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Tri-band vehicle and vessel dataset 
for artificial intelligence research
Yingjian Liu1,4, Gangnian Zhao1,4, Shuzhen Fan2,3 ✉, Cheng Fei2,3, Junliang Liu2,3, 
Zhishuo Zhang3, Liqian Wang3, Yongfu Li2,3 ✉, Xian Zhao2,3 ✉ & Zhaojun Liu1,3 ✉

The advancement of artificial intelligence has spurred progress across diverse scientific fields, with 
deep learning techniques enhancing autonomous driving and vessel detection applications. The 
training of deep learning models relies on the construction of datasets. We present a tri-band (visible, 
short-wave infrared, long-wave infrared) vehicle and vessel dataset for object detection applications 
and multi-band image fusion. The dataset consists of thousands of images with JPG and PNG formats, 
and information including acquisition dates, locations, among others. The features of the dataset 
are time synchronization and field-of-view consistency. About 60% of the dataset has been manually 
labeled with object instances to train and evaluate well-established object detection algorithms. After 
training with YOLOv8 and SSD object detection algorithms, all models have mAP values above 0.6 at 
an IoU threshold of 0.5, which indicates good recognition performance for this dataset. In addition, a 
preliminary validation of wavelet-based multi-band image fusion was performed. As far as we know, the 
dataset is the first publicly available tri-band optical image dataset.

Background & Summary
In the field of computer vision, object detection is one of the fundamental tasks, forming the basis for other 
image understanding operations1. Object detection algorithms are widely used for various domains such as 
traffic monitoring2, automatic driving3, ship monitoring and tracking4. Datasets play a crucial role in train-
ing and validating algorithms for object detection. With the emergence of deep learning techniques5, there are 
demands for more datasets. As a result, numerous new datasets have recently been created and publicly released. 
Currently, there are several widely used datasets in the field of deep learning, such as LSUN6, ImageNet7, 
MSCOCO8, among others.

The datasets used for detection are usually categorized as9 pedestrian detection, face detection, everyday 
object detection, and vehicle detection. Many datasets of vehicles and ships have been introduced to help 
improve the detection performance of algorithms. Most datasets were built with VIS (visible light) band images. 
Some of the well-known VIS datasets for vehicle and ship detection include SeaShips10, MARVEL11, GLSD12, 
ShipYOLO13, Mcships14, MASATI15. As for special weather conditions, FoggyShipInsseg16 handles the scarcity 
of ocean data in foggy weather and SMART-Rain17 enriches existing datasets that lack representative data from 
rainy weather. Considering different application scenarios, CODA18 is the first real-world road corner case 
dataset, AD4CHE19 is a dataset for congested highways and UA-DETRAC20 is a dataset for multi-object track-
ing. Since VIS images are usually dominated by light conditions, LWIR (long-wave infrared) showing thermal 
information has the flexibility throughout the day. LWIR images are supplied in many datasets. The NSAVP21, 
RGBT23422, KAIST23, Drone Vehicle24, FLIR ADAS25, and VAIS26 datasets were introduced with VIS and LWIR 
images. These datasets integrate visible and thermal spectrum data that have been proven to be effective in 
boosting detection. As for scenes with insignificant temperature differences, SWIR (short-wave infrared) sup-
plies more information in addition to VIS and LWIR, with a strong ability to penetrate haze and smog. So SWIR 
images are also supplied in some datasets. The RGB-SWIR image dataset27, SMD28, and HSI-Drive29 datasets 
were introduced with VIS and SWIR (short-wave infrared) images. These datasets can achieve better object 
detection performance under hazy conditions. So far as we know, no tri-band dataset (VIS, SWIR, LWIR) has 
been published yet to combine the advantages of the three bands.
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For these multi-band datasets, the images in each band of the dataset should meet time synchronization and 
field-of-view consistency. Multi-band datasets are also widely used in image fusion to reduce uncertainties in 
the image processing chain, which is crucial for enhancing image fusion30. This necessitates a cross-sectional 
comparison of the data in each band after introducing multi-bands, with the precondition that the data in each 
band satisfy time synchronization and field-of-view consistency. The NSAVP dataset introduces the concept of 
camera time synchronization21, ensuring that the VIS images and LWIR images of corresponding targets appear 
at the same moment. Its highlight lies in utilizing time synchronization to eliminate some data interference 
caused by temporal factors.

Although many datasets have been introduced for object detection on vehicles and vessels, there are many 
challenges in this field:

•	 Single application band and non-diversified data distribution. Several vehicle and vessel datasets only com-
prise VIS images, which limits their use during night-time and foggy weather. For example, SMART-Rain17 
only adapts well to rainy conditions. Several vehicles and vessels datasets only comprise SWIR images, and 
the RGB-SWIR image dataset27 and FoggyShipInsseg16 only perform well in foggy weather. LWIR imaging 
may be affected in environments where temperature differences are minimal, which limits LWIR datasets in 
certain scenarios. For example, the IR vehicle recognition dataset31 merely performs well at night. Limiting 
the dataset to a single scenario or weather restricts its applicability across various scenarios, such as object 
detection across multiple scenes and detection of multiple object categories.

•	 Time is not synchronized and field of view is inconsistent. Many multi-band datasets do not meet the time 
synchronization and field-of-view consistency, which leads to the reduction of the relevance of objects in 
different bands, and the effect of multi-band data in image fusion is not ideal. Ensuring time synchronization 
and field-of-view consistency among data groups during dataset construction can eliminate data interference 
caused by time and field-of-view factors.

We present the Tri-band (VIS, SWIR, LWIR) Vehicle and Vessel Dataset. To facilitate research on diverse 
issues, such as the weather and scenarios on object detection accuracy, the tri-band optical image dataset records 
crucial information, including the shooting date, collection location, lighting status and weather conditions. The 
tri-band optical image dataset, which includes various scenarios (such as urban roads, intersections, rural roads, 
harbors, islands, and coastal lands) and various weather conditions (such as sunny, cloudy, rainy, snowy, and 
foggy days), aims to increase data distribution for various tasks.

The dataset comprises thousands of images and all images are collected in public. To the best of our knowl-
edge, the tri-band optical image dataset is the first publicly available tri-band optical image dataset for detecting 
vehicles and vessels. The dataset has the great potential to enable several research activities, such as (1) the 
application range of tri-band dataset in object detection tasks, (2) the relationship of different band and object 
detection precision, (3) the impact of time synchronization and field-of-view consistency for image fusion.

Fig. 1  Camera (VIS camera, SWIR camera & LWIR camera).

VIS SWIR LWIR

Response bands 0.39–0.78 μm 0.9–1.7 μm 8–12 μm

Resolution 2448 × 2048 640 × 512 640 × 512

Frame rate 25 fps 25 fps 25 fps

Pixel Size 3.45 μm 25 μm 14 μm

Sensor Diagonal Size 10.7 mm 20.5 mm 11.4 mm

Table 1.  Basic parameters of tri-band cameras.
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Methods
Acquisition equipment.  Our image acquisition equipment consists of three cameras and an image capture 
platform.

The three cameras are shown in Fig. 1. The VIS camera is a common industrial visible light camera. The SWIR 
camera is a homemade Indium Gallium Arsenide uncooled infrared camera during the acquisition process 
developed by our team. Meanwhile, the LWIR camera is a vanadium oxide uncooled infrared camera (LT640, 
IRAY). These three cameras are connected to a computer during the acquisition process. The specific parameters 
for each camera are detailed in Table 1. At the initial stage of image acquisition, the focal length of the lenses of 
all three cameras was 50 mm, but the FOV (field of view) of the three cameras varies due to the different sensor 
sizes. In addition, due to the different aspect ratios of the sensors of the three cameras, their FOVs cannot be 
identical. To achieve consistent FOVs, the DFOV (diagonal field of view) is used to ensure near-identical FOVs. 
We obtain the sizes of the DFOVs of the three cameras according to the formula: DFOV = 2arctan(d/2f), where 
f is the focal length of the lens, and d is the diagonal size of the camera sensor. Then, taking the existing 50 mm 
and 100 mm focal length SWIR lenses as two references, we calculated two sets of required lens focal lengths to 
maintain the same DFOV for the three cameras. Finally, by comparing with the existing lens focal lengths in the 
market, we designed two sets of lens sets, SET_F and SET_N, so that the three cameras have almost the same 
DFOV and can adapt to targets at different distances. The specific parameters are shown in Table 2. The SET_F 
lens set is adapted to targets above 200 m, while the SET_N lens set is adapted to targets within 200 m.

The image capture platform utilized is a tripod equipped with three 2-axis stages, which facilitates the pre-
cise control of the azimuth and pitch angles during the capture process, as shown in Fig. 2. The 2-axis stages are 
capable of operating over an azimuth angle range from −180° to +180° and a pitch angle from −90° to +90°. To 
ensure that the three sets of images present a consistent FOV, the FOV centers (centers of the fields of view) of 
the three cameras must align perfectly. To achieve this, the three cameras can be aligned in the same direction 
by adjusting the azimuth and pitch angles of the platform before collecting data, thus ensuring that the FOV 
centers coincide.

To ensure that FOV centers of the three cameras mounted on the same rigid support structure are accurately 
aligned, we performed alignment error correction and accuracy evaluation. Since the shooting target is more 
than 50 meters away from the cameras, significantly larger than the 5 cm spacing between cameras, the angle 
between any two cameras is less than 0.001°, which has a negligible effect on the FOV alignment. We further 
verified the alignment accuracy by placing a high-precision calibration plate at the target location and using 
the three cameras to simultaneously capture images of the calibration plate. The calculation results show that 
the alignment error between the FOV centers of the three cameras and the center of the calibration plate is less 
than 0.001°, which is well below the system’s required accuracy. Repeated experiments show that the alignment 
error of the system is within acceptable limits and has no significant impact on subsequent data acquisition and 
analysis.

Dataset building process.  The dataset generation pipeline comprises five stages: scene selection, video 
capture, frame extraction & frame synchronization, object annotation, and dataset generation.

Scene selection.  The vehicle acquisition scenarios were selected as four different types of road environments, 
including traffic signal intersections, ordinary intersections, rural roads, and urban streets. Similarly, for the 
vessel acquisition scenarios, three varied types of oceanic settings were chosen, including port area, coastal area 
and reef area. The main targets of our captures are different types of vehicles and vessels.

VIS Focal Length SWIR Focal Length LWIR Focal Length DFOV (approximate)

SET_F 100 mm 100 mm 50 mm 6.4°

SET_N 50 mm 50 mm 28 mm 12°

Table 2.  Basic parameters of the two lens sets.

Fig. 2  Tripod and 2-axis stages.
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Different lighting conditions are likewise one of the factors to be considered in the construction of datasets. 
Taking into account the lighting conditions of frontlight, backlight, and sidelight, the acquisition times were 
chosen to be at different times of the day32–34. For example, at a site facing east, collections were conducted with 
morning light conditions as front-lighting, midday light conditions as side-lighting, and afternoon light condi-
tions as back-lighting. Likewise, we captured videos under varying weather scenarios, including sunny, rainy, 
snowy, and more.

Video capture.  Irrespective of whether a lens set with a focal length of 50 mm or the two lens sets, SET_F 
and SET_N, are employed, the FOV centers of the three cameras must be adjusted to overlap when images are 
captured. Such adjustment is essential to ensure consistency in the FOV across the three sets of images. Prior 
to image acquisition, a point within the scene is initially designated as the FOV center. Thereafter, the pitch and 
azimuth angles of the acquisition platform are calibrated to align the FOV centers of the three cameras with this 
designated point, as depicted in Fig. 3.

During image acquisition, the acquisition modes of the three cameras are activated simultaneously when the 
target appears in the surveillance FOV. Conversely, the acquisition modes are deactivated when the target exits 
the surveillance FOV. Finally, the detailed status of each set of data, including the date of shooting, collection 
location, lighting conditions, and weather conditions, is recorded.

Frame extraction & frame synchronization.  In a set of consecutive image sequences, changes in image features 
between adjacent frames are not really significant. Although many current datasets retain all frames to train the 
detection model, this approach does not address the limited feature distribution. So, in order to include more 
image features with less amount of data, we perform frame extraction and frame synchronization on consecutive 
frames35.

First, before extracting the frames, it must be ensured that the first frames of the three image sequences (VIS, 
SWIR, LWIR) are time synchronized. This necessitates a manual calibration process. The first-frame image with 
the latest time among the three is set as the reference. Then, two fixed points in the scene in the direction of the 
target’s movement are selected. The relative positions of the target in the three images are made consistent by 
calculating the ratio of the distances between the target and these two points in each set of images. This process 
ensures the temporal consistency of the three images, as shown in Fig. 4. To ensure that the first images of the 
three sequences are synchronized in time, the images before the reference time in each image sequence are 
removed. By observing the changes in image features in consecutive frames, the changes in features between 
adjacent frames were not significant, which contributed little to the performance improvement of the trained 
model. Therefore, a program was designed to process consecutive frames, aiming to extract the corresponding 
frames from the sequence in batches based on certain time intervals. The time interval was set to extract 1 image 

Fig. 3  A consistent center of field of view (VIS, SWIR, LWIR).

Fig. 4  The ratio of the distances between the target and two fixed points which are both 1.83 (VIS, SWIR, 
LWIR).
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every 20 frames by observation and comparison. This approach not only compresses the volume of the dataset 
but also preserves the essential image characteristics to the greatest extent possible. By this method, a 250-frame 
image sequence can be compressed into 12 frames, which improves the training speed of the model. Finally, a 
comparative analysis and validation of the processed three image sequences were performed to ensure that the 
three sets of images, which should be time-synchronized theoretically, were synchronized.

Object annotation.  For the labeling of the dataset, different users may have different requirements. In order to 
facilitate users to use our dataset more comprehensively, the dataset provides all raw data to users. To validate 
the usability of the dataset, a portion of the data is annotated to validate the dataset using algorithms, and at the 
same time, this part of the labeled data is also provided to the users.

The objects in the dataset are labeled using the standard bounding box format of the YOLO dataset. The 
image annotation is performed using the tools provided on the ROBOFLOW website. The standard bounding 
box is denoted as (n, xc, yc, w, h), where n denotes the category of the annotated object, (xc, yc) denotes the 
scaled value of the center point with respect to the size of the image, ranging from 0 to 1, and (w, h) denotes the 
scaled value of the width and height of the bounding box with respect to the size of the image. Finally, the labeled 
data are double-checked by the authors to ensure that all targets have been labelled.

Dataset generation.  The dataset images are mainly acquired using the SET_F and SET_N lens sets, with 
field-of-view consistency. Earlier data acquired with the 50-mm lens set are also retained to enrich the data 
and to increase the robustness of the dataset, corresponding to data before August 27, 2023. All images in the 
dataset have their FOV centers coincide for the three spectral bands, which is a necessary condition to satisfy 
field-of-view consistency.

All image files are renamed to ensure consistency in the naming of the corresponding frames of the three 
image sequences. A dataset generation program is then designed to systematically organize the data into 
corresponding subdirectories according to our organizational criteria, which are described in detail below. 
Subsequently, these subdirectories are arranged into their respective parent folders according to the organiza-
tional criteria. Finally, the corresponding data can be found via a dataset log.

Data Records
The dataset is available on figshare36 and on the official website of the Center for Optics Research and 
Engineering, Shandong University37. The dataset contains 923 tri-band (visible, SWIR, LWIR) vehicle datasets 
(2,769 single images) and 450 tri-band ship datasets (1,350 single images), each consisting of three images taken 
simultaneously. Since its release, this dataset has been used for scientific research by more than 50 research insti-
tutions, such as the University of Melbourne, Tsinghua University, Zhejiang University, University of Electronic 
Science and Technology, and others.

Folder structure.  Users have access to two different types of files in the dataset: annotation files and raw 
image files. Both files contain tri-band image data; image files in JPG format for the VIS and LWIR image datasets 
and PNG format for the SWIR image dataset. The annotation files are in TXT format and conform to the YOLO 
dataset specification. The top-level directory of the dataset is divided into two main subdirectories: raw_data and 
labeled_data.

The raw_data subdirectory contains raw, unprocessed images of vehicles and vessels, including the vehicle 
dataset and vessel dataset subdirectories, as well as the shooting log. The structure of these two subdirectories 
is shown in Fig. 5a. Each subdirectory is named according to the date of data acquisition and contains all the 
image data acquired at different locations on that day. The dataset shooting log details the type of data (vehicle 
or vessel), time and location of acquisition, lighting conditions and weather conditions.

The labeled_data subdirectory contains data that has been annotated. It similarly comprises VIS, SWIR, 
and LWIR subdirectories, which are organized in a uniform manner, as illustrated in Fig. 5b. Each of these 
subdirectories further contains two additional subfolders: image and label. The label subfolder is dedicated to 
storing annotation files featuring standard bounding boxes in TXT format, while the image subfolder contains 
the image files that correspond to these annotations.

Data statistics.  The primary subjects of this dataset are vehicles in motion on terrestrial roadways and mar-
itime vessels observed from a sea-skimming perspective.

Figure 6 shows the classification statistics for the vehicle dataset. To enhance the versatility of the dataset 
in different tasks, the collection locations of the dataset were chosen to be traffic signal intersections, ordinary 
intersections, rural roads, and urban streets, as is shown in Fig. 6a. Images show different properties in different 
lighting conditions, therefore, they were captured under various lighting conditions (frontlight, backlight, and 
sidelight), and the way to realize this step was to take them both in the morning and in the afternoon at the 
same location, and this information is shown in Fig. 6b. Additionally, to fortify the dataset’s generalizability and 
robustness, image data were collected under different weather conditions, which is shown in Fig. 6c.

Figure 7 outlines the categorical statistics for the marine vessel dataset. To enhance the dataset’s versatility 
in diverse tasks, the collection spanned multiple geographical locales, including port area, coastal area and reef 
area, as indicated in Fig. 7a. Furthermore, the dataset encompasses a variety of marine vessel types, as shown 
in Fig. 7b, thereby enhancing its generalizability. The targets are also categorized into nearshore and farshore 
targets, as shown in Fig. 7c.
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Properties.  The two main features of this dataset are time synchronization and field-of-view consistency. 
Through the selection of lenses for the three cameras and the adjustment of the acquisition platform, the tri-band 
image essentially meets the requirement of field-of-view consistency, as shown in Fig. 3. Furthermore, through 
frame extraction and frame synchronization operations on the tri-band image, the temporal synchronization of 
the three images within the tri-band image is ensured, as shown in Fig. 4. These two features are mainly used for 
multi-band image fusion. The purpose of image fusion is to create a fused image by integrating dominant infor-
mation from multiple images so that the fused image contains more information. Image fusion requires image 
alignment. In the process of image alignment, the source image is mapped and the equivalent image is matched 
based on key features. In order to reduce the computational cost, some similarity should be maintained between 
different images. In constructing the dataset, the tri-band images should ensure both the richness of background 
information and a certain degree of similarity.

The images in the three bands in this dataset contain different feature information. Figure 8 shows some 
examples of snowy day acquisitions, VIS images can provide the most intuitive details for computer vision tasks, 
i.e., they can provide detailed messages about the colours, textures, etc. in the scene. Although SWIR images 
have less detailed information compared to visible light images, they reflect richer background information than 

Fig. 6  Classification statistics for the vehicle dataset.

Fig. 5  Organizational structure.

https://doi.org/10.1038/s41597-025-04945-6


7Scientific Data |          (2025) 12:592  | https://doi.org/10.1038/s41597-025-04945-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

visible light images due to their higher fog-transparency capability. The LWIR images can show the temperature 
information in the scene, as shown in the LWIR image in Fig. 8. Since the temperature of the front of the vehicle 
is slightly lower than that of the rear of the vehicle during driving, it is easy to determine the direction of vehicle 
driving.

Figure 9a shows some examples of images under good lighting conditions. At this point, the VIS image 
presents the clearest ship and contains colour and other detailed information. Infrared band image can show 
the outline of a ship, but due to their lack of colour information, the ship in the image has the same colour as its 
surroundings, making it difficult to distinguish the target from the background. Thus, the VIS image is imaged 
best in the scene shown in Fig. 9a. Some illustrations of acquisitions in the backlight state are shown in Fig. 9b. 
While in the backlight condition, the VIS image is almost impossible to observe the distant ships due to the 
sunlight. In contrast, the infrared band is less affected by the state of light, but at longer distances, LWIR images 
will only slightly show the outline of the ship, whereas SWIR images will show a clearer outline. Therefore, the 
SWIR image is best imaged in the scene shown in Fig. 9b.

Fig. 7  Classification statistics for the marine vessels.

Fig. 8  Legend for the vehicle dataset (VIS, SWIR, LWIR).
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Technical Validation
YOLOv8 algorithm validation.  The YOLOv8 target detection algorithm was employed to train the labeled 
data. The labeled datasets for each of the three bands were trained and validated separately, with the SWIR image 
dataset comprising 611 training images and 261 validation images, the LWIR image dataset consisting of 990 
training images and 424 validation images, and the VIS image dataset including 1326 training images and 567 
validation images. Considering the varying size of the targets contained in the sample images, we normalized the 
sample size to 640 × 640 to make the detection process balance the requirements of real-time and accuracy. This 
size allows the model to be truly applicable to edge devices without destroying too much useful information in the 
image38. The pre-trained model for YOLOv8 was obtained from the official source “yolov8n.pt”. The configuration 
parameters for the training environment are detailed in Table 3, while the Hyperparametric parameters for the 
training process are presented in Table 4.

During the training process, the epoch number of all three models is 150, the usage of training memory 
is about 2 G, and the total training and validation time for each of the three models is less than 5 hours. After 
150 rounds of training, the final performance metrics are presented in Table 5 and Fig. 10. mAP50 refers to the 
average precision of the models when the IoU threshold is 0.5, and mAP50–95 refers to the average precision of 
the models when the IoU threshold ranges from 0.5 to 0.95. The mAP50 of all three models exceeds 0.8, and the 
mAP50–95 is around 0.5, indicating that the models are capable of accurately detecting and localizing targets in 
most cases. Additionally, the precision and recall of all three models exceed 0.8, and the maximum value of the 
F1 score curve is also above 0.8, indicating that the models exhibit good performance.

To visually and easily validate our dataset, the detection performance of the model was analyzed using the 
confusion matrix. The rows and columns of the confusion matrix represent the true and predicted categories 
respectively. The values in the diagonal region of the normalized confusion matrix represent the proportion of 
correctly predicted categories and the values in the other regions represent the proportion of incorrectly pre-
dicted categories. Figure 11 shows the confusion matrices and the normalized confusion matrices for the above 
three models.

Fig. 9  Legend for the vessel dataset.

Fig. 10  F1-Confidence curves for the three models.
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As can be seen in Fig. 11, except for the background prediction, the data in the diagonal region of the con-
fusion matrices of the three models are the largest among the data in the corresponding rows and columns, 
and the data in the diagonal region of the normalized confusion matrices is the largest among the data in the 
corresponding columns. This suggests that our three models perform better in correctly predicting the target 
categories. However, the three models also exhibited certain false-negative rates (i.e., misclassifying targets as 
background categories) and false-positive rates. Given the above characteristics, the reasons for observing the 
performance of the three models are explained from an interpretable perspective. Although the single-stage 
detection algorithms, such as those represented by the YOLO series, are superior to many object detection meth-
ods, the two-stage detection algorithm is superior to the YOLO algorithm for images with a high proportion of 
background information and a high number of small objects39. Since the images in the dataset do not remove 
the background information and the dataset involves richer scenes, the proportion of background information 
in the dataset is high, so the model will have some false negatives and false positives.

Fig. 11  Confusion matrices.
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The results show that the model trained on this dataset has good recognition ability as shown in Fig. 12. At 
the same time, thanks to its own characteristics (e.g., high percentage of background information, etc.), this 
dataset can validate the performance of some algorithms, which greatly broadens the generalizability of these 
algorithms.

SSD Algorithm validation.  The SSD (Single Shot MultiBox Detector) constitutes a feature pyramid-based 
multi-scale object detection framework. The model was trained on annotated datasets from three bands. The 

Fig. 12  Ground truth annotations and YOLO-predicted outputs (Ground truth annotations on the left, YOLO-
predicted outputs on the right).
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Fig. 13  Three-band vehicle image fusion based on wavelet fusion.

Fig. 14  Three-band ship image fusion based on wavelet fusion.
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VIS image dataset consists of 1457 training images, 162 validation images, and 180 test images. The SWIR image 
dataset consists of 705 training images, 79 validation images, and 88 test images. The LWIR image dataset con-
sists of 1144 training images, 128 validation images, and 142 test images. All input samples were normalized to 
640 × 640 resolution. The architecture was initialized with publicly available SSD weights (ssd_weights. pth) from 
official repositories. The configuration parameters for the training environment are detailed in Table 6, while the 
hyperparametric parameters for the training process are presented in Table 7.

Parameters Setup

Epochs 100

Batch Size 16

NMS IoU 0.5

score_threhold 0.5

Initial Learning Rate 2 × 10−2

Momentum 0.937

Weight-Decay 5 × 10−4

Table 7.  Hyperparametric parameters.

Model mAP F1 precision recall

VIS 0.76 0.71 0.89 0.63

SWIR 0.75 0.71 0.78 0.71

LWIR 0.94 0.92 0.93 0.91

Table 8.  Performance indicators.

Parameters Setup

Graphics Processor GeForce RTX 4060

Deep learning framework PyTorch (2.6.0)

CUDA version CUDA (12.6)

Table 6.  Configuration parameters.

Parameters Setup

Epochs 150

Batch Size 16

NMS IoU 0.7

Initial Learning Rate 1 × 10−2

Momentum 0.937

Weight-Decay 5 × 10−4

Table 4.  Hyperparametric parameters.

Model mAP50 mAP50–95 precision recall

VIS 0.89 0.48 0.89 0.85

SWIR 0.84 0.49 0.81 0.81

LWIR 0.97 0.53 0.95 0.97

Table 5.  Performance indicators.

Parameters Setup

Graphics Processor GeForce RTX 3090

Deep learning framework PyTorch (1.13.1)

CUDA version CUDA (11.7)

Table 3.  Configuration parameters.
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During the training process, all three models were trained for 100 epochs, the training memory usage was 
approximately 6 GB, and each model’s total training and validation time is under 10 hours. The final perfor-
mance metrics are shown in Table 8. The mAP of all three models is greater than 0.7. In the quantitative evalua-
tion with score_threhold of 0.5, the precision, recall, and F1 scores of all three models are greater than 0.6, which 
indicates that the models perform well.

Tri-band image fusion based on wavelet fusion.  To further validate the potential application of this 
dataset in multi-band image fusion, we conducted fusion experiments on three-band images using a wavelet 
transform-based image fusion method. The wavelet transform, as a multi-scale analysis tool, extracts image 
details and fuses them at different scales, enabling source image complementarity. Low-frequency components 
are fused via weighted averaging to preserve structure, while high-frequency components are fused using local 
energy maximization to enhance details, followed by wavelet inversion for reconstruction40.

Tri-band image fusion can effectively complement the missing information in single-band images, especially 
in complex scenes. The fused image can provide more comprehensive target information. As shown in Fig. 13, 
in infrared images, some detailed information (e.g., traffic light countdown) cannot be clearly presented, while 
fusing visible light images supplements this information. As shown in Fig. 14, in the visible light and long-wave 
infrared images, the cargo ships on the sea surface cannot be clearly presented, and fusing short-wave infrared 
images supplements these details.

Although the fused image demonstrates the advantage of complementary information in visualization, it can 
also be observed that some high-frequency information is lost in the fused image. This phenomenon may be 
due to the limitations of current wavelet fusion methods. Existing multi-band image fusion algorithms require 
further development to improve their adaptability and accuracy. The release of this dataset will provide essential 
data support for these studies and advance multi-band image fusion technology.

Usage Notes
This dataset is available free of charge to any individual or organization. If this dataset helps, we would appreciate 
it if the users could support our work by sending information about their organization, use of the dataset, and 
contact information to hwgztd@sdu.edu.cn. Suggestions and co-operations are also welcome.

The dataset was collected in a variety of environments, which ensures that the dataset is generalizable and 
robust. With the generalization capabilities of deep learning, it is then possible to apply the trained object detec-
tion models to these scenarios as well as other environments. In addition, users can utilize this dataset for 
multi-band image fusion. This dataset provides raw data to users, who can perform their own cropping, labeling, 
and other operations on the data according to their needs to accomplish their intended tasks.

Code availability
The dataset was labeled using the data labeling tool available at https://universe.roboflow.com/. The dataset was 
trained using the YOLOv8 algorithm model available at https://docs.ultralytics.com/. The dataset was trained 
using the SSD algorithm model on https://github.com/bubbliiiing/ssd-pytorch.
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