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OSMlanduse a dataset of European 
Union land use at 10 m resolution 
derived from OpenStreetMap and 
Sentinel-2
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Zipf Alexander5

Our map represents the first successful large-area fusion of OpenStreetMap and Copernicus data at 
a spatial resolution of 10 m or finer and can be applied globally. We addressed varying label noise and 
feature space quality, utilizing artificial intelligence and advanced computing. Our method relies solely 
on openly available data streams and methods, eliminating training data acquisition or the need for 
additional expert knowledge for such purpose. We extracted land use labels from OpenStreetMap and 
remote sensing data to create a contiguous land use map of the European Union as of March 2020. 
OpenStreetMap tags were translated into land use labels, directly mapping 61.8% of the Union’s 
area. These labels served as training data for a classification model, predicting land use in remaining 
areas. Country-specific deep learning convolutional neural networks and Sentinel-2 feature space 
composites of 2020 at 10 m resolution were employed. The overall map accuracy is 89%, with class-
specific accuracies ranging from 77% to 99%. The data set is available for download from https://doi.
org/10.11588/data/IUTCDN and visualization at https://osmlanduse.org.

Background & Summary
Humans transformed most of the Earth’s terrestrial surface1. Spatial and temporal explicit accurate land use 
(LU) and land cover (LC) information2 is useful, to understand environmental dynamics and anthropogenic 
activities3. The creation of consistent large area LULC products benefitted most notably by the use of remote 
sensing, its proliferation through open data policies4 and artificial intelligence5. Currently the further accelerated 
use of such technology is primarily limited by the availability of sufficient thematically labelled data to improve 
training performance of artificial intelligence for classification tasks.

Many non-commercial LULC maps were produced through authoritative6,7 or academic8,9 efforts where 
unrestricted training data accessibility for anyone is absent by design. With the advent of open-access web-based 
digitalization within the first decade of the 21st century, cost effective LULC originating from citizen science 
(CS) emerged10,11 tapping into a novel source of labels and training data based on open collaborative map-
ping platforms, most notably OpenStreetMap (OSM)12. OSM is a web based opportunistic collection of spatial 
explicit vector geometries enriched with thematic attributes collected by humans primarily through remote 
mapping or in situ data acquisition. Wherever OSM data is available and enriched with themed and up to date 
content, it can be sourced for LULC purposes, both spatial explicit and related to defined temporal periods. For 
instance, by translating its thematic content into a practical LULC class using a certain version of the respective 
OSM objects13. Although guidelines and some safeguards are provided by the OSM community, they can’t be 
enforced, anyone can contribute anything, as a result data quality varies largely. Additionally, the platform suffers 
particularly from incompleteness due to the nature of opportunistic human driven data input. OSM edits are 
based on certain local interest groups, and can be tied to certain events14 or to complement a targeted service or 
purpose15. Yet, despite these limitations, it is the largest and most successful open, free to use, non-commercial 
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mapping project to date and used every day as reliable base map, routing device and information platform by an 
abundancy of commercial, governmental, and non-governmental institutions16.

Given the fragmented availability of OSM data and opportunistic availability of thematic content and depth, 
resulting LULC products are consequently incomplete in terms of spatial coverage. Such gaps in unlabelled 
LULC data can be addressed by performing basic classification of remote sensing data, using known areas as 
training data17. Related research has focused on identifying useful OSM tags and their geometries for represent-
ing LULC18 as well as leveraging machine learning to fill data gaps19. Label based deep learning (DL) classifica-
tion of RS data became an alternative cost effective tool to produce LULC maps20.

Although previously mentioned studies demonstrated the suitability of OSM facilitation for LULC, a large 
area demonstration of these tools was missing but is provided through this work. Furthermore, our approach 
offers excessive amounts of training data that can suit DL methods. Both, OSM and remote sensing share omni-
presence in time and space for most of the 21st century offering transferability and scalability. Here we demon-
strate the combination of OSM and remote sensing for a 10 m land use map for the countries of the European 
Union (EU). Our product follows the coordination of information on the environment (CORINE) LC (CLC) 
legend offering comparison, integration to national products and European products that are in conformity to 
these legend requirements. Our product may serve as a complementary map for CLC or individual product by 
design our method can be applied for anytime and anyplace where a certain amount of remote sensing data and 
OSM data is available.

Methods
By injecting known labels extracted from OSM into a Sentinel 2 best pixel feature space using deep learning, 
CORINE land use labels were predicted when absent thus creating a contiguous map. The study design was dis-
played in Fig. 1. First, OSM data was queried and translated to CLC labels17 using the OSM version as of March 
2020. We retrieved OpenStreetMap (OSM) vector data [Ref.], ensuring compliance with the Open Database 
License (ODbL)21. Where available the data served directly as the LULC product at <1 m resolution (OSM vec-
tor geometry) and as training data labels for a deep learning-based classification22 using a Copernicus Sentinel 2  
(S2) 10 m multi spectral feature space processed through Food and Agriculture Organization (FAO) sepal.io 
system. Subsequently the relevant aspects of the product design are presented.

Feature space was a best pixels medoid composite of Sentinel 2 bands red, green, blue (RGB) and near infra-
red (NIR) at 10 m of the past three years as of April 2020. Data pre-processing of the feature space was based 
on Landsat23 and adjusted for Sentinel 2 bands. First, clouds and cloud shadows were removed using fmask24. 
Second, for each pixel’s time series the medoid pixel was selected, pixels acquired during the growing season were 
preferred. Finally, the cloud screened best pixel mosaic composite was projected to EPSG:3035. Pre-processed 
Sentinel 2 composites can be created for any place and queried free of charge using the above-mentioned config-
uration through the FAO SEPAL platform sepal.io25.

Training data, labels for the supervised classification were extracted from OSM where certain tags were asso-
ciated to 13 CLC classes described here17. OSM feature quality, abundancy, and the suitability of OSM to land 
use conversation varies by country26 and remote sensing feature spaces properties vary by landscape. We accom-
modated these spatial variations by an individual set of training data and feature space for each country rather 
than pooling them. Consequently, each country received its own set of training data and classification model.

Classification of remote sensing data feature space was performed through the labelled training data, which 
was injected into a non-parametric supervised residual convolutional neural network (ResNet), complemented 
by identity mapping27 For each country we used the same deep learning model architecture, but feature space 
and training data varied, thus resulting in an individual model for each country. Classification chunks were 
portioned by the footprint size of Sentinel 2 data. ResNet inherent residual blocks (RB) were used to alleviate 
the gradient fluxes of convolutional neural networks (CNN)s during training28. By solving the optimization 
degradation issue, such blocks were used to increase training accuracy. Here, ResNet with multiple RBs were 
selected as the base feature learning networks to learn the targeted countries discriminative features. To feed the 
learning model we selected for each Sentinel 2 tile and class category 5000 training samples randomly. Sampling 
based reduction of training data was performed to cope with overly abundant yet noisy training data. Training 
and validation ratio were 0.8 and epochs sealed at 200 iterations. We used Nesterov Adam optimizer to improve 

Fig. 1  Research design for map production where roman letters I – IV show order and flow of events, grey boxes 
indicate data and models available within the paper’s repository; *classification was used when labelled land use 
was absent; OSM data can be retrieved through OSM API, pre-processed S2 data through FAO’s sepal.io.
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convergence performance of leaning rates. Respective, hyperparameters were set to β1 = 0.9, β2 = 0.999, learn-
ing rate and batch size were set to 0.001 and 64, respectively. Model inferencing of the trained ResNet was 
applied through a moving window where each pixel with its neighbour batches is classified into the unique 
LULC classes. The resulting classification was post processed by an additional sieve filter of 64 pixels. Finally, the 
classification and the original labels were merged while giving priority to the existing labels.

Our decision to train separate classification models per country stems from the varying completeness and 
likely slightly different tagging cultures of OpenStreetMap data across Europe, may differ at national borders. We 
used a CORINE-based legend to ensure overall harmonization, yet small discrepancies remain due to differing 
OSM tag usage. Moreover, although the final dataset is integrated at the European scale, we conducted both a 
pan-European accuracy assessment and additional per-country accuracy reporting to reflect each model’s dis-
tinct performance. We acknowledge that fully eliminating cross-border mismatches requires continued refine-
ment of OSM tags and further post-processing, but we see this dataset as an important step toward large-area, 
openly sourced land-use products at high spatial resolution.

Data Records
The dataset29 is provided as individual GeoTIFF files (one per EU country plus the UK) at 10 m spatial resolution. 
Each GeoTIFF encodes land-use class labels following the CORINE Land Cover (CLC) nomenclature30 and 
the specific class codes are listed in Table 1 of this manuscript. The data can be downloaded from https://doi.
org/10.11588/data/IUTCDN, which hosts both the predicted land-use rasters and the accompanying metadata 
describing file format, spatial reference, class definitions and visualization are available at https://osmlanduse.org.

Technical Validation
Using an independent reference data set consisting of 4616 reference points an overall accuracy of 89% was 
achieved for the EU OSMlanduse product. Independently collected robust reference data revealed class accu-
racies ranged from 77% - 99%. The largest class confusion was found for Artificial surfaces (10) and Forest and 
seminatural areas (30). An expert-based detail investigation revealed that this error was mostly driven by the 
misclassification of “Artificial non-agricultural vegetated areas” (14) and “Shrub and/or herbaceous vegetation 
associations” (32), two spectrally very similar classes. The class “Artificial surface” was overestimated on the 
cost of “Forest and seminatural areas”. However, existing areas of class “Artificial surface” were mapped almost 
entirely correct with only minor errors of omission (97% producer accuracy).

Accuracy was calculated using remote sensing standard procedures31 consisting of sampling and response 
design as well as standard analysis measures32. The sampling design determined the distribution of the ref-
erence points across the data set. Sampling size population was calculated using standard random stratified 
sampling using formula 1 suggested in33 using a standard significance level (α = 0.95) and confidence interval 
(h = 0.05). For the extraction of the representation of reality, the response design, we used very high resolution 

CLC Class – level 1 CLC Class – level 2 CLC Class Name Corresponding OSM tag

1

1.1 Urban fabric residential

1.2 Industrial, commercial and transport units industrial, commercial, retail, harbour, port, railway, lock, marina

1.3 Mine, dump and construction sites quarry, construction, landfill, brownfield

1.4 Artificial non-agricultural vegetated areas stadium, recreation_ground, golf_course, sports_center, common, allotments, 
playground, pitch, village_green, cemetery, park, zoo, track, garden

2

2.1 Arable land greenhose_horticulture, greenhouse, farmland, farm, farmyard

2.2 Permanent crops vineyard, orchard

2.3 Pastures meadow

3

3.1 Forests forest, wood

3.2 Shrub and/or herbaceous vegetation associations grass, greenfield, scrub, heath, grassland

3.3 Open spaces with little or no vegetation fell, sand, scree, beach, mud, glacier, rock, cliff

4
4.1 Inland wetlands march, wetland

4.2 Coastal wetlands salt_pond, tidal

5 5.0 Water bodies water, riverbank, reservoir, basin, dock, canal, pond

Table 1.  Legend harmonization between OSM tags and Corine Land Cover (CLC) classes, level two legend.

Map

Σ producer accuracy1 - Artificial surfaces 2 - Agricultural areas 3 - Forest and seminnatural areas

Reference

1 - Artificial surfaces 1419 29 3 1451 0.977946

2 - Agricultural areas 134 990 9 1133 0.873786

3 - Forest and seminatural areas 283 43 1706 2032 0.839567

Σ 1836 1062 1718

user accuracy 0.772876 0.932203 0.993015 0.891464

Table 2.  Confusion matrix for a total of 4616 reference/validation points.
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(<1 m) remote sensing ranging from the years 2019 and 2020 provided by Bing Maps (Bing Aerial) and google 
maps (Satellite view) as well as an additionally 10 m auxiliary layer of Sentinel 2 RGB provided by Sinergise 
SentinelHub as of March 2020 accommodating a perspective of the reference point for the very moment in time 
of the product creation. At each reference point the land use was extracted and interpreted for a 10 m × 10 m 
box, the class that occupied the majority of the reference point was then assigned as representation of reality for 
the respective location and consequently compared against the map. Through analysis we determined the dif-
ference of the map and the reference data using the measures overall accuracy, producer’s accuracy or omission 

Fig. 2  Map facets highlighting the OSMlanduse details and suitability for various landscapes (a) inland water 
in Utrecht province, (b) city of Heidelberg, (c) metropolitan area of Bucharest, (d) Po valley and Milan, (e) 
wetlands river estuary, close to Bordeaux (f) lake Balaton close to Siófok.

Fig. 3  Availability of existing OSM labels used as training data and product, as a fraction of the country’s total 
area; EU28 = all countries combined relative proportions.
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error expressing the underestimation of a class and user’s accuracy or commission error expressing overestima-
tion of a class, were calculated, and reported in Table 2.

To ensure unbiased interpretation of samples, reference data was collected through a crowd sourcing cam-
paign hosted by landsense.eu. The campaign was open for the public from October 2020 until March 2021. The 
campaign was stimulated by three dedicated mapathon events that were featured during these events namely, 
EU regions week on 14.10.2020, the Netzwerk Geoinformation der Metropolregion Rhein-Neckar (GeoNet.
MRN) on 29.10.2020 and during a dedicated validation campaign hosted by European Spatial Data Research 
(EuroSDR) on 24.11.2020. A reference point made it into the reference data base if at least three different indi-
viduals agreed on a certain class without knowledge of one another’s decision or the respective map category. 
At least 60 interpreters participated in the validation effort performing at least 20k interpretations. Provided 
thematic depth varied, thus we aggregated classes to CLC level 1, wetland and water classes were disregarded.

Figure 4 provides a cross tabulation of existing labels and their prediction revealing both, model performance 
and training data noise. We used producer and user accuracy as vehicle to express these differences. Figure 4 
offers insights on the prediction reliability for each class and each country, and highlights trends and notable 
examples. Some classes were comparatively well classified for most countries, such as “Water” (5), “Forests” 
(31) and “Urban fabric” (11) while others were characterized by consistently low performances across coun-
tries, namely “Mine, dump and construction sites” (13) and “Artificial non-agricultural vegetated areas” (14). 
Variation of model performances showed similar patterns across countries yet there is no country that specifi-
cally excels at all classes or a certain set of classes, top scorers differ from class to class.

In the figure, the accuracies of specific countries are highlighted in orange labels, emphasizing the extremes 
and country specific suitability’s of the method. Notably, Malta exhibits the lowest model performance across 
multiple classes, including urban fabric, arable land, forests, artificial non-agricultural areas, water, and shrubs. 

Fig. 4  Area cross tabulations of existing labels (reference) and the respective classification result (map); 
producer- and user accuracy were used to express their spatial conflation; *full class names are provided in the 
second column of Table 1; orange labels are EU country codes for highlighting extremes.
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This observation is remarkable, as Malta’s performance is consistently poor across these categories, however 
other countries especially Germany, Romania and Austria perform exceptionally well.

Figure 2 provided map examples of the OSMlanduse product as seen on osmlanduse.org. Here, areas that 
were directly converted from OSM to OSMlanduse are displayed as vector geometries <1 m resolution and areas 
filled through deep learning as 10 m raster grid. Figure 3 showed that approximately 61.8% of the entire study 
site was covered by relevant OSM data used as labels. In relation to their country size the label availability varied 
largely for the classified countries from 16.3% - 99.1% Within our data records we provided the OSMlanduse 
labels used as training data at 10 m resolution and the full product at the same resolution. The vector based 
OSMlanduse product can be extracted directly through any OSM suited application programming interface 
(api) using the key-value pair combinations provided in17 or shown in Table 2.

The facets shown in Fig. 2 highlight various areas of the study site and highlight the properties of our product 
across the various landscapes of the EU. Figure 2 facet a) shows Utrecht province within the Netherlands, a fine 
grained spatial explicit detailed depictions of the water body, pastures, arable land, and residential areas. This 
area was almost entirely covered by OSM contributions and therefore did require only minor deep learning 
prediction. The proportion of available suitable OSM data relative to its total area for the Netherlands (NL) 
was 96.4% (Fig. 3) and therefore is almost completely available at fine <1 m resolution, the spatial detail was 
dependent on the availability of OSM data. Only Romanian was more extensively covered by original OSM 
data. The level of detail depicted particularly for countries with major OSM coverage cannot be achieved by the 
sole use of remote sensing. Facet e) within Fig. 2 highlighted a wetland river estuary in fine spatial detail close 
to Bordeaux. Due to their diverse set of spectral properties and dynamic behaviour wetlands can be difficult to 
pick up using remote sensing only34 using existing OSM contributions can be an option to bypass this challenge, 
as demonstrated here. Facet d) and f) showed the Po valley in Italy and the lake Balaton in Hungary respectively. 
Both examples demonstrate the products sensitivity to distinguish semi-natural areas and arable land at large 
scale. Facets b) and c) contain pixelated elements that were created because of the deep learning classification 
completing the OSM data, the loss of spatial detail was particularly evident for facet c) where the 10 m spatial 
resolution of the predicted LULC fails to accommodate a clean distinction of the river crossing the city and the 
numerous bridges crossing the river. Facet b) provided a representative example of the overall characteristics 
found in OSMlanduse, fine grain resolution of vector geometries mixed with 10 m classified pixels blocks.

The variation of resolution and data quality was dependent on the availability of OSM data. Figure 3 showed 
that most EU countries had major LULC relevant direct OSM coverage. Most striking examples where RO, NL, 
CZ, SI with more than 90% directly available OSM data and IT, BG, GR, ES, IE and PT with less than 40% avail-
able OSM data. There is no specific spatial pattern regarding the availability of OSM data yet mapping activity 
can be depended on the regional OSM communities26.

Code availability
The scripts used in this research are licensed under the GNU General Public License 3.0 and written in Python, 
with some routines calling SQL and available here https://github.com/schultzheidelberg/OpenStreetMap-land-
use-for-Europe-2020. Resources provided include land use to shape for extracting training polygons from 
OpenStreetMap, links to successful models for five countries, and processing routines, including our high-
performance cluster implementations. Pre-Processing and procurement of remote sensing data collection of 
Sentinel 2 best pixel median composite was conducted via generic Food and Agriculture Organization www.
sepal.io platform.
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