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Dengue fever has been spreading rapidly worldwide, with a notably high prevalence in South American
: countries such as Brazil. Its transmission dynamics are governed by the vector population dynamics and
. the interactions among humans, vectors, and pathogens, which are further shaped by environmental
. factors. Calculating these environmental indicators is challenging due to the limited spatial coverage
. of weather station observations and the time-consuming processes involved in downloading and
processing local data, such as satellite imagery. This issue is exacerbated in large-scale studies, making
. it difficult to develop comprehensive and publicly accessible datasets of disease-influencing factors.
. Addressing this challenge necessitates the efficient data integration methods and the assembly
. of multi-factorial datasets to aid public health authorities in understanding dengue transmission
mechanisms and improving risk prediction models. In response, we developed a population-weighted
. dataset of 12 dengue risk factors, covering 558 microregions in Brazil over 1252 epidemiological weeks
. from 2001 to 2024. This dataset and the associated methodology streamline data processing for
. researchers and can be adapted for other vector-borne disease studies.

Background and Summary

Dengue fever is an acute viral infectious disease transmitted by mosquitoes and is widely distributed in urban

or semi-urban areas in more than 100 countries and regions in the tropics and subtropics worldwide, posing a

serious threat to people’s lives and health!. In 2024, approximately 90 countries have so far reported active den-
: gue transmission, and by 5" September, the total number of reported cases had reached more than 11 million in
. the Americas®. The number of people at risk of dengue is predicted to reach 6.1 billion (4.7-6.9 billion) by 2080,
© accounting for more than 60% of the world’s population®. Brazil, facing the worst dengue fever situation globally,
* with a reported 3,088,723 cases in 2023*, and over one million cases in the first two months of 2024°. Due to the
. lack of an effective vaccine, accurate and timely dengue risk prediction has become crucial for disease preven-
© tion and control®, particularly for the joint management of dengue outbreaks. Utilizing environmental datasets
© to establish the relationship between factors such as climate, environment, human activities and dengue can sup-
. port research on dengue mechanisms and improve risk prediction. Epidemiological data in Brazil are publicly
- available®, and several projects and studies have highlighted the availability of dengue datasets for researchers to
: investigate transmission mechanisms and develop predictive models’. For example, Info Dengue platform is a
: hybrid data-based arbovirus alert system consists of three processes: data collection, coordination, and analysis.
. By a combination of social networks and climate and epidemiological data, it can generate indicators of the
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epidemiological status of dengue and other arboviruses such as Zika and chikungunya at the municipal level for
788 cities in Brazil®. However, to date, effective methods for calculating dengue environmental factors and the
complete and comprehensive Brazilian environmental datasets specifically for studies on dengue transmission
mechanisms and risk prediction remain unavailable. Given the critical dengue epidemic in Brazil, establishing
a complete set of environmental datasets is essential for analyzing outbreaks and improving prevention and
control efforts.

Environmental datasets are of great importance for modeling the spatial and temporal spread of dengue,
especially in a country as diverse as Brazil®, where significant heterogeneity exists in the timing and inten-
sity of dengue transmission'®. Previous studies have explored the association of numerous environmental
factors (e.g., temperature!>!?, precipitation'>!*, relative humidity'>!®, atmospheric pressure!”'8, wind speed's,
the Palmer Drought Severity Index (PDSI)*°, and the Normalized Difference Vegetation Index (NDVT)**2!)
with the incidence of dengue. These factors affect the life cycle, survival, and biting rate of Aedes aegypti, as
well as the incubation period of the virus, thereby shaping the spatial and temporal patterns of dengue epi-
demics. Due to the strong hematophagous nature of dengue vectors? and their limited range of movement,
human-to-vector-to-human transmission serves as a key route for the spread of the dengue virus. Consequently,
human factors play a significant role in dengue virus transmission. Previous studies have explored the relation-
ship between urbanization' and dengue risk, as well as the impact of dengue fever on gross domestic prod-
uct (GDP)*. Most dengue risk prediction studies use environmental factors from weather stations?*. However,
the limited spatial representativeness of weather station-based observations poses challenges for efficient and
accurate dengue risk prediction. In addition, the time-consuming nature of downloading and processing sat-
ellite images and ready-to-use data such as PDSI and NDVI further complicates large-scale dengue studies. To
address these challenges, it is essential to develop an efficient methodology for constructing a spatiotemporal
dataset of dengue influencing factors, enabling more accurate and timely predictions of dengue outbreaks.

In recent years, geospatial big data has become a global focus, attracting increasing attention from various
organizations®. It encompasses vast amount of specific types of data with location information, offering tre-
mendous opportunities to advance scientific discoveries across diverse fields, such as climate science, disaster
management, public health, precision agriculture and smart cities?*. However, the inherent complexity of geo-
spatial big data, characterized by its multi-source, multi-scale, high-dimensional, dynamic, heterogeneous, and
non-linear nature, introduces numerous challenges, spanning the entire data lifecycle, from acquisition and
storage to searching, sharing, transmission, analysis, and visualization®”. There is an urgent need for advanced
methods to address these issues in order to fully leverage the potential of geospatial big data. Currently, the
main approaches are based on two platforms: cluster-based high-performance computing (HPC) systems and
cloud computing platforms?. The introduction and application of cloud computing have significantly reduced
the complexity and labor costs associated with dataset creation®’. Cloud computing platforms such as Google
Earth Engine (GEE), PIE Engine, and Amazon Web Services are widely used. For example, GEE hosts several
petabytes of global satellite imagery (e.g., MODIS, Landsat, and Sentinel) and ready-to-use datasets on var-
ious themes, such as climate, land cover, agriculture, urbanization, and population. It also supports various
algorithms, including image preprocessing, spatial and temporal analysis, and image classification, as well as
parallel computing capabilities®*!. GEE has become an important tool in public health research, particularly in
the study of infectious diseases like malaria®** and Zika*. However, datasets related to the factors influencing
dengue transmission remain underdeveloped. Therefore, to produce dengue-related datasets based on GEE, it is
essential to identify the appropriate data sources for generating spatial-temporal predictions of environmental
factors that affect dengue transmission.

Here, this study presents a geospatial big data cloud-based framework for identifying common environmen-
tal factors associated with dengue transmission at the microregion scale, per epidemiological week, in Brazil.
The framework aims to facilitate access to publicly available geospatial big data and cloud computing platforms
for public health researchers. By specifying the spatial and temporal resolution, and the spatial extent required
to generate environmental datasets, as well as by making the methodology and code publicly available, this
approach can reduce duplication of efforts in dataset creation.

Methods

Brazil, officially known as the Federal Republic of Brazil, is the largest country in South America and the fifth
largest in the world, and located in the eastern part of South America (Fig. 1). In Brazil, the area of dengue
transmission has been expanding southward and toward the central regions of the country®>*. Studies have
shown the impact of extreme weather events, such as droughts and floods', on the distribution of dengue cases.
Meanwhile, the economic expansion into the Amazon region through road construction and deforestation has
also contributed to the widening of dengue transmission area*”**. In addition, long-term temperature increases
have also been shown to play a significant role in this expansion®. Therefore, an integrated consideration of
environmental factors related to temperature, precipitation, and urbanization is crucial for understanding den-
gue transmission mechanisms and improving risk prediction models.

Many studies utilized dengue cases reported by the Sistema de Informagao de Agravo de Notificagdo
(SINAN)®1>4, which reports the dengue cases since 2001. This dataset provides clinical, sociodemographic,
and laboratory information on patients with confirmed dengue fever. Currently, most studies on dengue risk in
Brazil are conducted at the microregion level'®*!. In Brazil, 5570 municipalities are aggregated into 558 microre-
gions, 5 regions (Fig. 1), which are commonly used as spatial units for analyzing the spatial patterns of infec-
tious diseases. Accordingly, this study established a dataset of environmental factors at the spatial scale of 558
microregions, spanning a temporal scale of 1252 epidemiologic weeks from 2001 to 2024 (Fig. 2).

The dataset presents a list of dengue environmental factors, including (1) total precipitation per week; (2)
number of rainy days per week; (3) maximum, mean, and minimum temperatures; (4) mean relative humidity;
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Fig. 1 Illustration of 558 microregions and 5 regions in Brazil.

(5) mean atmospheric pressure; (6) mean wind speed; (7) Palmer Drought Severity Index (PDSI); (8) mean
Normalized Difference Vegetation Index (NDVTI); (9) Gross Domestic Product (GDP); and (10) building surface
area (Table 1).

Population-weighted spatial aggregation. Because the dengue vectors have strong anthropophilic
behavior?? and virus-carrying mosquitoes have a limited range of activities, human-to-vector-to-human
transmission has become the main route of dengue virus transmission. Therefore, it is necessary to fully con-
sider the distribution of the population while computing the environmental factors in each microregion. The
population-weighting operation can reflect the situation of environmental factors in areas with population distri-
bution*?. This facilitates further studies such as subsequent integration with the distribution of dengue cases for
driver factor identification or risk mapping. In this study, the Brazilian population distribution data derived from
WorldPop project dataset*® was used to apply the population-weighting approach to each environmental factor,
to reduce the impact of environmental factors in uninhabited areas on the analysis of dengue transmission mech-
anisms. We selected the Brazilian population data from 2001 to 2020. Due to the lack of population data from
2021 to 2024 in the current WorldPop dataset, we used the 2020 population data to implement the population
weighting on the data from 2021 to 2024 in this study.

Sum precipitation and number of rainy days. We obtained precipitation data for Brazil from 2001 to
2024 at a spatial resolution of 11,132 meters through the Earth Engine Data Catalog website (https://develop-
ers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR). This dataset originates
from the Copernicus Climate Data Store*. ERA5-Land is a high-resolution reanalysis dataset that provides con-
sistent land surface data over decades, enhanced by atmospheric forcing from ERA5 to ensure accuracy®. In this
study, we calculated the total precipitation for each microregion during the epidemiologic week. Precipitation
here refers to the sum of mass and convective precipitation. The precipitation data, measured as depth (in meters),
was convert to millimeters (mm) in GEE. This metric represents the depth of water uniformly distributed over
the grid. To describe precipitation frequency, we used the number of rainy days per week. Previous studies have
shown a relationship between the frequency of rainy days in a certain time cycle and dengue fever cases*.

Maximum, mean and minimum temperature. We obtained temperature data for Brazil from 2001 to
2024 at a spatial resolution of 11,132 meters through the Earth Engine Data Catalog website (https://developers.
google.com/earth-engine/datasets/catalog/ ECMWF_ERA5_LAND_HOURLY). This dataset originates from the
Copernicus Climate Data Store**. The temperature represents the hourly air temperature at 2 meters above the
surface of the land, ocean, or inland waters. It is calculated by interpolating between the lowest level of the model
and the Earth’s surface based on atmospheric conditions*. The dataset provides temperature in kelvin, which we
converted to degrees Celsius here.

Mean relative humidity. In this study, since there are no relative humidity dataset at large temporal and
spatial scales, we used the dew point temperature and temperature from the ERA5-Land dataset to calculate rel-
ative humidity (%). The calculation is based on the Magnus formula:
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Fig. 2 The proposed framework for generating dengue environmental factors at multiple spatial and
temporal scales based on the GEE platform. Part (a) represents the temporal composition of images based on
epidemiological weeks and environmental datasets with a population-weighting operation. Part (b) represents
the spatial aggregation of image collections to the Brazilian microregional scale.

Dengue-associated factors in Brazil | Data sources Spatial resolution | Temporal resolution | Period
Microregion IBGE 558 — 2020
Population distribution WorldPop 100m — 2001-2020
Total precipitation Daily

Number of rainy days Weekly

Maximum temperature

Minimum temperature

ERA5-Land 11,132m 2001-2024

Mean temperature
Hourly

Mean relative humidity
Mean atmospheric pressure
Mean wind speed
PDSI TerraClimate 4638 m Monthly 2001-2024
Mean NDVI MODO09GA 463 m Daily 2001-2022
GDP Global Electric Consumption revised GDP | 1000 m Yearly 2001-2019
Building surface area GHSL 100m Yearly 2000, 2005, 2010, 2015, 2020

Table 1. List of global gridded variables used in this study.

ex 17.67 x Ty
P 2435+ T
1767><T)

Relative Humidity(%) = 100 x
exp(m 5+T

(1)

where T, represents the dew point temperature (°C), and T represents the temperature (°C). We chose the two
parameter values of 17.67 and 243.5°C based on those used in the presentation by NOAA’s*.
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Mean atmospheric pressure. We obtained surface pressure data for Brazil from 2001 to 2024 at a spatial
resolution of 11,132 meters through the Earth Engine Data Catalog (available from https://developers.google.
com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY). This dataset was sourced from the
Copernicus Climate Data Store*. Surface pressure, measured in Pascals (Pa), indicates the atmospheric force per
unit area at a given location, representing the weight of the air column above that point.

Mean wind speed. We also obtained wind speed data for Brazil from 2001 to 2024 at a spatial resolution
of 11,132 meters through the Earth Engine Data Catalog (https://developers.google.com/earth-engine/datasets/
catalog/ECMWEF_ERA5_LAND_HOURLY). This dataset was sourced from the Copernicus Climate Data Store.
The data, measured in meters per second (m/s), includes both the eastward (U component) and northward (V
component) wind components at a height of 10 meters. To calculate the total wind speed, we combined these
components using the following formula:

Wind Speed = U? + V> (2)

where U represents the eastward wind speed component (m/s), and V represents the northward wind speed
component (m/s).

Palmer drought severity index.  The Palmer Drought Severity Index (PDSI) dataset used in this study was
sourced from TerraClimate*® in the Earth Engine Data Catalog (https://developers.google.com/earth-engine/
datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE). This dataset has a monthly temporal resolution and a
spatial resolution of 4638.3 meters.

Mean normalized difference vegetation index. We obtained the Normalized Difference Vegetation
Index (NDVI) data for Brazil from 2001 to 2022 at a spatial resolution of 463.3 meters through the Earth Engine
Data Catalog (https://developers.google.com/earth-engine/datasets/catalog/MODIS_MODO09GA_006_NDVI).
This dataset was sourced from the NASA LP DAAC at the USGS EROS Center. NDVTI is a value between -1 and
1 which has widely used in environmental health studies*. 0 represents the absence of vegetation. Scores which
close to 1 represent the highest possible density of vegetation. On the contrary, scores which close to -1 represent
the presence of water™.

Gross domestic product. The gross domestic product (GDP) dataset used in this study is based on the
calibrated nighttime light data’'. This dataset has a spatial resolution of 1km and a temporal resolution span-
ning from 1992 to 2019. The unit of the GDP index is millions of US dollars (2017 valuation). For this study, we
obtained the 2001-2019 yearly GDP values and calculated them in 558 microregions.

Building surface area. In this study, we used built-up surface as an indicator of urbanization. We obtained
data on the building surface area for each microregion in Brazil from the GHSL (Global Human Settlement Layer)
dataset™. The GHS-BUILT-S product, derived from Sentinel-2 composite and Landsat, includes the data on both
the total built-up surface and the built-up surface allocated to dominant non-residential uses**. The dataset pro-
vides data for five years (2000, 2005, 2010, 2015 and 2020) with the built-up surface data spatially-temporally
interpolated or extrapolated from 1975 to 2030 at five-year intervals. The spatial resolution is 100 meters. In GEE,
we calculated the building surface area in 558 microregions by extending the values contained in the GHSL data-
set backward by 4 years to obtain complete annual data from 2001 to 2024. Figure 3(1) shows the building surface
area in square kilometers (km?) in 2019.

The graphs below show the spatial distribution of dengue-associated factors across 558 microregions in
the 15th epidemiological week, 2019 (Fig. 3) and the temporal distribution of dengue-associated factors in the
Federal District of Brazil, identified as microregion 53001 (Fig. 4). The factors shown in Fig. 4 are recorded in
the dataset on a daily or hourly basis, which are suitable for time series analysis.

Data Records

All output datasets described in this article are publicly and freely available through the Zenodo Repository>
(https://doi.org/10.5281/zenodo.15091652). The dataset contains 12 CSV files of dengue-related factors and a
zip file of 558 microregions in Brazil. The first line of all CSV files includes the time of each variable, and each
column contains the specific data of 558 microregions at each time.

Technical Validation. Meteorological grid-based datasets are usually generated through numerical weather
prediction models that integrate multiple data sources, such as weather station observations, satellite remote
sensing, radar, etc. These data are interpolated or assimilated to provide meteorological information covering
extensive areas®®. Therefore, the accuracy of such data is affected by both the model used and the data process-
ing methods. Although weather station data are often considered accurate observations, they are limited to the
specific locations of the stations and cannot be generalized for large-scale studies. Therefore, for dengue transmis-
sion studies at the national microregion level, the use of high-spatial-resolution grid-based datasets is essential.
The ERA5-Land dataset used in this study is a land surface reanalysis dataset derived from ECMWF’s ERA5
atmospheric reanalysis data®. It uses the same meteorological forcings (e.g., precipitation, temperature, radia-
tion) as ERA5 but runs the land surface model (HTESSEL)*” at a higher spatial resolution. It should be noted that
ERAS5-Land does not directly assimilate land observations but instead relies on atmospheric conditions provided
by ERAS. To validate the datasets we produced by ERA5-land, we compare it with daily data from more than 200
conventional weather stations in Brazil, sourced from the National Institute of Meteorology (Instituto Nacional
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Fig. 3 Illustrative maps of microregion-level dengue-associated factors. The factors include minimum
temperature (a), mean temperature (b), maximum temperature (c), total precipitation (d), number of rainy days
(e), mean relative humidity (f), mean NDVI (g), mean pressure (h), mean wind speed (i), PDSI (j), GDP (k),
and building surface area (1). (a—i) shows the factors in a single epidemiological week (15th epidemiological
week of 2019); (j) shows the PDSI in April 2019; (k,1) shows the GDP and building surface area in 2019.

de Meteorologia, INMET). This dataset contains meteorological data from 1961 to 2019, with 6 variables selected
for analysis: (a) precipitation, (b) relative humidity, (c¢) minimum temperature, (d) maximum temperature, (e)
atmospheric pressure, and (f) wind speed (Fig. 5).

Since the datasets we generated are population-weighted, and the distribution of the population has a large
impact on the results during the validation process. We aimed to ensure that the weather station locations were
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Fig. 4 Time series illustration of dengue-associated factors in the Federal District of Brazil (microregion
code: 53001). Factors include (a) NDVI, (b) wind speed, (c) atmospheric pressure, (d) relative humidity, (e)
precipitation, (f) number of rainy days, and (g) temperature.

situated in densely populated areas relative to the average population density in each microregion. Therefore,
in the process of verifying the validity of the dataset, we selected data from meteorological stations located in
densely populated areas. This approach allows for meaningful comparison between the weather station observa-
tions and the population-weighted data.

The verification process included the following steps: 1) In the Google Earth Engine platform, we first cal-
culated the average population density of each microregion and the population density at the pixel where each
weather station is located. We then removed stations located in sparsely populated areas. 2) Given temporal
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resolution of our data, we calculated daily weather values and resampled them based on epidemiological week
in 2019. 3) To assess the reliability of the population-weighted dataset obtained in this study, we calculated
the Pearson correlation coefficients and p-values for the six variables and their corresponding observations. 4)
Since data from conventional weather stations are missing at certain time points and for specific variables, we
excluded these weather stations with missing values from the calculation of the Pearson correlation coefficients

and p-values.
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Fig. 6 Illustration of the comparison of station and calculation maximum temperature over time of 52
epidemiology weeks in 2019 (weather station code: 43428, microregion code: 31001).

We used the data in 2019 to carry out the above-mentioned steps. We selected 100 weather stations from
265 conventional weather stations of the National Institute of Meteorology. The data showed that the average
Pearson correlation coefficient and p-value for weekly precipitation totals across 77 stations was 0.61 and 0.01,
respectively, while for weekly mean relative humidity, it was 0.78 and 0.02 across 70 stations, respectively. The
average Pearson correlation coefficients for maximum and minimum temperatures were 0.66 and 0.71, and their
p-values were 0.06 and 0.05 respectively. For atmospheric pressure and wind speed, the Pearson correlation
coefficients were 0.83 and 0.58 for 59 and 53 stations, and their p-values were 0.07 and 0.11 respectively. Figure 5
shows the distribution of the Pearson correlation coefficients for the six weather factors across microregions. The
verification process showed that the datasets we generated have a strong linear relationship with the weather sta-
tion data at the spatiotemporal scale. Given that the population distribution factors in our dataset influence the
values, we conclude that the dataset produced in this study is reliable. Figure 6 shows the example comparison
of the conventional weather station data and the population-weighted data over time of 52 epidemiology weeks
in 2019 (weather station code: 43428, microregion code: 31001).

Usage Notes

The datasets compiled in this study can be used for research related to dengue risk prediction and the iden-
tification of driving factors in Brazil. The dataset can also help public health departments implement
microregion-level dengue prevention strategies. In addition, the dataset is also applicable to studies of other
vector-borne infectious diseases, such as chikungunya58 and yellow fever®®, which have the same vectors (i.e.,
Aedes aegypti and Aedes albopictus). However, this dataset has several limitations that should be noted while
using our data. First, due to the absence of population data from 2021 to 2024 in the WorldPop dataset, we used
the 2020 population data to perform population weighting on the data from 2021 to 2024 based on the assump-
tion that the population will not change significantly in the few years. We plan to update the dataset with the
latest WoldPop population data as it becomes available. Second, the resolution constraints of both the factors
and population data may limit the applicability of our method to microregion scales or larger spatial scales
(e.g., mesoregions in Brazil). For municipality-level analysis, higher-resolution data would be better. Third, the
large-scale climate raster data currently available on the Google Earth Engine (GEE) platform are generally
derived from a combination of numerical meteorological models and observational data. The data assimilation
outcomes may exhibit systematic biases, particularly in regions with sparse observational coverage®. Last, it is
important to note that variables such as GDP and building surface area change on an annual basis, so this study
does not capture changes in the economy or urbanization process on an epidemiological weekly scale.

Code availability

The code used to generate the microregion-level dengue-associated factor datasets in Google Earth Engine,
and the code for processing the generated data are freely available for download from GitHub (https://github.
com/663z/Spatiotemporal-dataset-of-dengue-influencing-factors-in-Brazil.git). These codes were written in
JavaScript and Python version 3.13.0.
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