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. Choerodon schoenleinii, commonly known as the blackspot tuskfish, widely recognized for its

vibrant coloration, unique small black spot on the dorsal fin, and high value in both ornamental

. and culinary markets. Here, we report a high-quality near telomere-to-telomere (T2T) genome
assembly of C. schoenleinii, generated using PacBio HiFi and Hi-C technologies. The assembly spans

: 865.99 Mb, achieving chromosome-level resolution with 24 chromosomes anchored. Notably,

. telomeres were identified at both ends of 23 chromosomes, with 14 being completely gapless

. and only 12 gaps detected across the remaining nine. A total of 24,524 protein-coding genes were
annotated, with 96.25% assigned functional annotations. The assembly quality was validated with a
BUSCO score of 99.80%. The gene annotation was further evaluated using OMArk, with 23,590 proteins
(96.19%) consistent with the Clade Teleostei, highlighting the high-quality and taxonomic relevance
of the gene set. This reference genome provides a valuable resource for advancing research in the
genetics, evolutionary biology, conservation, and breeding of C. schoenleinii, a species currently
listed as “Near Threatened” by the IUCN.

. Background & Summary

© The genus Choerodon, belonging to the family Labridae, includes approximately 24 species, widely recognized
for their vibrant coloration and unique dental morphology'. Among them, Choerodon schoenleinii, commonly
referred to as the blackspot tuskfish, hereafter referred to as the tuskfish, is the largest species in the genus.
Characterized by a small black spot on its dorsal fin, the tuskfish can grow up to one meter in length and weigh

: as much as 15.5 kilograms, making it ecologically and economically significant. This species inhabits sandy or

: weedy areas near lagoons and seaward reefs, where it primarily preys on hard-shelled organisms such as crus-

. taceans, mollusks, and sea urchins®?. Notably, observations have shown that individuals of this species can also

. utilize tools during feeding®. It exhibits protogynous hermaphroditism, transitioning from female to male as it
matures, a process influenced by body size, age, and environmental factors®”’.

The tuskfish is predominantly found in the South China Sea, the coastal waters of Indonesia, and north-
ern Australia. However, due to overfishing and marine environmental degradation, wild populations have
experienced a sharp decline, leading to its classification as “Near Threatened” by the International Union for

. Conservation of Nature and Natural Resources (IUCN)®’. To address this issue, comprehensive surveys of its
. wild germplasm resources and the development of artificial domestication and breeding techniques are urgently
. needed.

In this study, we present a high-quality near telomere-to-telomere (T2T) genome assembly of the tuskfish,

constructed using PacBio HiFi data at ~100x and Hi-C data at ~135x. The genome assembly spans 865.99 Mb
. and 24 chromosome-level scaffolds, of which 14 are gapless assemblies with terminal telomeric repeats. Notably,
. telomeres were resolved at both ends of 23 chromosomes, demonstrating high assembly completeness. A total
© of 24,524 protein-coding genes were annotated, with 96.25% assigned functional annotations. This dataset
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Library type Platform Tissue Data size (Gb) | Average depth (X)
PacBio SMRT | PacBio REVIO Muscle 86.54 100
Hi-C Tllumina Novaseq 6000 Muscle 117.52 135
WGS DNBSEQ Muscle 143.70 166
RNA-Seq Illumina Novaseq 6000 Brain 6.13 —
RNA-Seq Tllumina Novaseq 6000 Gill 6.70 —
RNA-Seq Illumina Novaseq 6000 Gut 6.71 —
RNA-Seq Tllumina Novaseq 6000 Heart 6.74 —
RNA-Seq Illumina Novaseq 6000 Kidney 6.75 —
RNA-Seq Tllumina Novaseq 6000 Liver 6.74 —
RNA-Seq Tllumina Novaseq 6000 Muscle 6.72 —
RNA-Seq Tllumina Novaseq 6000 Ovary 6.72 —
RNA-Seq Illumina Novaseq 6000 Skin 6.73 —
RNA-Seq Tllumina Novaseq 6000 Spleen 6.72 —

Table 1. Statistics of the sequencing data.

provides a valuable resource for genetic and evolutionary research, as well as for conservation and breeding
programs aimed at restoring natural populations and promoting sustainable aquaculture production.

Methods

Sample collection and DNA extraction. Genomic DNA and total RNA were extracted from mus-
cle and other tissues of a single C. schoenleinii specimen (female, body length: 24 cm, weight: 296 g) collected
from the waters surrounding the Qizhou Archipelago. DNA was extracted using the Blood & Tissue DNA Kit
(Qiagen 69504), while RNA was extracted with TRIzol reagent (Invitrogen) following the manufacturer’s proto-
cols. DNA and RNA integrity were assessed using gel electrophoresis and an Agilent 2100 Bioanalyzer (Agilent
Technologies), and purity and concentration were measured with a NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific). High-quality DNA and RNA were used for library preparation and sequencing.

Library construction and sequencing. For whole-genome sequencing (WGS), genomic DNA was frag-
mented into ~350 bp fragments using a Covaris ultrasonicator. After end-repair, adapter ligation, single-strand
separation, and circularization, the library was amplified by rolling circle amplification (RCA) to generate DNA
nanoballs (DNBs). Qualified DNB libraries were sequenced on the DNBSEQ platform, generating 143.70 Gb of
data (~166x) (Table 1).

For PacBio HiFi sequencing, genomic DNA was used to construct a SMRTbell library with the SMRTbell
Express Template Prep Kit 2.0. The library was sequenced on the PacBio REVIO system, producing 86.54 Gb of
HiFi data (~100 %) (Table 1).

For Hi-C sequencing, muscle tissue was fixed with 2% formaldehyde to cross-link DNA and proteins.
Cross-linked DNA was digested with Mbol, ligated with biotin-labeled adapters, circularized, fragmented, and
enriched by biotin pull-down. Size-selected DNA was used to construct Hi-C libraries, which were sequenced
on the DNBSEQ platform, producing 117.52 Gb data (~135x) (Table 1).

For transcriptome sequencing, RNA from 10 tissues, including brain, gill, gut, heart, kidney, liver, muscle,
ovary, skin, and spleen, was used to construct transcriptome libraries. Poly-A mRNA was enriched using mag-
netic oligo(dT) beads, fragmented, and reverse-transcribed into cDNA. Libraries were prepared with adapter
ligation and sequenced on the Illumina NovaSeq 6000 platform, yielding 66.66 Gb transcriptome data (Table 1).

Genome survey and assembly. A genome survey was conducted prior to assembly to assess the basic
characteristics of the tuskfish genome. Short reads generated by the DNBSEQ platform were used for k-mer anal-
ysis, estimating the genome size at 815.81 Mb (Fig. 1A).

For genome assembly, HiFi reads were first assembled into a draft genome using Hifiasm (v0.20.0)"!, result-
ing in a highly contiguous assembly with a total size of 879.13 Mb. To improve the quality of the assembly, redun-
dant sequences and haplotigs were removed using purge_haplotigs'?> and kmerDedup'?, reducing the genome
size to 865.99 Mb with contig N50 38.17 Mb (Fig. 1B). Hi-C sequencing data were then integrated using HapHic
(v1.0.6)' and further refined using Juicer (v1.6)" to anchor the contigs to 24 chromosomes (Fig. 2A), which is
consistent with the number of chromosomes already demonstrated in some closely related species!®-8.

To further enhance genome quality, polishing was performed using NextPolish (v1.4.1; https://github.com/
Nextomics/NextPolish), significantly reducing assembly errors. The final assembly consisted of 14 completely
gapless chromosomes, with gaps closed and telomeres detected at both ends of 23 chromosomes using quarTeT
(v1.23)" (Table 2).

Genome annotation. Transposable element (TE) annotation was performed using HiTE?, which identified
and masked repetitive elements across the genome. A total of 32.07% of the genome was annotated as repetitive
sequences, consistent with the genome survey results (Fig. 2B; Table 3).

Protein-coding gene annotation combined de novo prediction, homology-based annotation, and
transcriptome-based strategies. De novo gene prediction was performed using Augustus (v3.5.0)*' and GALBA
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Fig. 1 Summary of the blackspot tuskfish genome assembly and quality assessment. (A) GenomeScope k-mer
analysis (k=19) of whole-genome sequencing reads. (B) Snail plot of assembly statistics. The plot displays, from
the center outwards: log-scaled scaffold count (purple spiral), scaffold length distribution (dark gray, longest
scaffold in red), N50 (orange) and N90 (light orange) lengths, and GC/AT content (blue/light blue rings). The
actinopterygii BUSCO score is shown in the upper right.
A
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Fig. 2 Hi-C contact maps and genomic feature overview of the blackspot tuskfish genome.

(A) Interchromosomal interaction matrix. A heatmap representing Hi-C interaction frequencies

(100-kb bins) across the 24 blackspot tuskfish chromosomes (chr1-chr24) (B) Circos plot summarizing genomic
features. Concentric rings display, from outermost to innermost: (1) Chromosome ideograms; (2) DNA
transposon density; 1 (3) LINEs density; 1 (4) SINEs density; (5) LTRs density; 1 (6) Gene density; (7) GC content.
1 A central image depicts a blackspot tuskfish. All feature densities are presented along the chromosomes.

(v1.0.11)*, while homology-based annotation employed miniport (v0.13)* to align the genome against protein
sequences from closely related species, inculding Cheilinus undulatus, Labrus bergylta, and Notolabrus celidotus,
generating homology-based gene models. Transcriptome data were integrated with homology-based annota-
tions using EGAPx (v0.3.1-alpha; https://github.com/ncbi/egapx), which prepared input data for downstream
integration. The final gene models were produced by integrating results from all annotation strategies using
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Chromosome number | Length (Mb) | Number of gaps | Number of telomeres
chrl 41.62 1 2
chr2 40.11 0 2
chr3 43.50 0 2
chr4 38.80 0 2
chr5 41.57 1 2
chr6 41.37 1 2
chr7 40.86 1 2
chr8 38.69 0 2
chr9 38.17 3 2
chr10 37.54 0 2
chrll 40.34 0 2
chr12 38.98 0 2
chr13 37.01 1 2
chrl4 36.24 0 2
chr15 33.77 1 2
chrlé6 32.23 0 2
chr17 33.04 1 1
chr18 33.29 0 2
chr19 33.87 0 2
chr20 31.08 0 2
chr21 31.51 0 2
chr22 25.74 0 2
chr23 24.57 1 2
chr24 24.72 1 2
Unplaced® 7.33

Table 2. Assembly statistics of chromosomes. *Unplaced: Sequences that could not be anchored to any known
chromosome. The chromosome numbering (chr1 to chr24) follows the order established in the published
genome of Notolabrus celidotus (GCF_009762535.1) on NCBL.

Type Length (bp) % of genome
DNA 136,347,261 15.75

LINE 87,187,153 10.07

SINE 5,697,663 0.66

LTR 42,444,577 4.90

Other 118,586 0.01
Unknown 5,871,707 0.68

Total 255,401,065 32.07

Table 3. Statistic results of different types of annotated repeat content.

EvidenceModeler (EVM; v2.10)** and further refined using the PASApipeline (v2.5.3)%, resulting in the annota-
tion of 24,524 protein-coding genes (Table 4).

Functional annotation of the protein-coding genes was conducted by aligning protein sequences against
multiple databases, including KEGG, NR, SwissProt, Kofam, and EggNOG, using diamond. A total of 96.25%
of the protein-coding genes were functionally annotated, providing valuable insights into the biological roles of
the identified genes (Table 4).

Data Records
The genome assembly data is available in GenBank under the accession number JBKFGB000000000.1%.

The raw sequencing data of blackspot tuskfish transcriptome, PacBio HiFi, Hi-C and WGS have been deposited
into the National Center for Biotechnology Information (NCBI) with the accession number PRINA1204159%. The
genome assembly data, genome annotation files, gene CDS, and protein data have been submitted to Figshare?.

Technical Validation

Genome assembly was evaluated with a Benchmarking Universal Single-Copy Orthologs (BUSCO), achieving
99.8% completeness, confirming the genome’s high completeness. Inspector (v1.3)* calculated a QV of 48.54,
reflecting high base-level accuracy, while GCI (v1.0)* yielded a value of 43.681, highlighting the structural
continuity of the assembly. CRAQ (v1.0.9)! further assessed assembly accuracy, reporting AQI metrics of 95.71
(R-AQI) and 99.88 (S-AQI), confirming high assembly quality. Additionally, 14 chromosomes were completely
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Number Percentage (%)

Total 24,524 100

NR 22,780 92.89
EggNOG 23,109 94.23
KEGG 18,804 76.68
Kofam 15,426 62.90
SwissProt 18,019 73.48
Overall 23,604 96.25

Table 4. Genome function annotation result.

gapless, and telomeres were detected at both ends of 23 chromosomes, demonstrating near telomere-to-telomere
assembly quality.

Annotation quality was validated with BUSCO, which reported 98.5% completeness for the gene sets.
OMArk (v.0.3.0)** showed that 96.19% (23,590 proteins) of the annotated genes were consistent with the
Clade Teleostei, and 96.25% of the genes were functionally annotated across databases such as KEGG, NR, and
SwissProt, indicating high functional and structural completeness.

Code availability

All software used in this study is in the public domain, with parameters described in Methods and this section. If
no detailed parameters were mentioned for the software, default parameters were used according to the software
introduction.
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