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Rhodiola kirilowii, a perennial medical herb native to China, is highly valued for its detoxification
and anti-swelling properties, as well as its role as an adaptogen, making it an intriguing subject for
understanding its medicinal potential and molecular biochemistry. In this study, we generated a
high-quality chromosome-level reference genome of R. kirilowii achieved through a combination of

¢ Illumina short-read sequencing, PacBio long-read sequencing, and Hi-C sequencing techniques. The

. final assembly spans 1.92Gb, including 40 homoeologous chromosomes and one sex chromosome,

. with a scaffold NG50 of 46.03 Mb, and a BUSCO completeness of 98.9%. Additionally, we annotated

. atotal of 1.23 Gb of repetitive sequences, encompassing 63.88% of the entire genome, and identified
122,035 protein-coding genes. Each sub-genome achieved similar completeness and continuity. This
high-quality reference genome provides critical insights into the genetic underpinnings of R. kirilowii’s
pharmacological properties, facilitating comparative genomics and the enhancement of its medicinal
applications.

: Background & Summary

* Rhodiola kirilowii (Regel) Maxim is a perennial herbaceous plant belonging to the Crassulaceae family. It is tra-

. ditionally used in Tibetan medicine, primarily for its roots and rhizomes, which have been employed for centu-
ries due to their reputed medicinal properties. This plant is native to the Qinghai-Tibet Plateau and is commonly
found in alpine regions of China, including Tibet, Qinghai, Sichuan, Gansu, Yunnan, Xinjiang, Shaanxi, Shanxi,
and Hebei, thriving at elevations ranging from 2000m to 5600 m on rocky grasslands and slopes'.

: Historically, R. kirilowii has been documented in classical texts such as the “Four Medical Tantras” for its

. benefits in balancing lung heat and preventing epidemics. The “Chinese Tibetan Materia Medica” describes
its capabilities in detoxification and reducing swelling, indicating its traditional use in treating epidemic dis-
eases, lung heat, intoxication, and limb swelling. Modern pharmacological studies have identified a range of
active compounds in R. kirilowii, including salidroside, tyrosol, daucosterol, cyanogenic glycosides, bergenin,

lotaustralin, and flavonoids®®. These compounds contribute to the herb’s anti-hypoxic, anti-fatigue, anti-aging,
and blood-activating effects, making it a valuable component in adaptogenic and anti-altitude sickness
formulations.

Given its traditional and contemporary significance, studying the genome of R. kirilowii is crucial for several
reasons. First, genome assembly and annotation can provide insights into the biosynthetic pathways respon-
sible for its therapeutic compounds, potentially leading to enhanced cultivation practices and quality control
in herbal medicine production. Second, understanding its genetic makeup can facilitate the development of
more effective plant breeding strategies, aiming to increase the yield and potency of its active ingredients.

. Lastly, genomic research can uncover novel genes and pathways that may contribute to the plant’s adaptability
. to high-altitude environments, offering broader implications for plant biology and ecology. However, genomic
. resources of R. kirilowii is limited*, limited its utilization in traditional and modern medicine.

: In this study, we successfully assembled and annotated the genome of R. kirilowii at the chromosome
. level by MGI short-read sequencing, PacBio Revio long-read sequencing, Hi-C sequencing, and RNA
: sequencing (RNA-seq) techniques. We estimated genome size and heterozygosity from clean short reads,
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Sequencing strategy | Platform Usage Clean data (Gb) | Coverage (X)
Short-reads Mumina Genome survey | 90.92 41.32
Long-reads PacBio SeqIl | Assembly 185.32 84.23

Hi-C Tllumina Scaffolding 276.01 125.46

Table 1. Library sequencing data and methods used in this study to assemble the R. kirilowii genome.
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Fig. 1 Genome survey of R. kirilowii. (a) The distribution of K-mer (21-mer) frequency. (b) Fluorescence-
microscope image of somatic chromosome number of R. kirilowii.

performed long-read sequencing using the PacBio Revio System, and combined it with Hi-C reads to achieve
chromosome-level assembly. Furthermore, homoeologous chromosomes were identified in this tetraploid
R. kirilowii. Genome annotation was conducted using a combined methods, including RNA-seq reads, published
genomes of closely related species, and de novo prediction methods. Additionally, we assessed the quality of
genome assembly using various metrics. Our efforts culminated in the first high-quality reference genome with
40 homoeologous chromosome and one sex chromosome, of the genus Rhodiola, providing essential genetic
data for studying adaptive evolution, genetic diversity, and genetics of biochemistry of the broader genus
Rhodiola.

Methods

Sample collection. Rhodiola kirilowii (Regel) Maxim. (xh-4), was obtained from the Hongyuan Plateau
Medicinal Plant Breeding Base of the Sichuan Grassland Science Research Institute (coordinates: 102.5442°,
32.7752°, elevation: 3495 m). Fresh leaves were collected, rinsed thoroughly with sterile water, and surface mois-
ture was removed. The leaves were immediately preserved and transported in liquid nitrogen.

Library construction and sequencing. High-quality genomic DNA (gDNA) was extracted from collected
leaves following the manufacturer’s instructions. The integrity and purity of the gDNA samples were assessed
using agarose gel electrophoresis. The high-quality gDNA were sent to Wuhan Frasergen Bioinformatics Co., Ltd.
(Wuhan, China), for DNA extraction, library construction, and genomic sequencing. Libraries were prepared
using the TruSeq DNA PCR-Free Library Prep Kit (Illumina, San Diego, CA, USA) and SMRTbell (Sage Science,
MA, USA) and following the manufacturer’s recommendations, with 200 bp insertion size for Illumina HiSeq
4000 sequencing and 20kb fragments selected for PacBio Sequel II sequencing. In addition, in situ Hi-C exper-
iment was performed and Hi-C library was sequenced using Illumina HiSeq 4000 PE 150bp platform (Table 1).
Specifically, chromatin was digested using restriction enzyme Mbol enzyme.

To improve the precision of genome annotation, RNA sequencing was conducted from two tissues: leaf and
roots (three locations, and three replicates). Each sample underwent RNA extraction utilizing TRIzol reagent
(Invitrogen, USA), followed by assessment of RNA purity and concentration using Nanodrop and Qubit, con-
struction of RNA-seq libraries employing the MGIEasy RNA Sample Prep Kit (UW Genetics), and sequencing
on the Illumina HiSeq 4000 PE 150 bp platform. Totally, 446,936,037 pairs of raw reads were generated, and
were subjected to Trimmomatic v0.38° for high-quality data filtering following procedure as described®. These
high-quality transcriptome reads were utilized for genome annotation.

Genome size and heterozygosity estimation. The genome size and heterozygosity of R. kirilowii were
estimated based on distribution of 17-mer using GenomeScope v2.0. The prediction results indicated a genome
size of 2.26 Gb, a heterozygosity of 0.39%, and repeat sequences of 92.49% (Fig. 1a). Interestingly, the peaks of
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Fig. 2 Genome assembly of tetraploid R. kirilowii. (a) Genome-wide Hi-C contact matrix, at 1 Mb resolution,
of the chromosome-level assembly of the xh-4 genome. Each blue rectangle represents a set of homoeologous
chromosomes, whereas the green rectangles are chromosomes. (b) Average nucleotide identifies between
our tetraploid R. kirilowii chromosomes (vertical) and a publicly available haploid genome of R. kirilowii
(the horizontal chromosomes).

the distribution of 21-mer around 140, 70 and 35 depth clearly showed the homozygous AAAA alleles, heterozy-
gous AABB, and heterozygous ABCD alleles, suggesting the tetraploidy of R. kirilowii. Moreover, the fluorescent
microscopy was used to measure the number of chromosomes within a nucleus of R. kirilowii. A total of 41
(4n=40+ 1) chromosomes was captured (Fig. 1b).

De novo assembly of R. kirilowii genome. Flye mode in MaSuRCA v4.0.77, a hybrid approach using a
combination of PacBio and Illumina reads, was used for initial assembly, with default parameters except that the
estimated genome size was set accordingly. Then POLCA within the MaSuRCA package was used for assembly
polishing. At this step, the total length of the draft genome was 1,926,367,165 bp, comprising of 9,015 contigs with
N50 of contig length of 474,563 bp and N50 of scaffold length of 44,362,222 bp.

Then the Hi-C reads, after quality control and trimming, were used to anchor the initial assembled con-
tigs onto chromosomes through sorting, orientation, and ordering, following 3D-DNA pipeline (v1809228).
Multiple iterations of manual refinement of chromosome boundaries using the 3D-DNA pipeline were per-
formed. This process allowed us to detect and correct any apparent haplotype switches, ensuring precise hap-
lotype assignment. Detailed procedures on Hi-C data processing and scaffolding were described® and https://
github.com/theaidenlab/Genome-Assembly-Cookbook. Juicebox Assembly Tools® (v1.11.08) was used for
contact frequency visualization and to manually re-define chromosome boundaries. At this step, a total of
41 chromosomes were obtained (Fig. 2a), and the Hi-C interaction heatmap reveals a clear diagonal pattern,
which is indicative of strong intra-chromosomal interactions across all chromosomes. Interestingly, a set
of four homoeologous chromosomes could be clearly visualized in the contact map. To assign homoeolo-
gous chromosomes to haplotypes, fastANT (v1.34!°) was used to estimate average nucleotide identify (ANI)
as a function of genomic distance to publicly available Rhodiola kirilowii chromosomes®. Briefly, a set of 4
homeologous chromosomes was set based on their high average nucleotide identity. Then haplotypes 1 to 4
were assigned according to value of ANI (Fig. 2b). We note that ChrIX had only one haplotype, and therefore
denoted as the sex chromosome. Finally, the chromosome-level haplotype-solved genome was generated for
our tetraploid R. kirilowii, with a genome size of 1.922 Gb which is over three times bigger than previously
assembled diploid R. kirilowii*.

Genome annotation. Transposable elements (TEs) in our assembled R. kirilowii genome were masked using
RepeatMasker (v4.0.6'") using both the Repbase library and a de novo repeat library generated by RepeatModeler
(v2.0.5'2). This repeat mask step was performed for both whole-genome and each sub-genome. Overall, 63.88%
of the R. kirilowii genome was identified as repeats (Table 2). This TE masked genome was used for gene model
prediction.

Gene structure prediction was conducted through three methods: homology prediction, transcriptome pre-
diction, and de novo prediction, with integration of the results to derive the final gene structure annotation
using braker3 (v3.0.3"). For homology prediction, comparisons were made with the genomes: Vitis vinifera
(GCA_030704545.1), Prunus persica L. (GCA_000346475.2), Vitis vinifera (GCA_030704545.1), Kalanchoe
fedtschenkoi (GCA_002312865.1). Transcriptome prediction involved mapping quality-controlled RNA-seq
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Genomic features Hapl Hap2 Hap3 Hap4 | xh-4.v1
Total size (Mb) 572.37 511.99 527.08 560.62 1922.78
Number of contigs 2635 2179 2150 2515 9015
Max contig length (Mb) 31.62 31.62 31.62 31.62 31.62
N50 contig length (Mb) 0.537 0.523 0.552 0.504 0.474
Assembly statistics
N50 contig 196 209 205 231 943
Number of scaffolds 114+ 1% +474%% | 11 11 11 519
NG50 scaffold length (Mb) 51.39 45.38 45.17 54.07 46.03
GC% 40.47 40.42 40.37 40.4 40.31
Quality 34.28 34.67 34.6 34.27 34.1
Merqury
Error 0.00037 0.00034 | 0.00034 | 0.00037 | 0.00038
Complete and single-copy (%) | 60.8 68.6 65.9 66.3 4.7
Complete and duplicated (%) | 34.1 235 23.1 239 94.5
Assembly-BUSCO
Fragmented (%) 0.4 0.4 0.8 12 0.8
Missing (%) 4.7 7.5 10.2 8.6 1]
Protein-coding genes 26,849 25,446 26,830 28,034 122,035
Total size (Mb) 350.77 312.57 354.09 340.82 1230.94
Repeats
% of genome 61.17 60.92 61.75 60.66 63.88
Complete and single-copy (%) | 56.9 53.3 50.6 54.9 1.6
Complete and duplicated (%) | 31.8 30.2 30.6 29 97.3
Annotation-BUSCO
Fragmented (%) 2 2 31 2.4 0
Missing (%) 9.3 145 15.7 13.7 11
% of mapped reads 94.93 95.60 95.21 95.75 99.15
Ilumina Mapping General mismatch rate 0.02 0.02 0.02 0.02 0.0067
Mean mapping quality 28.2181 32.7356 | 32.7074 | 32.4369 | 18.5344

Table 2. Metrics of the R. kirilowii xh-4 genome assembly. *the sex chromosome; **un-placed scaffolds/contigs.

reads (Table 1) to our assembled R. kirilowii genome using HiSAT2 (v2.2.1'*). For de novo prediction, Augustus
(v3.5.0%%) was used to predict gene structure based on hidden Markov models. Finally, a total of 122,035
protein-coding genes were predicted in our assembled R. kirilowii genome, with each sub-genome encoding
25,446 to 28,034 proteins (Table 2).

For gene function annotation, we employed the default parameters of the InterProScan (v5.53-87.0%, Jones
et al.'®) program to search Gene Ontology (GO) and Pfam databases. To annotate non-coding genes, various
types of non-coding RNAs, including tRNA, rRNA, snRNA, and miRNA, were annotated using the Rfam data-
base and Infernal (v1.1.4'7, Nawrocki and Eddy 2014) within cmscan program. The annotated genome was
visualized using circos plot (Fig. 3).

Data Records

Our assembled R. kirilowii xh-4 genome and annotation were deposited in the EBI-European Nucleotide
Archive, under accession number GCA_965206585'%, and in the Genome Warehouse in National Genomics
Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for
Bioinformation, under accession number GWHFGNY00000000.1 within Project PRJCA031461 that is publicly
accessible at https://ngdc.cncb.ac.cn/gwh'®. Raw Illumina short read, PacBio long read, and Hi-C sequencing
data for generating genome assembly and RNA-seq data for annotating the xh-4 assembly are available at NCBI
SRA under accession number PRJNA12009242°.

Technical Validation

Three methods were used to validate the quality of the assembled genome. First, to assess the accuracy and
completeness of our assembled R. kirilowii xh-4 genome, we conducted BUSCO (v5.4.6?') assessment within
the lineage of eudicots_odb10 (2326 single-copy genes) for both genome and annotated proteins. For assembled
genome, no any conserved single-copy genes were missing for xh-4 genome, and only 4.7% to 10.2% were miss-
ing for each sub-genome. Similarly results were for annotated proteins (Table 2). Secondly, merqury (v1.3%), a
k-mer based assembly evaluator, was performed, and a 92.56 recovery rate with low error was obtained, show-
ing high completeness of our assembly. Thirdly, we used the high-quality Illumina short reads to align back to
our assembled R. kirilowii xh-4 genome and each sub-genome using BWA-MEM2 (v 2.0pre2?*). The analysis
revealed that 94.93% to 95.75% of reads could be successfully mapped back to each assembled sub-genome, and
99.15% could be successfully mapped to all chromosomes (Table 2).
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Fig. 3 Landscape of the tetraploidy R. kirilowii xh-4 genome. (a) Chromosome-level sub-genome features
in R. kirilowii. (b) Orthologues between tetraploid R. kirilowii xh-4 sub-genomes and the previous haploid
R. kirilowii genome from (Zhang et al., 2023).

Code availability
No specific code was used in this study. All analytical processes were executed according to the program tutorials
or manuals. The key software parameters used in this study are as follows:

Trimmomatic: PE -threads 16 LEADING:20 TRAILING:20 SLIDINGWINDOW:4:20 MINLEN:90

GenomeScope v2.0: default

MaSuRCA: JE_SIZE = 40000000000 FLYE_ASSEMBLY =1, and other default

POLCA: default

3D-DNA: run-asm-pipeline.sh--mode diploid--input 10000--editor-coarse-resolution 2500000--editor-
coarse-region 7500000--editor-repeat-coverage 4--polisher-input-size 10000--polisher-coarse-resolution 100000
haploid.fasta merged_nodups.txt

fastANI:--threads 8--refList 0.reflist--queryList 0.qury.list--matrix--output 4.fastANLout

Braker3: braker.pl--species = arabidopsis--rnaseq_sets_ids = RNAseq_file--rnaseq_sets_dir = RNAseq_
dir--prot_seq = Proteins.faa--gff3--busco_lineage = eudicots_odb10--rounds =5

InterProScan: interproscan.sh -i protein.aa -f tsv -appl Pfam,SignalP_ EUK,TMHMM--goterms -pa--
iprlookup--cpu 32

cmscan:--rfam--cut_ga--nohmmonly--tblout 2.HJT.Chr.tblout--fmt 2 —clanin Rfam.clanin -cpu 16 Rfam.cm
genome.fasta

Infernal: default

BUSCO: -i genome.fasta--lineage eudicots_odb10--augustus--augustus_species arabidopsis -o output -m
genome--cpu 16

merqury: default

Meryl: k=20 count output read1.meryl read_1.fastq.gz

bwa-mem?2: mem -t 32 -M -a -o0 out.sam -R ‘@RG\tID:${mysample}\tSM:${mysample}\tPL:illumina’ ref.fasta
Read]l.fastq Read2.fastq

qualimap: bamqc -bam sorted.bam--java-mem-size = 32 G -outdir./qualimap/ -outformat pdf.
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