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Business Intent and Network 
Slicing Correlation Dataset from 
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Intent-Based Networking (IBN) is an emerging network management technology that enables 
automated configurations based on user intents. A critical aspect of IBN is the accurate and 
autonomous extraction of user intents and their translation into a language comprehensible by 
network management systems. However, the current scarcity of publicly available datasets for intent 
extraction presents significant challenges. With the rise of big data, data-driven research methods 
for investigating future networks have become a trend. This paper presents a Business Intent and 
Network Slicing Correlation Dataset (BINS) to advance research in next-generation networks. The 
dataset includes user business intent descriptions, annotated intent data, and correlations between 
business intents and network slices. We utilize natural language processing techniques based on named 
entity recognition and third-party data analysis tools such as DataProfiler to validate the data quality 
of BINS, confirming its reliability. As a cutting-edge dataset for network intent recognition, BINS will 
contribute to the development of IBN systems and provide valuable data resources for researchers and 
practitioners exploring application interactions and related technologies.

Background & Summary
Future networks will face increasingly complex and diverse demands and challenges with the rapid develop-
ment of emerging technologies such as the Internet of Things (IoT), cloud computing, and big data1. In this 
context, it is essential for network management systems to embrace automation and intelligence to ultimately 
achieve closed-loop autonomy2, which would enable self-learning and evolution capabilities. However, without 
sufficient data support, closed-loop autonomous systems would struggle to make effective decisions and adjust-
ments. Data serves as the cornerstone of system operation, providing real-time network state information and 
historical operational records, which are crucial for enabling systems to self-optimize and self-protect3. The core 
value of data-driven approaches lies in leveraging in-depth data analytics to inform decisions and actions, and 
closed-loop autonomous systems serve as a key platform for realizing this value proposition. By integrating data 
analytical insights into actual network operations, closed-loop autonomous systems can automatically execute 
adjustments and optimization actions, thereby fully demonstrating the advantages of data-driven approaches4. 
Thus, data-driven network reform is the necessary pathway to addressing network complexity, optimizing 
resource allocation, enhancing network security, promoting business innovation, and achieving network intelli-
gence5. As technology continues to advance and application scenarios expand, data-driven network reform will 
play an increasingly pivotal role in the future.

In the process of intent-based network management, users or administrators typically express specific 
requirements regarding network performance, quality of service, and resource allocation through natu-
ral language6. These requirements are first parsed by a business intent recognition system and translated 
into machine-understandable business intent data. Based on this, the network management system orches-
trates resources and generates corresponding network slices to flexibly respond to different business needs7. 
Throughout this process, the network management system relies on intent data and the associated data to link 
business intent to network slices, and achieve end-to-end service management from demand to delivery8. 
First, an appropriate entity set is needed for intent recognition, which is fundamental to the effective oper-
ation of intent-based network management systems. Business intent extraction is typically achieved using 
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natural language processing9 techniques, such as BiLSTM10 (bidirectional long short-term memory) model or 
by fine-tuning Google’s BERT11 (Bidirectional Encoder Representations from Transformers) model. To enhance 
the accuracy and generalization capability of these models, it is essential to design entity sets tailored to specific 
tasks. Second, labeled business intent description data is required. Most existing network and business datasets 
describe only one aspect of characteristics, making it difficult to adapt to the rapidly evolving network scenarios. 
This leads to a shortage of training data for intent recognition systems. Directly obtaining research data from 
relevant institutions is often difficult, as these organizations are typically reluctant to share such data12, and such 
data are rarely collected and organized. Furthermore, public network datasets are rendered unreliable and some-
times outdated due to the rapid changes in network scenarios and patterns13. Finally, the generation and optimi-
zation of network slice data should be dynamically adjusted based on business requirements. However, current 
network slice generation still predominantly relies on standard service models based on network communica-
tion functions, which involve selecting appropriate slices from pre-existing ones. To achieve more flexible and 
business-driven network slice orchestration, it is essential to construct intent datasets that can dynamically 
generate and optimize slice data according to business needs.

In this paper, we create a new Business Intent and Network Slicing dataset (BINS) to bridge the gap between 
the agent need for such a dataset and the lack of the dataset. The BINS dataset provides richly structured and 
meticulously curated descriptive intent data for intent-based networking (IBN)14, with its data sourced from 
three primary channels. The first data source comes from China Telecom Sichuan Branch (Sichuan Telecom), 
consisting of real network operational data monitored and recorded within their intent-based network. The sec-
ond part of the dataset is generated through manual construction by professional network engineers and by pro-
fessionals simulating network operators expressing network intents. The third part of the BINS dataset is derived 
from parsing relevant academic papers, industry standards, and publicly available network documents from offi-
cial websites of universities and research institutions, enterprises, and telecom operators. Within these network 
scenarios, we encompass multiple application contexts, including campus environments, industrial intelligent 
networking under the Industrial Internet, and real-time monitoring, covering over 200 distinct network intents. 
In this context, “intent” is defined as high-level goals or requirements expressed by network stakeholders, indi-
cating the anticipated services, performance, and behavior of the network. By manually annotating these intent 
entities and relationships, the final dataset contains more than 100,000 intent entities and over 40,000 unique tri-
ples. These triples can be used to construct knowledge graphs15 for intent recognition, providing critical support 
for further development of IBN systems.

The primary objective of the BINS dataset is to advance the development of IBN, which is crucial for the 
applications of fully autonomous networks16 in the future. This is particularly important for emerging net-
work scenarios stemming from various technologies, such as smart environments17, IoT18, vehicular networks 
(V2X)19, healthcare20, and next-generation 6G networks21. In these contexts, intelligent and advanced automa-
tion software mechanisms replace error-prone manual network configurations, thereby enhancing the efficiency 
of network configuration and reducing costs. Furthermore, the BINS dataset holds significant potential for 
broader applications, such as information retrieval and application interaction in natural language processing. 
In these fields, using intent datasets to train and evaluate natural language understanding models can effectively 
identify user requests and commands, enabling the provision of relevant information or actions and improving 
the overall user experience. Overall, the BINS dataset not only offers vital support for intent recognition tasks in 
closed-loop autonomous systems but also serves as a valuable resource for the intelligent development of other 
applications across various domains.

Methods
This section outlines the entire process of data generation, covering the various data sources, the data processing 
workflows and annotation methods, and providing an explanation of the included label categories and their 
definition methods.

Data collection methods.  Figure 1 illustrates the three data sources of BINS and their corresponding data 
preprocessing processes used in this study. The data sources include:

Data source 1.  As shown in Fig. 1, the first source of data comes from real-world operational data collected 
during intent-based network operations provided by Sichuan Telecom, Sichuan, China. This data was monitored 
and recorded within the intent-based network, covers network demands and performance metrics across vari-
ous business scenarios, with a total of 10,001 records. The data metrics include service name, service type, start 
and end times, and network performance requirements. Based on these metrics, the data can be transformed 
into corresponding expressions of network intent. For instance, a record with a service name “web browsing”, 
service type “network service”, start time “20201230”, end time “20201231”, and a performance requirement of 
“latency ≤200 ms” is translated into a user intent expression such as: “Ensure that the latency for web browsing 
is ≤200 ms from 20201230 to 20201231” or “Maintain web browsing latency consistently ≤200 ms”. Through 
such transformations, irrelevant data was filtered out, yielding over 14,000 intent expressions from real business 
scenarios as part of the BINS dataset.

Data source 2.  As illustrated in Fig. 1, some data was manually generated by network engineers based on their 
practical work experience. These intent data samples were derived from common scenarios in network config-
uration, troubleshooting, and business requests. Since these network engineers possess specialized knowledge, 
the intents they created are more detailed than those expressed by end users, often including more specific 
network parameters, such as bandwidth and latency, which are particularly beneficial for building intent-based 
network systems.
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Volunteers were invited to simulate user network requests, generating user intent data through inter-
action with a voice assistant system. This process was primarily facilitated through a voice interface, where 
volunteers engaged with pre-defined task scenarios, such as network configuration modifications, business 
requests, and performance optimization, using voice inputs. The user interface of the voice assistant was devel-
oped using HTML, CSS, and JavaScript, and incorporates the Google speech recognition API Google Cloud 
Speech-to-Text22. This API is renowned for its high accuracy and real-time processing capabilities, capable of 
rapidly and accurately converting spoken input into text, ensuring the smoothness and accuracy of the data 
collection process. Figure 2 provides an example of this process.

On the other hand, different intent expression paradigms can significantly impact the accuracy of intent 
recognition systems and the subsequent generation of intent strategies. Therefore, formalizing the grammar 
of intent expressions is crucial23. Additionally, Some simulated users may be limited by their limited network 
expertise, which could result in ineffective intent expressions. To more accurately simulate end-user network 
requests, this paper refers to the intent classification provided in IETF RFC931624 and introduces a reference 

Fig. 1  The three sources of data, along with the data preprocessing and annotation process, all three data sources 
undergo corresponding annotation processing, with an annotation example provided in the lower-right corner.

Fig. 2  An example of the intent collection API, where the simulator interacts with the voice assistant system in 
a predefined task scenario, generating real business intent expression data through voice input.
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model for intent expressions, simulated users limited by network knowledge can refer to this template, as shown 
in Fig. 3. This model standardizes intent expressions and is composed of the following entity label sets: 

•	 Intent user (customer, or network or service operators). The “user” entity is the declarer of the intent, and can 
include technical users such as network experts, network administrators, service providers, or non-technical 
end users, such as teachers and students in a school, or administrative departments in an enterprise.

•	 Network action. This entity represents the manner in which the required service or the network should 
achieve a certain state, such as providing a service, limiting bandwidth, or self-healing.

•	 Intent target. This entity collects the user’s needs, services, or objectives that need to be fulfilled, such as web 
browsing, online education, or video conferencing.

•	 Target device or function. This entity denotes the network function (e.g., data communication, resource shar-
ing) or physical device (e.g., routers, switches) used to deploy the intent. This is an optional entity.

•	 Network performance. This entity collects the desired network performance metrics specified by the user, 
such as bandwidth, latency limitations, jitter requirements, etc. This is also an optional entity.

•	 Lifecycle (persistent, transient). This entity refers to the duration of the intent, which is an optional entity and 
can range from minutes to hours or longer.

It is noted that the standardized intent expression process illustrated in Fig. 3 serves as a reference guide only 
and does not require strict adherence in practical applications. Participants may flexibly adjust the sequence of 
entity label usage and selectively employ partial or complete entity label sets according to specific application 
scenarios and practical requirements, thereby achieving diversified and effective intent expression. For instance, 
in a campus network scenario, a network administrator may express the following intent: “For students, provid-
ing web browsing services to achieve resource sharing, requires network bandwidth exceeding 100Mbps with 
the service being available for a minimum of 6 hours.” This can also be simplified to: “For students, providing 
web browsing services to achieve resource sharing.” The corresponding entity labels are: [user]: “student”, [net-
work action]: “provide service”, [intent target]: “web browsing”, [target function]: “resource sharing”, [network 
performance]: “bandwidth exceeding 100Mbps”, [lifecycle]: “6 hours”. In this case, [target function], [network 
performance], and [lifecycle] are optional entities.

Data source 3.  As shown in Fig. 1, network intents were parsed by analyzing academic papers, industrial stand-
ards, and websites related to operators, educational institutions, and enterprises. Telecom operators and techni-
cal support websites typically contain a wealth of information, including network issues raised by researchers, 
intent examples, and corresponding solutions. These data encompass diverse types of intents and data. Data is 
collected through methods such as keyword search, topic search, and the snowball method. Subsequently, noise 
is removed and irrelevant information is filtered manually, while PySpellChecker25 is used for spell checking to 
ensure high data quality. Subsequently, through a combination of automated tools and manual review, this data 
was transformed into valid intent expression data. For example, in a journal26 case study on IBN, the authors 
presented the following intent: “Transfer a common-level video service from user A in Beijing to user B in 
Nanjing.” After being formatted, this intent was passed on to the intelligent policy mapping module, which 
parsed the intent and broke it down into a specific service function chain (SFC), such as network address trans-
lation (NAT) and firewall functions, then constructed the corresponding SFC request. In this case, user A and 
user B can be represented by their respective IP addresses. Hence, the intent could be translated into: “Transfer 
a common-level video service from user 220.15.2.10 in Beijing to user 210.59.4.15 in Nanjing” (with assumed 
IP addresses). Through this process of data collection and transformation, a total of 274 intent entries were 
gathered from relevant documents and websites. After effective conversion, 257 verified intent data entries were 
obtained.

Fig. 3  The reference model provided for standardizing intent expression allows participants to select and combine 
relevant entity labels based on their needs, forming key entity groups to accurately express business intent.
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Data processing and annotation.  To ensure data accuracy and reliability, targeted preprocessing measures 
were implemented based on different data sources. For the real-world data provided by Sichuan Telecom, consist-
ency and data completeness were manually verified, irrelevant network metrics were removed, and the data was 
transformed into structured intent expressions. For the data constructed by network engineers, manual reviews 
were conducted to ensure data relevance and reliability, guaranteeing that the constructed data accurately reflected 
actual network operational demands and intents. Data generated by simulated users was transcribed into text via 
the automated voice assistant system, after which it underwent redundancy and noise checks, as well as language 
normalization. Due to potential inaccuracies or irrelevant content in the speech recognition process, careful man-
ual filtering of valid intent data was required. For network-parsed data, the processing was more complex, involv-
ing manual filtering, redundancy removal, noise reduction, and extraction of content related to network intents, 
which were then converted into structured intent descriptions to ensure data relevance and usability.

During network data processing, raw data collected from multiple sources could be affected by various 
distortions, including semantic redundancy, non-ASCII encoded characters, spelling errors, and unrelated 
expressions. These distortions are categorized as follows: 

•	 Semantic repetition. Sentences that convey the same meaning but differ in linguistic expression. For instance, 
“Ensure that there is no buffering while playing high-definition video” and “Ensure stable network perfor-
mance during HD video streaming without any delays” express the same intent, which is to guarantee a stable 
and buffer-free network connection while watching HD videos. Although the wording differs, the core intent 
is the same: ensuring smooth video playback of streaming media videos.

•	 Non-ASCII encoding. Sentences containing special characters, such as Greek letters, mathematical symbols, 
or consecutive punctuation marks.

•	 Spelling errors. To ensure linguistic accuracy, an automated Python-based spell-checking tool, PySpell-
Checker25 was used to detect and correct spelling errors within the data.

•	 Unrelated expressions. These are statements that contain additional information unrelated to the core intent. 
For example, in the sentence, “The company has recently expanded its workforce, so we need to ensure that 
video conferencing for all employees has no network latency,” the unrelated portion, “The company has 
recently expanded its workforce,” should be removed, leaving the key intent as “Ensure no network latency 
for video conferencing.”

All preprocessed data underwent entity annotation, relationship annotation, and slice type annotation to 
make it suitable for natural language processing tasks, such as Named Entity Recognition (NER)27 and rela-
tion extraction. Entity labels are used to identify key elements in the text, such as business types, network per-
formance, or functionalities; relationship labels describe the interconnections between business entities, such 
as “provides” or “ensures”; slice type labels specify the corresponding network slice type for the requirements 
expressed in the intent, based on domain-specific needs. These slice types include eMBB, URLLC, and mMTC, 
which are used to differentiate various network service types. To further enhance the utility of the data, the BIO 
(Begin, Inside, Outside)28 annotation scheme was applied to label the raw data, where the BIO annotation is 
applicable to tokenized text. The BIO annotation scheme is widely used in sequence labeling tasks, such as NER, 
tokenization, and syntactic analysis. It assigns a label to each word to indicate its entity type, with “B” indicating 
the beginning of an entity, “I” the middle part, and “O” representing non-entity words. The annotated structured 
data was stored in JSON format, ensuring consistency and usability, and providing a high-quality data foundation 
for the subsequent training and deployment of intent recognition models.

Data Records
The dataset files are publicly accessible through the data platform figshare29. The data is organized into three 
folders. The raw data collected is stored in the CSV format, while the annotated and structured data is stored in 
the JSON format.

Personnel and user interface description folder.  volunteer.csv is an informational file recording the 
basic details of the volunteers who participated in the experiment, including their ID, age, and occupation. Table 1 
presents the distribution of volunteers. The files “App.js”, “index.html” and “styles.css” form the user interface used 

Classification Type Numbers Percentage

Age

21–25 8 54%

25–30 2 14%

>30 5 32%

Occupation

Graduate or Undergraduate 8 53%

Junior Network Technician 2 14%

IT Support Specialist 2 14%

Senior Network Engineer 3 19%

Years Working Experience

<1 years 9 60%

1–5 years 2 13%

>5 years 4 27%

Table 1.  The distribution of participants used to illustrate compliance and ensure data quality.
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for volunteers to collect network intent data. These files are developed using HTML, CSS, and JavaScript, and the 
integrated with the Google Cloud Speech-to-Text API to convert the network intents expressed by volunteers into 
text (source code is detailed in the “Code Availability” section).

Raw intent data folder.  This folder comprises multiple files containing preprocessed data from various 
sources. Each record includes user ID, intent description, and creation time. For simulated or engineer-constructed 
data, refer to the files “engin_ori.csv” and “volu_api.csv”. For document-parsed data, including network 
requirements, source URL, and collection times, refer to the files “docu.csv” and “sichuan.csv”.

Labeled intent data folder.  After processing the raw data as described earlier, the annotated data is stored 
in four JSON files: “engin.json,” “volu.json,” “docu.json,” and “sichuan.json”. Each record in these files consists of 
text, entity type, entity, relationship, slicing type and the BIO annotations of entities. These annotated structured 
data files are not only used for training intent recognition models, but also for common natural language process-
ing tasks, such as entity extraction and relationship extraction. Additionally, each text in the files is labeled with 
a BIO sequence based on the position of its entities within the text, making it more suitable for training intent 
extraction models. Figure 4 shows the statistical information on the number of major entity categories included 
in the BINS dataset. Table 2 lists the total number of entity, unique relationships, and slice types contained in each 
file. It also includes the average span length of entities and relationships, as well as the count of unique triples for 
each data source.

Technical Validation
To ensure the availability and assess the reliability of the data for network intent recognition, the training sam-
ples should comprehensively cover the network domain as much as possible, enabling the efficient identification 
of business intents within networks. To achieve this, it is essential to ensure that the data has been preprocessed, 
and is consistent and complete in order to assess its reliability. Data preprocessing is critical for reducing the 

Fig. 4  The statistical information on the number of major entity categories included in the BINS dataset.

Data Source
Entity 
Counts

Unique Relationships 
Counts

Slice Types 
Counts

Unique 
Triplets

Avg Span 
(Entities)

Avg Span 
(Relationships)

sichuan.json 80,792 48 14,968 17,725 11.7 16.5

engin.json 31,716 65 5,338 8,070 11.6 15.1

volu.json 97,323 70 16,367 19,085 11.2 15.2

docu.json 2,906 21 201 1,443 13.4 17.6

Table 2.  Statistical information of various labels from different data sources.
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impact of data noise and irregularities on model training, which can otherwise affect the reliability analysis of 
the data. This aspect has already been described in the data processing subsection of the methods section.

Data consistency refers to whether the data follows a unified standard and maintains a uniform format30. 
Initially, after the annotation of entity categories and relationships, the data is stored in a structured manner to 
facilitate reuse. Additionally, each text is labeled in the BIO format, making it suitable for the primary task or 
other natural language processing tasks.

Other aspects of detection utilized Capital One’s DataProfiler31, a powerful, flexible, and easy-to-use tool for 
data quality and metadata analysis. It is capable of automatically identifying file types, analyzing data quality, and 
generating easily interpretable visual reports. The main quality metrics used are described in Table 3.

To validate whether this dataset can be used to train intent recognition models and to assess the performance 
of these models, this paper employs the named entity recognition method based on BERT11 to verify if the data 
can be applied in intent recognition scenarios. By utilizing NER to extract key entities and related parameters 
from unstructured text, the model can effectively recognize users’ network intents. BERT is a pre-trained model 
introduced by Google in 2018, which includes 12 Transformer blocks, each equipped with multi-head 
self-attention mechanisms and feedforward neural network layers, make it particularly effective in natural lan-
guage processing tasks. In the experiments, for comparison, the BERT-CRF32 and BERT-BiLSTM-CRF33 models 
were used to train the intent recognition system. The BERT-CRF model adds a Conditional Random Field (CRF) 
layer on top of the BERT output to capture dependencies between labels. Specifically, given the BERT output 
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′ . All BERT- 
based models are trained using the Adam optimizer, with the learning rate set to 5 × 10−5. The output layer of 
the models uses Softmax as the activation function, and the model loss is computed using cross-entropy loss. 
Additionally, we experiment with fine-tuning Spacy (https://spacy.io/) NER models over the pre-trained 
DeBERTa-v3-large MLM34 to quantify the performance of the BINS dataset on the latest model. DeBERTa’s 
powerful pre-training capabilities help capture contextual information effectively, thereby enhancing entity rec-
ognition in complex contexts. Spacy NER is a deep learning-based tool designed to identify and classify entities 
from text. It utilizes CNN, RNN, or Transformer architectures, and incorporates a CRF layer to optimize the 
prediction of entity labels. Spacy NER supports various entity types and offers pre-trained models in multiple 
languages. The models are trained on large-scale annotated corpora, providing excellent out-of-the-box perfor-
mance, while also supporting customization for domain-specific training needs. Spacy NER is widely applied in 
fields, such as information extraction, knowledge graph construction, and chatbot development. By fine-tuning 
Spacy NER over the DeBERTa MLM, the model’s entity recognition capabilities in IBN scenarios can be 
enhanced, thereby validating the generalization ability of the data.

To evaluate the performance of the models, precision, recall, and F1-score35 were selected as evaluation met-
rics, which are commonly used for named entity recognition tasks. Precision refers to the proportion of true 
positive samples among those predicted as positive by the model. Recall indicates the proportion of actual posi-
tive samples that were correctly predicted by the model. F1-score considers the harmonic mean of precision and 
recall, providing a balanced assessment of both. When precision and recall are both high, the F1-score are high. 
When evaluating F-scores, precision, and recall, exact matching36 was used. This is because in the IBN systems, 
there is often a strict correspondence between entities and categories. Using exact matching ensures the evalua-
tion results accurately reflect the model’s performance under stringent conditions. Exact matching measures the 
model’s adaptability to the datasets, avoiding biases in generalization ability and data quality that may arise from 
relaxed matching methods. In the experiment, the labeled “engin.json” dataset was used as the foundation to 
quantify the performance of the model. This dataset contains 14,466 entries, divided into 80% training data and 
20% testing data. To observe the convergence of the models during training, the performance of both models 
was plotted in Fig. 5. The training steps represent the ratio of the number of training samples to the batch size, 
multiplied by the number of training epochs. In the experiments, the batch size was set to 8, and the epoch was 
set to 1. As shown in Fig. 5, the BERT-BiLSTM-CRF model converged at 1,000 training steps with an F1-score 
of approximately 93%, while the BERT-CRF model converged at 1,200 training steps with an F1-score of 90%. 
In contrast, the fine-tuned DeBERTa-v3-large MLM model achieved convergence at 1200 training steps, with 
an F1 score of 94%.

Main Metrics Metric Description Value

Data Correlation The format of the input data set is consistent 100%

Data Repeatability The number of data non-duplicates accounts for the total number of data 98%

Data Completeness The proportion of rows that are fully comprised of no null values (null rows) to the total number of rows 98%

Table 3.  The main quality indicator descriptions and corresponding values of the adopted DataProfiler.
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To evaluate the contribution of the BINS dataset to model generalization, we used the remaining three data-
sets with 80% allocated for the training data and 20% for the testing data in the experiments. Due to the smaller 
sample size of the “docu.json” dataset, it was combined with the “volu.json” dataset and used together in the 
experiments. Table 4 shows the performance of the three models upon convergence across various data sources. 
The BERT-BiLSTM-CRF model outperforms the BERT-CRF model of all metrics and convergence speed on all 
datasets, indicating that adding a BiLSTM layer to the BERT model helps capture richer contextual informa-
tion, thereby improving the named entity recognition performance. Although the BERT-BiLSTM-CRF model 
performs excellently on BINS dataset, the DeBERTa-v3-large MLM model, with its more efficient long-range 
dependency capturing capability and context processing mechanism, can better adapt to different domains and 
tasks. It excels particularly in handling complex or variable entity annotations. As a result, the DeBERTa-v3-large 
model significantly outperforms the BERT-BiLSTM-CRF model across all datasets.

The experiments demonstrated that the labeled dataset used in model training and testing performed well, 
indicating its suitability for intent recognition tasks. This also validates the dataset’s effectiveness and applicabil-
ity, providing a high-quality data foundation for building efficient network intent recognition models.

Usage Notes
The collected intent-based network dataset in this paper can be used to train and optimize intent recognition 
systems. The system precisely determines users’ network intent by interpreting and analyzing their natural 
language input. It then translates this meaning into appropriate network strategies, including configuration, 
troubleshooting, and performance improvement. For example, in terms of network configuration, when a user 
inputs commands like “configure VLAN” or “set firewall rules”, the system can efficiently interpret the request 
and convert it into the appropriate network policy. After validation, the system generates the corresponding 
network slice and deploys it to the relevant network infrastructure, thereby enhancing the automation and intel-
ligence of the network management system.

Additionally, these datasets can be extended to applications in other fields, such as information retrieval and 
application interaction. In information retrieval, users’ queries often carry explicit intent. By training intent 
recognition models using our constructed datasets, search engines can better understand the intent behind user 
queries, thereby providing more relevant and precise search results. For example, when a user queries “how 
to improve network speed,” the intent recognition model can interpret that the user is seeking better network 
performance, and thus provide results that meet the user’s needs. In application interaction, understanding user 
intent is crucial for enhancing user experience. By training intent recognition models with our constructed data-
sets, applications can better predict and respond to user actions. For example, in a smart assistant application, 

Fig. 5  The performance of the three models on the “engin.json” dataset is shown. (a) Presents the convergence 
of each model with the number of training steps, while (b) illustrates the change in the F1 score of each model 
throughout the training process.

model

“sichuan.json” “engin.json” “volu & docu.json”

P R F1 P R F1 P R F1

BERT-CRF 0.90 0.91 0.91 0.90 0.89 0.90 0.86 0.85 0.85

BERT-BiLSTM-CRF 0.93 0.92 0.93 0.93 0.92 0.92 0.89 0.88 0.89

DeBERT-v3-large MLM 0.94 0.95 0.94 0.93 0.95 0.94 0.91 0.93 0.92

Table 4.  The performance of the three different models across various data sources.
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when a user issues a voice command to “set a reminder for a video conference at 9 am tomorrow,” the intent 
recognition model can accurately understand the command and perform the corresponding operation, thereby 
improving the application’s intelligence and user satisfaction.

To further process this dataset for other tasks or domains, we recommend using popular Python libraries, 
such as Pandas and NumPy.

Code availability
The code for replicating the experiment is available online via GitHub repository (https://github.com/
lijie19740136878/BINS). The experiment’s frontend collects users’ voice inputs through a voice assistant 
system and transcribes them into text in real-time, which is then stored in a file. The code used for technical 
validation is developed in Python and is also available in the github repository mentioned above. If you need to 
use Capital One’s DataProfiler, you can refer to the website (https://capitalone.github.io/DataProfiler/docs/0.9.0/
html/profiler.html) or the GitHub online repository (https://github.com/capitalone/DataProfiler). Before using 
DataProfiler, you should install the corresponding Python package. For information on using the pyspellchecker, 
you can access it on GitHub (https://github.com/barrust/pyspellchecker).
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