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Uncertainty maps for model-
based global climate classification 
systems
Andrés Navarro   1 ✉, Andrés Merino2, Eduardo García-Ortega2 & Francisco J. Tapiador   1

Climate classification systems (CCSs) are emerging as essential tools in climate change science for 
mitigation and adaptation. However, their limitations are often misunderstood by non-specialists. 
This situation is especially acute when the CCSs are derived from Global Climate Model outputs (GCMs). 
We present a set of uncertainty maps of four widely used schemes -Whittaker-Ricklefs, Holdridge, 
Thornthwaite-Feddema and Köppen- for present (1980–2014) and future (2015–2100) climate based 
on 52 models from the Coupled Intercomparison Model Project Phase six (CMIP6). Together with the 
classification maps, the uncertainty maps provide essential guidance on where the models perform 
within limits, and where sources of error lie. We share a digital resource that can be readily and freely 
integrated into mitigation and adaptation studies and which is helpful for scientists and practitioners 
using climate classifications, minimizing the risk of pitfalls or unsubstantiated conclusions.

Background & Summary
Climate classification systems (CCSs) are valuable tools for societal and environmental applications1–3. They 
simplify complex, multidimensional climate data by transforming continuous variables, such as temperature 
and precipitation, into discrete categories that are meaningful for ecological purposes. This process, known as 
dimension reduction, creates a user-friendly format that facilitates the identification of broad patterns between 
climate drivers and the spatial distribution of biota. Used together with climate model outputs, CCSs provide a 
neat description of the past and future climate change4–7.

A significant limitation of CCSs, however, is that their ability to accurately define climate zones depends on 
the quality of the input data. If these are uncertain, the resulting product is compromised. End users assume 
these uncertainties are monitored by the developers of CCSs and that their impact on the final product is limited, 
giving a false sense of confidence8.

Most CCSs are built using monthly and/or yearly data from two primary variables: temperature (TS) and pre-
cipitation (PR). TS is a smooth, highly spatially autocorrelated climate field. In contrast, PR exhibits high spatial 
variability, making it challenging to measure and predict. Indeed, errors exceeding 100% are not uncommon for 
precipitation data9. Given the many difficulties in capturing the true nature of precipitation, it has unsurprisingly 
become the primary source of uncertainty and bias in CCSs, potentially limiting the reliability of the analysis 
derived from these datasets10.

Our goal is to provide both practitioners and researchers from a variety of disciplines -e.g., biologists, geog-
raphers, and ecologists- with the tools and datasets they need for accurate environmental analysis based on the 
current knowledge of state-of-the-art Global Climate Models (GCMs). A key element is that of consensus maps, 
as defined by Navarro et al.10. These maps, along with their corresponding classification maps, synthesize infor-
mation from multiple models to reveal areas of agreement (or disagreement) according to present and future 
climate types (Fig. 1). This comprehensive view allows users to navigate potential pitfalls in their analyses and 
ensure robust research.

This analysis leverages output from top-ranked GCMs to explore future climate conditions through the 
lens of four well-known climate classification systems: Whittaker-Ricklefs biomes, Köppen’s climate types, 
Thornthwaite-Feddema climate classification, and Holdridge’s life zones. While Köppen is dominant11–13, the 
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other CCSs offer valuable and often more nuanced perspectives on the complex relationship between climate 
and environment, each tailored to the needs of specific audiences14–16.

Methods
Climate Classification Systems.  The main four CCSs used in the literature are included: 1. Holdridge’s life 
zones17; 2. Köppen climate types18; 3. Thornthwaite’s classification19; 4. Whittaker’s biomes20.

Holdridge life zones are defined by three measurements: annual precipitation (mm·year−1), biotemperature 
(°C) and potential evapotranspiration (PET) ratio. Annual precipitation is calculated from monthly precipi-
tation data. Mean annual biotemperature is derived from monthly average temperature. Those months with a 
mean temperature above 30.0 °C and below 0.0 °C are considered as 30.0 °C and 0.0 °C, respectively. PET ratio 
is defined as the mean annual biotemperature multiplied by a constant value (58.93) and divided by annual pre-
cipitation. We assign a class to each grid cell by computing the minimum Euclidean distance between each pixel 
and the geometric centroids of life zones, as defined in Sisneros et al.21. The 33 classes are then grouped into 13 
categories as shown in Table 1.

For the Köppen scheme, we followed the work of Lohman et al.22, which is based on Köppen’s early work. 
In this seminal publication, ecoregions are divided into five climate types, four thermal types (A, C, D, E), and 
one hydrologic type (B). In addition, the scheme includes three subtypes (f, s, w) related to the annual cycle of 
precipitation. Operationally, the classification algorithm works as follows: first, it evaluates the precipitation 
threshold. Second, it processes climate types A, C, D and E, respectively. This workflow ensures a consistent 

Fig. 1  Global distribution of climate zones for the four CCSs for the SSP5-8.5 future scenario (a,c,e,g). 
Consensus maps of climate zones for the top-10 ensemble mean (b,d,f,h). Colors represent the degree of 
confidence: dark blue (≥80%), light blue (79-60%), yellow (59-40%), light red (39-20%), and dark red (<20%). 
The stripes show the regions with low class agreement.
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identification of arid climates23. Otherwise, discrepancies may arise. While this is not a problem when only mod-
els are compared (as in Tapiador et al.24), it will certainly yield paradoxes if observations are used. The defining 
criteria of each climate type are shown in Table 2.

We used the revised version of Thornthwaite’s classification proposed by Feddema25, which has become 
standard practice in the field. Similar to the original work, it centers on the concept of water availability. 
However, this revision incorporates a simplified version of the moisture state, as defined by Willmott and 

Feddema26. Moisture Index Im ranges from −1 to 1 and is defined as follows: I r PE r PE
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where r is the annual rainfall and PE is potential evapotranspiration. The thermal component remains faithful to 
the classic definition of potential evapotranspiration developed by Thornthwaite. Table 3 shows the criteria 
defining the 36 climate types.

We followed the delineation of Whittaker’s biomes as described by Ricklefs27. The scheme divides the Earth 
into nine biomes according to annual precipitation (cm·year−1) and annual mean temperature (oC). The biome 
distribution criteria are shown in Fig. 2.

Classification for this case was performed using the R package plotbiomes28. Outliers were assigned the cli-
mate type of the closest biome.

Climate data.  Climate classification maps and consensus maps were constructed using monthly precipitation 
and temperature from 52 models of the Coupled Model Intercomparison Project phase 6 (CMIP6)29. CMIP6 
data are publicly available and have been downloaded from the Earth System Grid Federation node (https://
aims2.llnl.gov/search). The dataset included both the current climate (1980–2014) and future projections (2021–
2050, 2051–2100, 2015–2100). To explore a range of future scenarios, we incorporated data from three Shared 

Geometric centroids

Biome Holdridge Life Zone Precipitation (mm yr−1) Biotemperature (°C) PET ratio

Tundra (T)

Polar Desert 88.39 0.00 0.71

Polar Desert 176.78 0.00 0.35

Polar Desert 353.55 0.00 0.18

Cold Parklands (CP)

Dry Tundra 88.39 2.12 1.41

Boreal Desert 88.39 4.24 2.83

Dry Scrub 176.78 4.24 1.41

Forest Tundra (FT)

Moist Tundra 176.78 2.12 0.71

Wet Tundra 353.55 2.12 0.35

Rain Tundra 707.11 2.12 0.18

Boreal Forest (BF)

Moist Forest 353.55 4.24 0.71

Wet Forest 707.11 4.24 0.35

Rain Forest 1414.21 4.24 0.18

Cool Desert (CD)
Montane Desert 88.39 8.49 5.66

Desert Scrub 176.78 8.49 2.83

Steppe (ST) Steppe 353.55 8.49 1.41

Cool Forest (CF)

Moist Forest 707.11 8.49 0.71

Wet Forest 1414.21 8.49 0.35

Rain Forest 2828.43 8.49 0.18

Hot Desert (HD)

Subtropical Desert 88.39 16.97 11.31

Desert Scrub 176.78 16.97 5.66

Tropical Desert 88.39 26.83 22.63

Desert Scrub 176.78 26.83 11.31

Chaparral (CH)
Thorn Steppe/Woodland 353.55 16.97 2.83

Dry Forest 707.11 16.97 1.41

Temperate Forest (TF)

Moist Forest 1414.21 16.97 0.71

Wet Forest 2828.43 16.97 0.35

Rain Forest 5656.85 16.97 0.18

Tropical Semi-arid (TS)
Thorn Woodland 353.55 26.83 5.66

Very Dry Forest 707.11 26.83 2.83

Tropical Dry Forest (TDR) Dry Forest 1414.21 26.83 1.41

Tropical Rain Forest (TRF)

Moist Forest 2828.43 26.83 0.71

Wet Forest 5656.85 26.83 0.35

Rain Forest 11313.71 26.83 0.18

Table 1.  Holdridge life zones and their geometric centroids, as distributed in 13 major biomes. Adapted from 
Sisneros et al.21 and Monserud and Leemans42.
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Socioeconomic Pathways (SSPs)30: SSP1-2.6, SSP2-4.5, and SSP5-8.5. The three choices are intended to be com-
prehensive and cover the vast majority of needs of adaptation and mitigation studies. Finally, to ensure consist-
ency, all datasets were interpolated to a common horizontal resolution of 1° × 1°, using bilinear interpolation. 
This choice aligns with the native resolution of most CMIP6 models and minimizes potential uncertainties intro-
duced by downscaling to finer resolutions, which is critical for developing consensus maps. The analysis was for 
land-only, excluding Antarctica. The full list of models can be found in Supplementary Information (Table S1).

Model rank and top-10 ensemble members.  We used Cohen’s kappa coefficient31 to quantify the ability 
of each model to reproduce the distribution of climate categories. This standard method is widely used to gauge 
model quality. Present reference climate is also the standard choice: it is calculated using the Climate Research 
Unit Time Series (CRU, version 4.0432) observations for each CCS for the historical climatological period (1980–
2014). The kappa coefficient (κ) is defined as follows: κ = −

−
P P

P1
e

e

0 , where P0 is the proportion of units with agree-
ment and Pe is the hypothetical probability of chance agreement. The kappa statistic ranges from 0 to 1, with 0 
meaning no agreement and 1 meaning perfect agreement.

Models were also ranked in terms of joint agreement with precipitation and temperature observations. 
The metric used for these quantitative variables was the coefficient of determination R2. The reason for using 
this metric is twofold: first, it has been shown to be useful for comparing large-scale means of climate data, 
such as those used by most climate classification schemes15. Second, it condenses information into a single, 
easy-to-interpret value, thus facilitating comparisons between models. Grid boxes were weighted by area in both 
metrics. We then identified the best performing models by focusing on the upper right quadrant of a 2D plane 
(Fig. 3). This quadrant represents models with both high class agreement (κ) and high precipitation scores (R²). 
The median values of κ and R² (precipitation) were used to define the boundaries. Finally, we selected the top-10 
models within this quadrant based on the highest κ scores.

Table 4 shows the scores for the top-10 models for Whittaker’s scheme. For the remaining CCSs, see 
Tables S2–S4 in the Supplementary Information document.

Class Type Criteria

A (Tropical)

T_min ≥ 18 °C

Af. Tropical rainforest P_min ≥ 60 mm

Aw. Tropical savanna P_min < 60 mm

B (Dry)

P_annual ≤ P_threshold

BS. Steppe P_annual ≥ P_threshold/2

BW. Desert P_annual < P_threshold/2

C (Mesothermal)

T_min ≥ −3 °C & T_min < 18 °C

Cs. Warm climate dry summer P_wmax ≥ 3 × P_smin

Cw. Warm climate dry winter P_smax ≥ 10 × P_wmin

Cf. Humid temperate P_smax < 10 × P_wmin & P_wmax < 3 × P_smin

D (Microthermal)

T_min < −3 °C & T_max > 10 °C

Dw. Cold climate dry winter P_smax ≥ 10 × P_wmin

Df. Cold climate moist winter P_smax < 10 × P_wmin

E (Polar)

T_max < 10 °C

ET. Tundra T_max ≥ 0 °C & T_max < 10 °C

EF. Permafrost T_max < 0 °C

Table 2.  Climate types and defining criteria for Köppen. T_min = temperature coldest month, T_
max = temperature hottest month, P_min = precipitation driest month, P_annual = annual precipitation, 
P_smin = minimum summer precipitation, P_smax = maximum summer precipitation, P_wmin = minimum 
winter precipitation, P_wmax = maximum winter precipitation, P_threshold = varies according to the following 
rules (if 70% of P_annual occurs in winter then P_threshold = 2 × T_avg; if 70% of P_annual occurs in summer 
then P_threshold = 2 × T_avg + 28; otherwise P_threshold = 2 × T_avg + 14).

Thermal 
Type

Annual Potential 
Evapotranspiration [mm] Moisture Type Moisture Index

Torrid >1500 Saturated 0.66–1.0

Hot 1200–1500 Wet 0.33–0.66

Warm 900–1200 Moist 0.0–0.33

Cool 600–900 Dry −0.33–0.0

Cold 300–600 Semiarid −0.66 – −0.33

Frigid 0–300 Arid −1.0 − −0.66

Table 3.  Description of thermal and moisture types according to Feddema’s method.
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Uncertainty analysis.  Model uncertainties are embedded in the so-called consensus maps (Fig. 4). 
Consensus maps provide a qualitative description of model uncertainties, highlighting regions where models dis-
agree. Quantitatively, these maps are built on two key metrics derived from pixel-by-pixel comparisons: percent 
confidence and inter-model class agreement.

The first metric (Fig. 4b) quantifies the accuracy of individual models relative to observed climate types. The for-
mulation is as follows: ·=

 
Confidence 100i j

coincident models
Nmodels,

i j

i j

,

,
, where the fraction represents the proportion of mod-

els, for each pixel (i,j), that predicted a climate class matching the reference data. Here, coincident models refers to the 
number of models with matching climate type, and Nmodels represents the total number of models considered. 
Confidence levels were discretized into five categories: very high (≥80%), high (79%- 60%) moderate (59%-40%), low 
(39%-20%), and very low (<20%). The second metric evaluates inter-model variability, i.e. how many climate types 
are identified by different models for the same point in space. For example, Fig. 4c shows that for a given pixel at (i,j), 
four models defined the region as woodland, three as temperate desert, and the other three as boreal forest. This 
results in three different climate types, which implies low inter-model agreement. Both metrics are complementary, 
the first metric shows the accuracy while the second measures the dispersion (precision). Uncertainty maps were 
constructed for each CCS for the present and the three SSPs, using the CRU and the top-10 ensemble, respectively,  
as reference.

Data Records
Global datasets of the four CCSs and their associated consensus maps for present and future climates are availa-
ble at Figshare33. The data are provided in three different file formats to meet the needs of a wide range of users. 
All datasets have a spatial resolution of 1°, which corresponds to 180 × 360 pixels. For ease of download, indi-
vidual files within the same format are combined into a single tar.gz archive.

	 1.	 GeoTIFF files are for general users who want an immediate image of the distribution of climate types and 
consensus maps. The compressed file contains 120 GeoTIFF files accompanied by a legend (legend.txt) that 
defines the code categories used in each climate classification system (13 for Holdridge, 11 for Köppen, 36 
for revised Thornthwaite and 9 for Whittaker’s biomes). The filename structure is: classification_varname_
scenario_period.tif (e.g koppen_confidence_historical_1980-2014.tif, whittaker_class_ssp126_2051-2100.
tif, and koppen_modvar_ssp585_2021-2050.tif ). Class refers to climate classification, confidence is percent 
confidence, and modvar refers to inter-model variability.

	 2.	 NetCDF files are for more advanced users. They can be directly read in a Geographic Information System 
(GIS) such as QGIS. A major advantage is that they are self-describing files, meaning the data and its 
metadata are stored together in a single file. The tar.gz includes 80 nc files. The files including climate 
classification maps also include their respective key variables, except for Köppen. For example, the file 
whittaker_class_historical_1980-2014.nc contains data for annual mean temperature (AT, in oC), annual 
precipitation (APP, in cm·year-1), and Whittaker’s climate classification itself. Similarly, holdridge_class_
ssp245_2051–2100.nc includes biotemperature (ABT, in oC), annual precipitation (APP, in mm·year−1), 
potential evapotranspiration ratio (PER) and Holdridge’s life zones (HLZ) for the future scenario SSP2-4.5 
and the period 2051-2100. Files of consensus maps, like holdridge_consensus_ssp585_2021-2050.nc, store 
the following variables: confidence and modvar. Codes for the classification categories are embedded within 
the file’s attributes for easy reference.

	 3.	 BIL, pure binary files are suited for fast reading and efficient computation. The compressed file contains 
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Fig. 2  Whittaker’s Biome Diagram. Whittaker’s scheme uses climatologies of precipitation and temperature 
to shape the spatial pattern of major biomes. This is a modified version of Whittaker’s original work based on 
Ricklefs’s diagram.
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120 bil files, along with the corresponding header files (hdr) and a legend file (legend.txt). They can also 
be directly read in a GIS. The dimensions of each bil file are 180 × 360. Filenames follow the same naming 
convention as tiff files.

The data are based on the top-10 ensemble mean, although we performed the calculations for the 52 CMIP6 
models. Data for individual models and the MME (52) are available upon request to the corresponding author.

Technical Validation
Model validation.  Climate classifications derived from GCMs were validated against observations from the 
Climate Research Unit (CRU at the University of East Anglia) Time Series version 4.0432. The CRU dataset has 
0.5° spatial resolution but was aggregated to 1°, following the same procedure as for the CMIP6 models. The val-
idation was performed for three variables: annual precipitation, mean annual temperature, and climate classes. 
Figure 3 shows the scores of individual models, as well as ensemble means -MME (52) and top-10 ensemble- for 
the 1980–2014 period. Alternative ensemble sizes (top-20, top-30 and top-40) were also evaluated, but their 
performance did not show consistent improvement over top-10 and MME. As illustrated in the figure, global 
performance varies depending on the climate classification scheme. Whittaker’s biomes achieve the highest over-
all scores (κ = 0.74), while Thornthwaite’s shows the lowest scores (κ = 0.42) for the MME (52). Eight individual 

Fig. 3  Scores of CMIP6 models for the four classification schemes: (a) Holdridge, (b) Köppen, (c) 
Thornthwaite-Feddema, (d) Whittaker-Ricklefs. Dots are individual CMIP6 models (52 models + 2 ensemble 
means). The y axis is the R2 score for global precipitation (mm·year−1), x axis is the kappa coefficient of each 
CCS and colors are the R2 score for global mean temperature. Dotted grey lines are the median. Zoomed 
areas indicate the region of best performance, and models within this area are then selected to create the top-
10 ensemble mean (T10). Numbers in black are the top 10 models, while the other models are in grey. The 
red number is the T10 ensemble mean, and the blue one is the 52-model ensemble mean. The analysis was 
performed for the 1980–2014 period.
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GCMs/ESMs consistently achieve the highest scores across all CCSs: CESM2, EC-Earth-Veg-LR, HadGEM3-
GC31-LL, HadGEM3-GC31-MM, MRI-ESM2-0, NorESM2-MM, TaiESM1 and UKESM1-0-LL. This is likely 
because they perform better at simulating precipitation, a key source of bias in CCSs10. For mean temperature, all 
models obtained scores above R2 = 0.95.

Uncertainty analysis of reference data.  Observational data often have differences that can affect the 
representation of climate zones. To assess this sensitivity, we evaluated climate classifications using alternative 
datasets in addition to CRU. These included station-based data from the University of Delaware (UDEL version 
5.0134) and the Global Precipitation Climatology Centre (GPCC) Full Data Monthly Product version 202235,36, as 
well as the ECMWF’s reanalysis data37,38 (ERA5).

A classification scheme that is insensitive to these variations is considered robust to observational uncertain-
ties39. Figure 5 illustrates this concept, showing small changes in the global distribution of climate types.

CRU and GPCC show the greatest agreement (1.3% to 1.6% of the discrepancy in total land area) for 
Holdridge, Köppen, and Whittaker classifications. UDEL also has relatively small discrepancies (1.5% to 3.1%), 
while ERA5 displays slightly larger differences (3.6% to 7.3%). Thornthwaite’s scheme shows the greatest sensi-
tivity to data source. Here, ERA5 predicts a shift in high-latitude climates, with cold-wet types becoming more 
common at the expense of cold-moist types.

Model Climate Cats. (ĸ) Precipitation (R2) Temperature (R2)

CESM2 0.714 0.768 0.977

CESM2-WACCM 0.711 0.769 0.978

EC-Earth3-Veg-LR 0.699 0.747 0.964

GFDL-ESM4 0.692 0.743 0.973

HadGEM3-GC31-LL 0.697 0.752 0.976

HadGEM3-GC31-MM 0.730 0.762 0.983

KACE-1-0-G 0.700 0.736 0.974

NorESM2-MM 0.724 0.804 0.973

TaiESM1 0.689 0.676 0.971

UKESM1-0-LL 0.697 0.747 0.970

Ensemble (52 models) 0.739 0.787 0.983

Top-10 ensemble 0.759 0.815 0.983

Table 4.  Scores of top-10 models, (52) ensemble, and (T10) ensemble for Whittaker’s biomes.
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Fig. 4  Graphical description of the uncertainty estimation of distributed climate zones. (a) Maps of climate 
types for top-10 models and reference data. (b) The performance of individual models was evaluated against the 
reference data in a pixel-by-pixel comparison, and the degree of agreement between reference and models (in 
percent) was then calculated. Each pixel is colorized in the consensus map according to the level of confidence: 
dark blue (≥80%), light blue (79-60%), yellow (59-40%), light red (39-20%), and dark red (<20%). (c) Inter-
model class agreement, which represents the number of different climate types identified by the top-10 models 
for each pixel. Two or fewer climate types indicates low inter-model variability, while three or more indicates 
high variability (striped regions in the consensus map). The analysis was performed for the four climate 
classification schemes. Reference data is CRU (for present) and T10 ensemble mean (for future scenarios).
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Usage Notes
The dataset offers a comprehensive description of current and future global climate, based on four major clas-
sification schemes. We provide maps for Holdridge, Köppen, Thornthwaite-Feddema, and Whittaker-Ricklefs 
climate classifications along with their corresponding consensus maps. Future scenarios included are SSP1-2.6, 
SSP2-4.5 and SSP5-8.5 (three time-periods: 2021-2050, 2051-2100, and 2015-2100). The data are derived from 
an ensemble of the top-10 CMIP6 models (out of 52), selected based on their kappa statistic and their R2 score 

Fig. 5  Percentage of continental area covered by each climate type for the four climate classification schemes 
(Köppen, Holdridge, Thornthwaite-Feddema, and Whittaker-Ricklefs) and the four observational datasets 
(CRU, GPCC, UDEL and ERA5). Classification schemes for GPCC are a combination of data from the GPCC 
(precipitation) and CRU (temperature).
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for precipitation. Top-10 models differ by classification scheme. Validation with observations (CRU) indicates 
that model outputs are reasonable. However, there are certain caveats that users may consider before using the 
dataset:

	 1.	 We assume that current criteria for defining climate types are the same for future climate, leaving no room 
for new equilibrium conditions or new climate types. This is a common issue in any rule-based classifica-
tion scheme40,41.

	 2.	 Our maps have a 1° spatial resolution, which is the native resolution of most CMIP6 models. While it 
might be deemed low for certain regional applications, it is worth noting that kilometer or even hectometer 
resolutions are the result of interpolations well below the resolution of the original empirical data. Indeed, 
there is no limit for downscaling a scalar field; the only question is what is sacrificed in the mathematical 
process. By keeping the spatial resolution at the nominal model grid size, we avoid introducing additional 
uncertainties associated with downscaling techniques, and ensure that the final product reflects the inher-
ent resolution of the underlying climate models.

	 3.	 Model performance is contingent to the classification scheme. As shown in Fig. 3, individual models and 
ensemble means presented different scores, according to the CCS. While models performed well for Köp-
pen (11 cats), Holdridge (13 cats), and Whittaker (9 cats), the performance for Thornthwaite (36 cats) was 
moderate, meaning that their maps should be used with caution.

	 4.	 All four CCSs are primarily based on precipitation and temperature. However, each CCS was developed 
with distinct goals and criteria, leading to variations in how they identify regions undergoing climate 
change.

	 5.	 Consensus maps depict the confidence of model predictions pinpointing regions where consensus is lack-
ing. While many of such regions overlap across CCSs, some disagreements arise, specifically at the bound-
ary of climate types, as defined by each unique classification scheme. Additionally, the degree of consensus 
may vary depending on the socio-economic scenario chosen.

Code availability
The codes for the CCSs and consensus maps are available on GitHub at https://github.com/navarro-esm/
uncertainty_maps_library. The source code of Whittaker’s biomes is available from https://github.com/
valentinitnelav/plotbiomes.
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