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Baby Open Brains: An open-
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Reproducibility of neuroimaging research on infant brain development remains limited due to 
highly variable processing approaches. Progress towards reproducible pipelines is limited by a lack 
of benchmarks such as gold-standard brain segmentations. These segmentations are limited by the 
difficulty of infant brain segmentations, which require extensive neuroanatomical knowledge and are 
time-consuming in nature. Addressing this, we constructed the Baby Open Brains (BOBs) Dataset, an 
open source resource of manually curated and expert reviewed infant brain segmentations. Anatomical 
MRI data was segmented from 71 infant imaging visits across 51 participants, using both T1w and T2w 
images per visit. Images showed dramatic differences in myelination and intensities across 1–9 months, 
emphasizing the need for densely sampled gold-standard segmentations across early life. This dataset 
provides a benchmark for evaluating and improving pipelines dependent upon segmentations in the 
youngest populations. As such, this dataset provides a vitally needed foundation for early-life large-
scale studies such as HBCD.

Background & Summary
Processing pipeline variability is a critical factor contributing to reproducibility challenges in neuroimaging 
research. When the same functional imaging dataset is analyzed by a variety of processing pipelines, different 
conclusions are drawn depending on which approaches were used1. A variety of different processing stream 
decisions affect final conclusions, including pipeline components on both the structural and functional side2,3. 
To support reproducible neuroimaging research, benchmarks must be identified for best standards and prac-
tices. One of these necessary benchmarks is gold standard manually defined brain tissue segmentations4.

Nowhere are manually defined segmentations more needed than in studying the first 1000 days of life, a dynam-
ically changing period of brain growth and development5,6. 80% of brain growth occurs during the first 1000 days 
of life, including dramatic synaptogenesis, myelination, and other cellular processes7–9. Aggregating over 100,000 
participants from over 100 MRI studies, Bethlehem et al. found that brain development growth acceleration peaks 
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at 7 months of age, with velocity highest around the first three years of life5. Work by Alex et al. confirmed this veloc-
ity peak and showed that these trajectories of growth are linked to cognitive and motor outcomes at 2 years of age 
and that these trajectories differ by sociodemographic factors and adverse birth outcomes6. This dynamic period 
of growth complicates accurate cortical and subcortical segmentation10. The considerable myelination through the 
first year of life causes T1-weighted (T1w) scans (which enhance the signal of fatty tissue) and T2-weighted (T2w) 
scans (which enhance the signal of water) to show a contrast spin-inversion effect during this period11. Existing 
studies remain limited due to protocols that varied considerably in processing mechanisms, including varied early 
life segmentation atlases4,12,13. In this context, an atlas refers to a common set of labels for each brain structure within 
a whole brain MRI scan; a set of atlases can be used to segment new MRI scans and inform where common struc-
tures are across brains. Thus, a researcher can confidently know that they are examining the same brain region in 
two different children’s brains.

Standardized infant segmentation atlases have become a critical need within research programs. The NIH 
has already invested $50 + million, and plans to invest hundreds of millions more, in the HEALthy Brain and 
Child Development (HBCD) study. This study promises to elucidate neurodevelopmental trajectories with 
unprecedented precision and rigor14,15 and overcome sample size limitations highlighted by Marek et al.16.  
This fills a critical need for measuring true effect sizes for brain-wide associations relevant to early-life out-
comes. Correct structural brain segmentations are essential to this promise, especially during the first 9 months  
due to the dynamic processes of growth and myelination occurring17–19. Thus, an atlas is needed that sup-
ports the dynamic changes within this time period. Yet the availability of manually-corrected segmentations 
from anatomical MRI data across infancy is limited4. Such corrections require considerable neuroanatomic 
expertise, expertise linking MRI landmarks to neuroanatomic borders, and are time-intensive, thus requir-
ing considerable effort.

As field-wide momentum grows for reproducible research standards, a philosophy of open science is a nec-
essary component of research best practices20. Without transparent research, factors that contribute to low 
reproducibility rates cannot be examined. In this context, as underlying manual segmentations are an impactful 
part of processing pipelines, it stands to reason that these segmentations should themselves be open and trans-
parent. The primary objective of this resource was to construct a set of manually curated and expert reviewed 
human infant brain segmentations that adhere to FAIR21 data principles (Findable, Accessible, Interoperable, 
and Reusable). This dataset can be used to assess existing pipelines and/or develop new ones, such as the recently 
presented BIBSNet algorithm that was trained on this dataset22. Early life segmentation algorithms already exist 
within the literature12,23–33. However, many lack coverage across the whole-brain (eg. ID-Seg24, MANTiS27, iSEG 
challenges25, SDM U-net for subcortical23, ANUBEX30, SegSrgan29), use only T1w or only T2w images as inputs 
(eg. Infant Freesurfer12, MCRIB-S26, ID-Seg24), or are specific to neonatal periods (VINNA31) and aren’t reliable 
across the full first years of life4. As well, the underlying training data for those algorithms is often unavailable 
to the scientific community (iBEAT32). Finally, widespread disagreements among researchers can exist even for 
well-established areas like Wernicke’s area or the hippocampus34,35.

Therefore, a lack of high quality, publicly available training data is a major limitation to improved infant seg-
mentation pipelines, which is often pointed out by the developers of these algorithms themselves24,31. Making 
such manual corrections available via open repositories would subject such segmentations to broader exposure 
and review, improving the rigor and fidelity of the manual segmentations. Indeed, such work has already been 
performed extensively in adults and even in fetal tissue (ex.36–40), and numerous segmentations have been made 
publicly available via repositories like OpenNeuro41.

The Baby Open Brains (BOBs) dataset addresses the need for openly available manually corrected segmenta-
tions of MRI data during the earliest periods of life4. Such a resource is critical for developers wishing to create 
processes for accurate automated segmentations. The curation of such a dataset requires considerable neuroana-
tomic expertise, including knowledge of anatomical MRI landmarks for accurate segmentations. Until now, the 
labor and considerable effort required to conduct such work has left much of the methods development without 
a ‘gold standard’ or benchmark dataset. This lack of proper benchmarks has limited the ability for pipeline devel-
opers to generalize infant processing pipelines and ensure the effectiveness of different pipelines across infant 
age groups, which has subsequently led to constrained pipelines tuned for particular ages.

BOBs manual segmentations will provide a benchmark for evaluating and improving automated segmenta-
tions. As infant neuroimaging expands, the research community will observe an exponential increase in MRI 
segmentation approaches. Already at least a half dozen early life segmentation algorithms exist within the litera-
ture12,23–30; however, few have tested segmentations across the early life age span and that cover the whole-brain 
and incorporate a wide-breadth of labels beyond gray matter, white matter, and CSF. Combining expert and 
community review, the BOBs dataset provides a unique foundational benchmark for evaluating and improving 
image segmentation methods, as well as expanding their scope towards more comprehensive segmentations. 
Such benchmarks standardize methods development as methods researchers can evaluate segmentation per-
formance and validate tool capability. Such a benchmark standard for performance evaluation facilitates best 
practices and standards in infant neuroimaging.

These algorithms will form a necessary foundation for early-life large-scale studies such as HBCD. Automated 
MR processing pipelines specifically designed for early development are necessary to allow large-scale studies 
such as HBCD to create MR outputs unconfounded by age. With the BOBs resource providing a foundational 
benchmark to evaluate and improve these processing pipelines, HBCD and other future early-life neuroimaging 
studies will be well-equipped to provide the promised knowledge of nuanced neurodevelopmental trajectories 
and their complex environmental interactions.
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Methods
The dataset is comprised of baby connectome project (BCP) anatomic and segmentation 
MRI data.  The data for the BOBs dataset is pulled from the Baby Connectome Project (BCP), a longitu-
dinal neuroimaging study in infants 0–5 years old. Detailed methodology has been described previously19. 
Briefly, infants were recruited from departmental research participant registries based on both state-wide 
birth records and the broader communities around the University of North Carolina at Chapel Hill and the 
University of Minnesota. Infants were eligible for the BCP if they 1) were born at a gestational age of 37–42 
weeks, 2) had a birth weight appropriate for gestational age, and 3) had an absence of major pregnancy and 
delivery complications. Parents provided informed consent and permission for their child’s study participation 
and data sharing prior to participation. All procedures were approved by the University of North Carolina at 
Chapel Hill (Study #16-1943) and University of Minnesota Institutional Review Board (SITE00000093). For 
this dataset, 71 MRI visits with good quality data from infants 1–9 months old scanned at the University of 
Minnesota were used. Images selected for the dataset represented best quality images based on visual review by 
the authors, which remains the gold standard for quality assurance in comparison to automated methods42,43. 
Specifically, images were inspected for signs of poor quality such as motion, ghosting, blurriness, ringing, sig-
nal drop-off or image cut-offs. MRI data was collected using a 32-channel head coil on a Siemens 3 T Prisma 
scanner and included high resolution T1w (MPRAGE: TR 2400 ms, TE 2.24 ms, TI 1600 ms, Flip angle 8°, 
resolution = 0.8 × 0.8 × 0.8 mm3) and T2w (turbo spin-echo sequences: turbo factor 314, Echo train length 
1166 ms, TR 3200 ms, TE 564 ms, resolution = 0.8 × 0.8 × 0.8 mm3, with a variable flip angle) structural scans 
collected during natural sleep.

Segmentations were initialized using two different segmentation pipelines.  As a starting point 
for manual reviewers, segmentations were run through one of two segmentation pipelines. The first segmenta-
tions were initialized from a joint label fusion (JLF) pipeline44, and then manually curated. However, such a pro-
cedure required many hours of manual curation as these initializations required much coarser edits. Therefore, 
these initial manual segmentations were used to train “BIBSNet”22, a deep neural network built using nnU-Net45 
and SynthSeg33. Using BIBSNet, other segmentations were initialized and then manually curated. Iteratively using 
BIBSNet prototypes as a starting point saved many hours of work, as the prototypes were much more accurate 
starting points than the JLF pipeline. In both pipelines, Advanced Normalization Tools (ANTs) was used to per-
form denoising and N4 bias field correction and T1w and T2w images underwent a rigid-body realignment to 
remove distortions and improve image quality for the reviewers. Detailed information about preprocessing is 
referenced in22 and on the BIBSNet Github (https://github.com/DCAN-Labs/BIBSnet).

Markers curated segmentations according to a standard operating protocol.  A schematic depict-
ing the process of segmentation initialization, correction, and upload is shown in Fig. 1. Markers attended train-
ings provided by the experts and had regular consultations with expert reviewers throughout the segmentation 
process. Marker segmentations were reviewed by expert reviewers (EF/SS/JW/DA) and modified as needed. 
Markers performed image segmentation edits using ITK-SNAP46 software. Initialized segmentations were over-
laid on top of structural scans and manually edited. Markers utilized both the T1w and T2w scans to determine 
correct segmentation boundaries, such that there is one segmentation per session. As infant brains in this age 
range have increasing amounts of myelination in the white matter, referring to both T1w and T2w scans was 
critical to determining the extent of white matter. For each brain, the cortical surface and the gray-white matter 
boundary were edited first and reviewed. Subcortical regions were then edited, including the lateral ventricles, 
inferior lateral ventricles, cerebellum white matter, cerebellum cortex, thalamus, caudate, putamen, pallidum, 
amygdala, hippocampus, nucleus accumbens, third ventricle, fourth ventricle, and brainstem. Segmentations 
were done in phases, with the lateral ventricles, third ventricle, and fourth ventricle segmented first, the nucleus 
accumbens, caudate, putamen, and pallidum second, the brainstem, thalamus, and cerebellum third, and then the 

Fig. 1  A schematic depicting the process of creating the dataset. Segmentations were initialized with an 
automated processing pipeline and then manually corrected, utilizing both the T1 and T2 MRI images. 
Segmentations were then reviewed by expert reviewers who made revisions as necessary. These images were 
defaced and deidentified, and uploaded to OpenNeuro. OSF acts as a hub to integrate the links to dataset 
images, protocols, and any other future documentation created as the dataset expands.
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amygdala and inferior lateral ventricles last. The hippocampus was segmented separately, either before or after the 
rest of the subcortical segmentations. Definitions for the boundaries of these regions were pulled from previously 
published definitions47–49. A full SOP of subcortical boundaries was created (See Supplemental Information) and 
can be found on the OSF site50 as well as the ReadTheDocs page (https://bobsrepository.readthedocs.io).

Approved anatomic MRI data were deidentified and defaced.  Final data was stripped of identifying 
information and formatted into BIDS format. To deface images, T1w and T2w images were run through PyDeface 
using MNI infant templates as well as a custom infant mask (https://cdnis-brain.readthedocs.io/deidentification/),  
which masked out facial features from the scans. Final deidentified and defaced images and segmentations were 
version controlled with DataLad to enable data provenance.

Data Records
The BOBs dataset is available on OpenNeuro, with 71 BCP visits spanning 1–9 months of 
age.  The BOBs dataset is available on OSF50 and OpenNeuro51. In total, segmentations were manually curated 
from 71 imaging visits across 51 participants. Of the 51 participants, 34 participants contributed one scan visit, 
14 contributed 2 scans, and 3 contributed 3 scans to this set of segmentations. The age at scan ranged from  
1–9 months old, with at least 6 scans at each month 1–8 (Fig. 2). The demographics of the dataset participants 
skewed White, non-Hispanic, and well-resourced (Fig. 2), with 82% of the sample identifying as White, non-His-
panic and 96% of mothers having at least a college degree. The demographics of the 51 participants pulled for the 
dataset did not differ statistically from the full BCP neuroimaging sample (N = 901 visits across 383 participants). 
Select neurodevelopmental measures, including the Mullen Scales of Early Learning, the Vineland Adaptive 
Behavior Scales, and subscales from the Infant Behavior Questionnaire - Revised, showed no differences between 
dataset participants and the full BCP sample as well (Table 1), suggesting that participants in this dataset can be 
considered representative of the larger BCP sample.

The current BOBs dataset is comprised of FreeSurfer-style segmentations for infants.  These 
segmentations comprise cerebral gray/white matter and 23 subcortical structures. Uploaded segmentations 
went through several review stages before final approval, including at least one expert reviewer manually 
checking the segmentation. Leveraging both a T1w and T2w, care was taken to label white matter both affected 
and unaffected by the contrast spin-inversion effect. Diverging from FreeSurfer labels, the ventral thalamic 
boundary that separates thalamus from ventral diencephalon was defined by the hypothalamic sulcus52. The 
hippocampal label was used to define the hippocampus proper, excluding the formation at the tail along the 
lingual gyrus, in order to be consistent with other infant literature53. While we think evaluating whether the 
SOP is “right” or “wrong” may be beyond the scope of this paper, we chose such definitions in order to be 

Fig. 2  71 scans across 51 participants make up the segmentations in the dataset. All come from the UMN site 
of the Baby Connectome Project (BCP), and span 1–9 mo. The sample demographics skew white, non-hispanic, 
and well-resourced.
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more consistent with prior infant MRI literature53. We welcome the community to inspect and refine existing 
segmentations to ensure that the “gold standard” benchmarks reflect a community gold standard.

The BOBs dataset follows BIDS formatting standards.  Data within the dataset follows the BIDS for-
matting standards54,55. Each subject folder contains one or more session folders. The “anat” subdirectory within 
each session folder contains the T1w and T2w image files, the associated segmentation file, and corresponding 
json files containing metadata for each file. In addition to the subject folders, the directory contains a “data-
set_description.json” file, containing a description of the dataset, a “dseg.tsv” file containing a lookup table of 
segmentation label numbers and names, and a phenotype folder with a “sessions.json” and “sessions.tsv” that 
contain a list of ID numbers, session, chronological age, gestational age at birth, and sex of the participants in the 
dataset. The dataset also includes two non-BIDs standard files, “index.html”, a list of links to download individual 
files, and “V1.0.zip”, a zipped version of the entire repository, that are included for ease of access. File organization 
can also be found on the BOBs ReadTheDocs page.

BOBs N = 71 visits 
(across 51 subjects)

BCP N = 901 visits 
(across 383 subjects) p-value

Mullen Early Learning Composite Score (SD) 103.09 (12.67) 104.98 (14.69) 0.34

Vineland Adaptive Behavior Composite (SD) 96.96 (7.66) 99.26 (9.26) 0.07

Infant Behavior Questionnaire - Revised: Smiling and Laughing (SD) 4.61 (0.98) 4.59 (1.10) 0.93

Infant Behavior Questionnaire - Revised: Fear (SD) 2.35 (0.82) 2.19 (0.82) 0.29

Infant Behavior Questionnaire - Revised: Duration of Orienting (SD) 3.64 (1.12) 3.65 (1.11) 0.96

Table 1.  No differences were seen on selected neurodevelopmental scores between the participants selected 
for the BOBs dataset and the full BCP sample from which they were selected. For the Vineland and IBQ-R, as 
differences are seen in scores across ages, BOBs participants were compared to only those in the BOBs age range 
(Vineland: N = 127; IBQ-R: N = 77). For the Mullen, the age standardized composite score was used, so BOBs 
participants were compared to all BCP participants (N = 721 BCP visits with Mullen scores). There were also no 
differences when just compared between those in the BOBs age range (N = 127).

Fig. 3  Manual segmentations show massive improvements over initial JLF segmentations. Three cases are 
demonstrated, showing that reviewers were able to correct errors such as cortical folding patterns, missing 
unmyelinated white matter, and incorrect subcortical boundaries.

https://doi.org/10.1038/s41597-025-05404-y
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Fig. 4  T1w and T2w images show dramatic developmental differences across the age range considered.  
(a) The selected images are from the same participant at three different ages, clearly depicting the transition from 
unmyelinated to myelinated white matter, and the differing image contrast intensities in the T1w vs. T2w at each  
age. Red arrows point out cortical gray/white matter changes, blue triangles point out internal capsule white 
matter changes, and green circles point out nucleus accumbens region changes (b) Cohen’s d values of white-
gray matter differentiation are plotted for T1w and T2w MRI images. Considering both the T1w and the T2w 
images at this age group is critical to fully capture the white matter and subcortical boundaries.

https://doi.org/10.1038/s41597-025-05404-y
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Technical Validation
Manual segmentations show massive qualitative improvement over initial Joint Label Fusion 
segmentations.  Compared to initial Joint Label Fusion segmentations, created from the DCAN infant-AB-
CD-BIDS pipeline56, manual segmentations show dramatic qualitative improvements. Initial segmentations had 
three major types of errors that were corrected by markers (see Fig. 3). First, initial segmentations often created 
major errors in cortical folding patterns (Fig. 3 top). The initial model may not account for differences between 
infant and adult image intensity, and this model failure may drive folding pattern segmentation errors. These 
errors required intensive edits to correct the basic gyri and sulci patterns. Additionally, due to the contrast spin 
inversion occurring at this age from myelination processes, labeling the full extent of unmyelinated white matter 
required extensive manual segmentation (Fig. 3 middle). Automated segmentations often miss unmyelinated 
white matter, especially along the lateral surface of the brain where myelination processes occur later in develop-
ment. Finally, as exemplified in Fig. 4, subcortical regional intensities change dramatically over this time period, 
and thus subcortical regional boundaries often needed refining (Fig. 3 bottom).

Dynamic brain development in infancy requires dense sampling and segmentations utilizing 
both T1w and T2w images.  As infant brains in this age range have increasing amounts of myelination in 
the white matter17, referring to both T1w and T2w scans was critical to determining the extent of white matter. 
This brain growth is exemplified in a single infant in our dataset across three ages in Fig. 4a. In this infant, there 
is visually dramatic development of image contrast within and across brain structures. This early time period 
shows rapid myelination, such that the older ages show much more myelinated white matter, especially along the 
major white matter tracts. Most dramatically at 5 months in this infant, there is an abundance of unmyelinated 
white matter that can be easily seen on the T2w image, but would be easily missed on the T1w image. Regardless 
of the cause, these developmental changes require considering both the T1w and the T2w images at this age group 
to fully capture the white matter and subcortical boundaries. This was especially critical in subcortical regions 
such as the basal ganglia, where boundaries might only be visible in either the T1w or the T2w, but not both. The 
symbols on each of the images exemplify regions that are better served by examining the T1w or the T2w but not 
both, such as the basal ganglia.

As the largest manually curated human infant brain segmentation dataset for the critical 1–9 month age 
range, the BOBs dataset proved vital in developing BIBSnet22. BIBSnet is an automated segmentation pipeline 
necessary for HBCD MRI data preprocessing, and critical for infant pipeline development. The BOBs dataset’s 
critical role in developing BIBSnet establishes further external technical validation for the dataset. Prior efforts 
towards developing automated segmentation pipelines lacked densely sampled, manually labeled training data 
that would be critical for early-life longitudinal studies like HBCD4,14,17–19. For example, the Developing Human 
Connectome Project (dHCP) provides extensive anatomical segmentations that are largely restricted to neonatal 
and preterm infants28,57. Such segmentations are derived from the T2w but do not use the T1w; while they can 
be used to develop automated segmentation pipelines23,29,30, such pipelines may fail to generalize beyond the 
neonatal period. The Infant Freesurfer dataset comprises data from a dozen infant sessions through the first 
two years of life58, and helped develop Infant Freesurfer12, but lacks the participant density of the BOBs dataset.

Usage Notes
In addition to the repository dataset on OpenNeuro, BOBs is available at https://bobsrepository.s3.amazonaws.
com/index.html. More information and additional download links are available on our ReadTheDocs page. 
The dataset was also linked to BrainBox (https://brainbox.pasteur.fr/), which allows users to review the dataset 
online.

Code availability
All code used in this manuscript is available publicly as cited in the manuscript or available at https://github.com/
sallystoyell/BOBs_manuscript.
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