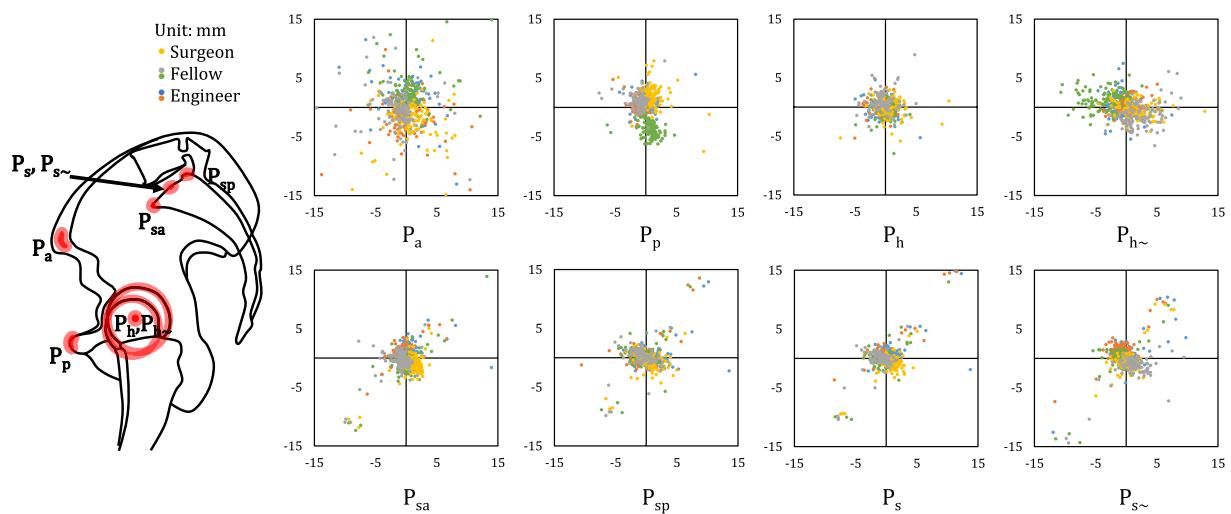


Fig. 3 Scaled data point distribution of each landmark. Landmark labels refer to the diagram on the left-hand side.

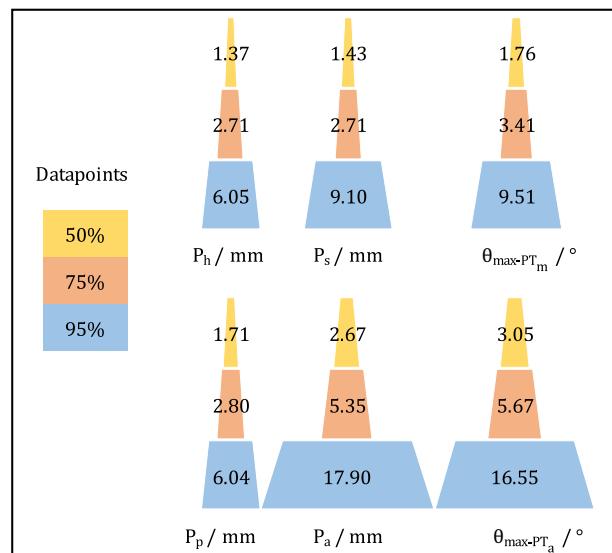


Fig. 4 The cloud diameter of each landmark (calculation method) and its parameter-wise maximum impact at 50%, 75%, and 95% data points. P_h , P_s , P_p , and P_a stand for the point of femoral head center calculated by annotating six points, midpoint of sacral plate calculated from two points denoting its anterior and posterior ends, pubic tubercles, and the center of anterior superior iliac spines, respectively. $\theta_{\max-PT_m}$ and $\theta_{\max-PT_a}$ are the maximum angular impact at a certain probability threshold, which are caused by the pair of landmarks P_h - P_s and P_p - P_a that defines them.

Technical Validation

Measurements validation. The agreement of measurements was evaluated using the commonly employed ICC and MAE, and the results were compared with those from other studies. The MAE, along with inter- and intra-annotator ICCs, were computed using SPSS software (SPSS Inc., IBM)²⁶, and the results are presented in Table 1. All parameters showcased excellent reliability, with ICCs exceeding 0.9²⁶.

Consistent with previous studies^{17,27–30}, our annotation data exhibited excellent reliability when measuring these radiographic landmarks (Table 1). The mean absolute angular disagreement, ranging from $1.11 \pm 1.52^\circ$ to $1.90 \pm 2.41^\circ$ for PT measurements provides a reference for standard clinical settings (Table 1), which is in line with the existing literature^{9,17,31,32}.

Usage Notes

This database was conceived to set accuracy benchmarks for measuring PT in clinical settings, serving as a practical model for establishing accuracy benchmarks for other anatomical landmarks. We kindly request users to respect privacy guidelines and refrain from any attempts to re-identify patients, institutions, or hospitals involved.

Statistics	PT _m	PT _{m~}	PT _a
ICC inter-rater	0.982	0.976	0.920
ICC intra-rater 1	0.960	0.931	0.966
ICC intra-rater 2	0.994	0.994	0.990
MAE (°)	0.74 ± 0.43	1.18 ± 0.51	1.26 ± 1.28

Table 1. The accuracy analysis using Intraclass Correlation Coefficient (ICC) and Mean Absolute Error (MAE) ± Standard Deviation (SD).

For users developing benchmark datasets for other landmarks, it is essential to consider four key factors:

1. In situations where multiple clinical annotation methods exist for a single landmark, the method with the highest degree of accuracy should be chosen as the ultimate clinical accuracy benchmark. As demonstrated in our Data Descriptor, surgeons either identify anatomical contours to calculate the location (P_h and P_s), or directly estimate the landmark location ($P_{h~}$ and $P_{s~}$). In such scenarios, the method exhibiting greater precision (PT_m, in this instance) ought to be acknowledged as the clinical standard of reference.
2. Aligning with the philosophy of the clinical environment, annotations deemed inadequate should not be intentionally excluded, as long as the data collection process aligns with clinical standards. For instance, in Fig. 3, the clusters of sacrum-related landmarks (P_{sa} , P_{sp} , P_s , $P_{s~}$) exhibit extreme outliers that follow a distinct pattern. Upon further investigation, these outliers were attributed to patients with sacralization or lumbarization of the fifth lumbar and sacrum, resulting in inaccurate identification of L5 and S1 landmarks. While the removal of these inaccuracies may improve data quality and potentially enhance AI training outcomes, these variables form part of the clinical decision-making process and should thus be retained when creating a clinical benchmark dataset.
3. The choice of the scaling factor η should prioritize length parameters that are as long as possible to minimize the influence of label noise. These parameters should also be relatively immune to anatomical variation and image quality and should ideally represent the scale of a skeleton in the best possible way.
4. The provided MATLAB code is designed exclusively for annotating pelvic tilt landmarks. However, it can be adapted to support other landmark annotation tasks. Alternatively, other coordinate documentation software can be used for this task.

For those using our dataset for AI training, we recommend splitting the training, validation, and testing subsets based on the patient number, which is the first part of the file name. This ensures that images from the same patient are not split across different subsets, preventing any bias that could arise from the model learning a patient's anatomical features during training and then encountering those same features in the testing phase^{33,34}.

Limitations. First, the “ground truth” location of landmarks remains subjective and susceptible to human error. While our methodology mitigates this error by involving five clinical annotators, and the results are comparable to existing studies, the annotators’ experience levels may vary significantly. Engaging more annotators with higher experience levels could potentially enhance the annotation results, but this would also demand substantial labor resources. Second, stereoradiographs were utilized in this Data Descriptor due to their consistent pixel sizing across various images³⁵. While the measurement results align with current literature using conventional radiographs, it’s crucial to acknowledge that different imaging techniques might produce varying outcomes. Third, the MATLAB program employed in this Data Descriptor to simulate clinical practice for navigating coordinates and recording viewing information differs from the actual clinical setting that uses the Picture Archiving and Communication System (PACS). Fourth, the choice of length parameters as the scaling factor might be imprecise, especially for potential future studies focusing on smaller regions where the scaling factor could be more sensitive to label noise. Fifth, the relatively small sample size of our dataset is a potential limitation. While we focused on introducing the novel probabilistic method with minimal labor cost and encouraging future researchers to replicate this process for other landmarks, this dataset may not fully represent the broader anatomical diversity of the patient population. Last, while we suggest the potential for generalizing this method to other landmark analyses, additional evaluation of its applicability in different contexts is necessary.

Code availability

The MATLAB code employed to capture all the annotation coordinates is included and is freely available for use and modification²⁴. Any alternative software capable of recording coordinates can be utilized for this purpose.

Received: 28 August 2023; Accepted: 14 October 2024;

Published online: 22 October 2024

References

1. Rischen, R. J., Breuning, K. H., Bronkhorst, E. M. & Kuijpers-Jagtman, A. M. Records needed for orthodontic diagnosis and treatment planning: a systematic review. *PLoS one* **8**, e74186 (2013).
2. Wang, C.-W. *et al.* Evaluation and comparison of anatomical landmark detection methods for cephalometric x-ray images: a grand challenge. *IEEE transactions on medical imaging* **34**, 1890–1900 (2015).
3. Chai, Y., Boudali, A. M., Khadra, S. & Walter, W. L. The Sacro-femoral-pubic Angle Is Unreliable to Estimate Pelvic Tilt: A Meta-analysis. *Clinical Orthopaedics and Related Research*®, 10.1097 (2022).

4. Reyes, M. *et al.* On the interpretability of artificial intelligence in radiology: challenges and opportunities. *Radiology: artificial intelligence* **2**, e190043 (2020).
5. Patel, S. R., Toms, A. P., Rehman, J. M. & Wimhurst, J. A reliability study of measurement tools available on standard picture archiving and communication system workstations for the evaluation of hip radiographs following arthroplasty. *JBJS* **93**, 1712–1719 (2011).
6. Segev, E. *et al.* Intra-and interobserver reliability analysis of digital radiographic measurements for pediatric orthopedic parameters using a novel PACS integrated computer software program. *Journal of children's orthopaedics* **4**, 331–341 (2010).
7. Weng, C.-H. *et al.* Automatic recognition of whole-spine sagittal alignment and curvature analysis through a deep learning technique. *European Spine Journal* **31**, 2092–2103 (2022).
8. Yeh, Y.-C. *et al.* Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs. *Scientific reports* **11**, 1–15 (2021).
9. Eckman, K., Hafez, M. A., Jaramaz, B., Levison, T. J. & DiGioia, A. M. III Accuracy of pelvic flexion measurements from lateral radiographs. *Clinical Orthopaedics and Related Research®* **451**, 154–160 (2006).
10. McClure, S. R., Sadowsky, P. L., Ferreira, A. & Jacobson, A. in *Seminars in Orthodontics*. 98–110 (Elsevier).
11. Zeng, M., Yan, Z., Liu, S., Zhou, Y. & Qiu, L. Cascaded convolutional networks for automatic cephalometric landmark detection. *Medical Image Analysis* **68**, 101904 (2021).
12. Vrtovec, T. & Ibragimov, B. Spinopelvic measurements of sagittal balance with deep learning: systematic review and critical evaluation. *European Spine Journal*, 1–15 (2022).
13. Chai, Y., Maes, V., Boudali, A. M., Rackel, B. & Walter, W. L. Inadequate Annotation and Its Impact on Pelvic Tilt Measurement in Clinical Practice. *Journal of Clinical Medicine* **13**, 1394 (2024).
14. Payer, C., Stern, D., Bischof, H. & Urschler, M. Integrating spatial configuration into heatmap regression based CNNs for landmark localization. *Medical image analysis* **54**, 207–219 (2019).
15. Mast, N. H., Impellizzeri, F., Keller, S. & Leunig, M. Reliability and agreement of measures used in radiographic evaluation of the adult hip. *Clinical Orthopaedics and Related Research®* **469**, 188–199 (2011).
16. Kyrölä, K. K. *et al.* Intra-and interrater reliability of sagittal spinopelvic parameters on full-spine radiographs in adults with symptomatic spinal disorders. *Neurospine* **15**, 175 (2018).
17. Berthonnaud, E. *et al.* A variability study of computerized sagittal spinopelvic radiologic measurements of trunk balance. *Clinical Spine Surgery* **18**, 66–71 (2005).
18. Lin, A. *et al.* Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study. *The Lancet Digital Health* **4**, e256–e265 (2022).
19. Veilleux, N. J., Kalore, N. V., Vossen, J. A. & Wayne, J. S. Automatic characterization of pelvic and sacral measures from 200 subjects. *JBJS* **102**, e130 (2020).
20. Tompson, J. J., Jain, A., LeCun, Y. & Bregler, C. Joint training of a convolutional network and a graphical model for human pose estimation. *Advances in neural information processing systems* **27** (2014).
21. Tannast, M., Fritsch, S., Zheng, G., Siebenrock, K. A. & Steppacher, S. D. Which radiographic hip parameters do not have to be corrected for pelvic rotation and tilt? *Clinical Orthopaedics and Related Research®* **473**, 1255–1266 (2015).
22. Chai, Y. Sagittal Pelvic Radiographs: A Dataset for Clinical Quantification of Radiographic Annotation Accuracy. *figshare. Figure*. <https://doi.org/10.6084/m9.figshare.23820879.v1> (2023).
23. Cina, A. *et al.* 2-step deep learning model for landmarks localization in spine radiographs. *Scientific Reports* **11**, 1–12 (2021).
24. Chai, Y. Data records for Clinical Quantification of Radiographic Annotation Accuracy. *figshare. Dataset*. <https://doi.org/10.6084/m9.figshare.23831553.v1> (2023).
25. Chai, Y., Boudali, A. M. & Walter, W. L. Correlations Analysis of Different Pelvic Tilt Definitions: A Preliminary Study. *HSS Journal®* **19**, 187–192 (2023).
26. Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. *Journal of chiropractic medicine* **15**, 155–163 (2016).
27. Bjarnason, J., Pripp, A. & Reikeras, O. Reliability of measures used in radiographic evaluation of the adult hip. *Skeletal Radiology* **44**, 935–939 (2015).
28. Kutty, S. *et al.* Reliability and predictability of the centre-edge angle in the assessment of pincer femoroacetabular impingement. *International orthopaedics* **36**, 505–510 (2012).
29. Tyrakowski, M., Yu, H. & Siemionow, K. Pelvic incidence and pelvic tilt measurements using femoral heads or acetabular domes to identify centers of the hips: comparison of two methods. *European Spine Journal* **24**, 1259–1264 (2015).
30. Ilharreborde, B. *et al.* Angle measurement reproducibility using EOSthree-dimensional reconstructions in adolescent idiopathic scoliosis treated by posterior instrumentation. *Spine* **36**, E1306–E1313 (2011).
31. Gille, O., Champain, N., Benchikh-El-Fegoun, A., Vital, J.-M. & Skalli, W. Reliability of 3D reconstruction of the spine of mild scoliotic patients. *Spine* **32**, 568–573 (2007).
32. Imai, N., Ito, T., Suda, K., Miyasaka, D. & Endo, N. Pelvic flexion measurement from lateral projection radiographs is clinically reliable. *Clinical Orthopaedics and Related Research®* **471**, 1271–1276 (2013).
33. Chai, Y. Letter to the Editor Regarding the Article “Comparison of Transfer Learning Models in Pelvic Tilt and Rotation Measurement in Pediatric Anteroposterior Pelvic Radiographs”. *Journal of Imaging Informatics in Medicine*, 1–2 (2024).
34. Chai, Y. *et al.* Evaluating Pelvic Tilt Using the Pelvic Antero-posterior Projection Images-A Systematic Review. *The Journal of Arthroplasty* (2023).
35. Chai, Y., Boudali, A. M., Jenkins, E., Maes, V. & Walter, W. L. Advances in Imaging for Pre-Surgical Planning in Hip Resurfacing Arthroplasty. *Orthopaedics & Traumatology: Surgery & Research*, 103908 (2024).

Acknowledgements

We thank the professional consultations and landmark annotations from Dr. John Farey, and the clinical support from Lynette McDonald from the Royal North Shore Hospital, St. Leonards, NSW, Australia.

Author contributions

Yuan Chai: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Writing - original draft; Writing - review & editing. A. Mounir Boudali: Data curation; Formal analysis; Investigation; Software; Validation; Visualization; Writing - review & editing. Vincent Maes: Data curation; Writing - review & editing. William L. Walter: Data curation; Formal analysis; Funding acquisition; Investigation; Resources; Supervision; Validation; Writing - review & editing.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to Y.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2024