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OPEN A global dataset of tree hydraulic
patapescriptor : and structural traits imputed from
phylogenetic relationships

James Knighton®!™, Pablo Sanchez-Martinez(®? & Leander Anderegg?

We present a dataset of plant hydraulic and structural traits imputed for 55,779 tree species based on
TRY plant trait dataset observations and phylogenetic relationships. We collected plant trait values

for maximum stomatal conductance (gsy4x), Xylem pressure at 12%, 50%, and 88% conductance

loss (P12, P50, P88), maximum observed rooting depth (rd,,,x), photosynthetic Water Use Efficiency
(WUE), maximum plant height (height), Specific Leaf Area (SLA), and leaf Nitrogen content (LeafN). We
demonstrated that each of these traits exhibited remarkably large phylogenetic signals across all land
plants. Based on the strength of this signal we then developed random forest (RF) models trained on
TRY trait data to impute the traits of previously unstudied tree species using Phylogenetic Eigenvector
Maps. We quantified imputed trait uncertainty by fitting RF model test dataset residuals to skew
exponential power distributions accounting for heteroscedasticity, demonstrating encouraging lack of
biases in the imputed dataset. The resulting dataset of imputed trait values can support global analyses
of plant trait variations and species-level parameterization of earth systems models.

Background & Summary

Hydraulic and structural traits define how plants uptake and transpire water from soils and groundwater, influ-
encing ecosystem productivity, ecosystem resilience, and drought-induced mortality'=>. The traits of the plant
species that cover landscapes determine the land surface energy balance, hydrologic partitioning (i.e., infiltra-
tion of precipitation versus surface runoff), and the degree to which subsurface water pools are connected to
the atmosphere through transpiration*”. Advances in process-based ecosystem modelling allow for the detailed
representation of plant hydraulics in order to resolve the soil-plant-atmosphere-continuum which connects
ecosystem water, nutrient, and energy fluxes with primary productivity®-!!. These ecosystem models provide the
opportunity to forecast earth system responses to both atmospheric and biological change'?.

While the importance of these plant traits is well understood!? we lack trait measurements for most known
tree species. A lack of direct trait observations to inform model parameterization has been part of the motiva-
tion for the compilation of global plant trait databases, such as the TRY Global Trait Database!*!°>. More than a
decade into these efforts, a few traits are now reasonably well sampled globally, principally traits related to leaf
economics such as leaf mass per area and leaf nitrogen content. However, even for these few well sampled traits,
most traits have never been sampled for the vast majority of species globally (e.g. specific leaf area or SLA values
exist for ~16,000 of Earth’s approximately % million land plants in TRY'*). Observations of multiple traits in
the same species are extremely rare, taken against the backdrop of global plant diversity, even for the simplest
traits such as plant height and growth form'. For more difficult to measure physiological traits such as hydraulic
traits, this data scarcity is even more dire. Models frequently forgo this complexity by representing vegetation
with a small number of plant functional types, and therefore may be limited in their capacity to forecast earth
systems processes'®"’. As a result, there has been a call for creative efforts to parameterize the ‘functional types’
(discrete parameter sets that represent functional diversity in vegetation models), for example using evolution-
ary lineages to help guide the aggregation of trait values!®.

Alternative methods exist for estimating plant traits beyond direct measurement in the field; however, each
carries limitations. Remote sensing products can support estimating ecosystem-scale hydraulic traits?® with
some advancement towards retrieving functional trait diversity from spectral signals®!. Plant traits can also be
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inversely estimated through process-based ecosystem model fitting to species-level empirical field datasets (e.g.,
sapflux, xylem water isotopic compositions)*»**; however these measurements are resource intensive to col-
lect and infrequently available. Given the limitations of current inverse approaches for estimating species-level
hydraulic traits, a broad first order approximation of plant trait values could substantially advance ecosystem
and earth systems modelling. Missing values in trait datasets can be imputed via methods such as Bayesian hier-
archical probabilistic matrix factorization which can leverage the statistical structure of trait values, correlations
among traits, and taxonomic relationships**?*; however these approaches have been tested primarily for highly
sampled traits and rely on existing parallel measurements of other correlated traits. These approaches therefore
may not satisfy the need for a tool that extrapolates to previously unstudied species.

Plant traits typically exhibit strong phylogenetic signals (i.e., more closely related species exhibit more similar
trait syndromes than distantly related species)*~*’, providing the opportunity to impute traits for previously
unstudied species based on the relationship between functional traits and widely available phylogenetic data. We
first performed a series of significance tests for phylogenetic signals in the hydraulic traits maximum stomatal
conductance (gsy;4x), Xylem pressure at 12% (P12), 50% (P50), and 88% (P88) reduction in branch conductance,
maximum rooting depth (rd;.y), water use efficiency (WUE), as well as the structural traits maximum plant
height, specific leaf area (SLA), and leaf nitrogen composition per unit leaf mass (LeafN). We then imputed trait
values for 55K tree species based only on phylogenetic relationships and the TRY plant trait database'. This
dataset of imputed values will support species-level ecosystem modelling and investigations of relationships
between plant traits and environmental boundary conditions.

Methods

Plant trait phylogenetic signals. We collected plant trait values for maximum stomatal conductance
(gsaax)> Xylem pressure at 12%, 50%, and 88% conductance loss (P12, P50, and P88, respectively), maximum
observed rooting depth (rd,,x), photosynthetic water use efficiency (assimilation/transpiration, or WUE), max-
imum plant height (height), Specific Leaf Area (SLA), and leaf nitrogen content per unit mass (LeafN) from
the TRY database’®. Plant trait records were filtered to remove values with TRY ErrorRisk values greater than 5
(indicating that the value is greater than five standard deviations from either the species-mean, genus-mean, fam-
ily-mean or mean of all data for that trait, likely indicative of a data error) where ErrorRisk estimates were present,
unflagged values that were likely data entry errors (e.g., negative stomatal conductance), and the over-representa-
tion of two crops (Coffea arabica and Glycine max). Documentation of TRY database filtering is provided in
publicly available code attached to this work. Where multiple records existed for a single species, we computed the
species median trait value. We validated each record name against World Flora Online (WFO), a comprehensive
list of plant species®! with the R package “WorldFlora. TRY species names that did not match WFO were cor-
rected. Where corrections were not possible, observations were discarded. Validated plant species were mapped
to a phylogeny using V.Phylomaker in the R package ‘V.Phylomaker2’**. Species not present in the backbone
phylogeny were bound using ‘V.phylomaker2‘ under the scenario 3, which is the most commonly used approach.
The scenario 3 methodology binds any new genus to an intermediate point of its family branch length and any
species of an existing genus to the basal node of its genus. It varies from scenarios 1 and 2 as they bind any new
tip to the genus or family basal node and to a random node within the genus or family, respectively®>. The three
scenarios have been compared in previous works, showing how scenarios 1 and 3 perform better and give sim-
ilar results®. Therefore, we opted to use scenario 3. The resulting phylogenies contained the following unique
species: gsyax (0 =2,377), P12 (n=387), P50 (n=682), P88 (n=436), rdy;4x (n=1,498), WUE (n=317), height
(n=5,775), SLA (n=12,595), and LeafN (n=5,141).

Imputing plant traits using phylogenetic relationships requires first establishing that traits exhibit phyloge-
netic signals. We tested the hypothesis that each trait exhibited a significant phylogenetic signal with Pagel’s X,
which can be interpreted as a measure of the amount of variance explained by phylogenetic distances between
species (ranging between 0 and 1)*, using 100 iterations as implemented in the R package ‘phytools™. For this
and all subsequent hypothesis tests we compared our p-values to a thresholds of 0.1, 0.05, and 0.01. We also
computed the fractions of trait variance explained by the phylogeny, Varpy,, and their associated p-values®.

We acknowledge that species-level phylogenies may contain larger inaccuracies than deeper in the phy-
logenetic tree, especially when representing tropical taxa®. To assess the potential impact of such topologi-
cal inaccuracies, we repeated this analysis for TRY traits with Pagel’s X aggregated to the genus-level, pruning
the species-level phylogeny keeping one species per genus (equivalent to a genus-level phylogeny). As will be
demonstrated, phylogenetic signals maintained their significance, showing how most of the phylogenetic var-
iance was explained by deep evolutionary divergences representing distances between well resolved high tax-
onomic ranks, in line with coarser taxonomic decomposition analyses of these same traits'®. This verified that
species-level phylogenetic patterns are not strongly affected by the phylogenetic distances within genera, which
can contain a higher amount of error.

Estimation of species-level hydraulic and structural traits. To facilitate prediction of species-level
hydraulic and structural traits, we repeated the above analysis; however, we retained all individual trait observa-
tion values (rather than collapsing all observations of each species to one median trait value). Phylogenies were
constructed following the same approach. We then reduced these phylogenies to Phylogenetic Eigenvector Maps
(PEM) which characterize the distances between species®”. The original TRY trait observations were then joined
to PEMs which could then serve as predictors of trait values.

We constructed all Random Forest (RF) models to predict trait values from PEMs with the R package h20™%.
We then compared two methods for RF feature selection. First, using gsy;4x, we trained the RF model on all
PEMs. We then iteratively dropped the single PEM predictor with the lowest variable importance score and
retrained the model. This process was repeated until RF performance significantly decreased when additional
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Trait |ngenera |\ P

gsuax | 1129 0.334 | 0.00
P12 220 0.440 0.00
P50 362 0.490 0.00
P88 489 0.337 0.00
rdyax | 758 0.923 | 0.00
WUE | 240 0.598 0.00
height | 1291 0.784 0.00
SLA 2073 0.705 0.00
LeafN | 1393 0.728 0.00

Table 1. Genus-level phylogenetic analysis of the TRY database showing the number of genera, Pagel’s X (\),
and p-values (P).

Traits | € B8 o0 ol

gspax | 1.0461 0.5104 | 3.6796 | 0.6789
P12 1.0011 0.6348 | 1.3881 | 0.0285
P50 0.9121 0.2730 | 0.3613 | 0.2653
P88 1.0215 | 0.4633 | 0.4444 | 0.3481
rdyax | 1.1089 1.1601 | 0.4177 | 0.6039
WUE | 1.1057 | 0.8580 | 0.1479 | 0.6284
height | 0.9759 | 0.1526 | 1.9001 | 0.4486
SLA 0.9816 |0.5996 |0.3135 |0.5733
LeafN | 0.9856 | 0.4723 | 0.0672 | 0.2871

Table 2. Best-fit Skew Exponential Power (SEP) distribution parameters fit to RF model test dataset residuals.

columns were removed. Second, we used a filter-based approach where we retained PEM predictors for model
training that exhibited the strongest Spearman’s rank correlations with the observed trait values. RF model tests
suggested that performance for the Spearman-based approach was similar for models retaining between 25
and 75 columns. We therefore used the 50 strongest rank-correlated columns. The two approaches to feature
selection yielded similar RF performance. We selected the simpler filter-selection approach for imputing all
plant traits.

RF models parameters included 300 trees, maximum depth of 50, and 8-fold cross validation. To esti-
mate RF prediction uncertainty, the database was divided into training, validation, and test datasets based on
70%:15%:15% splits. The stopping condition used for training was Mean Squared Error. To estimate trait pre-
diction performance, splits were developed by randomly sampling subsets of species such that all records each
species occur only in one of the training, validation, or test datasets. We present four RF test dataset objec-
tive function values for each trait: Mean Absolute Scaled Error (MASE), Mean Absolute Error (MAE), R?, and
Percent Bias (P-bias). All model metrics are computed only for the 15% of observations that were not used in
model training/validation.

RF models using all TRY records for training and validation (i.e., no test hold out) were used to impute the
trait values for tree species listed in the BCGI Global Tree Search dataset of 57,922 named species®. Validating
and correcting tree species names in this list against WFO yielded 55,779 species names. TRY observations exist
for the following fractions of species contained within the global tree list for the following traits: gsy,x (2.07%),
P12 (0.52%), P50 (0.94%), P88 (0.60%), rdy,x (0.73%), WUE (0.33%), height (2.52%), SLA (10.19%), and LeafN
(9.22%) of all species.

We compared the above approach to several parallel methodologies for imputing traits to provide context
for the final dataset. We first compared using PEMs to Principal Coordinate Analysis (PCoA) as implemented
in the R ‘ape’ package‘“’. Next, we repeated the PEM-based analysis for P12, P50, and P88 records in the xylem
functional trait database*! to test whether more curated (but smaller) hydraulic datasets yielded similar results.
This dataset was filtered to include only stem samples from adult trees with S-shaped PLC curves.

Imputed trait residual characteristics and uncertainty bound estimation. The accuracy of
imputed hydraulic and structural traits were quantified with RF test dataset residuals (i.e., e = predicted trait
values - observed trait values). It was possible that RF trait residuals would be larger for tree species with greater
documented within-species trait variations and for trees with fewer closely related species contained in the TRY
database. We therefore hypothesized that RF residuals for all test datasets would exhibit significant phylogenetic
signals. We tested for significant phylogenetic signals in model residuals with Pagel’s X as described above. As will
be demonstrated, model residuals were not significantly related to species-identity or phylogenetic relatedness
for any traits. We therefore did not consider species identity in constructing statistical models of RF residuals.
Uncertainty bound estimates for each trait prediction were developed by fitting RF trait residual data-
sets to Skew Exponential Power (SEP) distributions with standard deviations accounting for residual
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Fig. 1 Phylogenetic distribution of maximum stomatal conductance (gsy;2x), Xylem pressure at 12%, 50%, and
88% conductance loss (P12, P50, P88), maximum observed rooting depth (rdy,x), Water Use Efficiency (WUE)
showing Pagel’s X\, variance explained by the phylogeny (Varpy,,) and p-values in parentheses.

heteroscedasticity“. Best-fit SEP parameters describing residual kurtosis, skew, and variance were estimated
through Maximum Likelihood Estimation via 1e6 Monte Carlo simulations for each set of trait residuals. Fitted
SEP distributions were then used to construct 50% confidence intervals for each imputed trait for ease of use,
though we note that the provided SEP parameter values and code support construction of any confidence inter-
val as well as Monte Carlo sampling of trait uncertainty.

Data Records

The global imputed trait dataset is publicly available on Zenodo*. The dataset consists of an R scripting lan-
guage R Data Serialization (RDS) file, a Matlab MAT-file object, and an Excel spreadsheet (GlobalTrees_Traits_
Median.xlsx), each containing median estimated trait values. The provided Skew Exponential Power (SEP)
distribution parameters (Table 2) and median imputed trait values support the generation of random permu-
tations of plant trait values for Monte Carlo simulations, (e.g. for parameter sensitivity analyses or forecast
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Fig. 3 Random Forest (RF) test dataset model performance using PEMs for (a) maximum stomatal
conductance (gsyx), xylem pressure at (b) 12%, (c) 50%, and (d) 88% conductance loss (P12, P50, P88), (e)
maximum observed rooting depth (RDy,x), (f) Water Use Efficiency (WUE), (g) height, (h) Specific Leaf Area
(SLA), and (i) Leaf N content (Leaf N).
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Fig.4 Correlations between imputed traits: (a) P12 and P50, and (b) P50 and P88 with a 1:1 line shown as a
black line. Histograms of each trait are placed on the side of each scatter plot.

SCIENTIFIC DATA | (2024) 11:1336 | https://doi.org/10.1038/s41597-024-04254-4


https://doi.org/10.1038/s41597-024-04254-4

www.nature.com/scientificdata/

= 9Smax P12 P50
A 20007 \1ASE:0.72 0T MASE:0.66 A T MASE:0.65 )
- MAE:118.65mmol s’ = | MAE:1.22MPa “L 5 | MAE1.18MPa i
1500 R“:0.53 o R“:0.45 o R“:0. . o
5 P-bias:-2.01% S -5[ P-bias-5.22% S 5[ P-bias:-8.3%
E 1000 B 3
3 T 10 3 10
8 500 g 2
hel
£ o @ ®) . (c)
0 1000 2000 15 -10 5 0 15 -10 5 0
Observed (mmol's™'m?) Observed (MPa) Observed (MPa)
P88 rdmax > WUE
O MASE:0.58 07 MASE:0.8 = 501 MASE:0.59 1 1
= | MAE:1.79MPaq- o MAE:0.88m S 0| MAE:6.3mmol COjmolH 0"
| R%06%  ela e £ | R%0.39 £ R%0.41
= -5[ P-bias:6.88%° . g P-bias:6.21% Q 44| P-bias:14.55%
e i) Q 5 O
2 B 5
] kol ®
g-0p  °° 3 E 20
= @ © §"°s (
e) s
-15 0 T 0
-15 -10 -5 0 0 5 10 Ct\l_, 0 20 40
Observed (MPa) Observed (m) Observed (mmol CO%moIH20'1)
height SLA Leaf N
MASE:0.67 ~ 1007 MASE:0.97 _ 801 masE:0.72
_100 | MAE:6.9m o | MAE7Z.11mmZmg” "o | MAE:4.1mgg"”
c R?:0.55 £ R?:0.13 60 R%0.4
g P-bias:0.86% [ P-bia§:-4.81% g’ P-bias:-2.9%
8 E 5 S 40 0g il oo we g0
5 50 B } s % LY"
(9] += =
a § &3 820 o v
i @ & B ) ()
0 50 100 0 50 100 0 20 40 60 80
Observed (m) Observed (mm2mg™") Observed (mg'g™")

Fig. 5 Random Forest (RF) test dataset model performance using PCoAs for (a) maximum stomatal
conductance (gsMAX), xylem pressure at (b) 12%, (c) 50%, and (d) 88% conductance loss (P12, P50, P88), (e)

maximum observed rooting depth (RDMAX), (f) Water Use Efficiency (WUE), (g) height, (h) specific leaf area
(SLA), and (i) Leaf N content (Leaf N).

uncertainty using process-based vegetation models). Code to generate random permutations of plant traits from
median values and SEP distribution parameters is available (see Code Availability).

Technical Validation

Plant trait phylogenetic signals. All median plant hydraulic, economic and structural trait values exhib-
ited significant phylogenetic signals based on Pagel's \ and Varpy, at the a <0.01 threshold (Fig. 1). The phy-
logenetic dendrograms for maximum plant height, SLA, and LeafN are shown in Fig. 2. Genus-level analysis of
phylogenetic signals yielded a similar result (Table 1). This result largely agrees with prior research demonstrating
strong phylogenetic signals in plant hydraulic and structural traits***”?. The phylogenetic signal in all tested traits
was highly statistically significant (based on both X and Varpy,). Phylogenetic variance was generally quite high
(>65%) for all traits, with the exception of gsy;,x and rdy;,x

Estimation of species-level hydraulic and structural traits. Predicted plant hydraulic traits for the
test datasets using PEMs demonstrated a reasonable predictive skill of the underlying RF models (Fig. 3). Mean
Absolute Scaled Error (MASE) values for all test datasets were less than 1, indicating the RF models substantially
outperformed the mean of the TRY database for each trait. Observed P-bias scores, with the exception of WUE,
were all close to 0%, indicating that the RF models were mostly unbiased predictors of trait values. There also was
no obvious dichotomy, either in observed phylogenetic signal nor RF model skill between the more classic leaf
economics traits (SLA, Leaf N) and less well-sampled water use traits (P50, WUE), potentially supporting similar
levels of phylogenetic conservatism among the traits that dictate carbon, water and nutrient strategies.

Trait values for P12 (Fig. 3b) were somewhat more poorly predicted than all other traits as measured by RF
model R? scores, despite this trait exhibiting a strong phylogenetic signal within TRY (Fig. 1). Imputed P12
values for some species are more negative than the predicted P50 value (Fig. 4a), an inconsistency that is largely
absent between P50 and P88 (Fig. 4b). This further suggested high uncertainty in imputed P12 values relative
to P50 and P88. Prior studies have noted that xylem pressures at turgor loss (often similar in magnitude and
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Fig. 6 Random Forest (RF) test dataset model performance using PEMs for xylem pressure at (a) 12%, (b) 50%,
and (c) 88% conductance loss (P12, P50, P88) derived from the xylem functional trait database.
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Fig. 7 Phylogenies of Random Forest (RF) model residuals for (a) maximum stomatal conductance (gsyx)»
xylem pressure at (b) 12%, (c) 50%, and (d) 88% conductance loss (P12, P50, P88), (e) maximum observed
rooting depth (RDyx), (f) Water Use Efficiency (WUE), (g) height, (h) Specific Leaf Area (SLA), and (i) Leaf N
content (Leaf N), showing Pagel’s X and p-values in parentheses.

potentially mechanistically related to P12) can exhibit a weaker phylogenetic signal than P50%, which may
explain the reduction in predictive skill. Alternatively, the substantial methodological uncertainty of hydraulic
vulnerability curve measurements may make P12 or Pe (the point of initial air entry into xylem, often assumed
to be near P12) inherently more difficult to measure than P50 across different methods. Alternatively, P12 may
be negatively influenced by the composition of the TRY database. There is a disproportionate representation
of conifers within TRY, though this is also true for P50 and P88 (Fig. 1). The distribution and few number of
observed species for P12 in TRY may be limiting the computed PEMs from fully characterizing trait variations
across the phylogeny.

We demonstrate that the PEM approach yields similar test dataset objective function values to a RF model
trained on Principal Coordinate Analysis (PCoA) (Fig. 5) as implemented in the R ‘ape’ package*®. RF model
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Fig. 8 (1) Scatter plots of Random Forest imputed traits versus test dataset residuals showing heteroscedasticity
and (2) histograms of test dataset residuals for (a) maximum stomatal conductance (gsyax), Xylem pressure at
(b) 12%, (c) 50%, and (d) 88% conductance loss (P12, P50, P88), (e) maximum observed rooting depth (RDy4x),
(f) Water Use Efficiency (WUE), (g) height, (h) Specific Leaf Area (SLA), and (i) Leaf N content (Leaf N).
. 9Syax . P12 . P50 . P88 . rdyax
a b c d e
08() 08() 0.8() 08() 08()
L 06 L 06 L 06 L 06 L 06
o o o o o
o4 o4 o4 O o4 o4
02 0.2 02 02 02
(]
0 0 0 0 0¢
-500 0 500 5 0 5 5 0 5 5 0 5 5 0 5
Res. (mmol's'm?) Res. (MPa) Res. (MPa) Res. (MPa) Res. (m)
; WUE ] height } SLA ] Leaf N
f h i
08 @ 08 @) 0.8 (h) 08 ® .
* RF Residuals
06 0.6 0.6 06
& & & & —SEP
©o4 o4 o4 Oo4
02 02 02 02
0 0 —cs 0 0
20 0 20 50 0 50 -50 0 50 -40 -20 0 20 40
Res. (mmol CO%moIH20'1) Res. (m) Res. (mm?mg™") Res. (mg'g™)

Fig. 9 Cumulative distribution functions of Skew Exponential Power (SEP) distributions (orange lines) fit to RF
model test dataset residuals (blue dots).

performance based on records in the xylem functional traits database, which is more curated and more easily
screened but smaller than the TRY database, showed slightly improved prediction scores relative to TRY for P12,
P50, and P88 (Fig. 6). Though this dataset shows promise for future use, we did not consider it further due to
the small dataset size.

The intention of this dataset is to support global trait analyses and earth systems model forecasts that are
by necessity climatic and ecological extrapolations. Our methodology intentionally excluded local environ-
mental conditions from training despite the promise that these approaches have shown as hindcasting tools.
By excluding this information, we produced a dataset of imputed traits and their associated uncertainties that
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reflects the broadest range of environmental conditions possible. The trait dataset conditioned only on phylog-
enies is therefore more robust with respect to the broad need for ecosystem model parameterizations that are
climate-transferable!>#4°,

Imputed trait residual characteristics and uncertainty bound estimation. RF model residuals for
all traits did not exhibit significant phylogenetic signals at the o < 0.1 threshold (Fig. 7). Residuals for WUE
showed a high X value, but the result was not significant possibly due to the relatively smaller dataset size. We
expected that issues of data sparsity, non-random sampling of the phylogeny for some traits, and other issues with
the training data would result in phylogenetically structured model errors. However, the RF models apparently
captured the phylogenetic structure of the data extremely well for all traits. This result suggested that RF per-
formance did not vary significantly with tree species identity. We therefore did not consider species identity in
constructing statistical models of plant trait residuals.

RF model residuals were well described by Skew Exponential Power (SEP) distributions accounting for heter-
oscedasticity (Figs. 8, 9; Table 2). All trait residuals exhibited very limited skew (similar to P-bias scores near 0%),
further demonstrating that the RF models were unbiased predictors. All traits exhibited some degree of hetero-
scedasticity where residual variance increased with the magnitude of the trait being predicted (Fig. 8, Table 2).

The cause of the observed residual heteroscedasticity could potentially be explained by trait measurement
errors within TRY, where the magnitude of measurement biases scale with the measurement being taken. For
example, tree height uncertainty measurements are often expressed as a percentage*®, implying that height uncer-
tainty increases linearly as a function of height. Another possibility is that plants may tend to evolve similar
strategies for survival?’, resulting in few plant records within TRY that represent extreme trait values. The under-
representation of extremal trait values in the training datasets may have limited the ability of the RF models to
learn where large magnitude trait values are likely to occur across the phylogeny, resulting in residuals that scale in
magnitude with trait values. Given that underlying traits exhibited strong phylogenetic signals (Fig. 1, Table 1) but
that test dataset residuals did not exhibit significant phylogenetic signals (Fig. 7) this explanation may be less likely.

Code availability
Code used in the preparation of this work is available at the following link: https://github.com/jknigh0813/
PlantTraitDatabase.
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