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Radiographic landmark annotation determines patients’ anatomical parameters and influences
diagnoses. However, challenges arise from ambiguous region-based definitions, human error, and
image quality variations, potentially compromising patient care. Additionally, Al landmark localization
often presents its predictions in a probability-based heatmap format, which lacks a corresponding
clinical standard for accuracy validation. This Data Descriptor presents a clinical benchmark dataset
for pelvic tilt landmarks, gathered through a probabilistic approach to measure annotation accuracy
within clinical environments. A retrospective analysis of 115 pelvic sagittal radiographs was

conducted for annotating pelvic tilt parameters by five annotators, revealing landmark cloud sizes

of 6.04mm-17.90 mm at a 95% dataset threshold, corresponding to 9.51°-16.55° maximum angular
disagreement in clinical settings. The outcome provides a quantified point cloud dataset for each
landmark corresponding to different probabilities, which enables assessment of directional annotation
distribution and parameter-wise impact, providing clinical benchmarks. The data is readily reusable

for Al studies analyzing the same landmarks, and the method can be easily replicated for establishing
clinical accuracy benchmarks of other landmarks.

Background & Summary
Landmark annotation is commonly used in radiographs to evaluate skeletal concerns?. Accurate annota-
tion is crucial for determining anatomical parameters and influencing diagnostic decisions®. Traditionally,
patient-specific skeletal parameters were annotated on physical radiographs for personalized surgery>*. With
technological advancements, electronic radiographs have emerged as a reliable alternative to the manual ruler
method, while providing image augmentation benefits such as zooming, contrast adjustment, and coordinate
calculation®S. Nonetheless, this process remains labor-intensive and prone to human error. Consequently, the
adoption of artificial intelligence (AI) for automatic landmarking has gained popularity in recent years*”®.
Despite advancements, achieving consistent annotation remains challenging due to the ambiguity of
region-based landmark definitions, human error, and variations in image quality, which may potentially result
in substandard patient care?. Definitions of radiographic landmarks often lack a definitive “ground truth” point,
and the selection of each landmark can influence the associated anatomical parameters, subsequently affecting
surgical decisions and leading to non-uniform diagnoses®~!. Quantifying the regions of these landmarks is
challenging due to ambiguities in their definition and variations in patient anatomies, radiographic qualities,
and pixel sizes. Consequently, comparing landmarks between radiographs remains a difficult task’?. On the
other hand, developing an AI landmarking algorithm necessitates a “gold standard” training dataset, which
itself is subject to landmark ambiguity and human error'®. The incorporation of label noise into AI models is
inevitable. Studies often report “precise” outcomes by comparing Al results to “gold standard” datasets obtained
through manual image annotation'2. However, such comparisons often overlook uncertainties in annotation
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and landmark ambiguities, attributing deviations from the gold standard solely to Al error, while the “gold
standard” itself may contain errors originating from human annotation*. Consequently, studies often rely on
parameter-based accuracy analyses, such as length or angle measurements between paired landmarks, calcu-
lated using the highest possible pixel values!'>!%, The accuracy of such analyses is often reported using statistical
summaries such as mean absolute error (MAE) or Intraclass Correlation Coefficient (ICC)'»!4-1°, Therefore,
human and AT accuracy are reported in different formats, making it challenging to compare them under the
same framework. There is currently a lack of suitable methods to assess human error on a landmark-specific
basis”®.

Based on clinical standard, this Data Descriptor introduces a clinical benchmark dataset focused on pelvic
tilt (PT) landmarks, which is routinely evaluated in hip and spine surgeries. The dataset was compiled through
a probabilistic methodology, addressing the aforementioned challenges by presenting results in a probability
distribution format. This approach mirrors Al techniques that commonly incorporate pseudo-probabilities to
predict landmark locations and generate point-wise estimations”®!?°. By adopting a comparable strategy, this
Data Descriptor establishes accuracy benchmarks for PT landmarks across various confidence thresholds within
clinical contexts. The intent of this dataset is to validate alternative landmark annotation methods, including
those rooted in AI technology?!.

Methods

Imaging dataset. The imaging dataset used in this Data Descriptor was sourced from an ethically approved
research database (2019/ETH09656, St Vincent’s Hospital Human Research Ethics Committee, Sydney, Australia)
and is shared under a CC-BY license. To validate the proposed method’s feasibility, this retrospective study
designed a streamlined example focusing on the measurement of the pelvic tilt parameter. We sourced a total
of 115 consecutive sagittal radiographs (EOS Imaging, France) from our research database (ethics ID: 2019/
ETHO09656)*. The ethics committee approved the publication of the anonymizaed datasets in this study under
CC-BY license. These images were collected from 93 unique patients (62 males and 31 females, with an average
age of 64.6 & 11.4 years) admitted between November 2020 and July 2021 awaiting their hip surgeries. All par-
ticipating patients provided informed consent for the use of their de-identified data for research purposes. The
DICOM images were converted to JPG format to remove all metadata. The files were then renamed in a rand-
omized numerical order for each patient. In cases where a patient had more than one image, the date the image
was taken was appended to the patient number in the filename.

Proposed probabilistic method. The proposed method of evaluating landmarking accuracy requires mul-
tiple observers to annotate a landmark. The centroid of the annotations (averaged location) from multiple anno-
tators of a specific landmark will be considered as the “ground-truth” point. In order to ensure a consistent scale
of annotation distributions, skeletal sizes between images needed to be assimilated. Therefore, an image-specific
length parameter was used to scale the different images to a similar size. Next, the ground-truths from all radio-
graphs were collected and superimposed to display all annotations on the same map. The annotation distribution
at the orientation of interest (distribution vector) is then used to calculate the probability distribution and its
parameter-wise impact.

Calculation of the probabilistic model.  Firstly, an image-specific length parameter was proposed as the
scaling factor 7 to standardize the skeletal size across different images and patients, as shown in Eq. (1)*:
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where the 7, is the ratio between the standardized skeletal size and the current skeletal size L; of image i,
and m is the total amount of images. The length parameter L is selected from a measurement that is identifiable
across all images.

To visualize the distribution of landmarks for all images, the centroid of the scaled coordinates was super-
imposed. The coordinates of landmark j on image 7, as annotated by annotator s, can be expressed as Eq. (2).
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where 7 is the total number of annotators, (x 1.;5) , yij(s )y and (321;5), }755)) represent the original and centralized coor-

dinates of landmark j on image i labeled by annotator s, respectively.
The 2D landmarks were subsequently transformed to a coordinate system that represents the orientation of
interest 0, as illustrated in Fig. 1 (PT,,. in our case). The transformation can be expressed as Eq. (3).

%) =2 x cos(B) — )71;5) x sin(0)
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Fig. 1 Diagram of calculating the coordinate of each landmark annotation. Using the pelvic tilt defined by
Landmark 1 and Landmark 2 as an example, the average distance between the two landmarks is L, ,, and the
average pelvic tilt is PT,,.. The projected error density in the red shadow is obtained by projecting the cloud
point distribution of Landmark 2 to the orientation of PT,,., and the probability distribution of Landmark 2 can
be calculated from the density vector L,. Based on the probability distributions of landmarks, their maximum
impact on the pelvic tilt parameter at a certain probability threshold can be calculated as 0,,,.

where (¥ gs), j;“i(,s)) represents the transformed coordinate of the already scaled and centralized landmarks follow-
ing the direction of interest 6. Similar to the concept of an heatmap in AI representing the confidence of a land-
mark, (& A ~(5)) serves as the density vector of landmark ambiguity at different confidence levels.

The landmark accuracy is calculated from the maximum impact of the point cloud diameter of k% data

points from two landmark ends (P, and P,), X ~<5 ) approximately equivalent to the impact on angles (Gmax) and )7(5 )
approximately equivalent to the impact on lengths (LK ), as shown in Eq. (4).
k k
0k _ tan71 Lxl + LxZ
PIPZ
k k
k Lyl +1L 2
Lmax - LPIPZ + (4)
where the k% is the percentage of landmarks that define the accuracy threshold, L¥, and#% _denotes the max-

imum length and angular disagreement of the parameters within k% data pomts, Lpp, corresponds to the aver-
age distance between the two landmarks (P, and P,) that define the L and 6; L%, m and Lk 1y are the lengths of
k% data points at the direction of interest (x/y) for point 1 and point 2, respectively, which are calculated from X
and y.

Annotation dataset. Five independent annotators, including one senior surgeon (WW), two orthopedic
fellows (JF and VM), and two orthopedic engineers (YC and MB), were equally trained to label the points that
defined the PT using a custom-designed MATLAB GUI program?!. Two different definitions of PT were used
(Fig. 2): the anatomical pelvic tilt (PT,), defined by the anterior pelvic plane (APP), and the mechanical pelvic tilt
(PT,,), defined by the line connecting the midpoint of the sacral plate and the center of the two femoral heads®.
Before annotating an image, it was zoomed in until the annotator was confident in their ability to view and label
all the landmarks. Then, each of the landmarks were labeled by clicking on the corresponding locations.

For the annotation of PT,, one point was labeled for the center of the anterior superior iliac spines (ASISs,
labeled as P,), and one point for the anterosuperior pubic tubercle (P,). For the annotation of PT,,, two methods
of labeling were performed. The first, calculation method used six points on each image to define the round fem-
oral head contours (three points each) in order to calculate the center of the femoral heads (P,), as well as two
points to define the anterior (P,,) and posterior (P,) ends of the sacral plate to calculate the sacral plate midpoint
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Fig. 2 The pelvic tilt landmarks and parameters. PT,, is the mechanical pelvic tilt defined by the vertical line
and the line connecting the center of femoral heads and the midpoint of sacral plate. The two points defining the
latter line can either be calculated from annotating the bone contours, with six points defining the two femoral
head contours and calculating their center (Py), and two points annotating the anterior (P,,) and posterior (P,,)
ends of sacral plate and calculating its midpoint (P,), or be estimated directly with one point for the center of
femoral heads (P}, _) and one point for the midpoint of sacral plate (P,_). PT, is the anatomical pelvic tilt defined
by the anterior pelvic plane, which was annotated by one point for the pubic tubercles (P,) and one point for the
center of anterior superior iliac spines (P,).

(P,). The second, estimation method (PT,,.) used only two points, one to estimate the center of the femoral heads
(Py,.), and one to estimate the midpoint of the sacral plate (P, ). The annotators YC and MB repeated these two
rounds of measurements for intra-annotator reproducibility, with at least a six-week interval*’.

Benchmark dataset. 1In our dataset, two image-specific length parameters were selected to scale the anato-
mies of pelvis to a similar size. Thus, the Eq. (1) was modified to:

~
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where L; and Li are the distances between P,and P, P, and P,, respectively (Fig. 2).

According to Eq. 2 to Eq. 4, the coordinate of each landmark on each image was scaled, centralized, and
transformed to the orientation at interest for their density distribution. In our dataset, the orientation at interest
0is PT,,, (Fig. 1). Thus, the distribution of X, 1.55 )in Eq. (3) represents the distribution vector of landmark ambigu-
ity that impact the angular measurement 6% at k% confidence level. They are provided as the benchmark data-
set for the clinical accuracy benchmark of measuring PT.

The distributions of landmark clouds, both prior to transformation and after centralization, are visualized in
Fig. 3. This visualization aids in identifying variations in landmark distributions (random errors) and annotator
biases (systematic errors, e.g., P,). For the measurement of PT,,,, the calculation method proved superior to the
estimation method, and as such, it was chosen as the clinical benchmark accuracy for P, and P, landmarks. The
diameters of the point clouds and their impact on PT parameters at different probability densities (50%, 75%,
and 95%) are depicted in Fig. 4. Notably, at a 95% probability density, the cloud diameters for P, P, P,, and P,
were 6.05mm, 9.10 mm, 6.04 mm, and 17.90 mm, respectively. These measurements correspond to maximum
angular disagreements of 16.55° for PT, and 9.51° for PT, .

Data Records
The dataset is available at figshare?>**, which comprises three distinct data records and a MATLAB code file that
are published under CC-BY license:

1. Imaging Dataset: This consists of 115 de-identified lateral pelvic radiographs, stored in the *.jpg format®.
2. Annotation Dataset: This is a.csv file where the first column corresponds to the file names in the Tmaging
dataset. The remaining columns in each row represent the coordinates of the landmarks for the corre-

sponding image file**.

3. Benchmark Dataset: This is a.csv data file that includes the maximum length and angular disagreement of
the parameters at different data probability thresholds*.

4. MATLAB Code: This is a.m file that encapsulates all the codes utilized to record the coordinates of the
landmark annotations.

Additionally, comprehensive documentation and tutorials related to this Data Descriptor are accessible on
our project website at https://landmarkaccuracy.com/.
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Fig. 4 The cloud diameter of each landmark (calculation method) and its parameter-wise maximum impact
at 50%, 75%, and 95% data points. Py, P,, P, and P, stand for the point of femoral head center calculated by
annotating six points, midpoint of sacral plate calculated from two points denoting its anterior and posterior
ends, pubic tubercles, and the center of anterior superior iliac spines, respectively. 6., pr, and 0, pr, are the
maximum angular impact at a certain probability threshold, which are caused by the pair of landmarks P, -P,
and P,,-P, that defines them.

Technical Validation

Measurements validation. The agreement of measurements was evaluated using the commonly employed
ICC and MAE, and the results were compared with those from other studies. The MAE, along with inter- and
intra-annotator ICCs, were computed using SPSS software (SPSS Inc., IBM)?, and the results are presented in
Table 1. All parameters showcased excellent reliability, with ICCs exceeding 0.9%.

Consistent with previous studies'”?’*°, our annotation data exhibited excellent reliability when measuring
these radiographic landmarks (Table 1). The mean absolute angular disagreement, ranging from 1.11 £1.52° to
1.90 £ 2.41° for PT measurements provides a reference for standard clinical settings (Table 1), which is in line
with the existing literature®!73132,

Usage Notes

This database was conceived to set accuracy benchmarks for measuring PT in clinical settings, serving as a
practical model for establishing accuracy benchmarks for other anatomical landmarks. We kindly request users
to respect privacy guidelines and refrain from any attempts to re-identify patients, institutions, or hospitals
involved.

SCIENTIFICDATA|  (2024) 11:1162 | https://doi.org/10.1038/s41597-024-04003-7 5


https://doi.org/10.1038/s41597-024-04003-7

www.nature.com/scientificdata/

Statistics PT, PT,,. PT,

ICC inter-rater 0.982 0.976 0.920

ICC intra-rater 1 0.960 0.931 0.966

ICC intra-rater 2 0.994 0.994 0.990
MAE (°) 0.74+£0.43 1.18£0.51 1.26£1.28

Table 1. The accuracy analysis using Intraclass Correlation Coefficient (ICC) and Mean Absolute Error
(MAE) =+ Standard Deviation (SD).

For users developing benchmark datasets for other landmarks, it is essential to consider four key factors:

1. Insituations where multiple clinical annotation methods exist for a single landmark, the method with the
highest degree of accuracy should be chosen as the ultimate clinical accuracy benchmark. As demonstrated
in our Data Descriptor, surgeons either identify anatomical contours to calculate the location (P, and P,),
or directly estimate the landmark location (P, and P, ). In such scenarios, the method exhibiting greater
precision (PT,,, in this instance) ought to be acknowledged as the clinical standard of reference.

2. Aligning with the philosophy of the clinical environment, annotations deemed inadequate should not be
intentionally excluded, as long as the data collection process aligns with clinical standards. For instance,
in Fig. 3, the clusters of sacrum-related landmarks (P, P,,, P, P,_) exhibit extreme outliers that follow
a distinct pattern. Upon further investigation, these outliers were attributed to patients with sacraliza-
tion or lumbarization of the fifth lumbar and sacrum, resulting in inaccurate identification of L5 and S1
landmarks. While the removal of these inaccuracies may improve data quality and potentially enhance AI
training outcomes, these variables form part of the clinical decision-making process and should thus be
retained when creating a clinical benchmark dataset.

3. The choice of the scaling factor 1 should prioritize length parameters that are as long as possible to
minimize the influence of label noise. These parameters should also be relatively immune to anatomical
variation and image quality and should ideally represent the scale of a skeleton in the best possible way.

4. 'The provided MATLAB code is designed exclusively for annotating pelvic tilt landmarks. However, it can
be adapted to support other landmark annotation tasks. Alternatively, other coordinate documentation
software can be used for this task.

For those using our dataset for Al training, we recommend splitting the training, validation, and testing
subsets based on the patient number, which is the first part of the file name. This ensures that images from the
same patient are not split across different subsets, preventing any bias that could arise from the model learning a
patient’s anatomical features during training and then encountering those same features in the testing phase*.

Limitations. First, the “ground truth” location of landmarks remains subjective and susceptible to human
error. While our methodology mitigates this error by involving five clinical annotators, and the results are compa-
rable to existing studies, the annotators’ experience levels may vary significantly. Engaging more annotators with
higher experience levels could potentially enhance the annotation results, but this would also demand substantial
labor resources. Second, stereoradiographs were utilized in this Data Descriptor due to their consistent pixel siz-
ing across various images®. While the measurement results align with current literature using conventional radi-
ographs, it’s crucial to acknowledge that different imaging techniques might produce varying outcomes. Third,
the MATLAB program employed in this Data Descriptor to simulate clinical practice for navigating coordinates
and recording viewing information differs from the actual clinical setting that uses the Picture Archiving and
Communication System (PACS). Fourth, the choice of length parameters as the scaling factor might be imprecise,
especially for potential future studies focusing on smaller regions where the scaling factor could be more sensitive
to label noise. Fifth, the relatively small sample size of our dataset is a potential limitation. While we focused on
introducing the novel probabilistic method with minimal labor cost and encouraging future researchers to repli-
cate this process for other landmarks, this dataset may not fully represent the broader anatomical diversity of the
patient population. Last, while we suggest the potential for generalizing this method to other landmark analyses,
additional evaluation of its applicability in different contexts is necessary.

Code availability
The MATLAB code employed to capture all the annotation coordinates is included and is freely available for use
and modification?*. Any alternative software capable of recording coordinates can be utilized for this purpose.
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