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Clinical benchmark dataset for 
AI accuracy analysis: quantifying 
radiographic annotation of pelvic 
tilt
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Radiographic landmark annotation determines patients’ anatomical parameters and influences 
diagnoses. However, challenges arise from ambiguous region-based definitions, human error, and 
image quality variations, potentially compromising patient care. Additionally, AI landmark localization 
often presents its predictions in a probability-based heatmap format, which lacks a corresponding 
clinical standard for accuracy validation. This Data Descriptor presents a clinical benchmark dataset 
for pelvic tilt landmarks, gathered through a probabilistic approach to measure annotation accuracy 
within clinical environments. A retrospective analysis of 115 pelvic sagittal radiographs was 
conducted for annotating pelvic tilt parameters by five annotators, revealing landmark cloud sizes 
of 6.04 mm-17.90 mm at a 95% dataset threshold, corresponding to 9.51°–16.55° maximum angular 
disagreement in clinical settings. The outcome provides a quantified point cloud dataset for each 
landmark corresponding to different probabilities, which enables assessment of directional annotation 
distribution and parameter-wise impact, providing clinical benchmarks. The data is readily reusable 
for AI studies analyzing the same landmarks, and the method can be easily replicated for establishing 
clinical accuracy benchmarks of other landmarks.

Background & Summary
Landmark annotation is commonly used in radiographs to evaluate skeletal concerns1,2. Accurate annota-
tion is crucial for determining anatomical parameters and influencing diagnostic decisions3. Traditionally, 
patient-specific skeletal parameters were annotated on physical radiographs for personalized surgery2,4. With 
technological advancements, electronic radiographs have emerged as a reliable alternative to the manual ruler 
method, while providing image augmentation benefits such as zooming, contrast adjustment, and coordinate 
calculation5,6. Nonetheless, this process remains labor-intensive and prone to human error. Consequently, the 
adoption of artificial intelligence (AI) for automatic landmarking has gained popularity in recent years4,7,8.

Despite advancements, achieving consistent annotation remains challenging due to the ambiguity of 
region-based landmark definitions, human error, and variations in image quality, which may potentially result 
in substandard patient care2. Definitions of radiographic landmarks often lack a definitive “ground truth” point, 
and the selection of each landmark can influence the associated anatomical parameters, subsequently affecting 
surgical decisions and leading to non-uniform diagnoses9–11. Quantifying the regions of these landmarks is 
challenging due to ambiguities in their definition and variations in patient anatomies, radiographic qualities, 
and pixel sizes. Consequently, comparing landmarks between radiographs remains a difficult task12. On the 
other hand, developing an AI landmarking algorithm necessitates a “gold standard” training dataset, which 
itself is subject to landmark ambiguity and human error13. The incorporation of label noise into AI models is 
inevitable. Studies often report “precise” outcomes by comparing AI results to “gold standard” datasets obtained 
through manual image annotation12. However, such comparisons often overlook uncertainties in annotation 
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and landmark ambiguities, attributing deviations from the gold standard solely to AI error, while the “gold 
standard” itself may contain errors originating from human annotation4. Consequently, studies often rely on 
parameter-based accuracy analyses, such as length or angle measurements between paired landmarks, calcu-
lated using the highest possible pixel values11,12,14. The accuracy of such analyses is often reported using statistical 
summaries such as mean absolute error (MAE) or Intraclass Correlation Coefficient (ICC)11,14–19. Therefore, 
human and AI accuracy are reported in different formats, making it challenging to compare them under the 
same framework. There is currently a lack of suitable methods to assess human error on a landmark-specific 
basis7,8.

Based on clinical standard, this Data Descriptor introduces a clinical benchmark dataset focused on pelvic 
tilt (PT) landmarks, which is routinely evaluated in hip and spine surgeries. The dataset was compiled through 
a probabilistic methodology, addressing the aforementioned challenges by presenting results in a probability 
distribution format. This approach mirrors AI techniques that commonly incorporate pseudo-probabilities to 
predict landmark locations and generate point-wise estimations7,8,11,20. By adopting a comparable strategy, this 
Data Descriptor establishes accuracy benchmarks for PT landmarks across various confidence thresholds within 
clinical contexts. The intent of this dataset is to validate alternative landmark annotation methods, including 
those rooted in AI technology21.

Methods
Imaging dataset.  The imaging dataset used in this Data Descriptor was sourced from an ethically approved 
research database (2019/ETH09656, St Vincent’s Hospital Human Research Ethics Committee, Sydney, Australia) 
and is shared under a CC-BY license. To validate the proposed method’s feasibility, this retrospective study 
designed a streamlined example focusing on the measurement of the pelvic tilt parameter. We sourced a total 
of 115 consecutive sagittal radiographs (EOS Imaging, France) from our research database (ethics ID: 2019/
ETH09656)22. The ethics committee approved the publication of the anonymizaed datasets in this study under 
CC-BY license. These images were collected from 93 unique patients (62 males and 31 females, with an average 
age of 64.6 ± 11.4 years) admitted between November 2020 and July 2021 awaiting their hip surgeries. All par-
ticipating patients provided informed consent for the use of their de-identified data for research purposes. The 
DICOM images were converted to JPG format to remove all metadata. The files were then renamed in a rand-
omized numerical order for each patient. In cases where a patient had more than one image, the date the image 
was taken was appended to the patient number in the filename.

Proposed probabilistic method.  The proposed method of evaluating landmarking accuracy requires mul-
tiple observers to annotate a landmark. The centroid of the annotations (averaged location) from multiple anno-
tators of a specific landmark will be considered as the “ground-truth” point. In order to ensure a consistent scale 
of annotation distributions, skeletal sizes between images needed to be assimilated. Therefore, an image-specific 
length parameter was used to scale the different images to a similar size. Next, the ground-truths from all radio-
graphs were collected and superimposed to display all annotations on the same map. The annotation distribution 
at the orientation of interest (distribution vector) is then used to calculate the probability distribution and its 
parameter-wise impact.

Calculation of the probabilistic model.  Firstly, an image-specific length parameter was proposed as the 
scaling factor η to standardize the skeletal size across different images and patients, as shown in Eq. (1)23:
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and m is the total amount of images. The length parameter L is selected from a measurement that is identifiable 
across all images.

To visualize the distribution of landmarks for all images, the centroid of the scaled coordinates was super-
imposed. The coordinates of landmark j on image i, as annotated by annotator s, can be expressed as Eq. (2).
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The 2D landmarks were subsequently transformed to a coordinate system that represents the orientation of 
interest θ, as illustrated in Fig. 1 (PTave in our case). The transformation can be expressed as Eq. (3).
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where � �x y( , )ij
s

ij
s( ) ( )  represents the transformed coordinate of the already scaled and centralized landmarks follow-

ing the direction of interest θ. Similar to the concept of an heatmap in AI representing the confidence of a land-
mark, x y( , )ij

s
ij

s( ) ( )� �  serves as the density vector of landmark ambiguity at different confidence levels.
The landmark accuracy is calculated from the maximum impact of the point cloud diameter of k% data 

points from two landmark ends (P1 and P2), xij
s( )�  approximately equivalent to the impact on angles ( max

kθ ) and �yij
s( ) 

approximately equivalent to the impact on lengths (Lmax
k ), as shown in Eq. (4).
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and �y .

Annotation dataset.  Five independent annotators, including one senior surgeon (WW), two orthopedic 
fellows (JF and VM), and two orthopedic engineers (YC and MB), were equally trained to label the points that 
defined the PT using a custom-designed MATLAB GUI program24. Two different definitions of PT were used 
(Fig. 2): the anatomical pelvic tilt (PTa), defined by the anterior pelvic plane (APP), and the mechanical pelvic tilt 
(PTm), defined by the line connecting the midpoint of the sacral plate and the center of the two femoral heads25. 
Before annotating an image, it was zoomed in until the annotator was confident in their ability to view and label 
all the landmarks. Then, each of the landmarks were labeled by clicking on the corresponding locations.

For the annotation of PTa, one point was labeled for the center of the anterior superior iliac spines (ASISs, 
labeled as Pa), and one point for the anterosuperior pubic tubercle (Pp). For the annotation of PTm, two methods 
of labeling were performed. The first, calculation method used six points on each image to define the round fem-
oral head contours (three points each) in order to calculate the center of the femoral heads (Ph), as well as two 
points to define the anterior (Psa) and posterior (Psp) ends of the sacral plate to calculate the sacral plate midpoint 

θ

Fig. 1  Diagram of calculating the coordinate of each landmark annotation. Using the pelvic tilt defined by 
Landmark 1 and Landmark 2 as an example, the average distance between the two landmarks is L1-2, and the 
average pelvic tilt is PTave. The projected error density in the red shadow is obtained by projecting the cloud 
point distribution of Landmark 2 to the orientation of PTave, and the probability distribution of Landmark 2 can 
be calculated from the density vector L2. Based on the probability distributions of landmarks, their maximum 
impact on the pelvic tilt parameter at a certain probability threshold can be calculated as θmax.
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(Ps). The second, estimation method (PTm~) used only two points, one to estimate the center of the femoral heads 
(Ph~), and one to estimate the midpoint of the sacral plate (Ps~). The annotators YC and MB repeated these two 
rounds of measurements for intra-annotator reproducibility, with at least a six-week interval24.

Benchmark dataset.  In our dataset, two image-specific length parameters were selected to scale the anato-
mies of pelvis to a similar size. Thus, the Eq. (1) was modified to:
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where Li and L̂i are the distances between Pa and Pp, Ph and Ps, respectively (Fig. 2).
According to Eq. 2 to Eq. 4, the coordinate of each landmark on each image was scaled, centralized, and 

transformed to the orientation at interest for their density distribution. In our dataset, the orientation at interest 
θ is PTave (Fig. 1). Thus, the distribution of xij

s( )�  in Eq. (3) represents the distribution vector of landmark ambigu-
ity that impact the angular measurement θmax

k  at k% confidence level. They are provided as the benchmark data-
set for the clinical accuracy benchmark of measuring PT.

The distributions of landmark clouds, both prior to transformation and after centralization, are visualized in 
Fig. 3. This visualization aids in identifying variations in landmark distributions (random errors) and annotator 
biases (systematic errors, e.g., Pp). For the measurement of PTm, the calculation method proved superior to the 
estimation method, and as such, it was chosen as the clinical benchmark accuracy for Ps and Ph landmarks. The 
diameters of the point clouds and their impact on PT parameters at different probability densities (50%, 75%, 
and 95%) are depicted in Fig. 4. Notably, at a 95% probability density, the cloud diameters for Ph, Ps, Pp, and Pa 
were 6.05 mm, 9.10 mm, 6.04 mm, and 17.90 mm, respectively. These measurements correspond to maximum 
angular disagreements of 16.55° for PTa and 9.51° for PTm

24.

Data Records
The dataset is available at figshare22,24, which comprises three distinct data records and a MATLAB code file that 
are published under CC-BY license:

	 1.	 Imaging Dataset: This consists of 115 de-identified lateral pelvic radiographs, stored in the *.jpg format22.
	 2.	 Annotation Dataset: This is a.csv file where the first column corresponds to the file names in the ‘Imaging 

dataset’. The remaining columns in each row represent the coordinates of the landmarks for the corre-
sponding image file24.

	 3.	 Benchmark Dataset: This is a.csv data file that includes the maximum length and angular disagreement of 
the parameters at different data probability thresholds24.

	 4.	 MATLAB Code: This is a.m file that encapsulates all the codes utilized to record the coordinates of the 
landmark annotations24.

Additionally, comprehensive documentation and tutorials related to this Data Descriptor are accessible on 
our project website at https://landmarkaccuracy.com/.

Fig. 2  The pelvic tilt landmarks and parameters. PTm is the mechanical pelvic tilt defined by the vertical line 
and the line connecting the center of femoral heads and the midpoint of sacral plate. The two points defining the 
latter line can either be calculated from annotating the bone contours, with six points defining the two femoral 
head contours and calculating their center (Ph), and two points annotating the anterior (Psa) and posterior (Psp) 
ends of sacral plate and calculating its midpoint (Ps), or be estimated directly with one point for the center of 
femoral heads (Ph~) and one point for the midpoint of sacral plate (Ps~). PTa is the anatomical pelvic tilt defined 
by the anterior pelvic plane, which was annotated by one point for the pubic tubercles (Pp) and one point for the 
center of anterior superior iliac spines (Pa).
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Technical Validation
Measurements validation.  The agreement of measurements was evaluated using the commonly employed 
ICC and MAE, and the results were compared with those from other studies. The MAE, along with inter- and 
intra-annotator ICCs, were computed using SPSS software (SPSS Inc., IBM)26, and the results are presented in 
Table 1. All parameters showcased excellent reliability, with ICCs exceeding 0.926.

Consistent with previous studies17,27–30, our annotation data exhibited excellent reliability when measuring 
these radiographic landmarks (Table 1). The mean absolute angular disagreement, ranging from 1.11 ± 1.52° to 
1.90 ± 2.41° for PT measurements provides a reference for standard clinical settings (Table 1), which is in line 
with the existing literature9,17,31,32.

Usage Notes
This database was conceived to set accuracy benchmarks for measuring PT in clinical settings, serving as a 
practical model for establishing accuracy benchmarks for other anatomical landmarks. We kindly request users 
to respect privacy guidelines and refrain from any attempts to re-identify patients, institutions, or hospitals 
involved.

•
••
••

Fig. 3  Scaled data point distribution of each landmark. Landmark labels refer to the diagram on the left-hand side.

θ

θ

Fig. 4  The cloud diameter of each landmark (calculation method) and its parameter-wise maximum impact 
at 50%, 75%, and 95% data points. Ph, Ps, Pp, and Pa stand for the point of femoral head center calculated by 
annotating six points, midpoint of sacral plate calculated from two points denoting its anterior and posterior 
ends, pubic tubercles, and the center of anterior superior iliac spines, respectively. θmax-PTm and θmax-PTa are the 
maximum angular impact at a certain probability threshold, which are caused by the pair of landmarks Ph-Ps 
and Pp-Pa that defines them.
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For users developing benchmark datasets for other landmarks, it is essential to consider four key factors:

	 1.	 In situations where multiple clinical annotation methods exist for a single landmark, the method with the 
highest degree of accuracy should be chosen as the ultimate clinical accuracy benchmark. As demonstrated 
in our Data Descriptor, surgeons either identify anatomical contours to calculate the location (Ph and Ps), 
or directly estimate the landmark location (Ph~ and Ps~). In such scenarios, the method exhibiting greater 
precision (PTm, in this instance) ought to be acknowledged as the clinical standard of reference.

	 2.	 Aligning with the philosophy of the clinical environment, annotations deemed inadequate should not be 
intentionally excluded, as long as the data collection process aligns with clinical standards. For instance, 
in Fig. 3, the clusters of sacrum-related landmarks (Psa, Psp, Ps, Ps~) exhibit extreme outliers that follow 
a distinct pattern. Upon further investigation, these outliers were attributed to patients with sacraliza-
tion or lumbarization of the fifth lumbar and sacrum, resulting in inaccurate identification of L5 and S1 
landmarks. While the removal of these inaccuracies may improve data quality and potentially enhance AI 
training outcomes, these variables form part of the clinical decision-making process and should thus be 
retained when creating a clinical benchmark dataset.

	 3.	 The choice of the scaling factor η should prioritize length parameters that are as long as possible to 
minimize the influence of label noise. These parameters should also be relatively immune to anatomical 
variation and image quality and should ideally represent the scale of a skeleton in the best possible way.

	 4.	 The provided MATLAB code is designed exclusively for annotating pelvic tilt landmarks. However, it can 
be adapted to support other landmark annotation tasks. Alternatively, other coordinate documentation 
software can be used for this task.

For those using our dataset for AI training, we recommend splitting the training, validation, and testing 
subsets based on the patient number, which is the first part of the file name. This ensures that images from the 
same patient are not split across different subsets, preventing any bias that could arise from the model learning a 
patient’s anatomical features during training and then encountering those same features in the testing phase33,34.

Limitations.  First, the “ground truth” location of landmarks remains subjective and susceptible to human 
error. While our methodology mitigates this error by involving five clinical annotators, and the results are compa-
rable to existing studies, the annotators’ experience levels may vary significantly. Engaging more annotators with 
higher experience levels could potentially enhance the annotation results, but this would also demand substantial 
labor resources. Second, stereoradiographs were utilized in this Data Descriptor due to their consistent pixel siz-
ing across various images35. While the measurement results align with current literature using conventional radi-
ographs, it’s crucial to acknowledge that different imaging techniques might produce varying outcomes. Third, 
the MATLAB program employed in this Data Descriptor to simulate clinical practice for navigating coordinates 
and recording viewing information differs from the actual clinical setting that uses the Picture Archiving and 
Communication System (PACS). Fourth, the choice of length parameters as the scaling factor might be imprecise, 
especially for potential future studies focusing on smaller regions where the scaling factor could be more sensitive 
to label noise. Fifth, the relatively small sample size of our dataset is a potential limitation. While we focused on 
introducing the novel probabilistic method with minimal labor cost and encouraging future researchers to repli-
cate this process for other landmarks, this dataset may not fully represent the broader anatomical diversity of the 
patient population. Last, while we suggest the potential for generalizing this method to other landmark analyses, 
additional evaluation of its applicability in different contexts is necessary.

Code availability
The MATLAB code employed to capture all the annotation coordinates is included and is freely available for use 
and modification24. Any alternative software capable of recording coordinates can be utilized for this purpose.
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