

scientific data

OPEN

DATA DESCRIPTOR

Near telomere-to-telomere genome assembly of the blackspot tuskfish (*Choerodon schoenleinii*)

Zhongdian Dong¹, Jiahao Gao¹, Yanfei Zhao², Jin Gao³, Yusong Guo¹, Zhongduo Wang¹ & Ning Zhang^{1,4}

Choerodon schoenleinii, commonly known as the blackspot tuskfish, widely recognized for its vibrant coloration, unique small black spot on the dorsal fin, and high value in both ornamental and culinary markets. Here, we report a high-quality near telomere-to-telomere (T2T) genome assembly of *C. schoenleinii*, generated using PacBio HiFi and Hi-C technologies. The assembly spans 865.99 Mb, achieving chromosome-level resolution with 24 chromosomes anchored. Notably, telomeres were identified at both ends of 23 chromosomes, with 14 being completely gapless and only 12 gaps detected across the remaining nine. A total of 24,524 protein-coding genes were annotated, with 96.25% assigned functional annotations. The assembly quality was validated with a BUSCO score of 99.80%. The gene annotation was further evaluated using OMArk, with 23,590 proteins (96.19%) consistent with the Clade Teleostei, highlighting the high-quality and taxonomic relevance of the gene set. This reference genome provides a valuable resource for advancing research in the genetics, evolutionary biology, conservation, and breeding of *C. schoenleinii*, a species currently listed as "Near Threatened" by the IUCN.

Background & Summary

The genus *Choerodon*, belonging to the family Labridae, includes approximately 24 species, widely recognized for their vibrant coloration and unique dental morphology¹. Among them, *Choerodon schoenleinii*, commonly referred to as the blackspot tuskfish, hereafter referred to as the tuskfish, is the largest species in the genus. Characterized by a small black spot on its dorsal fin, the tuskfish can grow up to one meter in length and weigh as much as 15.5 kilograms, making it ecologically and economically significant. This species inhabits sandy or weedy areas near lagoons and seaward reefs, where it primarily preys on hard-shelled organisms such as crustaceans, mollusks, and sea urchins^{2,3}. Notably, observations have shown that individuals of this species can also utilize tools during feeding⁴. It exhibits protogynous hermaphroditism, transitioning from female to male as it matures, a process influenced by body size, age, and environmental factors⁵⁻⁷.

The tuskfish is predominantly found in the South China Sea, the coastal waters of Indonesia, and northern Australia. However, due to overfishing and marine environmental degradation, wild populations have experienced a sharp decline, leading to its classification as "Near Threatened" by the International Union for Conservation of Nature and Natural Resources (IUCN)^{8,9}. To address this issue, comprehensive surveys of its wild germplasm resources and the development of artificial domestication and breeding techniques are urgently needed¹⁰.

In this study, we present a high-quality near telomere-to-telomere (T2T) genome assembly of the tuskfish, constructed using PacBio HiFi data at $\sim 100\times$ and Hi-C data at $\sim 135\times$. The genome assembly spans 865.99 Mb and 24 chromosome-level scaffolds, of which 14 are gapless assemblies with terminal telomeric repeats. Notably, telomeres were resolved at both ends of 23 chromosomes, demonstrating high assembly completeness. A total of 24,524 protein-coding genes were annotated, with 96.25% assigned functional annotations. This dataset

¹Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China. ²Agro-Tech Extension Center of Guangdong Province, Guangzhou, 510000, China. ³Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China. ⁴Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China. e-mail: zhangn@gdou.edu.cn

Library type	Platform	Tissue	Data size (Gb)	Average depth (×)
PacBio SMRT	PacBio REVIO	Muscle	86.54	100
Hi-C	Illumina Novaseq 6000	Muscle	117.52	135
WGS	DNBSEQ	Muscle	143.70	166
RNA-Seq	Illumina Novaseq 6000	Brain	6.13	—
RNA-Seq	Illumina Novaseq 6000	Gill	6.70	—
RNA-Seq	Illumina Novaseq 6000	Gut	6.71	—
RNA-Seq	Illumina Novaseq 6000	Heart	6.74	—
RNA-Seq	Illumina Novaseq 6000	Kidney	6.75	—
RNA-Seq	Illumina Novaseq 6000	Liver	6.74	—
RNA-Seq	Illumina Novaseq 6000	Muscle	6.72	—
RNA-Seq	Illumina Novaseq 6000	Ovary	6.72	—
RNA-Seq	Illumina Novaseq 6000	Skin	6.73	—
RNA-Seq	Illumina Novaseq 6000	Spleen	6.72	—

Table 1. Statistics of the sequencing data.

provides a valuable resource for genetic and evolutionary research, as well as for conservation and breeding programs aimed at restoring natural populations and promoting sustainable aquaculture production.

Methods

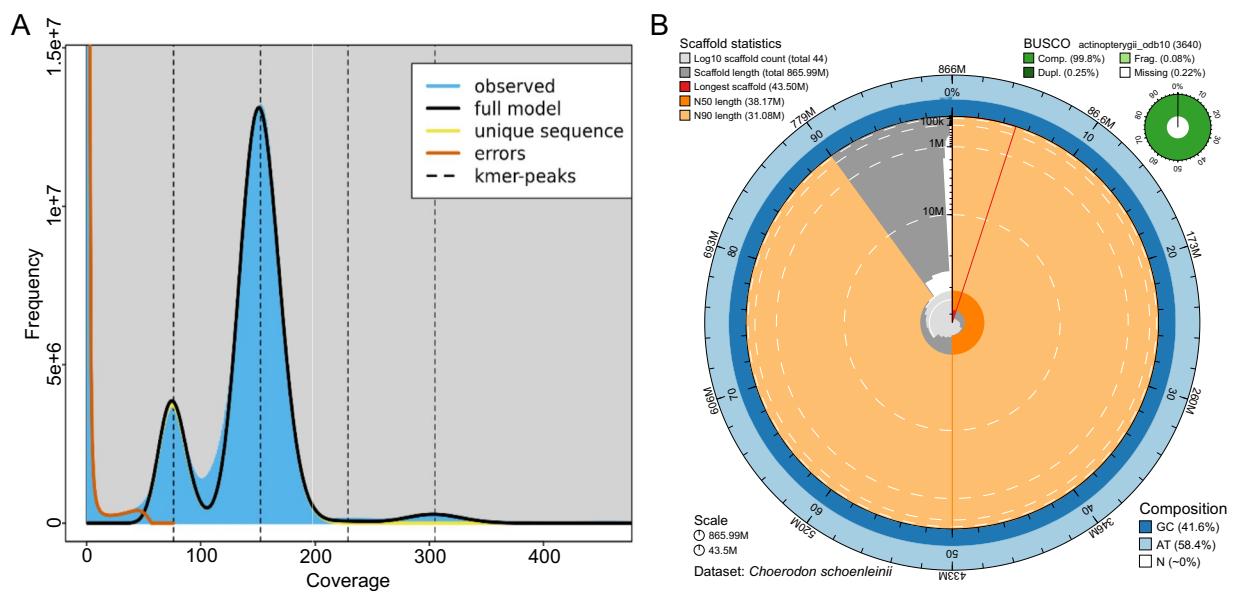
Sample collection and DNA extraction. Genomic DNA and total RNA were extracted from muscle and other tissues of a single *C. schoenleinii* specimen (female, body length: 24 cm, weight: 296 g) collected from the waters surrounding the Qizhou Archipelago. DNA was extracted using the Blood & Tissue DNA Kit (Qiagen 69504), while RNA was extracted with TRIzol reagent (Invitrogen) following the manufacturer's protocols. DNA and RNA integrity were assessed using gel electrophoresis and an Agilent 2100 Bioanalyzer (Agilent Technologies), and purity and concentration were measured with a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific). High-quality DNA and RNA were used for library preparation and sequencing.

Library construction and sequencing. For whole-genome sequencing (WGS), genomic DNA was fragmented into ~350 bp fragments using a Covaris ultrasonicator. After end-repair, adapter ligation, single-strand separation, and circularization, the library was amplified by rolling circle amplification (RCA) to generate DNA nanoballs (DNBs). Qualified DNB libraries were sequenced on the DNBSEQ platform, generating 143.70 Gb of data (~166×) (Table 1).

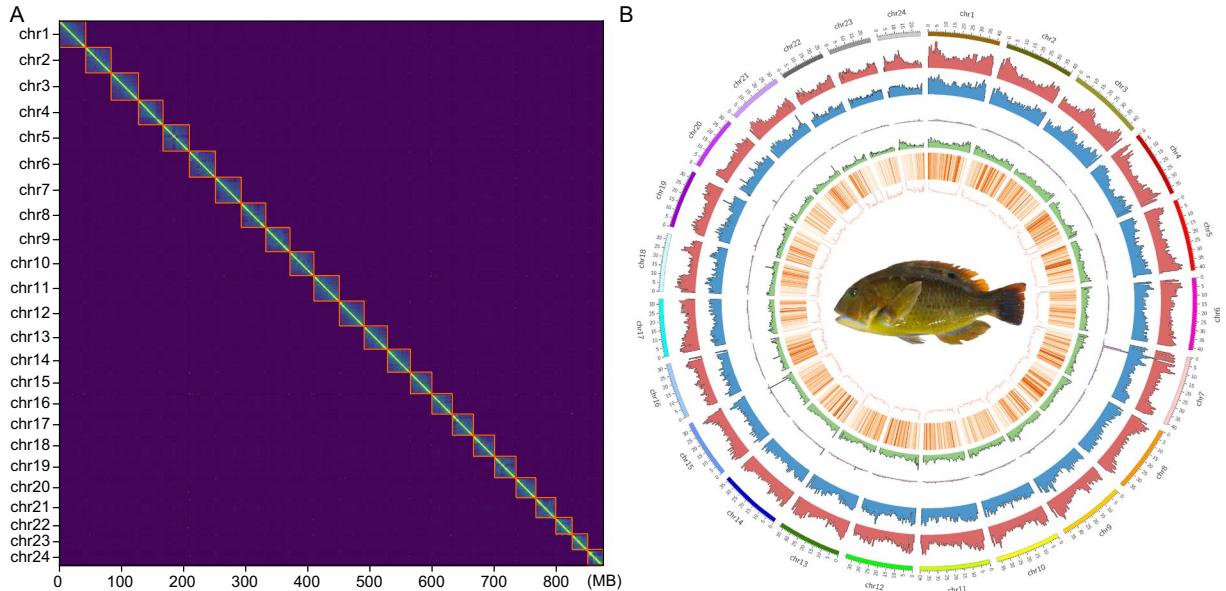
For PacBio HiFi sequencing, genomic DNA was used to construct a SMRTbell library with the SMRTbell Express Template Prep Kit 2.0. The library was sequenced on the PacBio REVIO system, producing 86.54 Gb of HiFi data (~100×) (Table 1).

For Hi-C sequencing, muscle tissue was fixed with 2% formaldehyde to cross-link DNA and proteins. Cross-linked DNA was digested with MboI, ligated with biotin-labeled adapters, circularized, fragmented, and enriched by biotin pull-down. Size-selected DNA was used to construct Hi-C libraries, which were sequenced on the DNBSEQ platform, producing 117.52 Gb data (~135×) (Table 1).

For transcriptome sequencing, RNA from 10 tissues, including brain, gill, gut, heart, kidney, liver, muscle, ovary, skin, and spleen, was used to construct transcriptome libraries. Poly-A mRNA was enriched using magnetic oligo(dT) beads, fragmented, and reverse-transcribed into cDNA. Libraries were prepared with adapter ligation and sequenced on the Illumina NovaSeq 6000 platform, yielding 66.66 Gb transcriptome data (Table 1).


Genome survey and assembly. A genome survey was conducted prior to assembly to assess the basic characteristics of the tuskfish genome. Short reads generated by the DNBSEQ platform were used for k-mer analysis, estimating the genome size at 815.81 Mb (Fig. 1A).

For genome assembly, HiFi reads were first assembled into a draft genome using Hifiasm (v0.20.0)¹¹, resulting in a highly contiguous assembly with a total size of 879.13 Mb. To improve the quality of the assembly, redundant sequences and haplotigs were removed using purge_haplots¹² and kmerDedup¹³, reducing the genome size to 865.99 Mb with contig N50 38.17 Mb (Fig. 1B). Hi-C sequencing data were then integrated using HapHic (v1.0.6)¹⁴ and further refined using Juicer (v1.6)¹⁵ to anchor the contigs to 24 chromosomes (Fig. 2A), which is consistent with the number of chromosomes already demonstrated in some closely related species^{16–18}.


To further enhance genome quality, polishing was performed using NextPolish (v1.4.1; <https://github.com/Nextomics/NextPolish>), significantly reducing assembly errors. The final assembly consisted of 14 completely gapless chromosomes, with gaps closed and telomeres detected at both ends of 23 chromosomes using quarTeT (v1.23)¹⁹ (Table 2).

Genome annotation. Transposable element (TE) annotation was performed using HiTE²⁰, which identified and masked repetitive elements across the genome. A total of 32.07% of the genome was annotated as repetitive sequences, consistent with the genome survey results (Fig. 2B; Table 3).

Protein-coding gene annotation combined *de novo* prediction, homology-based annotation, and transcriptome-based strategies. *De novo* gene prediction was performed using Augustus (v3.5.0)²¹ and GALBA

Fig. 1 Summary of the blackspot tuskfish genome assembly and quality assessment. (A) GenomeScope k -mer analysis ($k=19$) of whole-genome sequencing reads. (B) Snail plot of assembly statistics. The plot displays, from the center outwards: log-scaled scaffold count (purple spiral), scaffold length distribution (dark gray, longest scaffold in red), N50 (orange) and N90 (light orange) lengths, and GC/AT content (blue/light blue rings). The actinopterygii BUSCO score is shown in the upper right.

Fig. 2 Hi-C contact maps and genomic feature overview of the blackspot tuskfish genome. (A) Interchromosomal interaction matrix. A heatmap representing Hi-C interaction frequencies (100-kb bins) across the 24 blackspot tuskfish chromosomes (chr1-chr24). (B) Circos plot summarizing genomic features. Concentric rings display, from outermost to innermost: (1) Chromosome ideograms; (2) DNA transposon density; (3) LINEs density; (4) SINEs density; (5) LTRs density; (6) Gene density; (7) GC content. A central image depicts a blackspot tuskfish. All feature densities are presented along the chromosomes.

(v1.0.11)²², while homology-based annotation employed miniport (v0.13)²³ to align the genome against protein sequences from closely related species, including *Cheilinus undulatus*, *Labrus bergylta*, and *Notolabrus celidotus*, generating homology-based gene models. Transcriptome data were integrated with homology-based annotations using EGAPx (v0.3.1-alpha; <https://github.com/ncbi/egapx>), which prepared input data for downstream integration. The final gene models were produced by integrating results from all annotation strategies using

Chromosome number	Length (Mb)	Number of gaps	Number of telomeres
chr1	41.62	1	2
chr2	40.11	0	2
chr3	43.50	0	2
chr4	38.80	0	2
chr5	41.57	1	2
chr6	41.37	1	2
chr7	40.86	1	2
chr8	38.69	0	2
chr9	38.17	3	2
chr10	37.54	0	2
chr11	40.34	0	2
chr12	38.98	0	2
chr13	37.01	1	2
chr14	36.24	0	2
chr15	33.77	1	2
chr16	32.23	0	2
chr17	33.04	1	1
chr18	33.29	0	2
chr19	33.87	0	2
chr20	31.08	0	2
chr21	31.51	0	2
chr22	25.74	0	2
chr23	24.57	1	2
chr24	24.72	1	2
Unplaced ^a	7.33		

Table 2. Assembly statistics of chromosomes. ^aUnplaced: Sequences that could not be anchored to any known chromosome. The chromosome numbering (chr1 to chr24) follows the order established in the published genome of *Notolabrus celidotus* (GCF_009762535.1) on NCBI.

Type	Length (bp)	% of genome
DNA	136,347,261	15.75
LINE	87,187,153	10.07
SINE	5,697,663	0.66
LTR	42,444,577	4.90
Other	118,586	0.01
Unknown	5,871,707	0.68
Total	255,401,065	32.07

Table 3. Statistic results of different types of annotated repeat content.

EvidenceModeler (EVM; v2.10)²⁴ and further refined using the PASApipeline (v2.5.3)²⁵, resulting in the annotation of 24,524 protein-coding genes (Table 4).

Functional annotation of the protein-coding genes was conducted by aligning protein sequences against multiple databases, including KEGG, NR, SwissProt, Kofam, and EggNOG, using diamond. A total of 96.25% of the protein-coding genes were functionally annotated, providing valuable insights into the biological roles of the identified genes (Table 4).

Data Records

The genome assembly data is available in GenBank under the accession number JBKFGB000000000.1²⁶.

The raw sequencing data of blackspot tuskfish transcriptome, PacBio HiFi, Hi-C and WGS have been deposited into the National Center for Biotechnology Information (NCBI) with the accession number PRJNA1204159²⁷. The genome assembly data, genome annotation files, gene CDS, and protein data have been submitted to Figshare²⁸.

Technical Validation

Genome assembly was evaluated with a Benchmarking Universal Single-Copy Orthologs (BUSCO), achieving 99.8% completeness, confirming the genome's high completeness. Inspector (v1.3)²⁹ calculated a QV of 48.54, reflecting high base-level accuracy, while GCI (v1.0)³⁰ yielded a value of 43.681, highlighting the structural continuity of the assembly. CRAQ (v1.0.9)³¹ further assessed assembly accuracy, reporting AQI metrics of 95.71 (R-AQI) and 99.88 (S-AQI), confirming high assembly quality. Additionally, 14 chromosomes were completely

	Number	Percentage (%)
Total	24,524	100
NR	22,780	92.89
EggNOG	23,109	94.23
KEGG	18,804	76.68
Kofam	15,426	62.90
SwissProt	18,019	73.48
Overall	23,604	96.25

Table 4. Genome function annotation result.

gapless, and telomeres were detected at both ends of 23 chromosomes, demonstrating near telomere-to-telomere assembly quality.

Annotation quality was validated with BUSCO, which reported 98.5% completeness for the gene sets. OMArk (v.0.3.0)³² showed that 96.19% (23,590 proteins) of the annotated genes were consistent with the Clade Teleostei, and 96.25% of the genes were functionally annotated across databases such as KEGG, NR, and SwissProt, indicating high functional and structural completeness.

Code availability

All software used in this study is in the public domain, with parameters described in Methods and this section. If no detailed parameters were mentioned for the software, default parameters were used according to the software introduction.

Received: 10 January 2025; Accepted: 24 March 2025;

Published online: 31 March 2025

References

1. F, M. A review of the tuskfishes, genus *Choerodon* (Labridae, Perciformes), with descriptions of three new species. *Memoirs of Museum Victoria* **76**, 1–111, <https://doi.org/10.24199/j.mmv.2017.76.01> (2017).
2. Kawabata, Y., Okuyama, J., Asami, K., Yoseda, K. & Arai, N. The post-release process of establishing stable home ranges and diel movement patterns of hatchery-reared black-spot tuskfish *Choerodon schoenleinii*. *Journal of Fish Biology* **73**, 1770–1782, <https://doi.org/10.1111/j.1095-8649.2008.02071.x> (2008).
3. Fukuoka, K. & Yamada, H. Food habits of juvenile tuskfishes (*Choerodon schoenleinii* and *C. anchorago*) in relation to food availability in the shallow waters of Ishigaki Island, Southwestern Japan. *Fisheries Science* **81**, 331–344, <https://doi.org/10.1007/s12562-014-0849-0> (2015).
4. Jones, A. M., Brown, C. & Gardner, S. Tool use in the tuskfish *Choerodon schoenleinii*? *Coral Reefs* **30**, 865–865, <https://doi.org/10.1007/s00338-011-0790-y> (2011).
5. Sato, T. *et al.* Induction of female-to-male sex change in a large protogynous fish, *Choerodon schoenleinii*. *Marine Ecology—an Evolutionary Perspective* **39**, <https://doi.org/10.1111/mec.12484> (2018).
6. Ebisawa, A., Kanashiro, K. & Kiyan, T. Growth, sex ratio, and maturation rate with age in the blackspot tuskfish *Choerodon schoenleinii* in waters off Okinawa Island, southwestern Japan. *Fisheries Science* **76**, 577–583, <https://doi.org/10.1007/s12562-010-0244-4> (2010).
7. Akita, Y. *et al.* Difference in age, growth, and sexual demography of black-spot tuskfish, *Choerodon schoenleinii* (Valenciennes, 1839), in two adjacent populations, Ryukyu Archipelago, southern Japan. *Journal of Applied Ichthyology* **33**, 437–442, <https://doi.org/10.1111/jai.13270> (2017).
8. Fairclough, D. V. & Nakazono, A. *Choerodon schoenleinii*. In: IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2.
9. Sato, T. *et al.* Impact of fishing losses of males on the reproductive output of the large protogynous fish, *Choerodon schoenleinii*. *Marine Ecology Progress Series* **602**, 225–235, <https://doi.org/10.3354/meps12675> (2018).
10. Yamada, H. *et al.* Otolith development and daily increment formation in laboratory-reared larval and juvenile black-spot tuskfish *Choerodon schoenleinii*. *Fisheries Science* **75**, 1141–1146, <https://doi.org/10.1007/s12562-009-0146-5> (2009).
11. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved *de novo* assembly using phased assembly graphs with hifiasm. *Nature methods* **18**, 170–175, <https://doi.org/10.1038/s41592-020-01056-5> (2021).
12. Roach, M. J., Schmidt, S. A. & Borneman, A. R. Purge Hapllotigs: allelic contig reassignment for third-gen diploid genome assemblies. *BMC bioinformatics* **19**, <https://doi.org/10.1186/s12859-018-2485-7> (2018).
13. Abalde, S., Tellgren-Roth, C., Heintz, J., Pettersson, O. V. & Jondelius, U. The draft genome of the microscopic *Nemertoderma westbladi* sheds light on the evolution of Acoelomorpha genomes. *Frontiers in Genetics* **14**, <https://doi.org/10.3389/fgene.2023.1244493> (2023).
14. Zeng, X. *et al.* Chromosome-level scaffolding of haplotype-resolved assemblies using Hi-C data without reference genomes. *Nature Plants* **10**, <https://doi.org/10.1038/s41477-024-01755-3> (2024).
15. Durand, N. C. *et al.* Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. *Cell systems* **3**, 95–98, <https://doi.org/10.1016/j.cels.2016.07.002> (2016).
16. Nirchio, M., Rossi, A. R., Foresti, F. & Oliveira, C. Chromosome evolution in fishes: a new challenging proposal from Neotropical species. *Neotropical Ichthyology* **12**, 761–770, <https://doi.org/10.1590/1982-0224-20130008> (2014).
17. Molina, W. F., Motta Neto, C. C., Sena, D. C. S., Cioffi, M. B. & Bertollo, L. A. C. Karyoevolutionary aspects of Atlantic hogfishes (Labridae-Bodianinae), with evidence of an atypical decondensed argentophilic heterochromatin. *Marine Genomics* **6**, 25–31, <https://doi.org/10.1016/j.margen.2012.01.001> (2012).
18. Liu, D. *et al.* Chromosome-level genome assembly of the endangered humphead wrasse *Cheilinus undulatus*: Insight into the expansion of opsin genes in fishes. *Molecular Ecology Resources* **21**(7), 2388–2406, <https://doi.org/10.1111/1755-0998.13429> (2021).
19. Lin, Y. *et al.* quarTeT: a telomere-to-telomere toolkit for gap-free genome assembly and centromeric repeat identification. *Horticulture Research* **10**, <https://doi.org/10.1093/hr/uhad127> (2023).
20. Hu, K. *et al.* HiTE: a fast and accurate dynamic boundary adjustment approach for full-length transposable element detection and annotation. *Nature Communications* **15**, <https://doi.org/10.1038/s41467-024-49912-8> (2024).

21. Stanke, M. *et al.* AUGUSTUS: ab initio prediction of alternative transcripts. *Nucleic acids research* **34**, W435–W439, <https://doi.org/10.1093/nar/gkl200> (2006).
22. Bruna, T. *et al.* Galba: genome annotation with miniprot and AUGUSTUS. *BMC bioinformatics* **24**, <https://doi.org/10.1186/s12859-023-05449-z> (2023).
23. Li, H. Protein-to-genome alignment with miniprot. *Bioinformatics (Oxford, England)* **39**, <https://doi.org/10.1093/bioinformatics/btad014> (2023).
24. Haas, B. J. *et al.* Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. *Genome biology* **9**, <https://doi.org/10.1186/gb-2008-9-1-r7> (2008).
25. Do, V. H. *et al.* Pasa: leveraging population pangenome graph to scaffold prokaryote genome assemblies. *Nucleic acids research* **52**, <https://doi.org/10.1093/nar/gkad1170> (2024).
26. Dong, Z. & Li, S. *Choerodon schoenleinii* isolate SL-2024, whole genome shotgun sequencing project. *GenBank* <https://identifiers.org/ncbi/insdc:JBKFGB000000000> (2025).
27. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRP555621> (2024).
28. Li, S. *Choerodon schoenleinii* genome and annotation. *Figshare* <https://doi.org/10.6084/m9.figshare.28107404.v1> (2024).
29. Chen, Y., Zhang, Y., Wang, A. Y., Gao, M. & Chong, Z. Accurate long-read *de novo* assembly evaluation with Inspector. *Genome biology* **22**, <https://doi.org/10.1186/s13059-021-02527-4> (2021).
30. Chen, Q., Yang, C., Zhang, G. & Wu, D. GCI: a continuity inspector for complete genome assembly. *Bioinformatics (Oxford, England)* **40**, <https://doi.org/10.1093/bioinformatics/btae633> (2024).
31. Li, K., Xu, P., Wang, J., Yi, X. & Jiao, Y. Identification of errors in draft genome assemblies at single-nucleotide resolution for quality assessment and improvement. *Nature Communications* **14**, <https://doi.org/10.1038/s41467-023-42336-w> (2023).
32. Nevers, Y. *et al.* Quality assessment of gene repertoire annotations with OMArk. *Nature biotechnology*, <https://doi.org/10.1038/s41587-024-02147-w> (2024).

Acknowledgements

This work was financially supported by the Core Technology Research Project for Suitable Species of Modern Marine Ranch in Guangdong Province (2024-MRB-00-001).

Author contributions

Z.D. and N.Z. conceived this research and acquired the funding project. Z.D., J.G. and Z.W. analyzed the data. Z.D., Y.Z. and J.G. drafted and revised the manuscript. Y.G. supervised the data analysis. All authors have reviewed and approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to N.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

© The Author(s) 2025