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Hurricane lan caused aboveground biomass density (AGBD) losses across Florida’s forests in the
United States, highlighting the need for accurate, large-scale monitoring tools. We combined Global
Ecosystem Dynamics Investigation (GEDI) LiDAR data with synthetic aperture radar (SAR) and
passive optical satellite imagery to model GEDI AGBD as a function of image-derived data, enabling
predictions across the study area and producing continuous AGBD maps. Validation using in situ field
data demonstrated high model performance, with an R? of 0.93 and a root mean square difference
(RMSD) of 39.3%. Spatial uncertainty reflecting bootstrap-derived variance remained consistent, with
relative standard errors around 90% across the years analyzed. The data are accessible through a web
application, RapidFEM4D, enabling researchers and stakeholders to assess AGBD maps for areas of
interest. These datasets support monitoring forest recovery, assessing carbon dynamics, and guiding
post-hurricane management and restoration. The RapidFEM4D platform facilitates access and analysis
of Hurricane lan’s impact on Florida’s forests, empowering stakeholders with actionable insights and
offering a model for similar efforts in other hurricane-prone regions.

Background & Summary

Hurricane Jan, the major hurricane of the 2022 North Atlantic hurricane season, caused widespread devastation
across parts of the Caribbean and the southeastern United States. Originating off the west coast of Africa and
intensifying as it crossed the warm waters of the Gulf of Mexico, Ian made landfall in Florida on September
28,2022, as a powerful Category 4 hurricane with sustained winds reaching 240kmh~". Its destructive path
extended from Cuba to the southeastern United States, including Florida, South Carolina, and North Carolina,
leaving behind catastrophic flooding, wind damage, and storm surges. With an estimated cost of $111.8 billion,
Hurricane Ian became the third costliest tropical cyclone in U.S. history®.

Beyond the significant economic and human losses, the ecological impact of hurricanes is profound, particu-
larly on aboveground biomass density (AGBD) in forest ecosystems* . Hurricanes can cause severe tree mor-
tality, canopy loss, and structural damage®, along with shifts in species composition® and other abiotic changes’.
In addition, post-storm interventions such as salvage logging can further boost these impacts®, impacting forest
recovery and altering AGBD and carbon dynamics”!?. Monitoring these impacts is critical for understanding
ecosystem resilience and informing management strategies, requiring accurate measurements of AGBD losses
and structural changes.

Previous hurricane damage assessments often relied on field plots, aerial photography, or optical remote
sensing, which provided limited structural information and were restricted by cloud cover or inconsistent spa-
tial resolution!!~1%. This shift toward structure-based assessment supported the widespread adoption of LiDAR,
which has become essential for quantifying hurricane-induced biomass changes'*!>. The Global Ecosystem
Dynamics Investigation (GEDI) mission represents a major leap forward in measuring forest biomass and
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Fig. 1 The hurricane Ian (a) and its path in Florida (b), color-coded according to hurricane intensity. Inset

photos highlight on-the-ground storm impacts in Myakka State Forest (c) and Fort Myers (d) taken nine
months after hurricane impact.

carbon stocks from space, using LIDAR to capture high-resolution vertical profiles of forest canopies'®. The
waveform data from GEDI footprints are transformed into estimates of AGBD through the L4A product calibra-
tion models. This product provides globally distributed, footprint-level AGBD estimates, derived using machine
learning models trained on field inventory and airborne LiDAR reference datasets'”. However, GEDI’s sampling
strategy, which collects data along narrow transects, limits its ability to produce continuous, wall-to-wall maps.
To overcome this limitation, GEDI data must be integrated with other remote sensing sources, such as optical or
radar imagery from satellites's-2C.

Data integration approaches that combine GEDI with multisource remote sensing, such as Sentinel-12!,
Sentinel-2?%, Landsat?, and ALOS-22, have proven effective for producing spatially continuous and accurate
estimates of AGBD. They can leverage the complementary strengths of each sensor, where GEDI provides
vertical structure information, while optical and radar data offer spatial coverage and sensitivity to vegetation
condition and canopy structure. This integration improves estimation accuracy across diverse forest types and
disturbance gradients®, and enables consistent post-hurricane assessments by reducing reliance on GEDI foot-
prints alone®.

To address the biomass losses caused by Hurricane Ian, we generated detailed AGBD maps using a combination
of GEDI data with synthetic aperture radar (SAR) and passive optical imagery, allowing us to produce continuous,
wall-to-wall coverage of impacted areas. The study area was defined as the forested area within a 200 km buffer
surrounding the path of Hurricane Ian (Fig. 1). These maps are provided through RapidFEM4D (Rapid Forest
Ecosystem Monitoring in Four Dimensions), an open-access dataset designed to represent the hurricane’s effects
on forest biomass. The dataset is publicly available for use by researchers, land managers, and policymakers, pro-
viding spatially explicit information to support analysis of forest recovery, carbon dynamics, and post-hurricane
conditions.

Methods

Field data collection and reference AGBD prediction. Forest inventory data were collected in situ in
spring 2023 and 2024. A total of 27 plots, each measuring 25 x 25 meters, were strategically sampled across four
study areas to represent a full gradient of tree density, basal area, and AGBD, ranging from dense woodlands
to sparsely treed shrublands (Table 1). The sampling design aimed to improve model training and validation
to enhance model robustness and predictive reliability. Two study sites in Florida, United States, were visited
in spring-summer 2023, Myakka State Forest and Okaloacoochee Slough State Forest, and have experienced
severe AGBD loss due to Hurricane Ian (Table 1). Myakka State Forest spans a landscape characterized by dry
prairie, pine flatwoods, and wetland ecosystems, making it representative of hurricane-prone coastal forests.
Okaloacoochee Slough State Forest, on the other hand, contains a diverse mix of cypress swamps, pine flat-
woods, and hardwood hammocks. Two other study areas, the University of Florida’s Austin Cary Forest and the
Fisheries and Aquatic Sciences (FAS) Millhopper Unit, are located near Gainesville in north-central Florida,
United States, and were visited in summer-fall 2024 (Table 1). These areas consist primarily of managed stands
of loblolly pine (Pinus taeda L.), longleaf pine (Pinus palustris Mill.), and slash pine (Pinus elliottii Engelm. var.
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Okaloacoochee Slough
Site Austin Cary Forest FAS Millhopper Unit Myakka State Forest State Forest
DOA 04—09—2024 04—10—2024 06—27—-2023 05—30—2023
Location 29°44/28"N; 82°13/25"W | 29°43/20"N; 82°25'04"W | 26°58/40"N; 82°16/43"W | 26°33/26"N; 81°19'26"W
Number of plots 7 plots 3 plots 10 plots 7 plots
Tree density mean=std | 534 25 trees per plot 88 £27 trees per plot 17 £ 20 trees per plot 70+ 117 trees per plot
Tree density mean=+std | 848 +397 treesha™! 1413 £ 438 treesha™! 277 £313 treesha™! 1118 £ 1871 trees ha™!
Basal area mean =+ std 41+12m?ha! 43+3m*ha! 4+3m?ha! 18 +24m*ha!
AGBD mean = std 216+79m*ha™! 189+36m*ha! 194+17 m*ha™! 50+63m*ha!

Table 1. Summary of study sites, including date of acquisition (DOA), geographic coordinates, number of
plots, and mean = standard deviation (std) for tree density, basal area, and AGBD.
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Fig. 2 Distribution of tree density (trees ha™!), basal area (m* ha™!), and aboveground biomass density (AGBD,
Mg ha™!) across the 27 inventory plots. Boxplots summarize variability, and representative photos illustrate
plots with different forest conditions sampled in the study. Informed consent was obtained from the individual
shown in the photo.

elliottii). Both areas experienced minimal to no damage from Hurricane Ian, providing a reference for undis-
turbed forest conditions.

Sampling plots were selected based on visual assessment of representative hurricane damage, accessibility,
and avoiding interference from roads or other land cover types. For example, when setting a plot center, we
accounted for the distance to the nearest border plus a safe margin of approximately 30 meters, ensuring that
the plot remained within a homogeneous forested area. This safe margin corresponds to the spatial resolution
of remote sensing data, minimizing the risk of mixed pixels that could introduce information from non-forest
features. At each sampling plot, the plot center was marked and plot boundaries were established using distance
tapes to define the corners and edges accurately. Within each plot, only standing and live trees with diameter
at breast height (DBH) greater than 10 cm were identified and measured. Tree height was recorded using a
rangefinder; however, in plots with a high density of trees or limited visibility of tree tops, height measurements
were reduced to approximately 20% of the individuals to improve efficiency while maintaining representative
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Species AGB equation Reference
Fagaceae In(AGBD) = — 3.030 + 2.498 x In(dbh) ¥
Pinus Elliﬂtﬁi. Engelm. var. elliottii 0.005 x dbhl.SZ x Hl.63 + 0.001 X dbh4.93 x e—O.OSdehH—l.SS + 0.636 X dbhO.SS x e—O.AlxdbhHO.OS 38
Pinus palustris Mill. 0.027 x dbh"®” x H*? 4+ 0.007 x dbh>¥ x H™"V 4+ 0.070 x dbh*'® x H % »
Pinus taeda L. 0.013 x dbhl.SZ x Hl.26 + 0.067 X dbhl]s x 20.04><dbhH70.23 10.992 x dhh0.9l x 60.07><dbhH70.84 38
Taxodium spp. 0.0716 x ~Jdbh x H' " + 0.0004 x Jdbh x H " +0.008 x ~/dbh x H " 0

Table 2. Allometric equations used for estimating the AGB across varied species measured within our sampling
plots.
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Fig. 3 (a) The spatial distribution and sampling density of valid GEDI L4A footprints across the study area from
2019 to 2022. (b) Schematic illustration of GEDI’s sampling, highlighting the filtered and valid L4A footprints.

sampling. The distribution of tree density, basal area, and AGBD across all plots, along with representative pho-
tos from low, medium, and high-AGBD sites, is shown in Fig. 2.

Field data was organized and the reference AGBD from sample plots was calculated through a two-step
modeling approach. First, missing tree height values were estimated using species-specific height-DBH rela-
tionships derived from the collected data, ensuring consistency in height estimation across all measured trees.
These height models allowed for a more complete dataset, reducing bias in subsequent biomass calculations.
Second, aboveground biomass (AGB) was estimated for each tree as a function of species, DBH, and height
using species-specific allometric equations (Table 2). The sum of individual tree predictions within each plot
provided the total AGB in kilograms per plot. This value was first converted to megagrams to standardize units
before being scaled to a per-hectare basis (Mg ha™"), resulting in AGBD.

Remotely sensed data acquisition. We integrated data from GEDI, Harmonized Landsat Sentinel (HLS),
Sentinel-1C, and ancillary datasets to capture AGBD from multiple perspectives, leveraging different sensors and
measurement approaches to enhance data reliability and completeness. GEDI provided biomass estimates from
lidar-derived vegetation structure, collected along 25-meter footprints spaced 60 meters apart along-track. The
instrument uses three lasers split into eight beams: four strong (full power) and four weak (coverage), resulting in
eight parallel ground tracks spaced 600 meters apart?” (Fig. 3b). It operates between 51.6°N and 51.6°S, providing
near-global sampling across vegetated areas. The GEDI Level 4 A data product provides near-global AGBD esti-
mates derived from three-dimensional vegetation structure?. For this study, we analyzed data collected in April
across 2019-2022 (Fig. 3a), a period selected based on pre-modeling tests identifying April as optimal for con-
sistent vegetation measurements. Temporal filtering allowed us to account for inter-annual variability in biomass
and ensured model robustness against environmental changes. Although GEDI ceased data collection in 2023, we
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Sensor Filter parameter Description
“l4_quality_flag”=1 Filters high-quality Level 4A data footprints
“degrade_flag”=0 Excludes degraded data to ensure reliability
GEDI L4A “beam” >4 Filters footprints with higher reliability based on beam strength
“solar_elevation” <0 Filters for nighttime acquisitions to avoid sunlight interference
Land cover classes Focuses on trees and shrubs based on Google Dynamic World
Fmask!=1,2,3 Excludes pixels classified as cloud (1), cloud shadow (2), or snow (3)
HLS “cloud_coverage” < 30 Filters images with less than 30% cloud cover from the HLSL30 catalog
B5>0.2 Filters non-water pixels with near infrared reflectance > 0.2
Sentinel 1C “transmitterReceiverPolarisation”=VV or VH | Filters for data containing VV or VH polarization
“instrumentMode” =W Filters for data collected in Interferometric Wide Swath mode

Table 3. Filtering parameters for GEDI L4A, HLS, and Sentinel 1 C. Filter parameters are available in their
respective collection in GEE.

used the multi-year GEDI dataset to train a temporally generalized model, which can be further applied to other
years. In addition, we applied a series of filters to refine the data quality of each dataset (Table 3).

We integrated data from HLS, Sentinel-1C, and ancillary data using Google Earth Engine (GEE®), to enhance
the upscaling of GEDI L4A data. A temporal window from March 1 to May 31 for 2019-2022 was selected to
align with the GEDI dataset while increasing the likelihood of cloud-free HLS observations. A per-pixel median
was calculated within the period, minimizing noise and approximating the central GEDI acquisition period.
This median composite was then used to derive all subsequent covariates. Time-series analysis confirmed min-
imal inter-annual variability, ensuring that the selected window reliably represented consistent vegetation char-
acteristics, including greenness, canopy structure, and biomass. In addition, the layers were standardized to a
30-m resolution for spatial consistency using a nearest neighbor interpolation from GEE.

HLS imagery provided surface reflectance data in blue, green, red, NIR, SWIR1, and SWIR2 bands, com-
bining observations from Landsat 8/9 OLI and Sentinel-2A/B MSI for global 30-m resolution coverage every
2-3 days. Cloud and shadow masking was performed using the Fmask algorithm?’. Using the HLSL30 catalog
on GEE, we selected images with less than 30% cloud cover for the study area. For acquiring and processing
Sentinel-1C data, we utilized the interferometric wide (IW) mode for its capability to deliver high-resolution
imagery suitable for detailed vegetation and land cover analysis. Data from vertical transmit-vertical receive
(VV) and vertical transmit-horizontal receive (VH) polarizations were selected, as VV primarily captures surface
scattering, while VH is sensitive to volume scattering from vegetation structure. Using both polarizations pro-
vides complementary information for characterizing forest and its respective AGBD properties®'. Ancillary data
from NASADEM provided elevation, slope, and aspect to assess topography’s impact on vegetation and biomass.
Latitude and longitude were also included as predictors to enable spatial analysis of ecological dynamics across
forest patches. Additional preprocessing applied to optical datasets included aligning pixels across sources, stand-
ardizing spatial resolution, and converting reflectance values to integer format to improve processing efficiency.

Image covariates and stacking. We generated an image stack of 260 covariates from HLS, Sentinel-1C,
and ancillary datasets for AGBD modeling. Spatial transformations, including 3 x 3 kernel window analyses and
Gray Level Co-occurrence Matrix (GLCM) texture metrics, captured fine-scale landscape structure and texture.
Kernel analyses calculated mean, standard deviation, maximum, and minimum values for HLS, Sentinel-1C,
and DEM variables, quantifying local variability. GLCM, applied to HLS bands using a 3-pixel window, is a
second-order statistical method that quantifies image texture by measuring how often pairs of pixel values occur
in a specified spatial relationship. It describes texture by capturing spatial patterns such as contrast, homogeneity,
entropy, and correlation, using 8-bit grayscale inputs to generate 18 standard texture indices*’. These covariates
were consolidated into a dataset for further analysis (Supplementary Table 1).

AGBD modeling and upscaling. AGBD was modeled using image-derived data (Fig. 4a). From the image
stack, 1,000 GEDI L4A footprints were sampled across all available years, ensuring spatial independence by apply-
ing a 1.3km semivariogram-derived distance threshold*. The dataset was split into 70% training and 30% valida-
tion subsets to optimize learning and evaluation.

A Random Forest (RF) regressor* implemented in the Scikit-learn package® was used to estimate AGBD,
configured with 250 trees for a balance of accuracy and efficiency. Feature selection employed Scikit-learn’s
SelectFromModel, retaining features with importance scores above the mean to enhance model performance. A
bootstrap procedure with 100 iterations was applied to ensure robust and reliable outcomes. For each iteration,
a random sample with replacement was used to train the RF model and generate an AGBD map. The trained
model was then applied to the image stack, producing a spatially explicit AGBD map for the study area (Fig. 4b).
We calculated model performance metrics based on predicted and observed AGBD values. The equations below
define the Mean Difference (MD; Eq. 1), Root Mean Square Difference (RMSD; Eq. 3), their relative forms
(%MD and %RMSD; Egs. 2 and 4), and the coefficient of determination R? (Eq. 5).

L
MD(Mg ha™") = nZ,Jx- ) (1)
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Fig. 4 Flowchart of the proposed method for AGBD prediction. Panel (a) illustrates the steps for acquiring and
processing GEDI AGBD data (light blue boxes) and other remote sensing predictors of AGBD (light orange
boxes), resulting in 260 covariates. Panel (b) describes the modeling and upscaling framework used in the study.
Panel (c) explains the map accuracy, uncertainty assessment process, and technical validation.

MD

%MD = — x 100
y (2)
LG =)
RMSD (Mg ha™") = 2_1)1,7}’,
n (3)
o6rMSD = FMSD 109
y (4)
n Ay 2
R—1-— Zinzl)’i_)’i)
Y0, —7) (5)

Where, y is the reference AGBD in the GEDI footprint i, ) is our estimated AGBD in the GEDI footprint i, and j is
the mean of the reference AGBD sample used for testing. 9%RMSD (Eq. 4) and %MD (Eq. 2) were calculated by divid-
ing the respective absolute values (Egs. 1 and 3) by the mean of GEDI AGBD observations used for model testing.

Damage assessment through AGBD. Hurricane damage classification was derived from the estimated
AGBD loss, calculated as the difference between the pre- and post-hurricane AGBD maps. To assess the relative
impact, we computed the percentage of biomass loss based on pre-hurricane conditions. The resulting values of
loss were then categorized into five hurricane severity classes: 0-5% (no damage), 5-20% (light damage), 20-35%
(moderate damage), 35-50% (severe damage), and >50% (catastrophic damage). Classification was included to
support interpretation and decision-making by stakeholders. We focused solely on biomass loss; potential AGBD
gains, such as regrowth or recovery, were not evaluated, as our objective was to generate detailed AGBD maps
specifically to assess the biomass losses caused by Hurricane Ian.

We overlaid the damage classification map with Florida counties to assess the spatial distribution of hurri-
cane impacts at the administrative level (Fig. 8). The total area of each damage class was quantified within each
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RapidFEMUD

A WEB-BASED MAPPING PLATFORM FOR ASSESSING THE IMPACTS AND RECOVERY OF
HURRICANE IAN ON FOREST ECOSYSTEMS IN FLORIDA
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Fig. 5 RapidFEMA4D interface showing visualization tools for AGBD maps.

county, followed by the calculation of its relative percentage of the total damaged area. This analysis provided a
visualization of the hurricane’s impact, highlighting regional differences in hurricane severity. For example, the
maps reveal counties with a higher percentage of catastrophic damage, indicating areas where forests experi-
enced the most extensive biomass loss.

RapidFEMA4D. The final prediction maps and associated uncertainties, specifically generated to assess the
impacts of Hurricane Ian, were uploaded to RapidFEM4D, a cost-free, single-page web application designed to
enable researchers to assess AGBD maps for affected areas. This dynamic platform provides an intuitive interface
for visualizing, interacting with, and analyzing AGBD maps, making it accessible to users with varying levels of
remote sensing expertise (Fig. 5). The platform’s features include a location search tool for quickly navigating to
specific areas and an opacity slider for adjusting layer transparency

An additional feature of the platform allows users to draw custom polygons or upload shapefiles of areas of
interest, enabling the extraction of average values from the active layer within the selected region. This function
enables users to compute AGBD estimates, uncertainty levels, and biomass loss for specific locations, facilitating
localized analyses of hurricane impacts. In addition to AGBD data, the platform integrates Hurricane Ian’s track
and demographic information about Florida, including the hurricane’s impact on counties.

Data Records

The dataset is available on the USDA ARS National Agricultural Library Ag Data Commons®. It consists of six
raster files at a spatial resolution of 30 meters in GeoTIFF format, each approximately 400 MB in size with a
Uint16 data type. AGBD values were scaled by 100 for storage as integers; users should divide by 100 to retrieve
biomass estimates in Mg ha™'. All GeoTIFF files use the EPSG:4326 coordinate reference system.

o 2022 RapidFEM4D AGBD prediction
o 2023 RapidFEM4D AGBD prediction
o 2024 RapidFEM4D AGBD prediction
o 2022 RapidFEM4D AGBD uncertainty
o 2023 RapidFEM4D AGBD uncertainty
o 2024 RapidFEM4D AGBD uncertainty

In addition, the field data is available in CSV format (RapidFEMA4D field data.csv), containing tree-level meas-
urements collected during the study. The dataset includes the following columns: DATE_OF_ACQUISITION,
SITE, PLOT_X, PLOT_Y, PLOT_ID, TREE_ID, SPECIES, DBH_CM, and HEIGHT_M. These attributes docu-
ment the location, species, and structural characteristics of individual trees measured across all sampled plots.

The dataset is available for visualization at http://rapidfem4d.silvalab-uf.com/. It includes AGBD predictions
followed by a change detection map and damage classification for the 2022-2023 period to capture the pre- and
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Fig. 6 Pre-hurricane AGBD prediction map at 30-meter resolution for the study area.

post-Hurricane Ian conditions (Fig. 6) and the respective uncertainty maps for the years 2022, 2023, and 2024
(Fig. 7).

Technical validation

Internal validation of model performance. Internal validation of model performance was evaluated
through both absolute and relative MD, RMSD, and R? (Fig. 4c). It demonstrated reasonable predictive accuracy,
capturing biomass variability across the study area. Performance metrics remained within acceptable ranges, indi-
cating reliable AGBD estimates. The MD ranged from —4.8 to 9.2 Mg ha™?, with percent varying between —5.8%
and 12.7%, reflecting low bias (Fig. 9a). The near-zero median MD suggests that, on average, the model does not
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Fig. 7 Pre-hurricane AGBD uncertainty map at 30-meter resolution for the study area.

overestimate or underestimate AGBD, which enhances reliability for biomass assessments and post-hurricane
forest monitoring in the study area. The error-related metrics provided further insight into the model internal
validation and the magnitude of deviations from observed AGBD values. The RMSD had a median value of 48.3
Mg ha~!, while the percent reached a median of 61.5% (Fig. 9b). The R? ranged from 0.42 to 0.64, indicating a
moderate correlation between predicted and observed AGBD values (Fig. 9¢).

External validation of map accuracies. External validation was divided into two parts: in situ validation
and spatial uncertainty assessment of AGBD estimates. In situ validation involved direct comparisons between
predicted AGBD values from the maps and field-measured AGBD from the 27 plots. A 1:1 plot illustrated the
agreement between predicted and observed AGBD values, providing a graphical representation of model perfor-
mance, and statistical metrics were calculated to quantify accuracy and precision, including MD, %MD, RMSD,
%RMSD, and R? (Fig. 10). Deviations from the 1:1 line indicate over- or underestimation trends, while the spread
of points reflects the variability and precision of the predictions. Our results demonstrated a high correlation,
with an R? of 0.93, indicating strong agreement between predicted and observed in situ AGBD values. The model
exhibited a slight negative bias, as reflected in the MD of —10.5 Mg ha! and %MD of —9.5%, suggesting a small
systematic underestimation of biomass. The overall prediction error was quantified by an RMSD of 43.3 Mgha™?,
with a relative RMSD of 39.3%, capturing the variability in biomass estimates across the study area. These results
demonstrate the model’s reliability in predicting AGBD, with minimal bias and strong predictive accuracy, rein-
forcing its applicability for post-hurricane biomass assessments.

The spatial uncertainty in AGBD predictions for each year was quantified using the estimated mean E(u)
AGBD, calculated as the average of predicted values, representing the central tendency of the predictions (Eq. 6).
The 95% confidence interval provides the range within which the true mean is expected to fall. Spatial variability
was assessed through the total variance V[E(u)] derived from pixel-level bootstrap estimates (Eq. 7). From this
variance, the standard error (SE) quantifies the average deviation of the estimated means from the true popula-
tion mean (Eq. 8). The relative standard error (%§E ) is calculated as SE divided by the mean AGBD, offering a
percentage-based representation of estimation uncertainty (Eq. 9).

— _ 1 <« 1 N
E(u)(Mg ha™") = EZj:l[ﬁZi:lmij] (6)
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17: Pasco
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21: Hillsborough
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24: Hardee

25: Manatee
26: Okeechobee
27: St. Lucie
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29: DeSoto
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36: Hendry
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40: Monroe
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Fig. 8 County-level classification of Hurricane Ian damage across Florida, summarizing impact severity by
administrative unit.

VIE(W) = ZL[%ZZI(% - 'ﬁj)z] @)
SE(Mg ha™) = | VIE()) ®)

%SE = /SE\ x 100
E(w) )
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Fig. 9 Internal validation boxplots of model performance based on 100 bootstrapped iterations. (a) Absolute
error metrics include mean difference (MD) and root mean square difference (RMSD). (b) Relative error
metrics include percent mean difference (%MD) and percent root mean square difference (%RMSD). (c)
Coefficient of determination (R?).

Observed AGBD (Mg hal)
0 100 200 300 400

MD: -10.5 4
9%MD: -9.5 ,
RMSD: 43.3
%RMSD: 39.3
R2: 0.93

400
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==Nhsl.line
= Best fit
+ Mean + sd

Predicted AGBD (Mg ha'!)
200

Fig. 10 Comparison of in situ estimates and derived wall-to-wall AGBD estimates. The black dashed line
represents the 1:1 relationship, the solid black line is the best-fit linear model for the pairwise measurements,
and vertical lines indicate the standard deviation from each estimate. Statistical metrics are computed by the
linear relationship between predicted AGBD and the 27 field plots (observed AGBD). Field pictures illustrate
real AGBD conditions of selected plots, highlighting (a) an underestimated, (b) a well-fitted, and (c) an
overestimated example.

The central tendency of AGBD for the entire study area ranged from 50 to 60 Mg ha! over the years ana-
lyzed. The increase in the estimated mean AGBD to 58.2 Mg ha™! in 2024 suggests a gradual recovery of for-
est biomass following the significant losses caused by Hurricane Ian. The %SE for the entire area consistently
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Year lT(;T)(Mgha_l) V[E/(;T)] EE(Mgha_l) %SE

2022 | 50.04+90.4 2042.4 452 90.4
2023 |51.1+89.6 2008.2 44.8 87.7
2024 | 58.2£101.5 2573.1 50.7 87.1

Table 4. Spatial uncertainty in AGBD predictions for the study area described by estimated mean E(u),
variance V[E(u)], standard error SE, and relative standard error %SE.

remained around 90%, reflecting high spatial uncertainty (Table 4). However, it is important to note that this
value encompasses the entire study area, including regions with inherently higher uncertainty. These high
uncertainties can be attributed to several factors, including cloud cover that affects data acquisition, land cover
dynamics such as flooding in coastal zones, and sensor limitations like saturation in densely vegetated areas.
Additionally, model limitations, particularly in capturing complex canopy structures or sparsely vegetated
regions, contribute to elevated uncertainty levels.

Usage Notes

The RapidFEM4D AGBD maps serve as a reference estimation for the scientific and public communities work-
ing on post-hurricane forest recovery and carbon assessment in a knowledge co-production manner. They are
expected to be particularly useful for the calibration, validation, and direct comparison of remote sensing-based
biomass estimation models, enhancing the accuracy of broader-scale monitoring efforts, and pinpointing where
efforts are needed for recovery and restoration. The temporal continuity of these maps is also an important fea-
ture once it enables the tracking of biomass dynamics and provides insights into disturbance impacts, recovery
trajectories, and carbon fluxes over time. While developed in Florida, the data and methodology (Bueno et al.,
in review) can be transferable for use in other hurricane-prone regions, as well as areas affected by large-scale
disturbances (e.g., fire, landslide, bark beetle infestation).

Uncertainty maps provide essential context for interpreting AGBD estimates, highlighting areas where
predictions may be less reliable due to model limitations. Higher uncertainty typically occurs in regions with
greater biomass. The 30-m resolution of these maps imposes certain constraints, as fine-scale variations in bio-
mass distribution may be smoothed or underrepresented. Small forest gaps, individual trees, and fine-scale
structural differences might not be fully captured, leading to potential discrepancies when comparing with
higher-resolution datasets. Users conducting independent accuracy assessments or validation should compare
AGBD estimates against high-resolution field or airborne LiDAR data, ensuring spatial alignment and consider-
ing scale differences. Employing bootstrapped sampling methods and statistical confidence intervals can further
refine uncertainty evaluations.

It is important to note that this dataset does not differentiate between native and planted forests during the
modeling and upscaling. Users interpreting damage or biomass changes in areas with known harvesting, thin-
ning, or forest management may consider applying external forest type or management masks to isolate these
effects.

Code availability

All steps for GEDI, HLS, and Sentinel-1C data acquisition, preprocessing, covariate generation, stacking, as well
as AGBD modeling and upscaling were performed using Python and the GEE environment. The scripts used for
these processes are available on GitHub (https://github.com/inaciotbueno/rapidfem4d). Field data used for map
validation is available on the USDA ARS National Agricultural Library Ag Data Commons**.
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