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HindwingLib: A library of leaf beetle 
hindwings generated by Stable 
Diffusion and ControlNet
Yi Yang1,2, WenJie Li1,3, RuiZe Liu4, ChengZhe Wu5, Jing Ren6, YiShi Shi4,5 ✉ & SiQin Ge   1,3 ✉

The utilization of datasets from beetle hindwings is prevalent in research of morphology and evolution 
of beetles, serving as a valuable tool for comprehending the evolutionary processes and functional 
adaptations under specific environmental conditions. However, the collection of hindwing images of 
beetles poses several challenges, including limited sample availability, complex sample preparation 
procedures, and restricted public accessibility. Recently, a machine learning technique called Stable 
Diffusion has been developed to statistically generate diverse images using a pretrained model 
with prompts. In this study, we introduce an approach utilizing Stable diffusion and ControlNet for 
the generation of beetle hindwing images, along with the corresponding results obtained from its 
application to a diverse set of 200 leaf beetle hindwings. To demonstrate the fidelity of the synthetic 
hindwing images, we conducted a comprarative analysis of three key metrics: Structural Similarity 
Index (SSIM), Inception Score (IS), and Fréchet Inception Distance (FID), which are crucial for evaluating 
image fidelity. The results demonstrated a strong alignment between the actual data and the synthetic 
images, confirming their high fidelity. This novel library of leaf beetle hindwings not only offers 
morphological image for utilization in machine learning, but also showcases the extensive applicability 
of the proposed methodology.

Background
As one of the most crucial functional organs in insects, wings play a pivotal role in insect flight and are considered 
a key feature contributing to the remarkable success of insect evolution1,2. Wing morphology serves as an indicator 
of the functional adaptation3–5 and evolutionary history of insects6,7. Beetles represent the most diverse group, with 
their specialized forewings and intricately folded hindwings8 being considered crucial morphological indicators 
that are both meaningful and indispensable for analyzing evolutionary patterns of wing morphology9.

The application of machine learning methodologies is widespread in entomological research, particularly in 
the domains of classification and detection. However, the effectiveness of these techniques is heavily reliant on 
the size of the training datasets available. Traditional machine learning model training is hindered by the scar-
city of large-scale publicly accessible beetle hindwing landmark datasets. Moreover, compiling and annotating 
substantial datasets is an inherently labor-intensive and time-consuming endeavor10. Therefore, the introduction 
of data generation technology is highly desirable to address the issue of insufficient data on insect wings.

The utilization of GAN-based data generation methods has already been employed in insect research for the 
purpose of data augmentation, primarily focusing on classification and detection tasks. The DCGAN, WGAN, 
and VAE are widely recognized as the most prevalent generative methods for synthesize insect11. However, these 
approaches often face limitations due to the instability of adversarial training and their reliance on large-scale 
datasets, which are particularly challenging to acquire in specialized domains like beetle hindwing morphology12. 
In contrast, diffusion-based frameworks, such as Stable Diffusion combined with ControlNet, offer a more stable 
and data-efficient alternative. Recent advancements in diffusion models have demonstrated remarkable capabilities 
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in generating biological images, such as generating high-resolution MRI from low-resolution counterparts13 and 
fully-annotated microscopy image datasets across various biological specimens14. Yet their application remains absent 
in specialized domains such as insect wing synthesis, where generative modeling could revolutionize morphological 
studies. By leveraging pre-trained text-to-image diffusion models and integrating spatial conditioning, our approach 
enables precise control over landmark-guided synthesis while requiring significantly fewer training samples.

The proposed approach leverages the Stable Diffusion model in conjunction with ControlNet to improve the 
efficiency of landmark dataset generation and directly addresses the limitations of existing approaches by facilitat-
ing the creation of extensive training datasets. The Stable Diffusion model, functioning as a pretrained large-scale 
model for image generation based on prompts15, exhibits strong creativity but lacks controllability. However, the incor-
poration of ControlNet, which has already been successfully employed in various forms of image generation, can 
address this limitation by enabling the generation of new hindwing images with adjustable landmarks16. The proposed 
approach was employed to augment the hindwing dataset, and we evaluate the performance of the augmented dataset. 
Encouragingly, the dataset exhibited promising fidelity. The main contributions of this study were as follows: 1) we pro-
posed a novel approach for generating hindwing images with controllable landmark geometry, 2) we generated a aug-
mented dataset with generated hindwing images which can improve the training of landmark detection networks. This 
approach would provide a novel perspective, contributing to an enhanced comprehension of the hindwings of beetles.

Methods
Hardware and Software Environment.  The research utilized Python 3.8.0 (Python Software Foundation, 
Beaverton, OR, USA) and PyTorch 1.13.1 (Facebook, Inc., Menlo Park, CA, USA) for code implementation. 
Experiments were carried out on a graphics workstation running Ubuntu 18.04.1 LTS OS, equipped with an Intel(R) 
Xeon(R) Platinum 8160 CPU, 256 GB RAM, and a 24 GB NVIDIA GeForce RTX 3090 GPU. The corresponding 

Landmark index Position description

1 Proximal anterior point of humeral plate (HP)

2 The crossing point of BSc and Sc

3 The point of Sc getting to bifurcate into ScA and ScP

4 The crossing point of ScP and RA

5 The crossing point of ScA and RA

6 The crossing point of rp-m1 and RA

7 Proximal anterior point of radial cell

8 Distal anterior point of radial cell

9 Distal posterior point of radial cell

10 Anterior point of r4 (or the crossing point of r4 and radial cell)

11 Proximal posterior point of radial cell

12 Proximal point of r3

13 Apical hinge

14 The anterior point of triangular area of radial cell’s distal side

15 The posterior point of triangular area of radial cell’s distal side

16 The proximal point of triangular area of radial cell’s distal side

17 The distal point of RA_4

18 The distal point of RA_1

19 The distal point of RP_2

20 The point of MP1+2 getting to bifurcate

21 The posterior point of r4, or the crossing point of r4 and rp-mp2

22 The proximal point of RP

23 Anterior point of mp-cua

24 The crossing point of rm-mp1and MP

25 The posterior of medial spur

26 Posterior point of mp-cua

27 The point of AA getting to bifurcate

28 The point of AA1+2 getting to fuse with CuA3+4

29 The posterior or distal point of AA3+4

30 The proximal point of cv

31 The posterior or distal point of AA1+2+CuA3+4

32 Anterior point of CuA1+2+MP4

33 The distal point of cv

34 Posterior point of CuA1+2+MP_4

35 The base point of AP3+4

36 The posterior point of AP3+4

Table 1.  Basic information about 36 landmarks on leaf beetle hindwings30.

https://doi.org/10.1038/s41597-025-05010-y


3Scientific Data |          (2025) 12:680  | https://doi.org/10.1038/s41597-025-05010-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

versions of NVIDIA CUDA (NVIDIA Corporation, Santa Clara, CA, USA) and cuDNN (NVIDIA Corporation, 
Santa Clara, CA, USA) used were 11.6 and 8.3.2, respectively.

Images and datasets preparation.  The dataset comprises images of 256 leaf beetle hindwings, represent-
ing 16 subfamilies and 231 genera. The dataset consists of 36 identical landmarks Table 1, which were selected 
due to their biological significance and critical roles in the distribution of hindwing veins, encompassing intersec-
tions, bases, and terminations or origins of these veins Fig. 1. These landmarks serve as key reference points for 
understanding the morphological variation and evolutionary adaptations among leaf beetles17.

The annotation structure adheres to COCO dataset guidelines18, comprising image information and land-
mark annotation details. Image data includes the index (“id”), path (“file_name”), width (“width”), and height 
(“height”). Landmark annotations feature several fields.

Images are in TIFF format, with dimensions of 4288 × 2848 pixels. The methodology for processing these 
images is detailed in previous research17. Specimen hindwings were obtained through careful dissection with 
a LEICA MZ 12.5 microscope, then photographed using a Nikon D500s camera attached to a Zeiss Stereo 
Discovery V12 stereoscope. The origin for landmark coordinates is the lower left corner of the image.

The landmark coordinate array (“Keypoints”) has a length of 3 k, where k is the number of landmarks  
(36 here). Each landmark includes an x, y coordinate, and a visibility flag (v), which is always redundant in this 
context as visibility is guaranteed. Landmarks are referenced from the top left, with coordinates adjusted based 
on image height. The bounding box (“Bbox”) identifies the hindwing’s position with the first two values for the 
upper-left point, followed by width and height18.

Network Architecture.  The utilization of text-to-image models provides unparalleled flexibility in 
directing the creative process through natural language. It can be effectively harnessed to generate images 
depicting specific unique concepts, modify their appearance, or compose them in new roles and novel scenes. 
And the process of generating novel outputs is guided by a control image derived from the single image pro-
vided by the user. A single image, when combined with fine-tuned control images, is sufficient to generate 
diverse samples and is of particular significance. In the following section, we provide an overview of the 
fundamental aspects involved in applying ControlNet to our leaf beetle hindwing image and landmark data 
generation.

Latent Diffusion Models.  The LDM loss is then given by: 

~ ~L E z t c y( , , ( )) (1)LDM z x y t t( ), , (0,1), 2
2

N ε ε= 
 − 

ε ε θ θ

where t is the time step, zt is the latent noised to time t, ε is the unscaled noise sample, and εθ is the denoising 
network. The objective here is to effectively remove the noise that has been added to a latent representation of 
an image. During the training process, cθ and εθ are jointly optimized in order to minimize the LDM loss. 
During the inference process, a random noise tensor is sampled and iteratively denoised to generate a new 
image latent representation, z0. Finally, this latent representation is transformed into an image using the 
pre-trained decoder ′ =x D z( )0 .

Stable Diffusion model.  The Stable Diffusion model, a large-scale implementation of latent diffusion15, is 
engineered for text-to-image generation tasks. It encodes textual prompts into latent embedding vectors 

Fig. 1  The distribution of the hindwing landmarks and the names of the hindwing veins for the leaf beetle 
(Potaninia assamensis)30.
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using a pretrained CLIP model19, which has been trained on a diverse dataset of 512 × 512 images from 
the LAION-5B database. The architecture of Stable Diffusion, illustrated in Fig. 2b, employs a U-Net com-
prising an encoder, a middle block, and a skip-connected decoder. The model processes text prompts by 
converting them into tokens, embedding these tokens into continuous vectors, and transforming them 
into a conditioning code cθ(y) that guides the generative process. The U-Net architecture consists of  
12 encoder blocks and 12 decoder blocks, with intermediate Vision Transformer (ViT) layers facilitating 
cross-attention mechanisms. During inference, a noise tensor is iteratively denoised through these layers 
to generate a coherent latent representation, which is then decoded into an image by the pretrained VAE 
decoder.

ControlNet.  To enhance the controllability of the generated images, especially concerning the specific geomet-
ric distribution of beetle hindwing venation, we integrate ControlNet into the Stable Diffusion framework. As 
depicted in Fig. 2c, ControlNet modifies the Stable Diffusion model by introducing additional network layers 
that process conditional inputs, such as edge maps extracted from hindwing images. These conditional layers 
are designed with a hierarchical structure that mirrors the U-Net architecture, allowing for stepwise denoising 
while maintaining the integrity of the wing vein contours. Furthermore, the ControlNet architecture features 
repeated modules corresponding to the layers within the Stable Diffusion model’s U-Net. This repetitive, hierar-
chical structure is crucial for the stepwise denoising process characteristic of latent diffusion models. By aligning 
ControlNet’s layers with those of Stable Diffusion, ControlNet can effectively guide each denoising stage, pro-
gressively transforming noise into a clear, detailed image. This integration ensures that the geometric contours 
of the hindwing venation remain unchanged, thereby maintaining the structural fidelity of the beetle hindwings 
while producing high-quality images.

Generation of augmented landmark data set using Stable Diffusion and ControlNet.  As illustrated in 
Fig. 2a, the Canny edge detection method is applied to a given hindwing image to generate its corre-
sponding edge map using ControlNet. To create variability, random offsets are introduced to 36 designated 

Fig. 2  Procedure of the hingwing generation: a) Hindwing Generation Process: The process begins with 
applying the Canny edge detector to the reference hindwing image to produce an edge map. This edge map, 
along with landmark coordinates, serves as input for the Thin Plate Spline (TPS) transformation module, 
generating a new edge image with modified landmark positions. The altered edge image and a textual prompt 
are then provided to the Stable Diffusion (SD) model to produce a hindwing image reflecting the landmark 
adjustments. b) Stable Diffusion Architecture: A textual prompt is first tokenized into word or sub-word 
indices and converted into continuous embedding vectors. These embeddings are further transformed into a 
conditioning code cθ(y) that directs the generative model during image synthesis. c) ControlNet Integration 
with Stable Diffusion: The Stable Diffusion model’s U-Net architecture is depicted with gray blocks, while 
ControlNet modules are shown in blue. ControlNet introduces additional layers that incorporate conditional 
inputs, enabling controlled generation of images while maintaining structural consistency. The repeated module 
structure within ControlNet aligns with Stable Diffusion’s layers, facilitating the progressive denoising process 
and ensuring that wing vein contours remain intact throughout image generation.
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landmarks on the hindwing, resulting in a new set of landmark coordinates. These original and offset coor-
dinates are used as reference points in a Thin Plate Spline (TPS) transformation, which locally deforms the 
edge map to reflect the altered landmark positions. The deformed edge map serves as the conditional input 
for ControlNet, accompanied by the text prompt “a hindwing extracted from body.” The Stable Diffusion 
model then utilizes these inputs to generate a synthesized hindwing image that incorporates the adjusted 
landmark positions.

The creation of a comprehensive database follows these steps Fig. 3:

	 1.	 Image Resizing and Conversion: Use an image scaling script to resize the tif images to 512  × 1024 pixels 
and convert them to png format.

	 2.	 Operator map generation: A group of operators are applied to generate a map on the hindwing image. This 
map highlights key features and landmarks on the wing.

	 3.	 Landmark Extraction and Adjustment: Extract the coordinates of landmarks along the hindwing veins. 
Adjust these coordinates by adding an offset. The offset is drawn from a Gaussian distribution with a mean 
of 0 and a standard deviation of 10 pixels.

	 4.	 Local Deformation using Thin Plate Spline (TPS): Apply TPS to locally deform the operator map. The 
original and offset coordinates serve as the reference points before and after transformation.

	 5.	 ControlNet and Image Generation: Use the deformed detected_map as the control condition for Con-
trolNet. Generate a new hindwing image with the prompt “A hindwing extracted from body” for stable 
diffusion.

The procedures can be replicated by cloning the BeetleHindwing repository and executing main.py.

Data Record
The full dataset can be accessed on Zenodo (https://doi.org/10.5281/zenodo.10889131)20. The dataset is com-
pressed into a single zip file, which includes two sub-folders of images and annotations. The images folder 
includes sub-folders representing four operators. Each operator folder comprises of eight sub-folders for the 
subfamilies of leaf beetles, with the sub-folder names corresponding to the subfamily names. Each of these 
subfolders contains media files (.png) for illustrating the generated images of the hindwings of the leaf beetles. 
They also include intermediate operator images and TPS (Thin Plate Spline) interpolated images, allowing users 
to generate new images.

Fig. 3  A selection of representative leaf beetle hindwing images are shown, where each row depicts a species, 
as well as each key stage of data processing required followed by the final generated images. Starting with 
image preparation and conversion, proceeding through operator map application, landmark extraction and 
adjustment, TPS-based deformation, and culminating in stable diffusion-driven image generation, each step 
illustrates progressive transformation in plant beetle hindwing processing.
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In addition to the folder images, the folder annotations contains an annotation file, train.json. This json 
file provides annotation information about the size of each leaf beetle hindwing image and the coordinates of 
landmarks on the corresponding hindwing. The complete directory tree and a brief description of each file are 
shown in Fig. 4.

Technical Validation
Comparison of the Performance of 4 ControlNet Pre-trained Models.  Based on Potaninia 
assamensis (Chrysomelinae), we employed four operators, namely canny, depth, normal, HED, to generate con-
trol images (as shown in Fig. 5) as input of the ControlNet + SD. All prompts are set to “a hindwing extracted 
from body”, resulting in the generated images shown as in Fig. 5. It is evident that the images controlled by canny 
and HED closely resemble bettle hindwings, while those controlled by depth and normal exhibit excessive col-
lateral branches.

Comparison of the performance of hindwings in different subfamilies of leaf beetle.  The prompt 
should be set as “a hindwing extracted from body” using the operator being canny + control_v11p_sd15_canny. 

Fig. 4  The directory tree of the dataset and a brief description of each file.
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The generated image size was set to 1024 × 512. The “Control mode” was set to “Balanced”. The results of gen-
erating the hindwings of six subfamilies of leaf beetles are displayed in Fig. 3 using the canny operator with 
ControlNet and SD. The generated images of Galerucinae, Alticinae, Criocerinae, Cassidinae, and Bruchinae 
exhibit a high degree of realism and completeness, and only the image of Chrysomelinae appears to be lacking in 
completeness.

Similarity between the generated and real hindwing images.  The performance evaluation of 
ControlNet + Stable-Diffusion in hindwing image generation involves the utilization of Structural SIMilarity 
(SSIM), Inception score (IS), Fréchet Inception Distance (FID)21, and Learned Perceptual Image Patch Similarity 
(LPIPS)22 to quantify the resemblance between the similarity of generated images to real ones.

The IS metric is employed to assess the quality of the generated hindwing images. This metric serves as an 
effective evaluation tool, exhibiting a strong correlation with human judgment. It is defined as follows: 

xp y p yexp( KL ( ( ) ( ))) (2)x

where images that contain meaningful objects should have a conditional label distribution p(y∣x) with low 
entropy, and the model generated varied images should have a marginal distribution ∫ p(y∣x = G(z))dz with high 
entropy. The metric is exponentiated to facilitate easier comparison. The pretrained Inception model [http://
download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz]23 is employed for each generated 
image to obtain the conditional label distribution p(y∣x) as described by Salimans et al.24.

The FID metric exhibits greater consistency with the noise level compared to the IS. We call the Fréchet 
distance d(.,.) between the Gaussian with mean (m, C) obtained from p(.) and the Gaussian with mean (mw, Cw) 
obtained from p(.)w the “Fréchet Inception Distance” (FID), which is given by25: 

= − + + −d m C m C m m C C CC(( , ), ( , )) Tr ( 2( ) ) (3)w w w w w
2

2
2 1/2

The FID computation involved propagating all images from the training dataset through the pretrained 
Inception-v3 model, following the calculation of the Inception Score24. The last pooling layer is utilized as the 
coding layer, following with the calculation of the mean mw and the covariance matrix Cw.

We employ LPIPS with 5 conv layers from the VGG network, which has become the established standard for 
image generation tasks26–28. Specifically, the conv1-conv5 layers are as described in29.

The LPIPS is calculated as the distance between reference and distorted patches x, x0 using a network. The 
feature stack is extracted from L layers and unit-normalized in the channel dimension, which are designated as 

y y,l l H
0

l� � ∈ ×Wl × Cl}\) for layer l. The activations are scaled channel-wise by a vector wl Cl∈   and the ℓ2 dis-
tance is computed. The final step involves spatial average and channel-wise summation.

Fig. 5  The generation effect of the hindwings of the beetle corresponding to four operator-controlled charts in 
ControlNet + SD is presented.
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The generated image dataset is evaluated using SSIM, IS, FID, and LPIPS metrics in Fig. 6a–d to quantify the 
similarity between the generated and original image datasets. The figures demonstrate that the Chrysomelinae 
subfamily exhibits the highest level of IS, the lowest FID, and relatively low LPIPS scores, indicating that images 
generated from this subfamily possess superior realism. On the contrary, the Bruchinae subfamily exhibits the 
lowest IS, highest FID, and relatively high LPIPS scores, suggesting that the generated images from this par-
ticular subfamily possess diminished realism. The lower realism scores observed for the Bruchinae subfamily 
can be primarily attributed to the limited number and quality of the input samples available. The photographs 
of Bruchinae specimens are less clear and suffer from uneven lighting conditions, which may introduce greater 
deviations during intermediate processing stages such as the extraction of vein patterns. Since these vein pat-
terns serve as a crucial input to the ControlNet model, which dictates the contours of the generated images, 
any deviation can lead to distorted outputs. This distortion is the key reason behind the lower realism scores 
for the Bruchinae. To ensure the generation of high-quality images, it is essential to acquire high-quality input 
sample images.

The proposed approach can be effectively extended to other types of insect wings, provided that 
appropriate image datasets are collected. This approach holds the potential to significantly enhance our 
understanding and documentation of insect morphology across a wide array of species. By leveraging 
ControlNet’s capabilities to generate realistic and detailed imagery, researchers can explore morphological 

Fig. 6  Four similarity metrics of four operators on six subfamilies.
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variations and adaptations in other insect groups, ultimately contributing to the fields of taxonomy, evolu-
tionary biology, and ecological studies. This adaptability underscores the broad applicability of our method 
and supports its use as a valuable tool for entomologists and other researchers working with limited or 
challenging datasets.

Code availability
Code is available on Github https://github.com/mgcyung/BeetleHindwing.
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