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A high resolution, gridded product 
for vapor pressure deficit using 
Daymet
Nicholas K. Corak   1,2, Peter E. Thornton   3 & Lauren E. L. Lowman   1,2 ✉

Vapor pressure deficit (VPD) is a critical variable in assessing drought conditions and evaluating plant 
water stress. Gridded products of global and regional VPD are not freely available from satellite remote 
sensing, model reanalysis, or ground observation datasets. We present two versions of the first gridded 
VPD product for the Continental US and parts of Northern Mexico and Southern Canada (CONUS+) at a 
1 km spatial resolution and daily time step. We derived VPD from Daymet maximum daily temperature 
and average daily vapor pressure and scale the estimates based on (1) climate determined by the 
Köppen-Geiger classifications and (2) land cover determined by the International Geosphere-Biosphere 
Programme. Ground-based VPD data from 253 AmeriFlux sites representing different climate and 
land cover classifications were used to improve the Daymet-derived VPD estimates for every pixel 
in the CONUS+ grid to produce the final datasets. We evaluated the Daymet-derived VPD against 
independent observations and reanalysis data. The CONUS+ VPD datasets will aid in investigating 
disturbances including drought and wildfire, and informing land management strategies.

Background & Summary
Continental scale droughts are expected to become more frequent as climate change induced increases in sur-
face temperatures lead to atmospheric drying1. Higher surface temperatures and less frequent precipitation 
during drought drive competition for water between the land surface and the atmosphere2. Reduced precipita-
tion and increased atmospheric demand for water lead to soil moisture anomalies, limiting water available for 
plant use3. During droughts, water stress can reduce vegetation growth4 and productivity5, minimizing the role 
of vegetation as a carbon sink6 and diminishing crop yields7. High atmospheric aridity, measured as vapor pres-
sure deficit (VPD), has been shown to be as important as low soil moisture at driving plant water stress8. High 
VPD has also been associated with drying out vegetation, which then serves as potential fuel for wildfires9. With 
drought conditions expected to worsen through the 21st century, further attention should be paid to expanding 
the study of complex biological and ecohydrological responses to increased atmospheric aridity10. To do so, high 
spatial and temporal resolution datasets of VPD must be available for the scientific community. Here we present 
the first daily gridded VPD product for the continental United States, including parts of Northern Mexico and 
Southern Canada (CONUS+).

VPD has been identified as a major factor in driving water fluxes between the land surface and the atmos-
phere6,11,12, impacting photosynthesis6 and plant growth4. Vegetation growth responds differently to rising VPD 
depending on plant type and climate13,14. Thus, there is a need to better understand how plants modulate or 
adapt to changes in atmospheric aridity across gradients of climates and vegetation types. Some plants close 
their pores, known as stomata, during periods of elevated VPD in order to conserve water and prevent desicca-
tion15 and hydraulic failure16. Under hydraulic failure, plants can no longer exchange water and carbon with the 
atmosphere, leading to reduced carbon uptake and increased likelihood of plant mortality14,17. Elevated values 
of atmospheric aridity have been shown to decrease plant growth4 and shutdown stomatal conductance and 
photosynthesis rates18, indicating carbon assimilation is highly sensitive to changes in VPD.

Elevated VPD is associated with decreases in crop yields10 which can cause billions of dollars in financial 
losses for the agricultural sector7. In arid regions of Northern China, reductions in wheat, maize, and soy-
bean yields were shown to be more sensitive to changes in VPD than precipitation or temperature19. Similar 
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sensitivities to rising VPD have been shown in crops yields in the Midwestern US5, central Europe20, and north-
east Australia21. Lobell et al.5 found that maize and soybean yields in Iowa, Illinois, and Indiana have become 
increasingly sensitive to high VPD, though farmers are combating yield loss with agronomic advances. In 
Hungary, positive VPD anomalies, which are associated with increasing temperatures, were shown to negatively 
impact crop yield for winter wheat20. As climate trends point to higher surface temperatures, the detrimental 
effects of VPD on crop yields are expected to increase22. On the other hand, there is evidence to suggest high 
VPD may indeed have a positive effect on certain crop yields in fields with sufficient soil moisture due to plant 
adaptations that increase water-use efficiency23. Moreover, under simulated climate change conditions with pro-
jected increases in temperature and carbon dioxide, elevated carbon dioxide levels may offset the detrimental 
impacts of high VPD on sorghum grain yield by increasing radiation and transpiration efficiency21. Given the 
uncertainty in crop responses to rising VPD9 in a changing climate, further analyses incorporating daily-scale 
VPD are needed10.

High VPD has also been associated with the drying of surface fuels24, increasing the risk of wildfire inten-
sity25 and burned area26. Future climate projections indicate much of the global land area is subject to increases 
in temperature, resulting in changes to precipitation regimes and wildfire risk27. Increases in VPD as a result 
of the feedback between rising temperature and lack of precipitation are linked to increases in recent wildfire 
activity in the western US28,29. Even in humid regions like the Pacific Northwest or Southeast, variability in pre-
cipitation resulting from climate change increases the likelihood of drought-induced wildfires30,31. Furthermore, 
high VPD increases wildfire risk in forest biomes around the globe and jeopardizes their roles as carbon sinks32.

According to the Clausius-Clapeyron relationship33, the amount of water the atmosphere can hold is tem-
perature dependent. As temperatures increase, the capacity for the atmosphere to hold water increases as well34. 
VPD represents the difference between the actual amount of water vapor in the atmosphere and the amount 
of water vapor the atmosphere can hold at saturation. It is a measure of atmospheric demand for, or capac-
ity to hold, water35–37. To better understand how projected increases in VPD will impact water fluxes during 
drought and increase the risk of fire at local, regional, and continental scales, there is a need for a high-resolution 
VPD dataset that considers climate and land cover across ecoregions. Currently, research and operations that 
require VPD for their analyses often have to compute VPD from ground-based38,39 or satellite remote sensing40,41 
measurements of temperature and relative humidity because most datasets do not contain VPD measurements. 
Ecosystem-to-continental scale modeling and observational studies analysing plant responses to increased VPD 
would benefit from a fine scale, gridded VPD data product, like the one presented here.

Current available datasets that contain VPD for CONUS are point-scale measurements. The observational 
network AmeriFlux42 provides sub-daily measurements of temperature and relative humidity from eddy covari-
ance flux towers and, for select sites, provides VPD for users. AmeriFlux has ∼500 sites spread across North and 
South America, with many sites concentrated near agricultural areas, specific research stations, and universities. 
As a result, there are large areas missing ground observations, including parts of the Rocky Mountains and the 
Great Basin Desert43 (Fig. 1). Despite the sparse distribution of AmeriFlux sites across the United States, the 
diversity of land cover types and climate regions are well-represented44.

At present, there is no single gridded dataset of VPD for all of CONUS that is freely available. Moreover, 
to our knowledge, no dataset has derived VPD while accounting for specific land cover and climate types. 
There are, however, existing methods to produce gridded, continental-scale VPD data from reanalysis or 
satellite-remote sensing. One limitation related to using these approaches is the coarse spatial or temporal 

Fig. 1  Map of Köppen-Geiger climate classification on the 1 km by 1 km CONUS+ grid. The color scheme was 
adopted from Peel et al.67. The 253 AmeriFlux sites are indicated with markers representing the IGBP Vegetation 
Land Cover.
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resolution of freely-available datasets. The North American Land Data Assimilation system (NLDAS-2) is a rea-
nalysis dataset that provides hourly temperature, pressure, and specific humidity at an 1/8th degree (∼12.5 km) 
spatial resolution that can be used to derive estimates of VPD8. The European Centre for Medium-Range 
Weather Forecasts (ECMWF) also produces an hourly global reanalysis dataset of meteorological variables, 
ERA545, with a horizontal spatial resolution of 31 km, which can be used to compute VPD46. Though the hourly 
resolution of the reanalysis data is useful for when accounting for diurnal fluctuations in VPD, the large spatial 
resolution extends beyond the fetch of an eddy covariance tower47. Zhang et al.40 demonstrated how to compute 
daily VPD over China using satellite imagery from the Moderate Imaging Spectroradiometer (MODIS) at a 1 km 
spatial resolution. The method, which uses MODIS to estimate temperature and humidity, derives an empirical 
relationship from ground observations. The method is only valid in sites with weather stations and is prone to 
cloud contamination of surface reflectance40. Moreover, the 8-day observations likely do not capture day-to-day 
fluctuations in land surface and atmospheric water statuses that impact VPD. To overcome the limitations of the 
previously mentioned approaches to estimating VPD, we integrated climate and land cover classifications with 
ground-based observations from AmeriFlux, along with a validated high-resolution temperature and atmos-
pheric vapor pressure product available at a 1 km spatial resolution and daily timestep. This approach informs 
estimates of VPD, culminating in a gridded VPD product for all of CONUS+. The CONUS+VPD datasets gen-
erated in this study have wide ranging applications: VPD can be used to study ecosystem functioning9,14,38,48,49, 
drought monitoring and prediction8,50,51, or assessing fire risk24–26,52,53.

Methods
Overview.  In this study, we used meteorological variables of average daily atmospheric vapor pressure (e) and 
maximum daily temperature (Tmax) from Daymet54, alongside ground based VPD from AmeriFlux eddy covari-
ance towers with a variety of land cover and climate types (Fig. 1), to produce a high-resolution (1 km, daily) grid-
ded VPD data product for CONUS+. Deriving estimates of VPD for CONUS+ consisted of two phases (Fig. 2): 
(1) Develop land cover and climate dependent correction factors using AmeriFlux observations, (2) Apply cor-
rection factors to all pixels in the CONUS+ grid. In Phase 1, we first computed 24-hour average VPD from 253 
AmeriFlux sites with varying climate and land cover classifications. We then calculated VPD using Daymet e 
and Tmax. We chose to use Tmax instead of another daily temperature averaging scheme (e.g.37,55–57) because using 
Tmax better recreates day-to-day variability in VPD. However, it also overestimates daily VPD (Fig. 3). In order to 
correct the overestimation, we computed the median ratio of AmeriFlux to Daymet-derived VPD for each land 
cover type and climate classification. In Phase 2, we estimated VPD for the entire CONUS+ grid. We adjusted 
the Daymet-derived VPD for each grid cell based on its climate or land cover type by applying the corresponding 
correction factor (i.e., median ratio) developed in Phase 1. This generated two 24-hour average VPD datasets: one 
informed by land cover and one informed by climate. The resulting Daymet-derived VPD datasets for CONUS+ 
are evaluated against daily average VPD computed from hourly AmeriFlux VPD data not previously used in the 
analysis, NLDAS-2 derived VPD, and VPD computed using a weighted temperature averaging scheme.

Fig. 2  Two-phase summary of workflow. In Phase 1, we use AmeriFlux VPD to correct estimates of VPD 
derived from Daymet variables maximum daily temperature, Tmax and average daily vapor pressure e. In Phase 
2, we apply correction factors to every grid cell in CONUS+ by matching each grid cell with the corresponding 
International Geosphere-Biosphere Programme (IGBP) and the Köppen-Geiger (KG) climate classification.
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Datasets.  Daymet.  Daymet is a freely available collection of daily, 1 km, gridded meteorological data prod-
ucts derived from weather stations throughout North America58. Weather station data is used to inform daily esti-
mates of Daymet’s primary output variables: minimum and maximum temperature (Tmin and Tmax, respectively) 
and total precipitation. Daymet also produces secondary variables of average daytime shortwave radiation, aver-
age atmospheric water vapor pressure (e), and accumulated snow water equivalent, which are derived from the 
primary variables59,60. Day length is also provided as an estimate based on geographic location58. For this study, we 
used Daymet Tmin, Tmax, and e from 1995 to 2023, corresponding with available data records from ground based 
AmeriFlux eddy covariance towers. Tmin and Tmax were used to estimate saturated vapor pressure, esat, from which 
we subtract e to estimate VPD.

For this study, daily minimum and maximum temperature and average vapor pressure were acquired from 
the Daymet Version V4R154 (Fig. 4). Daymet data were directly downloaded from https://daac.ornl.gov/. 
Daymet V4R1 updated V4 by correcting a daily data feed error and imputing missing readings for 2020 and 
202158. Daymet V4 uses weather inputs from the National Centers for Environment Information Global 
Historical Climate Network Daily database. Daymet V4 updated previous Daymet algorithms to account for 
observation reporting time and high elevation biases which can affect daily maximum temperature and precip-
itation accumulations. For each 1 km by 1 km Daymet grid cell, a normalized weighted interpolation is used to 
estimate both Tmin and Tmax from three-dimensional temperature gradients using data from weather stations 
within a predefined search radius58. Daily average vapor pressure, e is computed using Tmin as a proxy for dew 
point temperature and implementing aridity adjustments61 which require potential evapotranspiration derived 
from shortwave radiation60.
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Fig. 3  Example of scaling VPD (Tmax) and comparisons with AmeriFlux VPD at US-Twt for days 100–300 of 
2015. US-Twt is a rice paddy cropland (CRO) AmeriFlux site in central California with a dry, temperate climate 
with a hot summer (Csa).

Fig. 4  Daymet maximum temperature and average vapor pressure for day 180 (i.e. June 29) 2023.
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AmeriFlux.  AmeriFlux is a network of eddy covariance flux towers, distributed across North, Central, and 
South America, collecting semi-continuous measurements of carbon, water, and energy fluxes42,44,62. The 
AmeriFlux data was used for rescaling Daymet-derived VPD at the tower sites and validating the CONUS+ 
gridded VPD product. We downloaded all AmeriFlux data used in this study from https://ameriflux.lbl.gov/, 
using the “Site Search” tool to select 253 sites from the nearly 500 AmeriFlux sites by considering sites in 
CONUS+ which had half-hourly VPD, record lengths of at least one year, and which share their data under the 
AmeriFlux CC-BY-4.0 License. Time series of VPD observations are provided at half-hourly increments, with 
records spanning 1995 to 2023; however, most sites do not have records spanning the entire time interval. The 
253 sites used in this study met the criteria of having at least one complete year of VPD observations, totaling 
over 1400 site years of data across all sites (Tables 1 and 2). We computed daily estimates of AmeriFlux VPD 
(VPDAMF) by averaging over all 48 half-hour measurements within a single day. AmeriFlux reports VPD in 
hectopascals (hPa), except for some older sites which reported VPD in kilopascals (kPa). All VPD data from 
AmeriFlux were converted to units of kPa. AmeriFlux provides ancillary information about the geographic loca-
tion (latitude and longitude coordinates), land cover (International Geosphere-Biosphere Programme, IBGP), 
and climate (Köppen-Geiger, KG) for each site. We used the IGBP and KG classifications as provided from 
AmeriFlux to develop relationships between AmeriFlux and Daymet daily average VPD. From the 253 sites, 
there were 14 unique IGBP land cover and 16 unique KG climate classifications (Tables 1 and 2, respectively). To 

IGBP code IGBP number description site years

ENF 1 Evergreen Needleleaf Forests 413.8

DBF 4 Deciduous Broadleaf Forests 146.6

MF 5 Mixed Forests 52.3

CSH 6 Closed Shrublands 16.6

OSH 7 Open Shrublands 58.1

WSA 8 Woody Savannas 51.4

SAV 9 Savannas 51.8

GRA 10 Grasslands 235.7

WET 11 Permanent Wetlands 127.8

CRO 12 Croplands 208.3

URB 13 Urban and Built-up 8.4

CVM 14 Cropland/Natural Vegetation Mosaics 5.6

BSV 16 Barren/Sparse Vegetation 6.5

WAT 17 Water Bodies 29.8

Table 1.  International Geosphere-Biosphere Programme (IGBP) land cover classifications for the 253 
AmeriFlux sites used in the correction factor analysis. The corresponding number codes are from MODIS 
MCD12Q1 LC Type 163. Site years for each classification are included and represent how many years of 
AmeriFlux data were available for a given land cover classification across all sites.

KG code KG number description site years

BWh 4 arid, desert, hot 9.6

BWk 5 arid, desert, cold 12.1

BSh 6 arid, steppe, hot 10.9

BSk 7 arid, steppe, cold 110.6

Csa 8 temperate, dry summer, hot summer 158.9

Csb 9 temperate, dry summer, warm summer 53.5

Cwa 11 temperate, dry winter, hot summer 15.8

Cfa 14 temperate, no dry season, hot summer 328.3

Cfb 15 temperate, no dry season, warm summer 11.6

Dsa 17 cold, dry summer, hot summer 6.8

Dsb 18 cold, dry summer, warm summer 36.7

Dwb 22 cold, dry winter, warm summer 20.2

Dfa 25 cold, no dry season, hot summer 182.9

Dfb 26 cold, no dry season, warm summer 330.8

Dfc 27 cold, no dry season, cold summer 81.4

ET 29 polar, tundra 20.5

Table 2.  Köppen-Geiger climate classification descriptions for 247 of the 253 AmeriFlux towers used in the 
correction factor analysis. Note that six sites had no climate classification listed. The corresponding number 
codes are from Peel et al.67. Site years for each classification are included and represent how many years of 
AmeriFlux data were available for a given climate classification across all sites.
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provide independent validation, we computed daily average VPD from five AmeriFlux sites that provided hourly 
VPD and were not included in estimating the correction factors from Phase 1 for the final gridded CONUS+ 
VPD product.

A summary of the 253 AmeriFlux IGBP and KG classifications, the proportions of sites they represent, and 
the respective total number of site years can be found in Tables 1 and 2 and Fig. 5. KG classification Cfa (tem-
perate, no dry season, hot summer) was the most represented classification in this analysis with 68 sites (26.9%) 
throughout the Southeastern US (Fig. 5). The next most common KG climate classifications was Dfb (cold, no 
dry season, warm summer) with 52 sites (20.6%), followed by Dfa (cold, no dry season, hot summer) with 32 
sites (12.6%). Of the 253 sites in this study, croplands (CRO), evergreen needle leaf forests (ENF), and grasslands 
(GRA) were the most-represented IGBP land cover classifications, representing 23.3%, 22.1%, and 15.8% of the 
total sites, respectively. The proportion of sites a classification represents does not necessarily translate to the 
amount of data used in this study because some sites may have longer temporal records of VPD. For example, 
there are 16 more sites with KG classifications Cfa than with Dfb, but Dfb had 331 site years of data compared 
to Cfa which had 328 sites years of data. With 413.8 site years, ENF was the land cover classification with the 
most data, nearly twice as many site years as CRO despite having only three fewer tower sites. Overall, climate 
and land cover from AmeriFlux towers represented well the actual coverage of CONUS+ with a few exceptions. 
With 9.1% of sites and 158.9 site years of data, the KG classification Csa (temperate with dry, hot summer), a 
Mediterranean climate found in California, were over represented by the site data since only approximately 1% 
of the CONUS+ grid is classified as Csa. Alternatively, woody savannas (WSA) were underrepresented as they 
make up 2% of AmeriFlux sites but 12.6% of the CONUS+ gird.

IBGP land cover.  IGBP land cover was used to classify AmeriFlux sites and for estimating VPD at the con-
tinental scale. Land cover classifications for pixels in the CONUS+ grid were generated from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) Land Cover Type Product (MCD12Q1) Land Cover Type 1, 
which provides annual land cover from 2001–2023 at a 500 m spatial resolution using IGBP classes63. MODIS 
MCD12Q1 Land Cover Type 1, the Annual IGBP classification, was selected to align with the AmeriFlux 
provided IGBP land cover. The freely available MODIS land cover data were downloaded from AρρEEARS64 
(https://appeears.earthdatacloud.nasa.gov) using the “Extract Area Sample” download tool with geographic 
coordinate projection. The 500 m MODIS was upscaled to the Daymet 1 km grid using a nearest neighbor 

AmeriFlux sites IGBP land cover

BSV (0.8%)
CRO (23.3%)
CSH (1.2%)
CVM (0.4%)
DBF (11.1%)
ENF (22.1%)
GRA (15.8%)
MF (2.8%)
OSH (4.0%)
SAV (2.0%)
URB (2.0%)
WAT (2.4%)
WET (10.3%)
WSA (2.0%)

AmeriFlux sites Köppen-Geiger climate
Bsh (1.2%)
Bsk (8.3%)
Bwh (0.8%)
Bwk (2.0%)
Cfa (26.9%)
Cfb (0.4%)
Csa (9.1%)
Csb (4.0%)
Cwa (1.6%)
Dfa (12.6%)
Dfb (20.6%)
Dfc (3.6%)
Dsa (0.8%)
Dsb (4.0%)
Dwb (1.2%)
ET (0.8%)
Unk (2.4%)

Fig. 5  Percentage breakdown of IGBP land cover and Köppen-Geiger climate classifications from the 253 
AmeriFlux sites. Unk = unknown or not provided in AmeriFlux documentation.
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interpolating algorithm. The AmeriFlux sites represented 14 of the 17 MODIS IGBP classes (Table 1). The three 
unrepresented IBGP land cover classes include deciduous needleleaf forests (DNF), which comprises approx-
imately 0.005% of CONUS+ pixels, evergreen broadleaf forests (EBF) and permanent snow/ice (SNO), which 
together make up approximately 0.8% of pixels.

Köppen geiger climate.  The gridded updated Köppen Geiger (KG) climate classifications were obtained from 
Beck et al.65,66. The KG classifications were also used to classify AmeriFlux sites and estimate VPD for CONUS+. 
The KG classifications are available at 1 km by 1 km spatial resolution, which we realigned to match the 1 km 
CONUS+ grid using a nearest neighbor approach. There are five main categories of classification, each broken 
down into subcategories, yielding a total of 30 unique classifications globally67. For CONUS+ grid, there were 
only 25 unique KG values. The AmeriFlux sites represent 16 KG classifications. In order to determine correction 
factors for the remaining nine KG classifications, we reclassified them following Table 3.

North American Land Data Assimilation System (NLDAS).  Reanalysis data from North American 
Land Data Assimilation System phase 2 (NLDAS-2) Forcing File A68 was used to estimate an independent 
VPD product for evaluation of the CONUS+ VPD dataset. NLDAS integrates a multitude of guage-, radar-, 
and model-based observations using the National Centers for Environmental Prediction (NCEP) Eta Data 
Assimilation System (EDAS) to generate forcing data for all of CONUS at an hourly timestep and at a 0.125° 
by 0.125° spatial scale69. The freely available NLDAS-2 variables of 2-m above ground temperature temperature 
(TMP), 2-m specific humidity (SPFH), and surface pressure (PRES) were downloaded using the NASA GES DISC 
(https://disc.gsfc.nasa.gov/) dataset subset tool70. VPD was calculated following the method described in Lowman 
et al.8. Daily average temperature from NLDAS-2 was used to estimate esat from Teten’s equation and vapor pres-
sure, e, was estimated using average daily specific humidity and air pressure.

Estimating VPD for CONUS+.  In order to generate a daily gridded VPD dataset for CONUS+, we used 
the meteorological variables from Daymet, VPD from AmeriFlux, land cover classifications from MODIS, and 
climate classifications from KG. The temporal coverage of MODIS land cover was the limiting factor for the start 
and end dates of the data records produced in this study. At the time of development, the MODIS land cover 
record was 2001 to 2023, so this twenty-three-year period defined the date range for land cover correction. We 
assumed a single KG classification for each pixel of CONUS+ for the entire study period (i.e., no pixels changed 
climate classification).

Calculating VPD from Daymet - Phase 1.  Calculating VPD for each AmeriFlux site required first identifying 
the Daymet 1 km by 1 km grid cell whose center was nearest the site’s geographic coordinate and extracting the 
Daymet variables (Fig. 2). Daily average VPD, in kPa, was calculated as the difference between saturated, esat, 
and unsaturated, e, vapor pressure

= −VPD T e T e( ) ( ) (1)sat
⁎ ⁎

where e is provided by the Daymet daily average vapor pressure data and esat is calculated using Teten’s 
equation33,71:

⁎
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The variable T* (°C) is a representative temperature computed using the Daymet maximum and minimum 
daily temperatures (Tmax and Tmin, respectively). The parameters A and B are empirically determined with 

= .A 17 27 and = .B 237 15 when ≥ °T C0 , and A 21 87= .  and = .B 265 5 when < °T C0 33,72. It is a known 
issue that calculating saturation vapor pressure using the above freezing coefficients in Eq. 2 to below freezing 
temperatures results in large errors72. In our calculations we used =T Tmax

⁎ . Prior studies used a weighted aver-
age of Tmax and Tmin, = = . + .⁎T T T T0 606 0 394W max min, which puts more emphasis on Tmax

57,73. The TW 
method is presented in the earliest Daymet derivations of meteorological variables as a way to estimate average 
daily temperature57. In this method, Tmin and Tmax are used to fit a sine curved to simulate diurnal changes in 
temperature, with the average value of the sine curve representing the average value of daytime temperature73. 

Unrepresnted KG climate code Represented KG Climate Difference

Af, Am, Aw → Cfa tropical vs temperate, no dry season, hot summer

Csc → Csb cold vs warm summer

Cwb → Cwa warm vs hot summer

Cfc → Cfb cold vs warm summer

Dsc → Dsb cold vs warm summer

Dwa → Dwb hot vs warm summer

EF → ET frost vs tundra

Table 3.  Summary of Köppen-Geiger replacements.
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Unsaturated vapor pressure provided by Daymet uses Tmin as a representative of dew point temperature57. We 
compared how estimating esat using Tmax or TW as T* influences estimates of VPD computations.

Computing Correction Factors - Phase 1.  We found that using TW did not capture day-to-day variability in 
observed VPD from the AmeriFlux towers while preliminary analysis showed calculations of VPD T T( )max=⁎  
matched day-to-day fluctuations while overestimating daily AmeriFlux VPD (VPDAMF) (Fig. 3). To reduce the 
difference between VPD T( )max  and VPDAMF, we developed a method to scale VPD T( )max  using ratios based on 
AmeriFlux climate and land cover classification. In Phase 1, we computed daily VPD T( )max  for each AmeriFlux 
site from 1995 to 2023 and grouped all computations by KG and IGBP classifications. We computed ratios, R, of 
AmeriFlux to Daymet VPD at every time-step for all sites and all years with data within a given classification 
according to

=R t
VPD t

VPD T t
( )

( )
( ( ))

,
(3)

j i
AMF
j

i
j

max i

where ti is the daily timestep. We binned the ratios by IGBP (KG) and found the mean and median across all sites 
with the same land cover (climate) classification. Thus, a site with more years of data was weighted more when 
computing the correction factors across all sites. Because the mean values could be skewed by large outlier ratios, 
we used the median ratio as the correction factor for the jth land cover type (climate classification) across all sites 
and time with land cover (climate) j,

= .R R tmedian( ( ))
(4)j

j
j i

There were five sites with climate listed as unknown (Unk), which were excluded from the correction factor 
development. We then computed new scaled VPD values at each time step, ti by multiplying VPD t( )T imax

 by the 
appropriate land cover (climate) correction factor, Rj,

VPD t R VPD T t( ) ( ( )) (5)S
j

i j
j

max i= ∗ .

Median ratios, along with their means and standard deviations, are provided for all land cover and climate 
classifications in Tables 4 and 5.

Generating CONUS+ VPD - Phase 2.  To generate daily maps of VPD for all of the CONUS+ grid, we com-
puted daily VPD T( )max  for every pixel and multiplied the daily value by the appropriate correction factor using 
Eq. 5. However, the AmeriFlux towers used to generate the correction factors only provide a sample of IGBP and 
KG classifications, and in some instances, the interpolated land cover and climate classification for pixels con-
taining AmeriFlux towers may differ from the classifications provided by AmeriFlux. For the missing 3 IGBP 
classes mentioned above (DNF, EBF, and SNO), no correction factor was applied to the CONUS+ VPD T( )max . 
There were 25 out of 30 KG classes represented in the CONUS+ grid, with 16 unique KG values represented by 
the AmeriFlux sites, requiring the need to determine the correction factors for 9 different KG values. We used 
ratios from the most similar climate classifications as the correction factors for unrepresented KG values, as 
summarized in Table 3. The differences in KG classifications and their replacements are in the third letter of the 

IGBP code median mean 1 s.d. MBE MAE RMSE uRMSE rP

ENF 0.416 0.455 0.699 −0.019 0.176 0.247 0.246 0.840

DBF 0.405 0.447 1.579 −0.006 0.174 0.247 0.247 0.868

MF 0.369 0.389 0.260 −0.015 0.150 0.221 0.221 0.861

CSH 0.457 0.495 0.439 −0.027 0.196 0.277 0.276 0.847

OSH 0.529 0.519 0.146 −0.043 0.244 0.336 0.333 0.945

WSA 0.494 0.507 0.207 −0.031 0.282 0.378 0.377 0.903

SAV 0.445 0.448 0.189 −0.005 0.247 0.325 0.324 0.871

GRA 0.409 0.499 5.667 −0.027 0.200 0.301 0.300 0.889

WET 0.352 0.401 0.289 −0.015 0.221 0.310 0.310 0.759

CRO 0.404 0.453 0.351 −0.012 0.202 0.292 0.292 0.850

URB 0.535 0.575 0.383 −0.042 0.224 0.294 0.291 0.838

CVM 0.342 0.344 0.104 −0.004 0.158 0.201 0.201 0.690

BSV 0.507 0.515 0.280 −0.008 0.361 0.470 0.470 0.925

WAT 0.425 0.492 0.467 0.021 0.133 0.196 0.194 0.834

Table 4.  Correction factors for each IGBP land cover classification with summaries of errors between observed 
VPD (VPDAMF) and VPD scaled by IGBP land cover. Statistics include mean bias error (MBE), mean absolute 
error (MAE), root mean squared error (RMSE), unbiased RMSE (uRMSE), and the Pearson correlation 
coefficient. We applied the median correction factors in the generation of the VPD maps.
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short-name classifications, which indicates summer temperatures67. The nine unrepresented KG classes are (Af, 
Am, Aw, Csc, Cwb, Cfc, Dsc, Dwa, EF). KG classifications with leading “A” are all tropical, and we had no tropical 
climates represented in the AmeriFlux site data, however, extreme biases exist if no correction factors were 
applied to these pixels (i.e., =R 1j ), which comprise <0.3% of pixels in the humid south of Florida. So, we 
replaced Af, Am, and Aw, with climate Cfa which covers most of the Southeastern US, including Northern 
Florida.

Data Records
The dataset, along with supporting data generation and evaluation codes, are available as a resource in the 
HydroShare repository74. Two different CONUS+ VPD datasets were created: one for VPD T( )max  scaled by the 
Köppen-Geiger (KG) climate classification, and one scaled by MODIS Land Cover Type 1 (IGBP) classification. 
We provide 23 years of daily, gridded VPD data spanning the period 2001–2023. The gridded data products are 
available as netCDF files covering CONUS+, with bounding box 25 to 50°N latitude and 67 to 125°W longitude 
(Fig. 6). Each netCDF files contains one year of data, with data arrays having dimensions 5731 by 3122 by 365. 
The first two dimensions correspond with the dimensions of the CONUS+ grid, and the third dimension repre-
sents each day of the year. Daymet provides 365 days of temperature and vapor pressure for each day of the year. 
In leap years, day 365 corresponds with December 30 and no data is provided for December 31. We follow the 
same convention. The VPD data are stored as 16-bit unsigned integers in Pascals. Therefore, a correction factor 
of 10−3 must be applied to convert the values into units of kPa. In the repository, we also provide netCDF files of 
the CONUS+ grids of KG and yearly IBGP values, along with.csv files containing tables of the corresponding 
correction factors. NaNs (indicating not-a-number) are used to fill values where the VPD data is unavailable, 
which usually occurs over oceans and larger bodies of water. There are two additional scripts provided in the 
HydroShare repository to assist users in: (1) Plotting CONUS+ maps of VPD for any day of year and (2) 
Extracting VPD time series data for any location (i.e., pixel) or set of locations in the CONUS+ grid.

KG code median mean 1 s.d. MBE MAE RMSE uRMSE rP

BWh 0.498 0.476 0.163 −0.034 0.352 0.451 0.450 0.924

BWk 0.584 0.592 0.209 −0.014 0.265 0.362 0.362 0.930

BSh 0.439 0.428 0.156 0.013 0.357 0.494 0.493 0.848

BSk 0.495 0.495 0.171 −0.045 0.254 0.347 0.343 0.925

Csa 0.356 0.381 0.168 −0.040 0.279 0.395 0.393 0.840

Csb 0.404 0.400 0.205 −0.055 0.158 0.233 0.227 0.930

Cwa 0.429 0.465 0.433 −0.014 0.250 0.326 0.325 0.327

Cfa 0.397 0.433 0.271 −0.023 0.220 0.301 0.300 0.758

Cfb 0.273 0.281 0.199 −0.058 0.119 0.201 0.192 0.913

Dsa 0.367 0.368 0.160 −0.125 0.280 0.434 0.415 0.929

Dsb 0.520 0.571 0.264 0.030 0.156 0.220 0.218 0.951

Dwb 0.515 0.631 0.727 −0.041 0.257 0.342 0.339 0.800

Dfa 0.400 0.440 0.292 −0.167 0.151 0.223 0.222 0.847

Dfb 0.398 0.440 1.107 −0.015 0.145 0.212 0.211 0.852

Dfc 0.504 0.580 1.452 −0.023 0.125 0.177 0.175 0.883

ET 0.567 1.259 19.181 −0.024 0.116 0.161 0.160 0.842

Table 5.  Correction factors for each Köppen-Geiger climate classification with summaries of errors between 
observed VPD (VPDAMF) and VPD scaled by KG climate. Statistics include mean bias error (MBE), mean 
absolute error (MAE), root mean squared error (RMSE), unbiased RMSE (uRMSE), and the Pearson correlation 
coefficient. We applied the median correction factors in the generation of the VPD maps.

Fig. 6  Maps of the VPDs products for June 29, 2023 (DOY 180).
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Technical Validation
We evaluated the performance of CONUS+ scaled VPD products (VPDS), VPD T( )W , and VPDNLDAS by compar-
ing each to AmeriFlux VPD (VPDAMF) using a variety of error metrics. We found that both land cover and cli-
mate informed VPD datasets compare more favorably against AmeriFlux than daily VPD estimated by average 
daily temperature or NLDAS-derived VPD (Table 6). We further evaluated how the method performs across 
specific IGBP land cover and KG climate classifications, summarized in Tables 4 and 5. Lastly, we performed 
independent evaluations of VPDS at five sites that provided only hourly VPD and were not included in the cor-
rection factor development: US-Cop, US-Cwt, US-MMS, US-PFa, and US-UMB (Table 7, Fig. 7).

Error metrics.  The error metrics presented are mean bias error (MBE), mean absolute error (MAE), root 
mean squared error (RMSE), unbiased RMSE (uRMSE), and the Pearson correlation coefficient (rp) for each 
classification j at time ti, i N1, , 365∈ ... = , and were computed as

MBE
N

VPD t VPD t1 ( ( ) ( )),
(6)

j
i

N

S
j

i AMF
j

i
1

∑= −
=

∑= −
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N
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= −uRMSE RMSE MBE , (9)j j j
2 2

Site site years classification MBE MAE RMSE uRMSE rPearson

US-Cop 4.5

IGBP: GRA −0.502 0.530 0.752 0.560 0.965

KG: Bsk* −0.334 0.396 0.566 0.456 0.965

VPD (TW) −0.148 0.289 0.405 0.377 0.949

NLDAS −0.205 0.304 0.413 0.358 0.957

US-Cwt 5.0

IGBP: DBF 0.124 0.188 0.232 0.196 0.721

KG:Dfb 0.114 0.182 0.225 0.194 0.721

VPD (TW) 0.277 0.304 0.373 0.249 0.686

NLDAS −0.090 0.157 0.211 0.191 0.651

US-MMS 15.1

IGBP: DBF −0.019 0.170 0.232 0.230 0.855

KG: Cfa −0.029 0.171 0.232 0.231 0.855

VPD (TW) 0.130 0.204 0.285 0.253 0.838

NLDAS −0.110 0.230 0.331 0.312 0.721

US-PFa 28.9

IGBP: MF 0.014 0.114 0.164 0.163 0.865

KG: Dfb 0.041 0.119 0.170 0.165 0.865

VPD (TW) 0.147 0.174 0.250 0.202 0.858

NLDAS −0.053 0.135 0.201 0.194 0.803

US-UMB 14.6

IGBP: DBF −0.028 0.112 0.161 0.158 0.898

KG: Dfb −0.035 0.113 0.163 0.159 0.898

VPD (TW) 0.080 0.132 0.191 0.173 0.895

NLDAS −0.173 0.197 0.298 0.242 0.777

Table 7.  Summary of error metrics for five independent AmeriFlux sites. AmeriFlux does not provide climate 
for US-Cop, but ‘Bsk’ is the climate from the interpolated KG climate65.

Method MBE MAE RMSE uRMSE rP

Scaled by IGBP −0.018 0.196 0.282 0.281 0.886

Scaled by KG −0.024 0.195 0.283 0.282 0.886

Weighted Temperature 0.184 0.275 0.419 0.377 0.849

NLDAS 0.009 0.226 0.340 0.340 0.862

Table 6.  Error metrics (MBE, MAE, RMSE, uRMSE, rP) for Daymet-derived and NLDAS VPD compared to 
AmeriFlux tower measurements and averaged across all sites.
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The error metric MBE can be any positive or negative value while MAE and RMSE are non-negative. Positive 
(negative) values of MBE indicate VPDS is greater (less) than VPDAMF, on average. Here, positive MBE indicates 
VPDS overestimates VPDAMF. Large errors with opposite signs can negate one another in calculations of MBE, 
resulting in small bias errors. By taking the absolute value of each daily error, MAE provides a measure of the 
overall magnitude of the differences between VPDAMF and VPDS. Like MAE, squaring the difference between 
VPDAMF and VPDS in RMSE makes the error positive, but it also provides more weight to large error and less 
weight to small errors. To remove the effects of systematic bias in the bulk error estimates of RMSE for inde-
pendent study sites, we computed uRMSE75. The Pearson correlation coefficient (rp), which ranges between -1 
and 1, is a metric of the linear relation between VPDAMF and VPDS. The closer the magnitude of rp is to one, the 
more linear the relationship between the two, with the sign of rp indicating whether or not the relationship is 
positive or negative. Overall, MBE, MAE, RMSE, and uRMSE closer to zero, and rp closer to one, indicate the 
Daymet-derived VPD aligns well with observations from AmeriFlux.

Overall performance of correction factors.  While the Pearson correlation coefficients were similar in 
the VPDs, VPD T( )W  and VPDNLDAS methods, there were differences in the other error metrics (Table 6). The neg-
ative MBE indicates that the correction factors tended to underestimate daily averages of AmeriFlux VPD. 
However, for Daymet VPD scaled by IGBP or KG, those overestimates were ∼0.02 kPa versus the overestimate of 
0.18 kPa using a weighted temperature approximation. The MAE from scaling VPDs was 29% smaller than 
VPD T( )W  across all sites. The RMSE for VPD T( )W  compared to VPDAMF was 0.14 kPa higher than the RMSE using 
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Fig. 7  Time series of scaled Daymet VPD compared with AmeriFlux, and NLDAS for US-MMS and US-PFa, 
and a map of the independent sites not included in the correction factor development whose error metrics are in 
Table 7. Pop outs show days 100–150 and 175–225 for US-MMS and days 125–175 and 200–250 for US-PFa.
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the VPDs methods. Even after removing bias, the uRMSE is stil 0.1 kPa higher than VPDs. While VPDNLDAS has 
better error metrics than VPD T( )W , the uRMSE value of 0.340 kPa is 0.06 kPa larger than either the land cover or 
climate corrected VPD. The results indicate that on average, and in extreme cases, across all sites, using land cover 
and climate to inform the scaling of VPD T( )j

max  outperformed estimates of VPD T( )W  and VPDNLDAS.
Within the scaling methods, scaling VPD by land cover or by climate tended to have similar values across 

error metrics (Table 6), but performance varied within classifications (Tables 4 and 5). While most of the correc-
tion factors had standard deviations less than 0.4, some standard deviations were orders of magnitude larger. For 
example, the standard deviation for the IGBP land cover grassland (GRA) was over 5. This was due to a few large 
ratios (over 10) with the largest being 1067. Large ratios can happen when the denominator, in this case 
VPD T( )

j
max , is near zero. Nearly all of the large ratios occurred in winter months with temperature below freez-

ing. The coefficients for below freezing temperatures used in Eq. 2 to compute saturated vapor pressure allowed 
for saturated vapor pressure to be nearly the same as actual vapor pressure, resulting in VPD near zero (i.e. on 
the order of 10−4 kPa). In total, this happened for the IGBP land cover class GRA on 52 days, and since there 
were over 1400 site years of data, we did not remove these values. Data from sites US-NR3 and US-NR4 were the 
leading contributors to the large standard deviations for GRA, being responsible for 38 of the 52 ratios greater 
than 10 and all six ratios great than 100. In those instances where the ratios were greater than 100, VPD T( )j

max  
(the denominator) was between 0.0002 and .0005 kPa while VPDAMF

j  (the numerator) fell between 0.1 and 
0.2 kPa. Similarly, there was a very high standard deviation of 19.2 for the KG climate classification ET. There 
were only two sites that have KG classification ET, US-NR3 and US-NR4, explaining why these two classifica-
tions had higher standard deviations for the mean of the correction factors. Despite high standard deviations, 
the average errors associated with the application of correction factors to scale VPD T( )max  were unaffected by the 
few extreme values due to the total number of records used in the analysis and the fact that we adopted the 
median values as the correction factors when applying them to CONUS+. The magnitude of the error metrics 
MBE, MAE, and RMSE were smaller for the two ET sites than for the KG corrected methods across all sites 
(Tables 4 and 5). This suggests that the high standard deviation of the correction factors did not negatively affect 
the ability of the correction factors to accurately scale VPD T( )j

max .
The rp values correlating the VPDs and VPDAMF were strong (i.e., r 0 5P > . ) for most classifications, with most 

> .r 0 8P , the highest of which came from the open shrubland (OSH) IGBP classification, with r 0 945P = .  and 
KG climate Dsb (cold, dry, warm summer), with = .r 0 951P . The KG classifications Cwa (temperate, dry winter, 
warm summer) had the least linear relationship, r 0 327P = . . This classification was only represented by 4 sites 
(Fig. 5) and 15.6 site years (Tables 1 and 2). And while there was not as strong of a linear relationship for Cwa 
when compared to VPDAMF, the overall accuracy indicated by other metrics validates the performance of the 
correction factor.

Considering, the method of scaling by IGBP land cover, the algorithm had the smallest error metrics for 
cropland/vegetation mosaics (CVM, Table 4) with MBE of -0.004 kPa, MAE of 0.158 kPa and RMSE of 0.201 kPa. 
However, there was only one site with 5.6 years of data, so CVM was not the most well represented land cover. 
With 56 sites and over 400 site years of data, evergreen needleleaf forests (ENF) were the most represented land 
cover. The correction factor median for ENF was 0.416, with a mean and standard deviation of 0.455 and 0.699, 
respectively. Despite the standard deviation being larger than the correction factor, there was a strong linear 
relationship (r 0 840P = . ) between VPDs and VPD T( )max . The error metrics MAE, MBE, and RMSE for ENF were 
comparable to the same metrics across all IGBP classifications. Climate classifications Cfb (Temperature, no dry 
season, warm summer) and ET (Polar tundra) had some of the lowest error metrics but were only represented 
by one and two sites, respectively. Classification Cfa (Temperate, no dry season, hot summer), which covers most 
of the Southeast US and was represented by almost 27% of the study sites with 328 site years of data, had errors 
only slightly worse than the average across all climates.

VPD Uncertainty Analysis.  Evaluating VPD for Independent AmeriFlux Sites.  For the correction factor 
development presented above, we used AmeriFlux VPD for sites that reported half-hourly data. For time series 
analysis, we identified five sites inside of CONUS+ that provided hourly data and were not included in the cor-
rection factor development: US-Cop (GRA, no climate reported but interpolated as Bsk), US-Cwt (DBF, Dfb), 
US-MMS (DBF, Cfa), US-PFa (MF, Dfb), and US-UMB (DBF, Dfb). We scaled VPD T( )j

max  for these for sites using 
correction factors corresponding with the AmeriFlux provided vegetation land cover and climate. Error metrics 
for those sites are found in Table 7 and example time series for two sites for select years are shown in Fig. 7.

Error metrics indicate strong performance of VPDs relative to AmeriFlux VPD at US-Cwt, US-MMS, 
US-PFa, and US-UMB. For each of the four sites, uRMSE is smaller than the respective error for the same land 
cover and climate classifications (Tables 4 and 5). Performance of VPDs is weakest at US-Cop, a grassland in a 
cold, arid environment. AmeriFlux tends to have higher VPD than VPDs and VPDNLDAS at this site as seen in 
the negative MBE values (Table 7). Error metrics for the land cover and climate corrected VPD were lower than 
VPDNLDAS at US-MMS, US-PFa, and US-UMB, the three sites with the longest temporal records. VPDs and 
VPDNLDAS differed in uRMSE at US-Cwt by 0.005 kPa, indicating that our scaled VPD generally outperforms 
NLDAS across the five test sites. Even for NLDAS, error metrics are highest at US-Cop. The high RMSE values 
of 0.752 and 0.566 for land cover and climate corrected VPD, respectively, indicate the largest errors occurred 
during periods of elevated VPD. The lower uRMSE values for VPDs indicate that our methods capture the var-
iability in daily VPD better than alternative methods. For example, during green up at US-MMS (days 100 to 
150) and the middle part of the growing season (days 175 to 225) of 2012, the land cover and climate corrected 
VPD compared more favorably against AmeriFlux VPD than NLDAS, which underestimated AmeriFlux during 
green up and overestimated AmeriFlux in days 180 to 210 of 2012 (Fig. 7), a time period of an extreme drought 
in the Midwest76.
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Uncertainty in Land Cover and Climate Classifications.  We generated land cover and climate dependent cor-
rection factors using VPD from 253 AmeriFlux eddy covariance flux towers, however several land cover and cli-
mate classifications had less than five representative sites. For IGBP land cover, there was only one site classified 
as cropland/natural vegetation mosaics (CVM), two sites classified as barren sparse vegetation (BSV), and three 
sites classified as closed shrubland (CSH). For KG climate, one site represented classification Cfb (temperature, 
no dry season, warm summer), while classifications Bwh (arid, desert, hot), Dsa (cold, dry and hot summer), ET 
(polar tundra) each had 2 sites. Classifications Bsh (arid, steppe, hot) and Dwb (cold, dry winter, warm summer) 
had three sites each, and there were four sites with classification Cwa (temperature, dry winter, hot summer). 
No tropical sites were represented by the AmeriFlux sites. In contrast, several land cover and climate sites rep-
resented significant portions of the 253 sites. There were 59 sites classified as croplands (CRO), 56 as evergreen 
needleleaf forests (ENF), and 40 as grasslands (GRA). There were and 68 sites with KG climate classification 
Cfa (temperate, no dry season, hot summer), and 52 classified as Dfb (cold, no dry season, warm summer). It is 
possible that having a larger sample of underrepresented classifications, in more regions across CONUS+, could 
have improved performance. Additionally, most AmeriFlux sites are located in heterogeneous landscapes, and 
the heterogeneity has been shown to influence the variability of VPD in the local microclimate9. This consid-
eration is important for researchers investigating the variability in ecosystem responses to variations in VPD.

Usage Notes
Research to Operational Applications.  This dataset offers users a chance to perform fine spatial and 
temporal scale investigations in a variety of climate and land covers across CONUS+ which is particularly ben-
eficial for studying areas with limited or no available ground data records of VPD. To conduct a point or other 
small-scale study, a user would need to identify a latitude/longitude coordinate pair (or set of coordinate pairs 
for multiple sites or for a small region) and the corresponding grid location(s) from the dataset. A time series of 
VPD could be useful for many reasons. For example, one could follow the methods described by Yuan et al.4 or 
Li et al.77 to analyze the VPD dependence of carbon assimilation on plant growth. Since the influence of VPD on 
vegetation growth can vary by region19, users could separate the data by land cover or climate to explore how VPD 
affects carbon assimilation and plant growth vary by climate and land cover.

Because VPD is linked to drought50, with high VPD corresponding to dry conditions, this dataset could be 
useful in tracking VPD anomalies that may be associated with drought identification and intensification for all 
of CONUS+, supporting a suite of indices and anomalies already implemented as drought markers78. One such 
index, the evaporative stress index (ESI) or ratio (ESR) considers more than precipitation anomalies by comput-
ing the ratio of actual evaporation to potential evaporation78, which depends on VPD79, and has been shown to 
effectively track rapid changes in drought conditions80. Generating standardized VPD anomalies in similar ways 
could be additionally effective ways to study the direct influence of VPD on drought development. Additionally, 
when analyzed with covariates such as precipitation and soil moisture8, this dataset could be useful in identifying 
VPD-induced drought thresholds across land cover and climate classifications, similar to Lowman et al.8.

VPD is a variable of interest to a broad range of the environmental and geophysical science communities, 
spanning climatology, ecology, ecophysiology, and beyond. Daymet has a meteorological record that dates back 
to 1980 for most of North America58. With over forty years of temperature and vapor pressure data, those inter-
ested in longer-term climatological studies could use this data and adapt our methods to extrapolate VPD back 
to 1980 and into the future to investigative how VPD is changing at climatological time scales, especially with 
changing land cover and climate classifications. For those interested in purely atmospheric studies, this dataset 
could also be useful for research investigating how vapor pressure changes within the vertical atmospheric col-
umn by providing surface or near surface VPD. Because of the wide range of altitudes spanning CONUS+, these 
datasets could be used with elevations maps to investigate how plant function, such as photosynthesis, varies 
with VPD across altitudinal gradients81. Fire and other disturbances, such as tropical cyclones, can impact the 
local VPD by altering the local climate and landscape82. Studies of how surface VPD anomalies impact wildfire 
risk24 across land cover and climate regions in CONUS+ will benefit from using this dataset in conjunction with 
other fire related data products.

We anticipate land managers, using research to inform operations, to access this dataset to assess when and 
how crop yields begin to be impacted during VPD-induced drought, and to evaluate the resiliency of various 
croplands to high VPD in different climates. This type of scientific inquiry can guide agricultural strategies to 
mitigate the effects of changing atmospheric demand for water. Similarly, studies using these datasets to investi-
gate the impacts of high VPD on wildfire risk could be translated into protocols for forest management decisions 
to determine wildfire risk status.

Alternative Ways to Use the VPD Products.  We encourage users to consider the land cover and climate 
classifications of their study sites when using this data product. Outputs between the two VPD products are sim-
ilar, but subtle differences exists (Fig. 6). In areas like the Southeastern US, where land cover can be heterogeneous 
but climate is homogeneous over are large region, VPDS

KG tends to be smoother than VPDS
IGBP. In some applica-

tions users may prefer to use daily maximum VPD (i.e., VPD (Tmax)) as a proxy for maximum daily water stress50. 
VPD (Tmax) can be obtained for any pixel by dividing by the correction factor. Additionally, users may want to 
account for both climate and land cover. To do so, they would divide by the correction factor before applying a 
correction factor from a different classification, or some combination of correction factors. For example, if a user 
is working with a site and they want to combine the effects of land cover and climate classification, they could 
scale VPD (Tmax) using the average of the IGBP and KG correction factors for that site. Or users could attempt to 
incorporate vegetation heterogeneity by combining correction factors for one or more vegetation types.

We assumed land cover changes occurred annually according to MODIS IGBP. One could update this VPD 
product using the newest available MODIS IGBP records in the future. Additionally, users may want to extend 
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records further back (prior to 2001) in which case they could assume prior land cover, with caution, and use the 
land cover map of correction factors to apply to earlier Daymet records. With MODIS going offline in the near 
future, it may also be possible to follow this procedure with different land cover classification schemes. Similarly, 
any updated climate classification schemes could be applied to any future Daymet data records or those prior 
to 2001 in order to expand the available date record of VPD (Tmax). The methods presented here could also be 
adapted for regions across the world, especially in areas with similar climates and or land cover to CONUS+. 
Studies investigating VPD in arctic and tropical regions could follow the methods presented here but would 
benefit from a dataset developed using additional ground observations from those regions.

Transferability Outside of CONUS+.  The methods presented in this manuscript can be adapted to other 
study regions as long as investigators account for the resolution of the temperature, vapor pressure, land cover, 
and climate inputs. Here, the MODIS land cover data is 500 m and the Koppen-Geiger climate 1 km, which were 
each resampled to align with the Daymet CONUS+ grid at 1 km. This method could be directly applied to the 
entire Daymet spatial coverage (Alaska, Hawaii, Puerto Rico, Mexico and Canada) because there are AmeriFlux 
and/or FluxNet towers to provide ground observations of VPD. Outside of those regions, Daymet is not available. 
Thus, some alternative meteorological data set would need to be used (e.g., Climatic Research Unit gridded Time 
Series83). The land cover and climate data are each available globally so applying the methods presented requires 
subsetting land cover and climate and aligning it to match the resolution of the temperature and atmospheric 
vapor pressure data of the new study region. FLUXNET data could be applied to a wider range of regions (e.g., 
South America, Africa, Asia, and Europe42). Otherwise, the key limitation to applying this approach is the availa-
bility of ground observations needed to build correction factors for the daily estimates of VPD.

Working with NetCDF Files.  The datasets are available in netCDF file format. NetCDF files are com-
monly used formats for storing array data. They are easily readable by most software applications (e.g., Python, 
R, Matlab, Fortran, etc.). For more information and resources about netCDF files, visit https://www.unidata.ucar.
edu/software/netcdf/. Additionally, users can subset, visualize, or analyze the netCDF files in the HydroShare 
resource using the THREDDS (Thematic Real-time Environmental Distributed Data Services) data server. For 
help with using THREDDS, visit https://help.hydroshare.org/apps/thredds-opendap/.

Code availability
All codes used to generate, visualize, and subset the data are freely available as part of the same resource as the 
VPD datasets in CUAHSI HydroShare74.
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US-Tw5271, US-Twt250, US-UiA272, US-UiB273, US-UiC274, US-UiD275, US-UM3276, US-UMB277, US-UTB278, US-
UTN279, US-Var280, US-Vcm281, US-Vcp282, US-Vcs283, US-WCr284, US-Wi0285, US-Wi1286, US-Wi2287, US-Wi3288, 
US-Wi4289, US-Wi5290, US-Wi6291, US-Wi7292, US-Wi8293, US-Wi9294, US-Wjs295, US-Wrc296, US-WT1297, US-
xAB298, US-xAE299, US-xBL300, US-xBR301, US-xCL302, US-xCP303, US-xDC304, US-xDL305, US-xDS306, US-xGR307, 
US-xHA308, US-xJE309, US-xJR310, US-xKA311, US-xKZ312, US-xLE313, US-xMB314, US-xML315, US-xNG316, US-
xnQ317, US-xNW318, US-xRM319, US-xRN320, US-xSB321, US-xSC322, US-xSE323, US-xSJ324, US-xSL325, US-xSP326, 
US-xSR327, US-xST328, US-xTA329, US-xTE330, US-xTR331, US-xUk332, US-xUN333, US-xWD334, US-xWR335, US-
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