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A dual water isotope dataset for 
quantifying summer water mass 
transport in the northern South 
China Sea
Sihai Liu1,2, Chunqing Chen1,2, Xuan Lu3, Junhui Wu4, Qibin Lao1,5,6, Shangjun Cai1,2  
& Fajin Chen1,2,5,6 ✉

Dual water isotopes (δ¹⁸O, δ²H, referred to as δD) serve as robust tracers for water masses, enabling the 
identification and quantification of ocean currents and circulation patterns, thereby complementing 
traditional temperature-salinity and velocity metrics. This study presents a comprehensive dual water 
isotope dataset covering the northern South China Sea (SCS) to quantify summer water mass transport, 
addressing the scarcity of isotope observations in this region. The dataset comprises 873 dual isotope 
samples collected from 169 stations during summer (2015–2021), covering depths of 0–3700 m. Core 
parameters include δ¹⁸O, δD, temperature, and salinity. Additionally, using uniform end-member 
selection criteria and an isotope correction method, we applied the SIAR isotope mixing model to 
quantify the contributions of distinct water masses and characterize circulation features. This dataset 
fills a critical gap in SCS isotope data and establishes a standardized methodology for quantitatively 
interpreting water mass transport using dual water isotopes, underscoring the significance of isotopes 
as supplementary indicators for monitoring ocean currents and circulation dynamics.

Background & Summary
Craig and Gordon1 (1965) were the first to propose the application of stable isotope analysis of seawater (δ¹⁸O, 
δ²H, referred to as δD) as tracers for water masses and global hydrological cycles. These water isotopes are influ-
enced by processes such as evaporation, precipitation, runoff, high-salinity water intrusion, and sea ice forma-
tion1–3. Consequently, distinct dual water isotope signatures have been identified across different oceanic regions 
globally4–8. Additionally, vertical profiles of water masses exhibit unique isotopic characteristics9–11, providing a 
theoretical foundation for quantifying water mass transport and ocean current dynamics.

To date, stable seawater isotopes have been employed to validate ocean circulation models and characterize 
processes governing spatial variability12. Furthermore, they have been used to infer control information on oxy-
gen isotope ratios in calcareous plankton shells, enabling reconstructions of paleo-ocean salinity and circulation 
patterns13. The NASA Goddard Institute for Space Studies (GISS) Global Seawater Oxygen-18 Database has 
compiled and homogenized most pre-1998 isotope data14. Since 1998, the isotopic platform facility at LOCEAN 
(CISE-LOCEAN) has expanded global coverage by analyzing water isotope samples from the North Atlantic, 
equatorial Pacific, Atlantic, South Indian Ocean, and Southern Ocean15, regions previously underrepresented 
in the GISS database14. Although the LOCEAN dataset spans 1998–2021 and continues to grow, it lacks com-
prehensive coverage of the South China Sea (SCS), particularly the northern SCS (NSCS), where dynamic 
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oceanographic processes dominate. This highlights the urgent need to establish a dedicated isotope dataset 
encompassing surface-to-bottom layers in the NSCS.

The combined use of hydrogen-oxygen isotopes and the SIAR (Stable Isotope Analysis in R) isotope 
mixing model has been successfully applied in diverse contexts, including nearshore estuaries and quantita-
tive assessments of typhoon-induced upwelling16,17. Traditional approaches rely on extensive cruise-based 
temperature-salinity and velocity measurements to characterize NSCS currents18. However, these methods often 
fail to fully resolve contributions from distinct water masses, such as coastal waters. In contrast, water isotopes 
act as intrinsic fingerprints of water masses, encapsulating cumulative signatures of long-term hydrographic 
interactions17. Even in coastal regions with multiple freshwater sources and homogenized low salinity, isotopes 
provide a novel perspective for tracing water mass origins19,20. Wang et al.21 further investigated summer cir-
culation in the NSCS using a 3D numerical model. While model outputs offer spatially continuous data, their 
accuracy is constrained by resolution limitations and nonlinear complexities. Isotope-based methods, when 
integrated with mixing models, thus serve as a complementary quantitative tool to enhance monitoring capa-
bilities for ocean circulation.

The shelf and slope circulation in the NSCS is highly complex and variable, driven by seasonal monsoon 
reversals, water exchange with the Northwest Pacific through the Luzon Strait, and intricate topography22. 
Although prior studies have partially characterized shelf and slope currents18,21,23, critical gaps remain in under-
standing: (1) dynamic linkages and material exchange between the SCS basin-scale circulation and shelf cur-
rents, (2) cross-slope transport mechanisms in the NSCS, and (3) the influence of terrestrial runoff and coastal 
currents on regional circulation. This study seeks to advance understanding of these gaps by compiling and 
augmenting a comprehensive dual-isotope dataset covering the NSCS during summer, providing a foundational 
resource for investigating unresolved questions. Utilizing unified end-member selection criteria, an isotope cor-
rection method, and an isotope mixing model, we generate a quantitative dataset to resolve circulation-driven 
transport processes, including the impacts of freshwater plumes, coastal water contributions, and cross-shelf 
exchanges between the SCS basin and shelf regions.

Methods
Sample collection and storage.  The EH (Eastern Hainan Island) cruise comprised three transects con-
ducted in September 2015 within the eastern Hainan Island upwelling region. Seawater samples were collected 
using a rosette sampler equipped with Niskin bottles. To minimize post-sampling biological processes that could 
alter water isotope signatures, the collected water was filtered through 0.45 μm pore-size cellulose acetate mem-
branes and transferred into pre-cleaned 100 mL high-density polyethylene (HDPE) bottles. To reduce bioavail-
ability and prevent evaporation-induced isotopic fractionation, the bottle caps were tightly sealed and secured 
with Parafilm (PM-996; country of origin: USA) wrapped around the cap interface. Samples were then stored 
at −20 °C in a freezer and transported to a land-based laboratory for isotopic analysis. Full-depth profiles of 
temperature, salinity, and depth were concurrently measured using a calibrated SBE 911plus CTD unit (Sea-Bird 
Electronics, Inc., USA). Sampling details and references for cruises other than EH are summarized in Table 1 and 
Fig. 1a.

Isotopic measurements.  For hydrogen isotope analysis, 200 μL of seawater was aliquoted into a 12 mL 
Labco Exetainer® vial containing a hydrophobic platinum catalyst rod. The vial was tightly sealed, and a mixed 
gas of hydrogen (2% by volume) and helium was injected to initiate equilibrium exchange between the water 
sample and hydrogen gas under platinum catalysis. After 40 minutes of equilibration, the isotopic composition 
of the hydrogen gas was analyzed using a Gasbench II coupled to an isotope ratio mass spectrometer (Gasbench 
II-IRMS; Thermo Scientific). Isotopic values were calibrated against reference materials provided by the United 
States Geological Survey (USGS): USGS47 (δDV-SMOW = −150.2‰), USGS45 (δDV-SMOW = −10.3‰), USGS48 
(δDV-SMOW = −2.0‰), and USGS50 (δDV-SMOW =  + 32.8‰). Analytical precision was ± 0.5‰ (n = 8), with an 
accuracy of −2.0 ± 0.5‰ (n = 8, USGS48).

The δD value, expressed relative to the Vienna Standard Mean Ocean Water (VSMOW), was calculated as:
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where RV-SMOW is the D/H ratio of VSMOW, and Rsample is the D/H ratio of the sample. The final δD values had an 
analytical precision of ±0.5‰.

Voyage Date Number of Samples Data reference

LZ 201907 237 Wu et al.10

NBBG 201807 142 Lao et al.17

SBBG 202109 153 Liu et al.8

WG 201808 129 Zhou et al.11

PRE 201509 117 Jian et al.28

Table 1.  List of cited cruises (see referenced publications for detailed information). Abbreviations: LZ (Luzon 
Strait), NBBG (Northern Beibu Gulf), PRE (Pearl River Estuary), SBBG (Southern Beibu Gulf), WG (Western 
Guangdong Province).
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For oxygen isotope analysis, 200 μL of seawater was transferred into a 12 mL Labco Exetainer® vial. A mixed 
gas of carbon dioxide (1% by volume) and helium was injected to initiate equilibrium exchange between the 
water sample and CO2. After 24 hours of equilibration, the isotopic composition of CO2 was analyzed using 
the Gasbench II-IRMS system, following protocols described in Lao et al.16,17. Calibration was performed 
using USGS reference materials: USGS47 (δ¹⁸OV-SMOW = −19.8‰), USGS45 (δ¹⁸OV-SMOW = −2.2‰), USGS48 
(δ¹⁸OV-SMOW = −2.2‰), and USGS50 (δ¹⁸OV-SMOW = + 5.0‰) (IAEA). Analytical precision was ± 0.1‰ (n = 8), 
with an accuracy of −2.2 ± 0.1‰ (n = 8, USGS48).

The δ¹⁸O value, normalized to VSMOW, was calculated as:

δ =
−

×−

−
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where Rsample is the 18O/16O ratio of the sample and RV-SMOW is the 18O/16O ratio of VSMOW. The δ¹⁸O values had 
an analytical precision of ±0.1‰. Deuterium excess, defined as d-excess = δD−8 × δ¹⁸O, serves as an indicator 
of kinetic fractionation associated with phase changes and inversely correlates with δ¹⁸O during evaporation 
processes24.

Stable isotope mixing model.  The proportional contributions of distinct water masses can be quantified 
using a Bayesian stable isotope mixing model, implemented via the Stable Isotope Analysis in R (SIAR) package 
(SIAR v4.2, R v4.1.1). The general framework of the model is defined as follows:
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Fig. 1  Study area and sampling information in the northern South China Sea. (a) Topographic distribution and 
sampling regions from different cruises. (b) Number of sampling layers per station. c Maximum sampling depth 
at each station. Abbreviations: EH (Eastern Hainan), LZ (Luzon Strait), NBBG (Northern Beibu Gulf), PRE 
(Pearl River Estuary), SBBG (Southern Beibu Gulf), WG (Western Guangdong Province).
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Here, Xij denotes the j-th isotopic observation at the i-th mixed sample. sjk represents the j-th isotopic value 
of the k-th source, modeled as a normal distribution with mean µjk and variance jk

2ω . cjk is the fractionation 
factor for the j-th isotope in the k-th source, characterized by mean λ jk and variance τjk

2 . pk denotes the propor-
tional contribution of source k, estimated by the SIAR model. qjk

 corresponds to the concentration of the j-th 
isotope in the k-th source. εij represents residual variance unexplained by the model, following a normal distri-
bution with mean 0 and variance σj

2, where σj
2 is inferred during model calibration.

The Bayesian framework allows incorporation of prior information to refine the precision of contribution 
estimates25. Priors may be uninformative (vague) or informative, depending on existing knowledge of water 
mass mixing. The natural prior distribution for pk

 is the Dirichlet distribution, a multivariate generalization of 
the Beta distribution. The Dirichlet prior assumes independence among sources while constraining their 
summed contributions to unity. In SIAR, users can specify prior mean proportions (summing to 1) for each 
source and the standard deviation of the first proportion to derive parameters Κ and α. However, the Dirichlet 
prior does not permit individual uncertainty specifications for each proportion. In this study, an uninformative 
prior assuming equal proportions was adopted.

Marginal distributions generated by the Dirichlet distribution with parameters Κ  and α are defined as:

Fig. 2  Water isotope characteristics in the northern South China Sea. (a) Spatial distribution of surface 
δD. (b) Spatial distribution of bottom δD. (c) Spatial distribution of surface δ¹⁸O. (d) Spatial distribution of 
bottom δ¹⁸O. Black-bordered circles in (a–d) represent the GISS dataset; black double-headed arrows indicate 
adjacent stations used for comparison between this study and the GISS dataset. (e–f) Two-dimensional linear 
relationships between water isotope parameters and salinity.
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Distributional properties are further described by:
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where pk
 and pp

 (with Dirichlet parameters kα  and αp) denote the proportional contributions of the k-th and 
p-th sources, respectively. The default SIAR configuration sets all α values to 1, corresponding to an uninforma-
tive prior with equal mean contributions ( Κ1/ ) and variance Κ − Κ Κ +( 1) /( ( 1))2 . This study employs the 
default uninformative Dirichlet prior, ensuring that results are predominantly data-driven. Model fitting pro-
ceeds via Markov Chain Monte Carlo (MCMC) simulations to generate posterior distributions of pk

 consistent 
with observations.

The SIAR framework has been widely validated for quantifying source contributions in stable isotope stud-
ies26,27. Due to their conservative behavior and minimal alteration by biogeochemical processes, water isotopes 
(δ¹⁸O and δD) are robust tracers of hydrological cycling1,6,17,24. Furthermore, distinct isotopic signatures among 
water masses enable successful applications in tracing proportional contributions and circulation features8,10,17,28.

Correction of water isotopes affected by kinetic fractionation.  It is noteworthy that incorporat-
ing accurate fractionation factors into the SIAR model can eliminate the need for explicit corrections. Previous 
studies have estimated fractionation factors for water isotopes, primarily linked to temperature and atmospheric 
humidity24. However, a critical limitation arises when considering full-depth water masses as end-members or 

Fig. 3  Isotope corrections for the SIAR model. (a–d) Screening of scatter points for correction. (e–h) Deviation 
of scatter points relative to the δ¹⁸O–S linear regression. (i–l) Spatial distribution of corrected δD values in δD–S 
space. Gray points: non-end-member scatter points; gray points with black borders: pre-correction scatter 
points; green points with black borders: post-correction scatter points.

https://doi.org/10.1038/s41597-025-05444-4


6Scientific Data |         (2025) 12:1123  | https://doi.org/10.1038/s41597-025-05444-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

mixtures: isotopic fractionation predominantly occurs in surface layers (e.g., evaporation and condensation), 
making the estimation of integrated fractionation factors across the entire water column highly uncertain. 
Consequently, this approach was deemed unsuitable for the present study.

d-excess, a key parameter, reflects kinetic fractionation processes during oceanic evaporation24. Evaporation 
increases δ¹⁸O while reducing d-excess, leading to an inverse correlation between d-excess and δ¹⁸O. This rela-
tionship, observed in the LZ (Luzon Strait), EH, WG (Western Guangdong Province), and PRE (Pearl River 
Estuary) voyages (Fig. 2e), signifies significant kinetic fractionation in these regions4,15,24. To account for these 
effects in the SIAR model, we identified samples from these four voyages where d-excess values fell below the 
minimum end-member d-excess or δ¹⁸O values exceeded the maximum end-member δ¹⁸O (gray points with 
black borders in Fig. 3a–d). These samples were interpreted as having undergone additional kinetic fractionation 
during transport from source regions to the study area.

The δ¹⁸O–salinity (δ¹⁸O–S) relationship serves as an empirical diagnostic tool for distinguishing water 
masses and quantifying contributions from terrestrial runoff or glacial meltwater4,29. Both δ¹⁸O and salinity 
increase with evaporation, resulting in a positive linear correlation when mixing high-salinity/high-δ¹⁸O and 

Fig. 4  Selection of end-member stations. (a) Major circulation patterns in the northern South China Sea 
during summer and spatial distribution of selected stations. (b) Temperature-salinity (T-S) diagram; gray points 
represent non-end-member scatter points. Abbreviations: CC (coastal current), KW (Krushio water), SCSW 
(South China Sea water), DW (diluted water), WGCC (Western Guangdong coastal current).
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low-salinity/low-δ¹⁸O water masses (Fig. 2f). Samples deviating above this regression line likely experienced 
enhanced evaporation. We thus attributed positive Δδ¹⁸O (δ¹⁸O deviations from the δ¹⁸O–S regression line) to 
additional kinetic fractionation. Following Benetti et al.5, Δδ¹⁸O values were corrected using the Δd-excess–
Δδ¹⁸O relationship derived from the slope of the d-excess–δ¹⁸O regression line. Corrected samples are shown as 
green points with black borders in Fig. 3.

The primary uncertainty in this correction method stems from insensitivity to samples with low anoma-
lous fractionation, which are assumed to reflect end-member mixing. However, since selected end-members 
and mixing zones are geographically proximate, they likely experienced similar meteorological and evaporative 
conditions, minimizing systematic biases in relative contribution estimates. Furthermore, kinetic fractionation 
associated with evaporation-condensation processes predominantly affects surface layers, whereas this study 
integrates full-depth water mass contributions. Consequently, surface-driven fractionation errors have limited 
impact on the quantification of subsurface contributions.

End-member selection and quantification of water mass transport.  NSCS exhibits unique cir-
culation features, necessitating careful identification of appropriate end-members and corresponding stations 
based on prior research before quantifying circulation characteristics (Fig. 4 and Table 2). In the northeastern 
SCS, Kuroshio water (KW) intrudes into the SCS all the year round via the Luzon Strait, with weaker intensity in 
summer and stronger in winter22,30. A southwestward slope current persists between 200 m and 1000 m depths, 
even during summer under prevailing southwesterly winds31,32. Along the southern coast near mainland China, a 
westward coastal current dominates west of the Pearl River Estuary for most of the summer, termed the Western 
Guangdong coastal current (WGCC)22. This current flows into the Beibu Gulf via the Qiongzhou Strait, with a 
branch diverging southward along the eastern coast of Hainan Island before entering the gulf8. The Beibu Gulf 
features a dual-gyre structure, with a cyclonic circulation in the north and an anticyclonic circulation in the 
south33. During summer, the coastal current along eastern Hainan Island flows northeastward under the influ-
ence of the southwestern monsoon34. This current, referred to as the SCS Warm Current (SCSWC), subsequently 
moves eastward along the shelf and eventually toward the western Luzon Strait22, designated as the coastal current 
(CC) end-member. Additionally, diluted water (DW) end-members from coastal river discharge and the South 
China Sea Water (SCSW) end-member representing southern SCS exchange were identified in specific coastal 
cruises.

Data Records
The cruise information and references associated with the dataset are summarized in Table 1 and Fig. 1a. Sampling 
spanned depths of 0–3700 m in the northern South China Sea (SCS), with the number of sampling layers per sta-
tion ranging from 1 to 12 (Fig. 1b,c). Spatial distributions of surface and bottom water isotopes are illustrated in 
Fig. 2a–d. All data are archived in the Excel file “water_isotope_NSCS.xlsx”. The file comprises two sheets:

Area Source End-Member Identification Criteria Characteristics of Selected End-Member Stations

PRE

DW Location + Salinity Nearshore low-salinity stations

SCSW Location Southern stations

KW Location + Salinity + Temperature Eastern high-temperature/high-salinity stations

CC Location Western stations

NBBG

DW Location + Salinity Northern low-salinity stations

WGCC Location Stations adjacent to current pathways

SCSW Location Southern stations

LZ

CC Location Stations adjacent to current pathways

KW Location + Salinity + Temperature Eastern high-temperature/high-salinity stations

SCSW Location + Salinity + Temperature Southern low-temperature/low-salinity stations

SBBG

DW Location + Salinity Westernmost low-salinity stations

WGCC Location Same as NBBG end-member

SCSW Location Southern stations

WG

DW Location + Salinity Nearshore low-salinity stations

WGCC Location Eastern stations

SCSW Location Southern stations

EH

DW Location + Salinity Nearshore low-salinity stations

WGCC Location Same as NBBG end-member

SCSW Location Southern stations

Table 2.  Criteria and station selection features for end-member identification. Abbreviations: CC (coastal 
current), KW (Krushio water), SCSW (South China Sea water), DW (diluted water), WGCC (Western 
Guangdong coastal current).
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•	 Basic Data: Station, Longitude, Latitude, Date, Bot. (bottom depth in meters), Depth (sampling depth in 
meters), δD (in ‰), δ¹⁸O (in ‰), T (temperature in °C), S (practical salinity in psu), d_excess (in ‰), Voyage, 
δD correction (δD values corrected for SIAR modeling), and δ¹⁸O correction (δ¹⁸O values corrected for SIAR 
modeling). Missing values are denoted as NA.

•	 Dynamic Data: Includes variables such as Area, Source (end-member name), Mean_δ¹⁸O (mean δ¹⁸O of the 
end-member), SD_δ¹⁸O (standard deviation of δ¹⁸O), Mean_δD, SD_δD, Contribution (%), End-Member Cri-
teria, and Station Selection Features.

The SIAR model code is stored in the file “NSCS_SIAR.R.” For each subregion (Area), a dedicated folder 
ccontains three files: source-raw.xlsx (detailed station information for end-members), ConsumerData.xlsx 
(mixed water mass data), and SourceData.xlsx (end-member isotope data), which are used to execute the SIAR 
model. Spatial distributions of water mass contributions are presented in Fig. 5.

Fig. 5  Quantification of water mass transport derived from dual water isotopes. (a) Spatial distribution of water 
mass contributions. (b) Output results of the SIAR model.
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Technical Validation
To ensure internal consistency across measurement batches from six voyages, three replicate samples of aged 
open-ocean seawater were analyzed for each cruise. The results demonstrated that mean differences among 
triplicate samples were smaller than the analytical precision (±0.5‰ for δD and ±0.1‰ for δ¹⁸O) (Table 3), 
confirming appropriate sample preservation (no significant evaporative fractionation) and stable instrument 
calibration (no drift). However, potential offsets between datasets may arise from differences in internal stand-
ards, processing protocols, or instrument configurations. Thus, cross-validation with external datasets is critical 
for future data integration and expansion.

The NASA GISS Global Seawater Oxygen-18 Database, comprising over 26,000 δ¹⁸O values and limited 
δD values (relative to V-SMOW) since the 1950s14, includes only six stations in the SCS and adjacent western 
Pacific, all sampled in the 1990s (black-bordered points in Fig. 2a–d). Comparisons between the nearest stations 
in this study and the GISS dataset revealed minor discrepancies in bottom δ¹⁸O (mean difference: 0.01‰, within 
the δ¹⁸O range of [−2, 1]‰) and bottom δD (0.31‰ and 2.30‰, within the δD range of [−15, 20]‰). Surface 
δD differences were 2.18‰ and 1.06‰, while surface δ¹⁸O exhibited a larger mean discrepancy (0.92‰), likely 
due to Kuroshio influence and associated dynamic processes. Overall, isotopic values in this dataset showed a 
slight positive bias relative to GISS, suggesting systematic offsets.

Finally, water mass contributions in the NSCS, as quantified by SIAR, align with qualitative circulation fea-
tures (Figs. 4, 5). For example, the SIAR-derived 75% contribution of the SCSW end-member in the south-
ern EH area corroborates prior observations of strong northward currents along eastern Hainan Island under 
summer southwestern monsoons34. Similarly, Kuroshio intrusion and Pearl River discharge were identified as 
significant factors influencing volume transport in the northern PRE region35, with our quantified contribu-
tions also revealing 36% Kuroshio water (KW) and 35% diluted water (DW) in this area. Furthermore, the 
35% DW contribution in PRE substantially exceeds the 17% DW in EH, attributable to the Pearl River (China’s 
second-largest river) whose summer-dominant discharge exerts extensive influence across the NSCS36. Notably, 
the DW end-member contribution reaches 46% in the NBBG, primarily due to multiple rivers along its coast 
and restricted water exchange capacity characteristic of this semi-enclosed bay17. These results validate the 
robustness of the SIAR model in resolving regional circulation dynamics.

Code availability
All data and code used for graphing are permanently available on the FAIR compliant repository Zenodo: https://
doi.org/10.5281/zenodo.1557767637.
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