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SMRFR: A global multilayer soil 
moisture dataset generated using 
Random Forest from multi-source 
data
Yuhan Liu   1, Yuanyuan Zha1 ✉, Gulin Ran1, Yonggen Zhang2 & Liangsheng Shi   1

Accurate and continuous monitoring of soil moisture (SM) is crucial for a wide range of applications 
in agriculture, hydrology, and climate modelling. In this study, we present a novel machine learning 
(ML) based framework for generating a continuously updated, multilayer global SM dataset: SMRFR 
(Soil Moisture via Random Forest Regression). Leveraging publicly available reanalysis and remote 
sensing data, SMRFR provides daily SM estimates at five soil layers (0–5, 5–10, 10–30, 30–50 and 
50–100 cm) with a spatial resolution of 9 km, covering the period from 2000 to 2023. Evaluation results 
demonstrate that SMRFR effectively captures both spatial and temporal SM variability. It also exhibits 
strong generalization capacity, successfully transferring knowledge across continents and accurately 
capturing transient and seasonal SM dynamics following rainfall events. SMRFR achieved an unbiased 
root mean square error of 0.0339 m3/m3 on the validation set. Our novel SM dataset offers a basis and 
valuable reference for agricultural, hydrological, and ecological research, enabling improved analysis 
and modelling of SM dynamics at regional to global scales.

Background & Summary
Soil moisture (SM) is a critical component of the global hydrological cycle and a key climate variable influenc-
ing water, carbon, and energy fluxes at the land-atmosphere interface1–5. It influences hydrological processes 
such as runoff, infiltration, and evapotranspiration, with broad applications in weather forecasting4,6, drought 
monitoring7–10, flood prediction, and agricultural management11. SM is typically divided into surface soil mois-
ture (SSM) and root zone soil moisture (RZSM), while RZSM being particularly critical as it regulates plant 
transpiration, nutrient uptake12, and drought resilience, and plays a vital role in climate feedbacks, groundwater 
recharge13, and ecosystem stability14. Accurate and continuous SM estimation, especially at across soil depths, is 
essential for understanding terrestrial water dynamics and mitigating climate-related risks.

Despite its significance, obtaining high-quality SM data with adequate spatial and temporal resolution 
remains a challenge15,16. In-situ networks17–20 offering high accuracy SM observations and vertical profile insights 
but are limited by sparse spatial coverage due to logistical and financial constraints. Satellite-based missions (e.g. 
SMOS21, SMAP22) enable global coverage but are restricted to the top ~5 cm of soil23 and often perform poorly 
in densely vegetated24,25, topographically complex26, frozen27, or snow-covered28,29 environments, resulting in 
data gaps. Alternatively, physics-based models such as Land Surface Models (LSMs) and Earth System Models 
(ESMs)30–32 provide multilayer SM estimates, but rely on parameterizations that introduce uncertainties due to 
incomplete physical representations and meteorological forcing errors2,33,34, especially for RZSM35.

Machine learning (ML) approaches have recently emerged as powerful alternatives, enabling data-driven 
SM estimation by leveraging large-scale environmental data. Several studies have pioneered the application of 
ML to estimate SM, especially for RZSM, and introduced a number of datasets36–41, NNsm37 provides SSM with 
36-km resolution at a global scale (daily, 2002–2019) using Artificial Neural Networks (ANN), SoMo.ml38 offers 
global SM at three soil layers (0–10, 10–30 and 30–50 cm) with 0.25° spatial resolution (daily, 2000–2019) based 
on Long Short-Term Memory neural network (LSTM), SoMo.ml-EU40 with 0.1° resolution over Europe as an 
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advancement of Somo.ml, and SMCI41 delivers multilayer SM (0–100 cm) at 1-km resolution over China using 
Random Forest42 (RF). However, these ML-based datasets are often restricted by coarse spatial resolution, lack 
of multi-depth information, or limited validation across climatic regimes.

To address these limitations, we introduce SMRFR (Soil Moisture via Random Forest Regression), a 
long-term, global, daily, multilayer SM dataset generated using a novel ML-based framework (Fig. 1). Our 
approach combines quality-controlled in-situ SM data from International Soil Moisture Network (ISMN20) and 
multi-source predictors from ERA5-Land reanalysis32 and remote sensing products (e.g., MODIS vegetation 
indices, soil properties, and topographic features). To ensure robust learning and generalizability, we employed 
optimized RF models and applied Extended Triple Collocation43 (ETC) method to select high quality stations 
for training.

SMRFR provides globally consistent daily SM estimates at five depth layers (0–5, 5–10, 10–30, 30–50, and 
50–100 cm), from 2000 to 2023, with a spatial resolution of 9 km (see Table 1). Compared to existing satellite-based 
or model-derived products, SMRFR overcomes key limitations by: (i) offering multilayer SM profiles beyond 
surface-only estimates, (ii) improving spatial resolution than typical ML datasets, (iii) utilizing strict data quality 
control and harmonized multi-source inputs, and (iv) enabling potential transferability to finer resolutions (e.g., 
1 km) and regional applications. SMRFR bridges gaps between existing methods and datasets, providing a scien-
tific foundation for improved SM modelling, climate impact research, and water resource management.

Methods
In-situ SM observations.  In-situ SM data measured by ISMN stations was obtained as target SM data, all the 
SM time series were resampled to a daily temporal resolution to synchronize differences across sensors. Following 
established quality control guidelines44, measurements flagged as unreliable were removed. In addition, sensors 
with insufficiently documented data (e.g., fewer than 200 days of records) were excluded to accommodate inter-
annual SM variability while ensuring enough effective stations.

Another in-situ SM dataset45 was obtained from the National Center for Monitoring and Early Warning of 
Natural Disasters (CEMADEM) of Brazil for evaluating the capability of SMRFR in transferring knowledge of 
SM dynamic across regions (e.g., across-continents)46, whose spatial representativity has been proved47. Outliers 
were removed and data completeness was checked to ensure dataset integrity for evaluation purposes.

Predictors for SM modelling.  The predictors employed in RF models (see Table 2) were carefully selected 
based on their strong relevance to SM dynamics. The dynamic data component was primarily obtained from the 
ERA5-Land32, the application of ERA5-Land effectively circumvents the challenges associated with spatial scale48 
and time coverage38 inconsistencies of multiple remote sensing observations. Furthermore, the timely updates 
of ERA5-Land facilitate the continuous generation of SMRFR, its fine spatial (9-km) and temporal (hourly) 

Fig. 1  Schematic workflow for generating the SMRFR product, including data pre-processing, model training, 
and output production.
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resolutions make it particularly suitable for capturing short- and long-term soil water dynamics. Recognizing 
that SM dynamics are intricately intertwined with meteorological factors, yet ultimately manifest in SM itself, we 
incorporated SM as a predictive variable. This approach encapsulates the information typically reflected by a mul-
titude of meteorological predictors, thereby reducing the reliance on auxiliary data through a form of data assim-
ilation. MODIS vegetation indices (e.g., Normalized Difference Vegetation Index, NDVI, Enhanced Vegetation 
Index, EVI) were included to capture vegetation’s role in SM retention and evapotranspiration. Vegetation medi-
ates the exchange of water between the land and atmosphere, thus playing an essential role in both retaining and 
depleting soil water.

Variations in topography, altitude, and vegetation cover affect solar radiation and hydrological processes like 
runoff. Additionally, soil heterogeneity, including differences in structure, composition38, and water retention 
capacity, influences the horizontal distribution and vertical movement of SM49–54. Thus, static predictors (e.g. 
topography, soil texture, bulk density, and field capacity) were incorporated to account for the effects of terrain 
and soil hydraulic properties on water infiltration and retention.

To ensure consistency across diverse input sources, all predictors were pre-processed to match the SMRFR 
grid (9 km, daily). ERA5-Land variables were averaged to daily means, and Vegetation indices were linearly 
interpolated to daily frequency. Soil properties data (e.g., sand, clay, bulk density) were aggregated from 250 m 
to 9 km using spatial means. All predictors were then mapped to target soil depths, projected, and clipped to a 
unified global land mask.

Model training and application.  ML performance improves with the accuracy of input data55,56, while 
ETC approach57,58 has been validated as an effective tool for enhancing estimation accuracy by controlling the 
quality of the training data59–61. It is based on assumptions of (i) orthogonality of product errors, (ii) independ-
ence among the errors of the three datasets, and iii) errors in the products that are linearly related to the reference 
dataset. In this study, we applied the ETC method to evaluate the consistency among three independent sources: 
in-situ observations, land surface model outputs, and remote sensing products (see Table S1 in Supplementary 
Information document) and the assumed “truth”. Based on the coefficient of determination (R2 = 0.762), we 
selected high-quality stations for training. A total of 433 stations were retained as the final representative subset 
(Fig. 2). This selective strategy ensures that both model training and validation are grounded in the most reliable 
and representative SM data available.

We initially evaluated multiple ML algorithms, including Support Vector Regression (SVR), K-Nearest 
Neighbor (KNN). Among them, the RF algorithm showed the best overall performance in terms of root mean 
square error (RMSE) and correlation coefficient (see Table S2), particularly in geographically heterogeneous 
regions. The quality and representativeness of the training data are critical to model performance63. Therefore, 
we restricted the training set to a subset of carefully selected stations. Furthermore, estimated SM derived from 
the overlying layers were incorporated as input variables to enhance the predictive capabilities for deeper soil 
layers, a strategy previously validated38. A five-fold cross-validation grid search was conducted to optimize RF 
hyperparameters, identifying the configuration that maximized model accuracy. For each soil layer, the model 
was trained and validated on the corresponding curated dataset to ensure robustness and representativeness. The 
final major hyperparameter settings used were n_estimator = 1100, max_depth = 560.

Data type Gridded

Spatial coverage and resolution Global, 9-km.

Temporal coverage and resolution 2000–2023, daily.

Variables Volumetric soil moisture at five layers (0–5 cm, 5–10 cm, 10–30 cm, 
30–50 cm and 50–100 cm from soil surface).

Unit m3m−3

File format Zarr

File name SMRFR_YYYY_v1.0.zarr, where YYYY stands for year.

Table 1.  Specifications of SMRFR.

Variable Source Resolution Description

Dynamic

Volumetric soil moisture
ERA5-land32 9-km, hourly. Daily records obtained from reanalysis

Soil temperature

Vegetation Index MODIS (https://lpdaac.usgs.gov/products/mod13c1v061/) 0.05°, 16-days. NDVI, EVI from Modis products

Soil moisture from upper layer SMRFR69 9-km, daily. ML-based soil moisture from this study

Static

Soil type SoilGrids V2.084 250 m Clay, sand, silt fractions and bulk density

Filed capacity OpenLandMap (https://stac.openlandmap.org/) 250 m Calculated filed capacity at each grid cell

Topography GTOPO30 (https://www.usgs.gov/centers/eros/science) 1 km Elevation, slope, longitude and latitude

Target In-situ soil moisture ISMN20 (https://ismn.earth/en/) Point scale, hourly. In-situ soil moisture at various depth

Table 2.  Predictors and target data for SM modelling.
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Importance of predictors.  The contributions of predictors in SM modelling were assessed using the Mean 
Decrease in Accuracy (MDA) metric, which quantifies the decline in model performance when a predictor’s 
values are randomly permuted. To facilitate a systematic evaluation, we categorized predictors into groups based 
on their type: static attributes (e.g., topography, soil properties), vegetation indices (VI) (e.g., NDVI & EVI).

As depicted in Fig. 3, the dominant role of SM from upper layers in predicting deeper-layer SM highlights the 
importance of vertical water transfer and moisture memory effects, especially in lower layers where atmospheric 
influence is reduced. This vertical dependency enables the model to capture the lagged infiltration processes and 
persistent storage effects that are key to RZSM dynamics.

Among non-SM predictors, soil properties (e.g., clay and sand content, field capacity) exert more influence 
on spatial variability than on temporal fluctuations64. These features govern the infiltration rate, water retention 
capacity, and hydraulic conductivity of soils65,66, especially under contrasting soil types (e.g., sandy vs. clayey 
regions). In regions with limited vegetation or low rainfall variability, these soil properties can dominate SM 
behavior. VI also play a crucial role in surface and near-surface layers, as they influence SM through both direct 
mechanisms (e.g., interception, transpiration, root water uptake) and indirect effects (e.g., seasonal phenology, 
surface energy balance regulation), all of which strongly short-term SM dynamics67,68. Their contribution to 
model accuracy decreases with depth, which is consistent with the diminishing role of vegetation processes 
below the rooting zone. In contrast, soil temperature exhibited marginal contribution, likely because their influ-
ence is already implicitly captured through other variables like SM and VI.

Data Records
The SMRFR dataset can be accessed at figshare69. The compressed files (.zip) contain data in zarr format for the 
five respective layers. An example file name is “SMRFR_ < YYYY > _v1.0.zarr”, with YYYY standing for year.

Technical Validation
We evaluated the suitability and potential of ML-based models for estimating SM data, concentrating on three 
key aspects. First, we examined the modelling performance during the training phase. Second, we evaluated 
the temporal dynamics and spatial patterns of SMRFR. Finally, we assessed the capability of SMRFR in knowl-
edge transfer scenarios. The ability of these models to transfer knowledge across regions is vital for producing 
enhanced quality data in domains where observations are scarce.

Fig. 2  (a) Spatial distribution of the SM stations, including 434 representative and 1623 failed stations. (b) Valid 
data length and the number of target SM stations per soil layer from 2000 to 2023.

https://doi.org/10.1038/s41597-025-05511-w
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Evaluation on SMRFR and its modelling.  Validation of SM Modelling.  As shown in Fig. 4a, SM esti-
mates exhibit a strong correlation with in-situ measurements. Model performance improves with increasing soil 
depth, as indicated by higher correlation coefficients (ranging from 0.947 to 0.982) and lower unbiased RMSE 
(ubRMSE, decreasing from 0.035 to 0.022 m³/m³). This trend likely reflects the greater temporal stability of deeper 
soil layers, which are less affected by short-term meteorological variations and surface interactions, leading to 
more predictable moisture patterns and reduced model uncertainty. The frequency distributions in Fig. 4b fur-
ther demonstrate this consistency, showing close alignment between estimated and observed SM values. A slight 
overestimation is observed around medium SM levels (0.2–0.4 m³/m³), which may be influenced by regional var-
iations in soil hydraulic properties and vegetation cover. Figure 4c highlights the model’s robustness under diverse 
climatic conditions, with estimated SM values closely matching in-situ data across both arid and humid regions.

To further assess model robustness under diverse climate regimes, we evaluated SMRFR performance across 
five Köppen-Geiger climate70 zones using validation stations withheld from model training (see Fig. 5 and 
Fig. S1). The results show that the model performs best in temperate and continental climates, with the highest 
correlations and lowest errors. Tropical and polar regions performed slightly worse in comparison, with higher 
variability and errors, which may be due to complex vegetation dynamics, snow-related processes and fewer 
ground truth data.

These climate-based differences highlight both the generalizability and limits of SMRFR and emphasize the 
importance of region-specific evaluation in global-scale modelling. Benefiting from extensive data collection 
and rigorous quality control, our training data can encompass a wide spectrum of various climatic conditions, 
enabling strong generalization even in complex hydrological environments. In summary, the ML models effec-
tively capture SM dynamics and can accurately estimate SM at unseen locations.

Fig. 3  Relative importance of predictors in SM modelling. Static predictors are grouped under “static”, and 
vegetation indices under “VI”.
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Temporal dynamics of SMRFR.  We compared in-situ SM, estimated SM, and local precipitation to inves-
tigate the temporal dynamics of SMRFR at stations (see Fig. 6 and Figs. S2–4). The dynamics of SMRFR aligned 
closely with in-situ SM, particularly in upper soil layers, with well-aligned scatters patterns. During the dry season 
with minimal precipitation, both SMRFR and in-situ SM showed low, stable moisture levels, suggesting that the 
model effectively captures seasonal depletion and is sensitive to rainfall dynamics.

A wet bias was observed in SMRFR compared to in-situ SM, intensifying with soil depth and dry season 
progression. This may stem from the high hydraulic conductivity71 of local soil (e.g., sandy clay loam at sta-
tion Yosemite-Village-12-W), characterized by large pore spaces, having high infiltration rates but low water 

Fig. 4  Comparison between SMRFR (green) and in-situ SM (blue) in the validation set across five layers.  
(a) Scatter plots, (b) frequency distributions, and (c) violin plots across different climatic zones.

https://doi.org/10.1038/s41597-025-05511-w
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retention capacity, leading to fast dry-down in the dry season. This highlights a shortcoming of ML models, 
which has limited ability to learn soil-specific hydraulic properties.

Following a prolonged dry period, a moderate rainfall in early September triggered rapid wetting in shallow 
layers, while deeper layers (>30 cm) remained unaffected. This reflects increased water absorption capacity in 
desiccated soils. In contrast, during the wet season, elevated SM levels allowed infiltration to reach deeper layers 
(e.g., 50–100 cm, as seen in April). These examples highlight the model’s ability to empirically capture physically 
plausible moisture dynamics through data-driven learning.

However, SMRFR showed a muted response to intense rainfall compared to in-situ SM, likely due to the 
inherent averaging effect of RF outputs, which reflect the arithmetic mean of numerous decision trees, leading to 
a consensus result devoid of extreme values. While this reduces variance and noise, it limits model’s capability to 
replicate sharp infiltration and runoff responses. A hybrid ML-Physical modelling approach (e.g., integrate with 
hydrological models) might enhance the physical realism of SM dynamics, especially for infiltration and runoff 
processes during extreme rainfall events.

Spatial patterns of SMRFR.  We further assessed the spatial patterns of SMRFR and its response to extreme 
events. For illustration, we analysed the localized multi-layer SM maps before and after an extreme rainfall 
event (details in Fig. 7a). SMRFR provides a comprehensive depiction of SM characteristics within this region, 

Fig. 5  Evaluation of SMRFR SSM (0–5 cm) performance across five Köppen-Geiger climate types using 
validation stations excluded from model training. (a) Correlation coefficient, (b) Bias, (c) ubRMSE, and  
(d) MAE are shown as violin plots overlaid with boxplots. Sample size is indicated above the plots in (a).
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featuring high SM levels in coastal monsoon regions (e.g., the Indian Peninsula and southern China) and drier 
conditions in interior arid zones. Wet-up patterns correspond to precipitation levels and align with the extreme 
rainfall event72. During this event, the localized total precipitation exceeding 700 mm in the Indian Peninsula, 
south-central China, and the Himalayan region, leading to significant SM increases. SMRFR effectively captures 
both the spatial continuity and localized variability of SM changes.

Within the Central and Southern Peninsula, SM profiles vary notably with depth, where northern regions 
exhibiting lower SM levels in deeper layers. This likely reflects vertical heterogeneity in soil texture and land 
cover, influenced by elevation gradients. For example, plains dominated by crops may have shallower rooting 
depths compared to northern forested areas, affecting vertical SM redistribution73.

Difference maps (Fig. 7n-r) highlight significant wet-up in surface layers following the event, while deeper 
horizons show more limited responses. This attenuation may result from combined effects of rainfall intercep-
tion, inherent evaporation, and lateral movement of SM. Notably, along the Himalayas region, despite intense 
rainfall, minimal SM increase were observed. This suggests that little to no rainfall infiltrated into the soil to 
wet it further, it could be influenced by near-saturated or saturated soil, which promote runoff, or frozen/
snow-covered soils, which inhibit infiltration.

To further evaluate the spatial representativeness of SMRFR, we conducted an in-depth regional analysis 
across three geographically and climatically distinct areas: the Loess Plateau (China, temperate semi-arid), the 
Cerrado (Brazil, tropical savanna), and the Central Great Plains (USA, temperate continental), as illustrated in 
Fig. 8. These regions encompass a wide range of terrain complexity, land cover types, and soil properties, offering 
a representative testbed for evaluating the SMRFR’s ability to capture localized SM variability.

In the Central Great Plains, SMRFR closely follows terrain-induced SM gradients, with higher moisture 
observed in lowland areas and declining levels toward elevated zones. These spatial variations are consistent with 
local patterns in clay content and vegetation density, reinforcing SMRFR’s sensitivity to surface and subsurface 
hydrological controls. In contrast, SMRFR performance deteriorates in more topographically heterogeneous 

Fig. 6  Time series and scatter plots of in-situ SM and SMRFR at different depths for representative station. Each 
plot includes daily precipitation. KGC stands for Köppen-Geiger climate type; LC stands for land cover.

https://doi.org/10.1038/s41597-025-05511-w
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environments, such as the southern Loess Plateau and the southern Cerrado Plateau, where rapid changes in 
elevation and sparse vegetation cover introduce higher uncertainty. This is reflected in both reduced correlation 
and elevated RMSE. These examples collectively demonstrate SMRFR’s strengths in relatively homogeneous 
landscapes and highlight areas where further refinement or targeted calibration could improve accuracy in com-
plex terrains.

Fig. 7  Multi-layer SM response to an extreme rainfall event (June 25 to July 10, 2020), covering 3°N–55°N  
and 73°W–135°W. (a) Total precipitation, (b) elevation (DEM), (c) NDVI (July 11), (d–h) SMRFR on June 25,  
(i–m) SMRFR on July 10, and (n–r) SM differences.

https://doi.org/10.1038/s41597-025-05511-w
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Comparison with global SM datasets.  In this section, we examined the spatial patterns of SMRFR and 
existing datasets at global scale. The long term global SSM and RZSM states over the entire period (2000–2023) 
are presented in Fig. 9 and Fig. S5. Overall, SMRFR exhibits spatial distributions consistent with reference data-
sets, capturing expected SM gradients driven by topography and climate, characterized by (i) wetter conditions in 
tropical and monsoon regions, and (ii) drier conditions in inland and highland regions.

Fig. 8  Evaluation of SMRFR and environmental conditions in three regions: (a) Loess Plateau (China),  
(b) Cerrado (Brazil), and (c) Central Great Plains (USA). Columns include: (1) SMRFR annual mean SM 
(2020), (2) CCI annual mean SM (2020), (3) correlation with CCI, (4) RMSE, (5) elevation (DEM), (6) annual 
mean NDVI (2020), (7) Clay fraction, and (8) Köppen-Geiger climate classification.

https://doi.org/10.1038/s41597-025-05511-w
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Notably, SMRFR unveils distinctive regional traits, especially in RZSM maps, where higher SM levels are 
observed in some arid regions (e.g., the Sahara Desert and the Middle East) compared to other datasets. These 
disparities may originate from multiple factors, including differences in input data, processing methodologies 
and fundamental distinctions in the operational mechanisms between ML and LSMs in simulating SM dynam-
ics. This highlights the necessity for intensive evaluation and inter-comparison studies to better comprehend 
the underlying causes of these variations. The differences between frequency distributions may reflect the ML 
algorithm’s heightened sensitivity to distinct features embedded within the training data. Continued efforts are 
needed to enhance the accuracy and robustness of SM estimations.

Capability of ML models to transfer knowledge across continents.  In regions with limited or no 
in-situ observations, SM data are generated by learning SM mechanisms from other locations. Therefore, it’s 
essential to validate capability of SMRFR to transfer knowledge across regions (e.g., across continents).

To this end, the independent SM dataset45 was employed as a reference, along with other SM products. 
Notably, none of stations from this dataset was involved in SM modelling. Additionally, none of representative 
stations were distributed in eastern Brazil (see Fig. 2), where the stations of this dataset located in. Thus, SMRFR 
estimates in this region rely purely on knowledge learned from external training data. We focus on: (i) the 
responsiveness of SMRFR to local SM dynamics and rainfall events and (ii) consistency and differences between 
SMRFR and other datasets.

As depicted in Fig. 10, all the time series exhibit strong consistency in temporal SM dynamics, with SM peaks 
occurring along with heavy rainfall in rainy season while lower SM levels in dry periods. The nearly consist-
ent dynamic fluctuation of SMRFR in tandem with in-situ SM showcases the heightened sensitivity of SMRFR 
to minute SM variations, highlighting its capability to simulate both seasonal and interannual SM variability. 
Despite this, varying degrees of wet bias are observed across all four products compared to in-situ SM, sug-
gesting the overestimations in such semi-arid regions. Notably, SMRFR performs best in this transfer-learning 
scenario, with a mean absolute error (MAE) of 0.0331 m³/m³, outperforming ERA5-Land (0.1286), ESA CCI 
(0.1091), and GLEAM (0.1681).

Station-level evaluation (Fig. 11) further confirms SMRFR’s superior accuracy, showing the lowest bias, 
ubRMSE and MAE of 0.0273 m³/m³, 0.0339 m³/m³, 0.0439 m³/m³ and acceptable correlation coefficient of 
0.65. The distributions of MAE and correlation coefficients reveal that while the relative temporal dynamics of 
SM are well-captured in these datasets, accurate estimation of SM values remains a challenge, particularly for 
LSM-based datasets74,75.

In summary, SMRFR demonstrates three key advantages: (i) strong ability to capture temporal SM dynam-
ics and seasonal patterns, (ii) responsiveness to both short- and long-term rainfall variations and (iii) reliable 
estimation of absolute SM levels. These strengths reflect ML model’s robust learning capacity and its potential to 
support knowledge transfer across diverse regions.

Fig. 9  Comparison of SMRFR with long term SSM means from ERA5 land, GLEAM, and ESA-CCI. Along the 
diagonal are individual dataset maps, above the diagonal are difference maps (row minus column) and below 
the diagonal are frequency distributions comparisons. Only grid cells where all datasets are available are used.

https://doi.org/10.1038/s41597-025-05511-w
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However, it is worth noting that the current validation is grounded on semi-arid regions. Whether the 
ML-model can maintain its superior performance under disparate climatic conditions (e.g., extreme drought, 
high humidity, or more complex scenarios) remains uncertain. Future investigations should extend evaluation 
to broader environmental contexts to further enhance model robustness and generalizability.

Usage Notes
Despite the significant enhancement in accessibility of global SM datasets, there persist limitations, for instance, 
coarse spatial resolutions (25–50 km)22,38,76,77, simplified vertical structures (e.g., single root zone layer)78 and 
uneven continental coverage36,39,40. These limit the consideration of land surface heterogeneity and large-scale 
analysis of climate-SM interactions. To satisfy the increasing requirement for high resolution SM data16,79, this 
study introduces an innovative framework that harnesses the prowess of ML to systematically generate compre-
hensive, global-scale, multilayer SM datasets, using multi-source data. As a pilot step, we generated SMRFR, a 
novel SM dataset which provides global daily SM estimates at five soil layers (0–100 cm) at 9-km resolution from 
2000 to 2023, with planned enhancement to 1-km resolution.

During training and validation, the ML framework demonstrated remarkable proficiency in deciphering 
intricate, nonlinear relationships and dynamic interactions between SM and environmental drivers. Consistent 
with earlier findings38, SM itself emerged as the dominant factor in determining the model inputs, suggesting 
that the framework can be streamlined to reduce data dependency. SMRFR also can exhibits strong transfera-
bility, particularly in semi-arid regions, where it effectively captures seasonal and event-scale SM fluctuations in 
the absence of local training data.

As earth observation data expand, ML continues to gain traction in earth system modelling, including SM, 
solar radiation80 and precipitation81. However, representing global SM dynamics with a single model per soil 
layer remains challenging, given the diversity in soil properties, topography, surface roughness, vegetation cover, 
and freeze-thaw dynamics. These complexities can lead to region-specific performance variations56. Future 
improvements may benefit from regional model specialization or clustering approaches39. In addition, while 

Fig. 10  Time series and scatter plots of SSM (0–10 cm) mean at CEMADEM stations. (a) All stations (all, 360) 
and subsets in (b) Bahia (BA, 133), (c) Ceará (CE, 64), (d) Pernambuco (PE, 42) and (e) Piauí (PI, 32).

https://doi.org/10.1038/s41597-025-05511-w


13Scientific Data |         (2025) 12:1170  | https://doi.org/10.1038/s41597-025-05511-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

SMRFR is suitable for large-scale and regional studies, current resolution may be insufficient for field-scale 
applications. Finer-resolution SM datasets (e.g. hundred-meter scale or small) are needed to support precision 
agriculture and irrigation planning16,82.

SMRFR supports a range of applications across agriculture, hydrology, and ecology. It can enhance hydro-
logical models (e.g., SWAT, VIC) by providing high-resolution, multilayer SM inputs that improve simulations 
of runoff, infiltration, and evapotranspiration processes. For instance, surface layers (e.g., 0–30 cm) support 
plant-available water estimation in SWAT, while the deeper profiles (up to 100 cm) enhance root-zone mois-
ture representation in VIC. SMRFR can also complements satellite-based SM products for gap-filling and bias 
correction, and may be integrated with climate datasets (e.g., CMIP6) to assess long-term SM trends and their 
climate impacts. Regional biases can be further corrected using in-situ networks (e.g., COSMOS, FLUXNET. 
By facilitating seamless integration, calibration, and validation, SMRFR can enable large-scale SM analysis and 
provide new opportunities for drought monitoring, water resource management83, and ecosystem research.

Code availability
The RF models of this study and figure scripts are available from https://github.com/trust44/SciData2024_
SMRFR_v1.
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