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Chromosome-level genome 
assembly and annotation of 
Pterygoplichthys pardalis
Wangxiao Xia1,2,7, Hao Xu2,3,7, Yaowen Liu4,7, Hui Jiang5,7, Jing Shi2, Yonghong Wu2, 
Yameng Yu2, Xiaomin Li1, Wenbo Fan1, Yuanwei Zhang6 ✉ & Lixian Xu1 ✉

Suckermouth catfishes, with their evolved powerful features, have become notorious invasive species, 
causing significant damage to aquatic ecosystems. However, the lack of high-quality genomes severely 
restricts research on this group within the field. In this study, we de novo assembled the chromosome-
level genome assembly of Pterygoplichthys pardalis using multiple platforms of sequencing data, 
including Illumina short reads, Nanopore long reads, and Hi-C sequencing reads, resulting in a 1.51 Gb 
genome assembly. Multiple evaluations, including read mapping ratio (98.52%), transcript mapping 
ratio (99.61%), conserved BUSCO gene set (98.8%), and N50 score (49.47 Mb), indicated the high 
continuity and accuracy of the genome assembly we generated. Genome annotation found that 0.97 Gb 
of genome sequences are repetitive sequences, accounting for 64.47% of the genome assembly. 
Further, 23,859 protein-coding genes were successfully predicted, 92.92% of which could be annotated 
in functional databases. This high-quality genome assembly of P. pardalis provides a valuable resource 
for understanding the genetic underpinnings of P. pardalis’s invasive success and offers critical data for 
future fisheries research and management.

Background & Summary
With their numerous evolved powerful features, suckermouth catfishes have emerged as one of the notori-
ous invasive groups globally, with documented invasions across tropical and subtropical regions, including 
Southeast Asia, the southern United States, and Central America, exerting significant impacts on the ecosys-
tem1–4. Notably, Pterygoplichthys pardalis, native to the Amazon Basin, serves as a famous and typical represent-
ative of such an invasive group5. It has established invasive populations various countries, where it disrupts food 
webs, alters benthic habitats through burrowing, and damages fisheries infrastructure2,3,6,7. More importantly, 
these invaders not only compete with native species over food resources, but they also aggressively prey on eggs 
and young fish, thereby leading to a decline in native fish populations and posing a significant threat to the integ-
rity of the local ecological chain4,6. Economic costs arise from levee erosion, reduced catch yields, and expensive 
eradication efforts2,3,6,7, underscoring the urgency of understanding its biology to inform management strategies.

This omnivorous fish feeds on a wide variety of food sources, including algae, organic material, small inver-
tebrates, and sediment particles1,8, enabling exploitation of resource-poor environments. Amazingly, significant 
changes in their gastric system, which functions as an additional respiratory organ, enable them to thrive in 
environments with low levels of dissolved oxygen9,10, which is the common feature of polluted or eutrophic hab-
itats. Additionally, they possess the abilities to survive in cold temperatures and drought conditions by burrow-
ing underground, even when the water level dips below the entrance of their burrows1,11. Its rapid growth, high 
reproductive capacity, and lack of natural predators have facilitated its accidental introduction into non-native 
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habitats, where it rapidly establishes invasive populations1,12–16. These traits, coupled with a lack of natural pred-
ators in non-native ranges, enable P. pardalis to monopolize niches, displace native species, and degrade ecosys-
tems12,13. Eventually, once these invaders establish a population, eradicating them becomes challenging. Despite 
scientists, including ichthyologists, ecologists, and evolutionary biologists, have been studying for decades1,7,14,17, 
genetic mechanisms underlying P. pardalis’s adaptability remain poorly understood. Only a single mitochondrial 
genome (NCBI Accession: NC_058365)18 and a very fragmented nuclear draft genome (contig N50: 4.15 kb)19 
are insufficient for resolving these complex traits. More importantly, this situation significantly limits insights 
into molecular drivers of invasiveness and constrains comparative analyses with native and invasive relatives.

To address these challenges, we present a chromosome-level genome assembly (1.51 Gb) of P. pardalis by 
integrating Illumina short reads, Nanopore long reads, and Hi-C data. By combining multiple annotation strat-
egies, we ultimately determined that 0.97 Gb of the genome are repetitive sequences, which account for 64.47% 
of the total genome, and we successfully predicted 23,859 protein-coding genes in the P. pardalis genome. These 
findings not only provide a high-quality genome resource for P. pardalis, but also facilitate large-scale compara-
tive genomic studies and enable prevention- and control-oriented applications.

Methods
Data acquisition.  The catfish samples used in this study were purchased from an ornamental fish wholesale 
market in Xi’an, China (Fig. 1). The remaining samples of this specimen (Catfish_01) have been cryopreserved 
at −80 °C in the Biodiversity Repository of the Institute of Basic and Translational Medicine at Xi’an Medical 
University. All animal specimens were collected legally in accordance with the policy of the Animal Care and 
Use Ethics of the institution. Genomic DNA was extracted from the muscle tissue of one suckermouth catfish 
(P. pardalis) using the Blood & Cell Culture DNA Mini Kit (Qiagen, Hilden, Germany). To obtain a high-quality 
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Fig. 1  A photo of the P. pardalis specimen used for the genome sequencing. (a) Dorsal view; (b) Ventral view.

Sequencing platform Total bases (bp) Average length(bp) Coverage (X)

Short-insert library 146,148,898,800 150 96.94

Nanopore library 218,068,467,938 23,709 144.65

Hi-C library 149,241,882,900 150 98.99

RNA library 9,703,545,250 150 —

Table 1.  Statistics of the sequencing data generated in this study.
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Fig. 2  Genomic information of P. pardalis. Survey of genomic characteristics. X-axis represents 17-mer depth, 
y-axis represents 17-mer frequency.
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chromosome-level genome assembly, data from multiple sequencing platforms were acquired: 1) A short-in-
sert paired-end library was prepared and sequenced on the Illumina NovaSeq. 6000 platform; 2) A Nanopore 
library was prepared and sequenced across 26 flow-cells using the Nanopore PromethION 48 (Oxford Nanopore, 
Oxford, UK); 3) A Hi-C library was constructed and sequenced using the Illumina NovaSeq. 6000 platform; 4) 
To support genome annotation, total RNAs was extracted from muscle using a TRIzol Kit (Life Technologies) 
and subsequently used for library construction and sequencing on the Illumina NovaSeq. 6000 platform. All 
library construction and genome/transcriptome sequencing processes were conducted in biotechnology com-
panies according to their standard workflows. In total, we got 146.15 Gb of Illumina paired-end short-read data 
(Table 1), 218.07 Gb of Nanopore long-read sequencing data (Table 1), and 149.24 Gb of high-throughput chro-
mosome conformation capture (Hi-C) sequencing data (Table 1).

Quality control of sequencing data.  To facilitate high-quality genome assembly, we performed strict 
quality control processes. For Illumina reads, adaptor sequences and polymerase chain reaction (PCR) duplicates 
were removed from all paired-end reads with Perl scripts20. Additionally, any Illumina reads containing more 
than 5% unknown bases or exceeding 30 low-quality bases, along with their paired-end reads, were discarded21. 
For Nanopore reads, only reads with a mean quality score >7 were retained and used for subsequent analysis21.
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Fig. 3  Heatmap of chromosomal interactions. Blocks represent contact between corresponding locations.
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Fig. 4  Distributions of genomic elements in P. pardalis genome. Outer to inner ring are distributions of protein-
coding genes, tandem repeats (TRP), long terminal repeats (LTR), short interspersed nuclear elements (SINE), 
long interspersed nuclear elements (LINE), DNA elements, and GC content, respectively.

Chromosome ID Length (bp) Chromosome ID Length (bp)

Chr1 114,651,524 Chr14 23,724,721

Chr2 43,195,137 Chr15 28,276,377

Chr3 47,361,500 Chr16 40,897,388

Chr4 71,254,436 Chr17 43,031,752

Chr5 64,993,512 Chr18 40,891,462

Chr6 74,398,770 Chr19 62,825,890

Chr7 67,112,199 Chr20 44,018,593

Chr8 31,065,881 Chr21 62,176,789

Chr9 49,448,268 Chr22 63,455,860

Chr10 49,469,991 Chr23 42,514,100

Chr11 45,172,604 Chr24 39,030,154

Chr12 42,234,017 Chr25 69,423,165

Chr13 42,988,544 Chr26 64,198,399

Total length of long scaffolds (bp) 1,367,811,033

Total genome size (bp) 1,507,578,907

Ratio of long scaffolds in whole 
genome 90.73%

Table 2.  Statistics of chromosomal level assembly of P. pardalis.

https://doi.org/10.1038/s41597-025-05273-5


5Scientific Data |         (2025) 12:1091  | https://doi.org/10.1038/s41597-025-05273-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

Genome size estimation.  A k-mer based strategy was employed to estimate the genome size of P. pardalis. 
Using all the cleaned short-insert Illumina reads, a 17-mer was selected for this analysis (https://github.com/
fanagislab/kmerfreq). The genome size can be calculated using the formula: G = Knum/Kdepth. G represents 
the estimated genome size, Knum denotes the total count of 17-mers, and Kdepth represents the peak depth of 
the 17-mers22. The genome of P. pardalis was estimated to be approximately 1.48 Gb, with a considerable level of 
heterozygosity (Fig. 2).

Genome assembly.  The genome assembly was performed with the following steps: 1) Long reads from 
the Nanopore platform were used for the contig-level assembly using NextDenovo (v2.2; https://github.com/
Nextomics/NextDenovo). Key parameters were carefully set to ensure optimal assembly, including a read cutoff of 
1k, a seed cutoff of 59754, and a blocksize of 5 g. 2) Cleaned short reads generated from the Illumina short-insert 
library were mapped onto the assembled contigs using BWA (v0.7.17)23. To further enhance the accuracy of the 
assembly at the single-base level, we performed two iterations of correction using Pilon (v1.22)24. 3) We mapped 
the Hi-C sequencing reads to the corrected contigs, and subsequently utilized Juicer (v1.5.7)25 and 3D de novo 

Term Size (bp) Number

N90 23,724,721 26

N80 40,891,462 22

N70 42,988,544 27

N60 45,172,604 14

N50 49,469,991 11

Max length (bp) 114,651,524 —

Total size (bp) 1,507,578,907 —

Total number (>100 bp) 414 —

Total number (>10 kb) 414 —

Table 3.  Statistics of assembly information of of P. pardalis.

Library Eukaryota Metazoa Actinopterygii

Complete BUSCOs (C) 252 939 3367

Complete and single-copy BUSCOs (S) 250 920 3328

Complete and duplicated BUSCOs (D) 2 19 39

Fragmented BUSCOs (F) 1 4 34

Missing BUSCOs (M) 2 11 239

Total BUSCO groups searched 255 954 3640

Summarize 98.80% 98.40% 92.50%

Table 4.  Completeness assessment of P. pardalis genome by BUSCO.

Type Total Number Mapped Number Mapped ratio(%)

Genomic short reads 803,190,085 (reads) 791,332,947(reads) 98.52%

Transcripts 103,116 102,716 99.61%

Nanopore 16,359,196 (reads) 16,341,304 (reads) 99.89%

Table 5.  Statistics of the mapping ratio of the reads and transcripts to the P. pardalis genome.

Term Size (bp) Number

N90 383 61,534

N80 706 39,794

N70 1,161 27,349

N60 1,693 19,365

N50 2,267 13,634

Max length (bp) 82,524 —

Total size (bp) 112,286,016 —

Total number (>100 bp) 103,116 —

Total number (>10 kb) 268 —

Table 6.  Statistics of transcript assembly by Bridger software.
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assembly (v180922)26 to perform chromosome-level genome assembly. Eventually, we successfully assembled 
the 1.51 Gb chromosome-level reference genome, with a total of 26 chromosomes and a scaffold N50 length 
of 49.47 Mb (Figs. 3, 4, Tables 2, 3). Notably, the assembled genome size closely aligned with the estimated size 
based on k-mer analysis (1.48 Gb) (Fig. 2), indicating the high-integrity of the genome assembly we acquired. To 
further evaluate the quality of the genome assembly, multiple strategies were employed, including the BUSCO 
(v5.2.2, Vertebrata_odb10)27 score (98.8%) (Table 4), the mapping ratio of short-insert reads (98.52%) (Table 5), 
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Fig. 5  Hox gene clusters in P. pardalis genome. Solid line represents functionally annotated gene in the 
database, dotted line represents that only the gene fragment could be found.

Type Repeat size (bp)
Percent of genome 
(%)

Trf 110,789,900 7.348862

Repeatmasker 358,195,998 23.759685

Proteinmasker 135,338,199 8.977188

De novo 911,029,930 60.430000

Total 971,995,156 64.473916

Table 7.  Statistics of the repetitive sequences annotated by each method of the P. pardalis genome.

Type

Repbase TEs TE protiens De novo Combined TEs

Length (bp)
% in 
genome Length (bp)

% in 
genome Length (bp)

% in 
genome Length (bp)

% in 
genome

DNA 264,951,677 17.57 32,487,312 2.15 455,290,359 30.20 499,766,710 33.15

LINE 61,003,156 4.05 73,956,432 4.91 118,936,260 7.89 144,008,691 9.55

SINE 3,835,338 0.25 0 0.00 26,813,655 1.78 29,267,760 1.94

LTR 33,661,995 2.23 28,705,578 1.90 61,223,416 4.06 78,002,083 5.17

Other 3,955,503 0.26 228,157 0.02 65,567,572 4.35 67,325,227 4.47

UnKnown 1,273,026 0.08 0 0.00 217,454,064 14.42 218,339,022 14.48

Total 358,195,998 23.76 135,338,199 8.98 911,029,930 60.43 940,547,025 62.39

Table 8.  Statistical of the predicted transposable element in the P. pardalis genome.

Term Number Percentage(%)

InterPro 19,394 81.28589

GO 14,887 62.39574

KEGG 16,633 69.71374

Swissprot 20,504 85.93822

TrEMBL 21,968 92.07427

Cog 7,425 31.12033

NR 22,143 92.80775

Annotated 22,169 92.91672

Unanotated 1,690 7.083281

Total 23,859

Table 9.  Statistics of functional annotation for protein coding genes.
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transcripts (99.61%) (Tables 5, 6), Nanopore (99.89%) (Table 5), QV value (31.59), as well as the Hox clusters 
(Fig. 5). Among them, the Naopore reads were remapped with minimap2 (v2.26-r1175), and the QV scores were 
assessed by Merqury (v3.0.1; https://github.com/marbl/merqury). All these results indicate that the P. pardalis 
genome assembly exhibits both high integrity and accuracy.

Genome annotation.  Tandem repetitive sequences within the genome were identified using Tandem 
Repeat Finder (v4.07)28. Non-interspersed repeats in the genome were annotated using RepeatMasker (v4.1.0)29. 
Transposable elements (TEs) in the genome were annotated at both the DNA and protein levels. A de novo 
repeat library at the DNA level was constructed using RepeatModeler (v1.0.4; GitHub - Dfam-consortium/
RepeatModeler: De-Novo Repeat Discovery Tool) enabling the identification of potential novel repetitive 
sequences. The genome assembly was searched against Repbase (v23.06) using RepeatMasker (v4.1.0)29 to detect 
homologous repetitive sequences, providing a more comprehensive picture of the repetitive sequence content. 
RM-BLASTX within RepeatProteinMask (v4.1.0) was employed to query the TE protein database at the protein 
level. We found that 0.97 Gb of the genome length consisted of repetitive sequences, which accounts for 64.47% 
of the genome assembly of P. pardalis (Table 7). Among them, DNA elements (499.77 Mb; 33.15%) constitute the 

Library metazoa

Complete BUSCOs (C) 837

Complete and single-copy BUSCOs (S) 807

Complete and duplicated BUSCOs (D) 30

Fragmented BUSCOs (F) 47

Missing BUSCOs (M) 70

Total BUSCO groups searched 954

Summarize 87.70%

Table 10.  Completeness assessment of P. pardalis gene by BUSCO.
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Fig. 6  Quality comparison of protein-coding genes between P. pardalis and other species. Quality of gene 
annotation based on (a) gene length, (b) CDS length, (c) exon length, and (d) intron length, respectively.
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largest proportion of transposable elements (TEs; Table 8), which were followed by the long interspersed nuclear 
elements (LINEs; 144.01 Mb; 9.55%), long terminal repeats (LTRs; 78.00 Mb; 5.17%), and short interspersed 
nuclear elements (SINEs; 29.27 Mb; 1.94%), in the P. pardalis genome (Table 8).

Prediction and functional annotation of protein-coding genes.  Protein-coding genes were predicted 
based on three distinct strategies. For de novo-based prediction, the transcripts of P. pardalis muscle tissue were 
assembled based on RNA-seq data using Bridger (r2014-12-01)30. Subsequently, the assembled transcripts were 
filtered and underwent primary prediction using the PASA pipeline (v2.1.0)31 and AUGUSTUS (v2.5.5)32. Protein 
sequences, including Bagarius yarrelli (GCA_005784505.1), Ameiurus melas (GCA_012411365.1), Ictalurus 
punctatus (GCF_001660625.1), Pangasianodon hypophthalmus (GCF_009078355.1), Tachysurus fulvidra-
co(GCF_003724035.1), Hemibagrus wyckioides (GCA_019097595.1), Silurus meridionalis (GCF_014805685.1), 
Clarias magur (GCA_013621035.1), Danio rerio (GCF_000002035.6), Pelteobagrus fulvidraco (http://gigadb.org/
dataset/100506), and Glyptosternon maculatum (https://doi.org/10.1093/gigascience/giy104), were downloaded 
for homology-based prediction. To further refine the coding gene prediction, we selected the longest transcript 
for each gene and removed those with premature termination sites. Using the Basic Local Alignment Search 
Tool (BLAST) (v2.2.26; https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.26/) with an e-value thresh-
old of 1e-5, we then performed homology-based annotation using GeneWise (v2.4.1)33. For transcript-based 
prediction, RNA-seq reads were mapped to the assembled genome using BLAT (v34)34 and spliced alignments 
were subsequently linked using the PASA pipeline (v2.1.0)31. Finally, the predicted coding genes obtained from 
the three strategies were integrated using EvidenceModeler (r2012-06-25)35. We successfully predicted 23,859 
protein-coding genes in the P. pardalis genome (Table 9), with the BUSCO score of 87.7% (metazoa_odb10, 
Table 10). To validate the quality of these predicted protein-coding genes, we conducted a comparative analysis of 
length distributions across many gene structures, including mRNA (Fig. 6a), coding sequences (CDS) (Fig. 6b), 
exons (Fig. 6c), and introns (Fig. 6d), between P. pardalis and other species. Our results indicated that the pre-
dicted protein-coding genes in P. pardalis exhibited comparable quality to those previously reported in other 
species (Fig. 6).

For functional annotation, all the predicted protein-coding genes were aligned to multiple databases, 
including InterPro (https://www.ebi.ac.uk/interpro/), Gene Ontology (GO) (https://geneontology.org/), Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (https://www.kegg.jp/), UniProt/SwissProt (https://www.uni-
prot.org/), UniProt/TrEMBL (https://www.uniprot.org/), and the Non-Redundant Protein Sequence Database 
(NR; https://ftp.ncbi.nlm.nih.gov/blast/db). We found the majority of the predicted genes (22,169; 92.92%) had 
homologous genes in various public databases (Table 9).

Data Records
All the raw sequencing data, including Nanopore and Illumina reads, have been uploaded to the NCBI database 
(National Center for Biotechnology Information, https://www.ncbi.nlm.nih.gov) under the BioProject acces-
sion number PRJNA116548336. The genome assembly and annotation files were uploaded to the Dryad Digital 
Repository (https://doi.org/10.5061/dryad.bk3j9kdgh)37 and Genbank dataset (GCA_050231285.1)38.

Technical Validation
The final assembly (1.51 Gb) of P. pardalis is slightly larger than the estimated genome size (1.48 Gb), which 
may be cause by the genome heterozygosity (Fig. 2). Three distinct strategies were employed to predict 
protein-coding genes. Using Hi-C technology, we successfully assembled 26 chromosomes of P. pardalis (Fig. 3), 
which is consistent with the result of a karyotype experiment in a previous study39. Genome annotation further 
revealed that the length and proportion of repetitive sequences in P. pardalis (0.97 Gb and 64.47%) are obviously 
higher than those of other catfish species (I. punctatus: 0.27 Gb and 34.92%, P. hypophthalmus: 0.27 Gb and 
36.90%, H. wyckioides: 0.32 Gb and 40.12%, S. meridionalis: 0.30 Gb and 40.12%, G. maculatum: 0.25 Gb and 
32.76%, and P. fulvidraco: 0.28 Gb and 38.47%) (Fig. 4), indicating that the expansion of repetitive regions is the 
main reason for the large genome of P. pardalis.

Code availability
No specific code or script was used in this study. All data processing commands were executed according to the 
official manuals and standard protocols of the respective software. The Methods section includes the software 
versions, URLs, and parameters.
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