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OPEN A self-monitoring analysis and
pataDEscripToR - Feporting technology dataset of
147,496 hard disks

Shuting Wei®?, HongzhangYang'™, Zhengguang Chen? & Ping Wang?

. Inorder to study hard disk failure prediction, this paper introduces SMART-Z, a dataset comprising

: 147,496 pieces of hard disk SMART data periodically collected by a large distributed video data center

© inChina in the enterprise application environment from March 2017 to February 2018. There are

. 65 types of hard disk models, including 712 failure disks and the rest are healthy disks. To minimize

. business interference,data acquisition utilized predefined peak-hour exclusion lists, multi-dimensional
monitoring, and an intelligent fuse strategy to effectively guarantee the stable operation. Compared

. tosimilar open source datasets, SMART-Z additionally discloses the critical value, worst value, device

. IP, business scenario, drive letter name and other attributes, which is helpful for researchers to

. track the change of hard disk capacity through time series analysis, and realize regional equipment

. distribution statistics by business scenario dimensions, thereby building hard disk failure prediction
model. After verification, our dataset exhibits only 5.3% blank data, outperforming the 2022 Backblaze
ST4000DMO000 hard disk data, where the blank value accounts for 14.78% of the total data.

: Background & Summary

- Hard disk failures are generally divided into two types: predictable and unpredictable. The latter may occur
: occasionally and is difficult to prevent, such as sudden chip failure, mechanical impact, etc. However, the wear of
© motor bearings and the aging of disk magnetic media are all predictable situations, and these abnormal phenom-
© ena can be detected several days or even weeks in advance. Self Monitoring Analysis and Reporting Technology
 (SMART)' uses a threshold method to monitor faults, which compares the current indicators (or properties) of
. the hard drive with a set threshold. If the threshold is exceeded, the hard drive will issue an alert to the operating
© system, giving the user some time to transfer important data to other storage devices. In 1995, Compaq submit-
* ted this technical solution to the Small Form Factor (SFF) committee for standardization, becoming a technical
. standard for automatically monitoring the integrity of hard disk drives and reporting potential issues.

: The technical principle of SMART is to collect information from various sensors on the hard drive and store
. the information in the system service area of the hard drive. This area is generally located in the first few dozen
: physical tracks of the hard drive’s 0 physical surface, and is written into the relevant internal management pro-
. gram by the hard drive manufacturer. In addition to the SMART information table, this also includes low-level
. formatting programs, encryption and decryption programs, self-monitoring programs, automatic repair pro-
. grams, etc. The monitoring software used by the user reads SMART information through a command called
: “SMART Return Status” and does not allow any user to modify the information. The ID code for SMART detec-
. tion of hard drives represents various detection parameters of the hard drive in two hexadecimal digits.
Although SMART threshold can alert hard disk failures, its accuracy is insufficient. In recent years, research-
: ers have proposed many methods for predicting hard disk failures based on SMART data and machine learning
. algorithms. The hard disk failure prediction dataset they use is usually derived from the SMART data of hard
. disks published by Backblade?. Taking the data released in the fourth quarter of 2024 as an example, the storage
: system has 30 different brands and models of hard drives, and this dataset has become a widely recognized
* third-party dataset for hard drive failure prediction. The Backblaze dataset contains the raw value RAW VALUE
. for each SMART ID, the regularized value VALUE, and a label indicating whether a fault has occurred. Although
. the number and scale of hard drives are large, the category only includes SATA hard drives, and the critical val-
. ues and worst values for each attribute have not been publicly disclosed. The SMART-Z category disclosed in
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this article includes SATA hard drives and SAS hard drives, with a total of 65 different brands and models of hard
drives. The types of hard drives are relatively diverse and superior to the Backblaze dataset.

Similarly, in 2013, Baidu released a SMART dataset containing 23395 SATA hard drives?, all of which were
Seagate ST31000524N models. The collection frequency of this dataset is once every hour, with only SMART
data collected from the hard drive and no other indicators. The disadvantage is that all the hard drives are of the
same brand and model, and the prediction model proposed by it is not applicable to other brand models.

Sidi Lu et al.* first demonstrated that by combining hard disk location information with SMART attributes,
it is possible to highly accurately predict hard disk failures. Because hard drives with similar physical spaces are
more likely to be affected by the same environmental factors, such as relative humidity and temperature, and
may experience similar levels of vibration. Although vibration is not a part of SMART attributes, it can affect the
reliability of the hard drive. Therefore, adding location information can capture hard drives running in similar
environments or operating conditions, which may encounter similar fault characteristics.

In addition, the power on duration of the hard drive may also have a certain impact on its lifespan. Long
term power on of the hard drive (even when idle) may cause charge leakage and make it prone to overheating,
accelerating the aging of the hard drive. Long term operation of the hard drive may also increase the risk of
firmware errors.

Therefore, in order to provide more possibilities for hard disk failure prediction methods, SMART-Z
has released hard disk SMART data from a large distributed video data center in China from March 2017 to
February 2018. The data consists of three.csv files: log_hdsmart_base.csv, log_hdsmart_param.csv and offline_
hdsmart.csv, which display the basic information of the hard disk, the SMART information of the hard disk, and
the information of the faulty disk. The SMART-Z dataset adds various attributes such as Threshold (Threshold),
Worst value (Worst), Device IP (omcip), Business scenario (bureau), disk name (czname), powerontime of
offline hard disk (powerontime) based on the Backblaze dataset. Researchers can explore faulty hard drives
from multiple dimensions and discover their potential patterns based on the SMART-Z dataset proposed in this
article: tracking the trend of hard drive capacity changes through time series analysis; Utilize business scenario
dimensions to achieve regional device distribution statistics; Compare the reliability of manufacturer equipment
based on the model and type fields; The impact of cumulative power on the faulty hard drive; A hard disk fault
prediction model can be constructed based on this to identify high-risk devices in advance, and the mapping
relationship between their drive letter names and device IP provides a critical path for fault location.

Due to the exclusivity of obtaining SMART hard disk instructions (such as smartctl), calling them can cause
system performance jitter. Collecting SMART on all hard disks at a fixed cycle will inevitably consume a large
amount of system resources in a short period of time. After testing, the delay time of collecting SMART of 10000
hard drives simultaneously is almost unacceptable, during which the system can hardly respond to any normal
read and write operations and occasionally experiences downtime. Considering the above issues of obtaining
SMART for hard drives, this article isolates adjacent data collection based on time windows during collection,
and tries to disperse the performance jitter caused by collecting hard drive information within the time window.
While meeting the required collection frequency for hard drive fault prediction, the negative impact of collect-
ing hard drive information on front-end business is minimized as much as possible.

Methods

In this section, we describe the collection process behind the hard disk fault prediction dataset. Through an
automated hard disk monitoring system, we periodically collect SMART data and its associated management
information (such as business scenarios), and process it to obtain the hard disk fault prediction dataset presented
in this article. The dataset disclosed in this paper comes from ZTE Corporation, the third author’s organization.
We periodically collected 147,496 SMART data of hard disks in the enterprise application environment from
March 2017 to February 2018.

Data acquisition. The system adopts a sampling strategy based on time windows and a fixed period collec-
tion method, with each hard drive collecting data once a day. In order to avoid performance interference during
peak periods of video playback services, this article sets high activity periods (11:00-14:00, 18:00-23:00) through
a predefined peak period exclusion list (BUSY_TIME_LIST), and uses a real-time clock verification module to
avoid high concurrency periods and pause data collection.

The data collection program runs directly at the system level through scripts, first automatically identifying
all active block storage devices in the system. The device discovery process relies on native command-line tools,
which can dynamically adapt to various interface types including SATA and SAS, ensuring comprehensive cov-
erage of the acquisition range and adaptation to different hard disk devices, with good hardware compatibility.
After completing device identification, the system enters a periodic polling process. Within the valid sampling
window, the system sets a 20 second timeout threshold for a single hard disk operation to prevent the process
from hanging. Considering that backup methods represented by snapshots often trigger timers at the hour
or half hour, collection during this period should be avoided. Therefore, each collection time is 5 minutes to
25 minutes and 35 minutes to 55 minutes. Considering the concurrency of data collection, it is advisable to avoid
collecting all hard drives simultaneously. Therefore, at intervals of 10 seconds, SMART information of 50-100
hard drives should be collected each time, while device mounting information (such as device IP) at the oper-
ating system layer should be read. Therefore, the overall collection process is to collect smart information of
50-100 hard disks every 10 seconds at 5-25 minutes and 35-55 minutes per hour in non peak time, so that each
hard disk can be scanned once a day at different time periods instead of once every hour. For business scenario
fields, the system will perform real-time comparison with the CMDB configuration library to ensure the accu-
racy of logical attribution relationships. Considering business downturns, triggering time-consuming opera-
tions such as updating models, merging records, and deleting samples outside of peak periods. SMART data is
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collected through the smartctl tool, covering indicators highly related to health status such as remapping sector
count, number of sectors to be processed, and hard disk temperature. It is worth noting that this article includes
three types of hard drives: SATA_HDD, SATA_SSD, and SAS_HDD, which have slightly difference when col-
lecting SMART attributes. Both SATA_ HDD and SATA_SSD types of hard drives can directly view all SMART
information of the hard drives through the collection statement smartctl -a /dev/<device>, but the content of
the collection results varies greatly. The detailed SMART feature differences can be seen in Table 3. SAS_HDD
disks are usually managed through LSI/Avago/Broadcom RAID controllers, which require confirmation of the
disk number through Isscsi -g in advance, and then use the collection statement smartctl -a -d megaraid, /dev/
to get SMART information for the hard disk.

Critical value and worst value. In addition to recording the original indicators, this method also designs
a dynamic extreme value tracking mechanism to capture the maximum abnormal values that have occurred in
each ID item during the entire monitoring period when the hard disk is running. The worst value is the maximum
abnormal value that has occurred for each ID item during the operation of the hard disk. By performing real-time
comparison operations on the peak statistics of data degradation during hard disk operation, the value is contin-
uously refreshed. The worst value can characterize the extreme pressure or degradation states experienced by the
device, which often cannot be obtained solely through a single snapshot observation. Usually, the worst value is
equal to the current value. If there is a significant fluctuation in the worst value, it indicates that the hard drive has
experienced errors or harsh working conditions (such as temperature). In addition, the critical value is a thresh-
old value specified by the hard disk manufacturer to represent the reliability of a certain project, also known as a
threshold, which is calculated through a specific formula. If the current value of a parameter approaches the crit-
ical value, it means that the hard drive will become unreliable, which may lead to data loss or hard drive failure.

Outlier detection. This article effectively ensures the stable operation of the hard disk data acquisition sys-
tem through multi-dimensional monitoring and intelligent circuit breaker strategies. In terms of zombie process
detection, the system innovatively constructed a three-dimensional state monitoring model, which comprehen-
sively judges from three dimensions: process lifecycle, resource occupancy pattern, and I/O blocking charac-
teristics. When the running time of a process exceeds twice the collection cycle, the CPU usage rate remains
above 90% for five cycles, or the I/O waiting queue exceeds 10 tasks, the system will automatically mark it as an
abnormal process. In response to these abnormal processes, the system’s abnormal processes perform forced ter-
mination operations and update the list of abnormal hard disks in real time to ensure that the problematic hard
disks can be isolated and processed in a timely manner. In terms of timeout protection, a basic timeout threshold
of 20 seconds is used, and logarithmic level dynamic adjustments are made based on the current number of man-
aged hard drives. Through this intelligent timeout management, the system can maintain stable data collection
capabilities in complex and changing operating environments, without interrupting normal operations due to
strict threshold settings or allowing abnormal processes to occupy resources due to loose thresholds.

At the same time, in timeout or abnormal process scenarios, the system cannot read SMART data or can
only read some unreliable old SMART cache data, so the system clearly cannot read valid SMART data. In this
case, the script prioritizes stability and would rather skip suspicious hard drives than record unreliable data. The
existing logic avoids script freezing or data pollution caused by hard disk offline, which meets the robustness
requirements of monitoring scripts.

Key parameter configuration. The main parameter configurations of the script during the collection pro-
cess are shown in Table 1.

Data Records

This dataset® can be found in the open science framework (https://doi.org/10.17605/OSEI0/24Y6G). The DOl is
DOI 10.17605/OSEI0/24Y6G, and assign the license CC-By Attribution 4.0 International. It includes hard disk
data processed by a large distributed video data center in China from March 2017 to February 2018. The dataset
is composed of multiple files, each corresponding to the specific data categories listed below. The detailed file
organization structure is shown in Fig. 1.

o log_hdsmart_base.csv: This file contains 14,525,830 basic information about the hard disks. Among them,
each row of data is a scan acquisition of a hard disk on a certain day, including other information of the hard
disk except SMART attribute. See log_hdsmart_param.csv for the specific SMART of the hard disk. Main
fields: hard disk serial number (keyHDid), collection time (keyScanTime), device IP (omcip), drive letter
name (czname), hard disk type (Type), hard disk model (Model), hard disk capacity (Capacity), business
scenario (bureau).

o log_hdsmart_param.csv: This file contains 195,840,912 SMART information for hard drives in different
months. Among them, each SMART_ID is a separate line, and several consecutive lines may be the same
SMART acquisition from the same disk. Because SMART_IDs are different, several lines are generated. Main
fields: hard disk serial number (keyHDid), collection time (keyScanTime), SMART_ID, SMART_NAME,
standard value corresponding to the current SMART_ID (value), worst value (worst), critical value (thresh-
old), raw value corresponding to the current SMART_ID (rawvalue), SMART warning level (type), SMART
update method (update).

o offline-hdsmart.csv: This file contains 712 offline hard drive information, with main fields including brand,
business scenario (bureau), hard drive capacity (capacity), device type (devicetype), disk type (disktype), hard
drive serial number (hdid), hard drive model (hdnum), the disk offline time (lastlogtime), device IP (omcip),
and power on time (powerontime).
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Parameter Category Configuration Item Typical Values
Timeout timeout_time 20s

Sleep time between collecting hard disk data collect_sleep_time 10s

Maximum number of error log files error_log_number_max 30

Upload file failed maximum number of retries retry_times_max 10

Upload file retry maximum sleep time upload_retry_sleep_time 60s

Table 1. Key parameter configuration.

log hdsmart base.csv

log-hdsmart-201703 param.csv
log-hdsmart-201704 param.csv
log hdsmart param
\ log-hdsmart-201802 param.csv
S 1z offline-hdsmart.csv
1 classification.py
example script ﬁ 2 filter feature.py
3 XGBoost.py
; Readme.txt
Code collect disk data.sh

Fig. 1 The actual organization of dataset in detail.

« example script: This folder contains the simple script file and its description document for processing CSV
provided by us.

o 1_classification.py: This script extracts three different types of hard drives and saves them in different
CSYV files to facilitate researchers in predicting failures of different types of hard drives.

o 2_filter_feature.py: This script performs feature filtering on CSV files containing SMART attributes,
mainly deleting features in the dataset that are all null and have a variance of 0.

o 3_XGBoost.py: The script first marks the faulty disk as 1 and the healthy disk as 0, and performs algo-
rithm level sample imbalance processing on the dataset, using XGBoost for fault prediction.

o Code_collect_disk_data.sh: The shell script is the code to collect the hard disk failure prediction data set, and
can be run in the Linux system environment.

Due to intermittent disconnection caused by loose power supply or connection wires in the log_hdsmart_
base.csv file, the initial time of hard disk acquisition for each serial number may be different. The same disk may
appear multiple times in the file due to daily collection. As time passes, the same hard drive business scenario
and device IP may change.

In the log_hdsmart_param.csv file, type is used to distinguish the fault warning level of SMART parameters,
with two values: Old_age and Pre fail. Old_age represents that the SMART attribute reflects the regular aging or
long-term wear and tear of the hard drive. Changes in such attributes are expected normal phenomena and will
not cause immediate failure of the hard drive, but abnormal values may indicate that the lifespan is approaching
its end. And Pre fail represents that the SMART attribute is an early warning indicator for hard disk failures, and
abnormal values may indicate an imminent failure. That is to say, if the SMART attribute marked as Pre fail is
abnormal, it is usually judged as a fault, while if the SMART attribute marked as Old_age is abnormal, it requires
long-term observation to make a judgment. It should be noted that the same SMART attribute of different
models of hard drives from the same manufacturer may have different warning levels. For example, the SMART
ID 7 of WDC WD4002FYYZ-01B7CB0 is marked as Old_age, and the SMART ID 7 of WDC WD4002FYYZ-
01B7CBO0 is marked as Pre_fail.

It should be emphasized that in the offline-hdsmart.csv file, all hard drives are offline hard drives. If the
serial number of a hard drive does not appear in the file, it is assumed to be a healthy hard drive. Given the
complexity of hard disk failures, there is no universally accepted definition for hard disk failures®. Therefore, in
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(a)SAS_HDD
Brand Model health fault
HUS724040ALS640 3769 6
HUS724020ALS640 9854 26
HGST HUS726040AL5210 15486 89
HUS726060AL5210 5869 12
HUS726020AL5210 14109 12
HUH728080AL5200 120 0
ST4000NM0023 12642 42
ST300MMO0006 372 1
SEAGATE ST1000NM0023 1377 5
ST2000NM0023 5 0
ST4000NM0025 174 0
TOSHIBA ALI13SEB300 408 4
WD2001FYYG-01SL3 943 6
WD4001FYYG-01SL3 2826 36
WP WD4001FYYG-79SL3 20 1
WDI1001FYYG-01SL3 3 0
(b)SATA_SSD
SSDSC2BX200G4 629 47
SSDSC2BB480G4 1841 18
SSDSC2BB480G6 2409 9
INTEL SSDSC2BB240G4 207 0
SSDSC2BB300G4 2 0
SSDSC2BB800G7 282 0
SSDSC2BX400G4 30 0
SSDSC2BB480G70 12 0
TOSHIBA THNSN8200PCSE 69 0
SanDisk SDLF1DAR-480G-1HA1 1880 0
SDLF1DAM800G-1HHS 220 0
(c)SATA_HDD
HTE545032A7E680 486 4
HTE545032A7E380 873 11
HUS724020ALS640 0 0
HUS726020ALE610 3247 8
HUS726040ALE610 4769 25
HGST ST2000NM0011 251 0
ST9500620NS 32 0
ST2000NM0055-1V4104 263 0
ST4000NM0035-1V4107 71 0
ST6000NMO0115-1YZ110 576 0
ST4000NM0033-9ZM170 4806 0
ST2000NM0033-9ZM175 3709 0
Continued

this article, we only declare all offline hard drives. The offline standard of the hard disk in this paper refers to the
frequent occurrence of one or more types of hard disk: mechanical noise, high temperature, serious abnormality
of SMART properties of the hard disk, data loss, read-write failure, slow read-write (that is, the waiting time of
read-write requests in the queue exceeds 1.5 seconds for 20 consecutive times), frequent offline, file system log
printing Medium_Error, I/O_Error, Critical_target_error, Metadata_I/O_Error and other alarm information,
unable to mount, no response to read-write operations, etc., of which slow read-write is the most common.

Some researchers believe that the failure of the hard disk refers to the problem of the hard disk itself, such as
the damage of the magnetic head and the non rotation of the motor. Others believe that in addition to the failure
of the hard disk itself, it also includes the failure caused by the external causes of the hard disk, such as the drop
of the line caused by the poor contact of the hard disk cable interface. Therefore, we did not directly define and
set the fault tag, which was analyzed by the researchers themselves according to the hard disk fault requirements
and combined with the log_hdsmart_base.csv and log_hdsmart_param.csv files. For the convenience of the
following description, we will temporarily assume that all offline disks are faulty disks.

This dataset includes three types of hard drives: SAS_HDD, SATA_HDD, and SATA_SSD, totaling 65 hard
drive models. The models and their corresponding numbers of healthy and faulty disks are shown in Table 2.
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(a)SAS_HDD

Brand Model health fault
WD2000FYYZ-01UL1B2 9221 44
WD2003FYYS-02W0B1 859 12
WD4002FYYZ-01B7CB0 7738 33
‘WD4000FYYZ-01UL1B2 13523 125
WD4000FYYZ-01UL1BO 436 4
WD4000FYYZ-01UL1B1 2401 17
WD2000FYYZ-01UL1B1 1220 13
WD4000FYYZ-01UL1B3 2583 4
WD2004FBYZ-01YCBBO 1433 12
WD2000FYYZ-03UL1B3 12 0
WD2000FYYZ-01UL1B3 3 0

WDC WD2004FBYZ-01YCBB1 8774 58
WD4000FYYZ-03UL1B3 68 4
WD2000FYYZ-01UL1BO 919 5
WD2003FYYS-02W0B0 8 0
WD2500BHTZ-04JCPV1 16 0
WD4001FFSX-68JNUNO 3 0
WD1003FBYZ-010FB0 2244 16
WD1003FBYX-01Y7B1 81 0
WD2002FYPS-01U1B1 1 0
WD2005FBYZ-01YCBB1 96 2
WD2005FBYZ-01YCBB2 31 1
WD2002FYPS-02W3B1 1 0
WD2003FYPS-27Y2B0 1 0

TOSHIBA MG04ACAG600E 465 0

Hitachi HTE543232A7A384 6 0

Table 2. Hard disk details.

In SATA_HDD type hard drives, there are mainly 18 SMART features, in SAS_HDD type hard drives, there
are mainly 4 SMART features, and in SSD type hard drives, there are mainly 26 SMART features. The detailed
SMART attributes are shown in Table 3.

From the table data and collection results, there are several points that need to be noted:

(1) The low-level collection tool SAS basically cannot collect any information, which results in fewer SMART
attributes of SAS_HDD.

(2) Many SMART attributes collected by the low-level collection tool SDD are Unknown Attributes, such as
SMART _ID 170-174, 225-227, 234, 243.

(3) The same ID for different brands may have different meanings. SMART_ID 175 represents Power_Loss_
Cap_Test in SEAGATE and Program_Fail Count_Chip in WDC.

(4) The same ID of the same brand but different models may have different meanings. For example, in INTEL
SSDSC2BB480G6, it represents Runtime_Bad_Block, and in INTEL SSDSC2BB480G4, it represents
SATA_Downshift_Count.

It is worth noting that SMART is a technology for analyzing and monitoring the status of various compo-
nents of a hard drive, such as magnetic heads, motors, disc, etc. However, not all SMART attributes are related to
hard drive failures, and some interference features can have a negative impact on prediction accuracy. In order to
help researchers eliminate some features, we analyzed some of them, and the results are shown in Fig. 2.

From Figure (a), it can be seen that there is a clear distinction in the numerical variation of SMART ID 175
between faulty and healthy hard drives, while in Figure (b), the numerical variation of SMART ID 5 is 0 and con-
stant on both types of hard drives, and has no positive effect on distinguishing between faulty and healthy drives.
From this, we conclude that the presence of interference features can have an impact on prediction accuracy. In
addition, if inappropriate features are used for machine learning modeling, it not only fails to provide positive
assistance for fault prediction, but may also cause confusion in the prediction results. Therefore, it is necessary
to perform reasonable feature screening on the collected SMART information. On the one hand, redundant
attributes can be removed, input dimensions can be reduced, and model complexity can be lowered. On the
other hand, it can improve the predictive performance of the model.

In the log_hdsmart_base.csv file, there are a total of 44 business scenario information, which includes all the
business scenarios involved in the hard disk in this dataset, as shown in Table 4.

Table 4 shows the information of 44 business scenarios. The specific fields are composed of province_opera-
tor_equipment number, in which the operator includes DX, YD and LT. For example, Anhui_DX_10012 refers
to that the hard disk is from the data center with the number of 10012 deployed by China DX in Anhui Province.
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Type ID SMART attribute Detailed explanation
5 Reallocated_Sector_Ct The number of sectors that have been remapped
9 Power_On_Hours The time when the hard drive is powered on
12 Power_Cycle_Count The number of times the hard drive is powered on/off
170 Available_Reservd_Space Remaining reserved space
Unknown_Attribute Vendor defined parameters, specific definitions not disclosed
. Program_Fail_Count The number of failed blocks in Flash programming
Unknown_Attribute Vendor defined parameters, specific definitions not disclosed
Erase_Fail_Count The number of failed blocks to be erased
172 Unknown_Attribute Vendor defined parameters, specific definitions not disclosed
174 Unsafe_Shutdown_Count The number of unexpected power outages on the hard drive
Unknown_Attribute Vendor defined parameters, specific definitions not disclosed
Power_Loss_Cap_Test Power outage protection test
175 Program_Fail_Count_Chip 'Il:scr:slsmber of failures that occurred during the data writing
- SATA_Downshift_Count g: &u:rli);rrsof times the SATA interface rate has decreased
Runtime_Bad_Block The number of newly added bad blocks in SSD during use
184 End-to-End_Error ;ﬂ;; ;E;rsli);rl Zfi erret;se Sin mapping between logical addresses
187 Reported_Uncorrect Errors that cannot be corrected by hardware ECC
Temperature_Case Temperature during hard drive operation
190 Airflow_Temperature_Cel ﬁ;;g%v:iseemperature on the surface of the internal disk of the
192 Unsafe_Shutdown_Count The number of unexpected power outages on the hard drive
Power-Off_Retract_Count The number of times the magnetic head returns
SATA_SSD
194 Temperature_Internal The current temperature inside the hard drive
Temperature_Celsius The current temperature inside the hard drive
197 Current_Pending_Sector Number of sectors waiting to be mapped
CRC_Error_Count CRC error count
1% UDMA_CRC_Error_Count CRC error count in Ultra DMA mode
25 Host_Writes_32MiB The amount of data written by the host
Unknown_SSD_Attribute Vendor defined parameters, specific definitions not disclosed
226 Workld_Media_Wear_Indic The average wear level of current particles
Unknown_SSD_Attribute Vendor defined parameters, specific definitions not disclosed
- Workld_Host_Reads_Perc ;[?fhp;e}:(a::g?rg; :f host read operations to the total workload
Unknown_SSD_Attribute Vendor defined parameters, specific definitions not disclosed
28 Workload_Minutes Accumulated time of hard disk in workload state
Power-off_Retract_Count The number of times the magnetic head returns
232 Available_Reservd_Space Remaining reserved space
233 Media_Wearout_Indicator Medium wear index
234 Thermal_Throttle Hard disk performance throttling
Unknown_Attribute Vendor defined parameters, specific definitions not disclosed
™ Host_Writes_32MiB The amount of data written by the host
Total_LBAs_Written Accumulated LBA write count
2 Host_Reads_32MiB The amount of data read by the host
Total_LBAs_Read Accumulated LBA reads
43 NAND_Writes_32MiB Total Write of NAND Flash Memory
Unknown_Attribute Vendor defined parameters, specific definitions not disclosed
9 Power_On_Hours The time when the hard drive is powered on
GAS HDD 900 Grown_Defect_Elements ;l;l:ee :151;:2})}61; roj (cilfif‘:; elements dynamically increasing during
901 Read_Errors The number of errors that occur while reading data
902 Write_Errors The number of errors that occur when writing data
Continued

The business scenario information contains the physical deployment location information of the hard disk.
The hard disk in the same business scenario will be affected by the same environmental factors such as temper-
ature, humidity, dust and particles, which makes the hard disk in the same business scenario can also fail for
the same reason once one of the hard disks fails, that is, the hard disk in the same business scenario may form a
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Type ID SMART attribute Detailed explanation
1 Raw_Read_Error_Rate lsilﬁ;)arczcgfutl}'feectil ivsvlilen the magnetic head reads data from the
3 Spin_Up_Time The time it takes for the spindle motor to start and reach its
rated speed
4 Start_Stop_Count The number of times the hard disk spindle motor starts/stops
5 Reallocated_Sector_Ct The number of sectors that have been remapped
7 Seek_Error_Rate Error rate during magnetic head seek
9 Power_On_Hours The time when the hard drive is powered on
10 Spin_Retry_Count Counting of spindle motor attempts to restart
11 Calibration_Retry_Count Magnetic head calibration retry count
12 Power_Cycle_Count The number of times the hard drive is powered on/off
SATA_HDD 183 Runtime_Bad_Block The number of bad blocks detected during use
192 Power-Off_Retract_Count Accumulated the number of times the magnetic head returns
193 Load_Cycle_Count Magnetic head loading count
194 Temperature_Celsius The current temperature inside the hard drive
19 Reallocated_Event_Count ;[ehcet (ilgr:i)bse; a(;fe astetsglfsts to transfer data from remapped
197 Current_Pending_Sector Number of sectors waiting to be mapped
198 Offline_Uncorrectable ;[r}ll; svli;’glslegrszt; g}l}(szorrectable errors that occur when reading
199 UDMA_CRC_Error_Count CRC error count in Ultra DMA mode
200 Multi_Zone_Error_Rate 'Sfe}::et (E(;Stal number of errors occurring when writing data to

Table 3. SMART features.

“common risk” due to environmental factors. When analyzing hard disk failures, researchers can combine busi-
ness scenario information with SMART data of hard disk to establish a multi-dimensional correlation model to
improve the accuracy of prediction.

This article does not label the dataset, and researchers can set appropriate time windows according to their
needs. The number of faulty and healthy disks in the file is shown in Table 5.

As can be seen from the table, the ratio of positive to negative samples for faulty disks and healthy disks is
146,784:712, indicating an imbalance in the sample. If it is not handled, a large number of hard disks will be
judged as healthy disks by the established hard disk fault prediction model, so the faulty disks cannot be well
detected. Researchers can improve the model by making improvements at both the data level and the algorith-
mic level, thereby achieving a better hard disk failure prediction model. The sample imbalance handling meth-
ods that can be adopted include, but are not limited to, the following:

(1) Over-sampling methods: including SMOTE, Borderline-SMOTE, M-SMOTE, ADASYN and other meth-
ods, these methods select key small class samples according to different criteria to generate new samples.

(2) Under-sampling methods: including Random under-sampling, under-sampling based on sample neighbor
information, under-sampling based on clustering and other methods, which reduce the number of samples
in large categories to achieve data balance.

(3) Over-sampling and under-sampling combined methods: including SMOTE + ENN and SMOTE + Tomek,
which take advantage of under-sampling to delete the noise data generated by over-sampling.

(4) Cost-sensitive learning method: by adjusting the cost function of the model, the error classification of a few
categories of samples has higher cost, and the deviation caused by category imbalance is limited.

(5) Ensemble learning method: a certain number of samples are randomly selected from the categories with
large sample size, and multiple models are trained by combining them with the categories with small sam-
ple size. Finally, voting or weighted voting method is used to generate classification prediction results.

(6) Abnormal detection method: The focus of abnormal detection method is not to capture the differences be-
tween classes, but to find the characteristics of the class we are concerned with. Those that do not conform
to these characteristics can be counted as another class.

Through the sample imbalance processing, we can obtain useful information in the case of huge imbalance
between faulty disks and healthy disks, so as to achieve better hard disk fault prediction effect.

Technical Validation

Single collection experiment. To verify the rationality of the collection frequency used in this article.
During testing, the open-source I/O stress testing tool FIO is used to perform fixed granularity (8KB) continuous
writes on a single hard drive for 180 seconds, triggering the hard drive SMART acquisition every 8—12seconds.
Use the await metric in the iostat command as a basis for whether it causes interference. Await is the average wait
time (in milliseconds) for each I/O operation, which includes the time spent in the kernel I/O queue and the
time spent executing I/O on the storage device. Under the premise of fixed write granularity, there is almost no
difference in the time for executing I/O on the hard disk. However, when collecting SMART data from the hard
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Fig. 2 Analysis of some SMART features. (a) Visualization of SMART ID 175. (b)Visualization of SMART ID 5.

Bureau

Anhui_DX_10012 Hainan_LT_10093

Jiangsu_YD_10151

Shanghai_DX_10242

Beijing_DX_10022 Hebei_LT_10103

Jiangxi_YD_10161

Shanxi_LT 10253

Beijing_LT_10023 Hebei_YD_10101

Liaoning_DX_10182

Sichuan_DX_10262

Belrus_DX_20002 Henan_DX_10122

Liaoning LT_10183

Sichuan_YD_10261

Chongqing_DX_l 0032 Henan_LT_10123

Ningxia_DX_10202

Thailand_True_10001

Chongqing LT_10033 Hubei_DX_10132

Ningxia_YD_10201

Tianjin_LT_10273

Fujian_DX_10042 Hunan_DX_10142

Qinghai_DX_10212

Xinjiang_DX_10292

Gansu_DX_10052 Hunan_LT_10143

Shaanxi_DX_10222

Xinjiang_LT_10293

Guangdong_YD_10061 Hunan_YD_10141

Shandong_LT_10233

Xinjiang_YD_10291

Guizhou_DX_10082 Indonersia_Telkom_10001

Shandong_YD_10231

Zhejiang_DX_10322

Hainan_DX_10092

Jiangsu_DX_10152

Shandong_YD_10234

Zhejiang_YD_10321

Table 4. Bureau information.

Total Hard Disks
147,496

Healthy Disks Offline Disks
146,784 712

Table 5. Hard disk ratio.

disk, the length of the I/O queue will increase. The test in this article is expected to cause a sudden increase in the
await value at the moment of collection.

As shown in the Fig. 3, a single acquisition of the hard disk SMART did not cause read/write blocking or
abnormalities, only causing momentary jitter in await, but the jitter level did not reach an unacceptable level.
Therefore, in this article, a full disk scan is performed at 1-hour intervals every day, and data is collected at
10second intervals. SMART information of 50-100 hard drives is collected each time, while avoiding busy peri-
ods of the front-end business system. This strategy is reasonable.

Collect different quantities experiment. As shown in Fig. 4, this article tested the performance jit-
ter duration experienced by the storage system when collecting SMART data from hard drives. The traditional
method of collecting SMART data from 10000 hard drives at once would cause a performance jitter of 6440 milli-
seconds, while the method proposed in this article can control this number within 100 milliseconds.

Interference experiment for video services. This experiment was conducted in ZTE's video business.
The front-end business involved 20 clients playing 30 minutes of ultra clear video, and the normal state was that
the storage system provided equal and constant data read bandwidth to all clients.

Figure 5(a) shows the case where no hard disk information is collected, Fig. 5(b) shows the case where all
hard disks are collected at once using traditional methods, and Fig. 5(c) shows the case of the time-sharing hard
disk information collection method in this article. The vertical axis of Fig. 5 represents the playback bandwidth
of the client. From the test results, it can be seen that compared with Fig. 5(a), although the average bandwidth
of Fig. 5(b) only decreased by 0.88% overall, the system was unable to serve continuously for 9.18 seconds dur-
ing SMART collection. There was significant performance jitter in the first 11.21 seconds and the following
4.23 seconds, and users experienced severe lag for more than 20 seconds while watching live videos; Compared
with Fig. 5(a), although the average bandwidth of Fig. 5(c) decreased by 0.96% overall, there was no system
outage throughout the entire process, and users did not notice any abnormalities in video playback. From this, it
can be seen that the work presented in this article has improved user experience and reduced interference with
front-end business.
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Fig. 3 Single collection of hard disk SMART causes slight jitter in await.
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Fig. 4 Performance jitter test.

Data reliability. The dataset in this article is real-time collected results in a real environment. To verify
the reliability of the dataset, we performed an integrity check on the log_hdsmart_ param.csv file that stores
SMART data in the dataset. For better comparison, we also conducted integrity checks on the SMART data of the
ST4000DMO000 hard drive model released by Backblaze in 2022. The results are shown in Tables 6, 7.

From the table, it can be seen that the blank values in this dataset are mainly concentrated in thresh, type,
update, value, worst. However, the blank values only account for 10.7% of all data in the entire column and 5.3%
of all data, indicating a relatively small number of blank data. And all the blank values mentioned above occur
on SAS_HDD type hard drives. This is due to significant differences in underlying protocols, design objectives,
and monitoring mechanisms between SAS disks and SATA hard drives, which result in different representations
of SMART attributes. These values are not caused by data loss during collection or other reasons, but rather
stem from the different properties of hard drive types. Therefore, compared to SATA disks, there will be blanks
in thresh, type, update, value, and worst. We recommend discussing whether a hard drive is faulty separately for
different types of hard drives, as their characteristic properties differ.

The Backblaze dataset has 911,132,360 blank values, accounting for 14.78% of all data, which is significantly
higher than the SMART-Z dataset proposed in this paper. By comparing the data in Tables 6, 7, it can be more
intuitively observed that the dataset collected in this article has better integrity, which can prove the feasibility
of the collection technology.

Usage Notes

The SMART-Z dataset proposed in this article saves information in. csv file format and is publicly available on
open source frameworks (https://doi.org/10.17605/OSEI0/24Y6G) Convenient for researchers to download
and process datasets. The SMART-Z dataset includes basic information of all hard drives, SMART attributes of
hard drives, and basic information of all oftline hard drives. Compared with other publicly available hard drive

SCIENTIFICDATA|  (2025) 12:1125 | https://doi.org/10.1038/s41597-025-05457-z 10


https://doi.org/10.1038/s41597-025-05457-z
https://doi.org/10.17605/OSF.IO/24Y6G

www.nature.

com/scientificdata/

(51130 P 1L

3000

2000

1000

1200 1800 2400

(/600 WppuEq WAt

time(s)
3000 3600

0 600 1200 1800

3000
R TR i e Y TN

2000

1000

(S/A)UIPMpIEq Ju2YD)

time(s) time(s)

2400 3000 3600 0 600 1200 1800 2400 3000 3600

Fig. 5 Client bandwidth testing under different conditions for video services. (a) Do not collect hard disks
SMART. (b) Method of collecting all hard disks SMART at once. (c) Proposed method.

Column Name Blank Count Blank Ratio(%)
thresh 20,953,799 10.7
type 20,953,799 10.7
update 20,953,799 10.7
value 20,953,799 10.7
worst 20,953,799 10.7
keyHDid 0 0
keyScanTime 0 0
SMART_ID 0 0
SMART_NAME 0 0
rawvalue 0 0
Total 104,768,995 53

Table 6. Integrity inspection.
Column Name Blank Count | Blank Ratio(%)
SMART Raw Or Normalized 911,132,360 73.92
model 0 0
serial_number 0 0
failure 0 0
date 0 0
Total 911,132,360 14.78

Table 7. Backblaze integrity inspection.

datasets, this dataset adds multiple attributes such as critical values, worst-case values, device IP, business sce-
narios, and power on time of offline hard drives. In addition, through the observation in this article, it was found
that when the SMART of the hard drive first showed abnormal performance, the median time to actual failure
was 7 days, and the farthest was 56 days. We offer the following suggestions to researchers:

(1) You can pay attention to the setting of time windows and the filtering of SMART features. Different models
and manufacturers of faulty hard drives may experience abnormalities on different SMART.

(2) Inthis article, we only declare all offline hard drives. There are many factors that can cause a hard drive to
go offline, and a malfunction is just one of them. This needs to be discussed in detail in conjunction with
the other two files, log_hdsmart base ase. csv and log_ hdsmart param. csv.

(3) This article does not include a hard disk fault label, as label settings can have different impacts on the
accuracy of hard disk fault prediction algorithms. Therefore, we only provide all offline disk information.
You can set appropriate labels based on your own needs and experience. You can label the fault a few days
in advance, or you may only set the fault for that day.

(4) The business scenario information includes the physical deployment location information of the hard disk.
Hard disks in the same business scenario may be affected by the same environmental factors, which can also
be considered as factors for predicting hard disk failures. Similarly, IP addresses can also be considered.

(5) The offline hdsmart. csv displays the cumulative power on duration of all offline disks. Long term power on
may cause high temperature of the hard drive or continuous wear of the magnetic head. Therefore, it can
also be explored whether the power on duration of the hard drive will have a certain impact on its lifespan.

(6) This dataset annotates the warning levels (Old_age/Pre fail) of SMART attributes for different vendors. You
can assign different weights to different SMART attribute warning levels, which provides a new direction
for hard disk failure prediction.

Code availability
The code for collecting hard disk fault prediction datasets can be implemented in an open science framework
(https://doi.org/10.17605/OSEI0/24Y6G). Get it up. Shell scripts can be run in a Linux system environment.
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