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A Structural Vibration-based 
Dataset for Human Gait 
Recognition
Mainak Chakraborty1, Chandan2, Sahil Anchal3, Bodhibrata Mukhopadhyay4 ✉ & Subrat Kar2

We present a dataset designed to advance non-intrusive human gait recognition using structural 
vibration. Structural vibrations, resulting from the rhythmic impacts of toes and heels on the ground, 
offer a unique, privacy-preserving gait recognition modality. We curated the largest dataset consisting 
of structural vibration signals from 100 subjects. Existing datasets in this domain are limited in scope, 
typically involving around ten participants and offering minimal exploration. To comprehensively 
investigate this modality, we recorded vibration signals across three distinct floor types—wooden, 
carpet, and cement—and at three different distances from a geophone sensor (1.5 m, 2.5 m, and  
4.0 m), involving 40 and 30 participants, respectively. The dataset also includes video recordings of 
15 individuals in an outdoor setting. Moreover, we recorded structural vibration signals of 15 people 
walking at three different speeds. Alongside the vibration data, we provide physiological details such 
as participant age, gender, height, and weight. The dataset contains over 96 hours of raw structural 
vibration data, along with additional interim and processed data. This dataset aims to address 
long-standing challenges in non-intrusive and privacy-preserving gait recognition, with potential 
applications in clinical analysis, elderly care and rehabilitation engineering.

Background & Summary
Structural vibration-based person identification is an emerging topic in the field of soft biometrics and medi-
cal technology1,2. As humans walk, our bodies exert an impact force on the ground, generating vibrations that 
propagate through the structure. These structural vibrations are unique to each individual as they depend on 
various factors such as height, weight, gait strides, stride length along with structural properties, and back-
ground noises3. Structural vibrations offer many advantages over existing methods, such as being low-cost, 
non-intrusive, less computationally complex, and free of privacy issues. Prior studies has established the poten-
tial of using structural vibration as behavioral biometrics1,2,4–6. However, such works relied on limited datasets, 
impeding the development of robust identification methods. Our research fills a crucial gap by compiling the 
first comprehensive dataset of 100 individuals, including task-specific sub-datasets totaling 96+ hours of struc-
tural vibration signals recorded with a single geophone.

During walking, our body apply forces to the ground or platform, which help us move forward and keep 
us balanced. These forces propagate through the structure as horizontal and vertical waves or vibrations3. Our 
work focuses on the vertical vibrations due to their unique individual characteristics1,5. As shown in Fig. 1, foot 
strikes (initial contact) generate higher frequency vibrations than lift-off (acceleration) due to the impulsive 
force during the strike. We extract the envelope of the signal, using Hilbert transform, to visualise the overall 
variation by subsiding the rapid oscillations2,7. This reveals a distinct pattern indicating cyclical changes in the 
signal corresponding to the phases of contact and acceleration. Early research has tried to model this structural 
vibration using deterministic force models4. In this study, we adopt a probabilistic perspective, assuming indi-
viduals do not produce exact identical force-time profiles. However, the walking pattern is similar over different 
space-time, and the wave profile will exhibit intrinsic and extrinsic randomness as a function of weight, height, 
structural properties, and background noise, among other factors1. Naturally, a substantial subject database 
is crucial for such robust statistical characterization. The impact force (kgms2 or Newton (N)) due to footstep 
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impact on the ground is transmitted through the structure and recorded as a vibration signal by a geophone 
sensor (in Volt (V)). Thus, the recorded signal has induced properties of both the structure and the individ-
ual walking pattern. As shown in Table 1, early studies on person identification using structural vibrations 
focused on small datasets, typically involving around ten participants, to establish proof-of-concept1,2,4–6,8. These 
studies demonstrated that unique walking patterns could be recorded and classified through vibrations trans-
mitted to supporting structures. However, data scarcity was a significant limitation, as large-scale experiments 
with humans were rarely conducted. Pressure plates and Inertial Measurement Units (IMUs) are prominent 
soft biometric modalities based on human movement9–12. Pressure plates capture the unique Ground Reaction 
Forces (GRFs) exerted by the foot during walking by being placed directly beneath it13–15. Pressure plates exhibit 
limitations due to their requirement for direct user interaction. Deployment often requires explicit user consent, 
hindering their applicability in scenarios demanding unobtrusive identification16. IMUs, often embedded in 
wearable devices, offer gait-based identification through their ability to track body movements9. IMU’s needs 
to be attached with the person’s body, which might lead to discomfort17. In contrast, structural vibration-based 
monitoring is non-intrusive and does not require direct body contact.

Fig. 1  Visual depiction of data collection framework showcasing structural vibration signals, and signal 
envelope (Hilbert Transform) in outdoor environment.

References Sensor Modality Person(s) Domain Environment Length of Data (Hours) Data Availability
13 Pressure Plates 57 1 Indoor 9.5 Available
14 Pressure Plates 42 1 Indoor 31.5 Available
15 Pressure Plates 324 1 Indoor 1 Available
9 IMU 744 1 Indoor 20 Available
10 IMU 20 1 Indoor 1 On Request
11 IMU 65 1 Indoor — Not Available
12 IMU 16 1 Indoor — Available
1 Geophone 10 1 Indoor — Available
2 Geophone 10 1 Indoor 12.91 Not Available
4 Geophone 1 3 Indoor 0.5 Not Available
5 Geophone 2 1 Indoor 0.5 Not Available
6 Geophone 10 4 Indoor 1.5 Not Available

(Ours) Geophone 100 3 Indoor and Outdoor 96.16 Available

Table 1.  Overview of different datasets for gait recognition.
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The dataset is categorized into five primary components: 

•	 Person Identification: Raw structural vibration signals recorded from 100 individuals walking on a single 
floor.

•	 Multi-Distance: Vibration data from 30 individuals walking at three specific distances—1.5 m, 2.5 m, and 
4.0 m—from a geophone sensor to study signal variation with proximity.

•	 Multi-Structure: Data from 40 individuals captured across three distinct floor surfaces: wooden, carpeted, 
and cemented, to analyze the effect of structural properties on vibration patterns.

•	 Multi-Modal: Outdoor recordings from 15 participants using both a geophone and two synchronized cam-
eras to support multi-modal analysis combining structural and visual cues.

•	 Multi-Speed: Data from 15 individuals walking at three different speeds—slow (80-90 Steps/min), normal 
(90-120 Steps/min), and fast (120-140 Steps/min)—to study gait variations.

This diverse and extensive dataset, spanning over 96 hours, provides a foundational resource for the develop-
ment and evaluation of algorithms in non-intrusive human gait recognition using structural vibrations.

Methods
Recording Setup.  We collected structural vibration signals, with a single geophone for Multiple Indoor  
(A1, A2, A3, A5) and outdoor (A4) environment, along with two cameras. Figure 2 shows the images of geophone 
sensor, raspberry pi 3B+, and camera. Details are given below : 

•	 Geophone: A geophone is a sensor that converts the ground vibrations into voltage, which can be recorded 
by using any microcontroller or microprocessor having an analog-to-digital converter (ADC). We used 
geophone sensors with a sensitivity of 2.88 V/m/sec, and a gain of 10 was used for both indoor and out-
door environments. Vibration signals were recorded using a Logic sound card hat equipped with a 16-bit 
analog-to-digital converter (ADC) operating at a sampling rate of 8 kHz. The sound card interfaced with a 
Raspberry Pi 3B+, having 1 GB of RAM and 16 GB of storage via SD Card for indoor data (A1, A2, A3, and 
A5). For outdoor data (A4), a geophone sensor was interfaced with a Sony CXD5602 Spresense embedded 
micro-controller.

•	 Single Board Computers: For indoor experiments (A1, A2, and A3, A5), we have used raspberry Pi 3B+ 
featuring BCM2837B0 64-bit ARM-based Cortex-A53 processor running at 1.4 GHz with 1 GB of RAM and 
16 GB of storage via SD Card. The geophone sensor was interfaced with raspberry Pi 3B+ using a logic sound 
card hat equipped with a 16-bit analog-to digital converter (ADC) at a sampling rate of 8 KHz. In our outdoor 
experiments (A4.1), we used the Sony CXD5602 Spresense board. This board features an ARM Cortex-M4F 
processor with six cores running at 156 MHz and a 16-bit A/D conversion output. We opted for the Sony 
Spresense board due to its low power consumption—only 1 W (5 V @ 200 mA)—compared to the Raspberry 
Pi 3B+, which requires approximately 7.5 W (5 V @ 1.5 A). This energy efficiency makes the Sony Spresense 
board well-suited for outdoor data collection experiments. However, it has a limitation: it can only record 
signals at 16 KHz and 32 KHz. Therefore, we initially recorded vibrational signals at 16 KHz and subsequently 
downsampled the data to 8 KHz to maintain consistency with the indoor datasets.

•	 Camera: For (A4.2) dataset, we have used 2 cameras that have a CMOS sensor (0.84667 cm) with 3 MP, 95° 
viewing angle, with frame rate of 20 fps. It supports Wi-fi protocol to remotely view the recorded video and 
save it to smartphone or cloud services.

Statistical Attributes of the Dataset.  The different statistical attributes of the dataset are given below: 

•	 Subjects: In this study, 100 participants, comprising 68 males and 32 females, aged between 20 to 60 years, 
took part. Figure 3 presents the age-wise distribution and weight-to-height ratio of the participants. Each 
participant was asked to wear flat-bottom shoes that would be comfortable for walking.

•	 Anthropometrics: As shown in the Table 2, the participants’ heights vary from approximately 1.40 m to  
1.90 m, and weights range from 40 kg to 90 kg. The dataset’s details regarding age, gender, height, and weight 
are available on the GitHub repository.

Fig. 2  Hardware Components: (a) Geophone sensor for capturing structural vibrations, (b) Raspberry Pi 3B+ 
board for data acquisition, and (c) Camera for outdoor data collection.

https://doi.org/10.1038/s41597-025-05517-4


4Scientific Data |         (2025) 12:1617  | https://doi.org/10.1038/s41597-025-05517-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

•	 Data Collection Environment: Indoor and Outdoor data collection involves multiple 5-minute walking ses-
sions for each participant between 11:00 AM and 6:00 PM.

•	 Background Noise: The indoor datasets potentially include noise from typical building operations such as air 
conditioning. These temporal variations and noises reflect real-world conditions in a multi-functional building 
environment. Figures 4–7(c), clearly demonstrates the variation in noise distribution across different rooms 
and outdoor environment. Notably, the signal-to-noise ratio (SNR) exhibits dependence on the floor level, with 
ground floor locations typically having high SNR compared to the third floor. Additionally, we observed that 
the amplitude of the source signal exhibits an inverse relationship with distance from the sensor. As highlighted 
by Pan et al.1, footstep events predominantly occur within the 0-250 Hz frequency range. Applying band-pass 
filters within this range to the raw signal can further enhance the quality of event detection. To facilitate effec-
tive event extraction from the raw signals, we provide background noise recordings for each room.

Experimental protocol.  Prior to data collection, participants were briefed for 5 minutes about the task 
to ensure clear understanding. They were asked to walk from a designated starting point (Point A) to another 
designated endpoint (Point B) at a natural pace, turn around at Point B, and then repeat the walk back to Point 
A. Each session lasted for five minutes, we conducted approximately 750 sessions. Participants were informed 
that they could stop and rest at any point during the session (if they feel uncomfortable); the recording would be 
paused and restarted upon resuming the walk. It is important to note that structural vibrations from non-human 
activities were not controlled. The walking area for all locations is maintained around 100 m2. The data collection 
process strictly adhered to the rigorous guidelines established by the Institutional Ethics Commitee (IEC). Ethical 
approval from the IEC, Indian Institute of Technology Delhi, was obtained (Ref. number IITD/IEC/P-059, date of 
approval: 13/09/2019). All participants provided written informed consent for data collection and sharing prior to 
participating in the study. The consent form explicitly explained that their data would be anonymized and shared 
publicly for research purposes. Participants were informed about the nature of the data being collected and how 
it would be used for gait recognition research.

Dataset Details.  The dataset can be further used for different use-cases. The detail are as follows: 

•	 A1: Vibration signals were recorded from 100 individuals at a distance of 2.5 m-6.0 m from the sensor. Each 
individual has 20 minutes of recorded data, totaling 33.66 hours.

•	 A2: Data from 30 individuals were collected on a cement floor at three distances from the sensor: 1.5 m 
(A2_1), 2.5 m (A2_2), and 4.0 m (A2_3). Each individual has 15 minutes of recorded data for each distances, 
totaling 22.5 hours.

•	 A3: Data from 40 individuals were collected on wooden (A3_1), carpet (A3_2), and cement (A3_3) floors, at 
a distance of 2.5 m - 6.0 m from the sensor. Each individual has 20 minutes of data per floor, totaling 30 hours.

•	 A4: Data from 15 individuals were recorded using a single geophone (A4_1) and two off-the-shelve cameras (left 
camera-A4_2a and right camera-A4_2b). Each individual has 10 minutes of recorded data, totaling 2.5 hours.

Fig. 3  Distribution of Subjects in A1, (a) Height and weight distribution of the 100 participants, and (b) Age 
distribution of the participants in A1.

Name Experiment
No of 
subjects

Length of 
DataExperiment Age (Mean ± std.)

Weight 
(Mean ± std.)

Height 
(Mean ± std.)

A1 Person Identification 100 33.66 hrs 27.78 ± 4.95 64.28 ± 11.52kg 170.3 ± 6.5 cm

A2 Multi-Distance 30 22.5 hrs 28.13 ± 2.22 66.79 ± 9.46 kg 167.93 ± 6.6 cm

A3 Multi-Floor 40 30 hrs 28.57 ± 4.44 65.95 ± 9.19 kg 168.18 ± 6.7 cm

A4 Multi-Modal 15 2.5 hrs 29.20 ± 4.00 65.10 ± 6.30 kg 167.70 ± 5.4 cm

A5 Multi-Speed 15 7.5 hrs 29.93 ± 6.89 70.53 ± 10.35 kg 171.60 ± 7.2 cm

Table 2.  Datasets Details and Characteristics.
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•	 A5: Data from 15 participants (11 males and 4 females) to incorporate different walking speeds: slow A5_1 
(80-90 SPM), normal A5_2 (90-120 SPM), and fast A5_3 (120-140 SPM). This experiment yielded 7.5 hours 
of data. Participants walked to metronome beats for the slow and fast speeds, while walking at their natural 
pace for the normal category.

Location Details

•	 Wooden Floor: The data collection environment is a classroom on the ground floor with wooden floors. This 
room is used for data collection of dataset A1, A3_1, A5. Figure 4 shows a photo of the room, a sample of 
noise distribution within the room, and a visualization of data collected from a walking person.

•	 Carpet Floor: The room is a conference room on the ground floor with carpeted flooring surrounded by 
concrete. The thickness of the carpet is 9mm. The room is furnished with chairs and a table. This room is used 
for data collection of dataset A3_2, where 40 person walked for 15 minutes each. The Fig. 5 illustrates the 
data collection setup for A3.2, including a room photo, noise distribution sample, and walking person data 
visualization.

•	 Cement Floor: The room is a research lab on the third floor of a multi-storied building, covered in tiles. It is an 
active research lab with regular activities occurring in the background. This room is used for data collection 
of datasets A3_3 and A2 (1.5 m, 2.5 m, and 4.0 m). Figure 6 shows a photo of the room, a sample of the noise 
distribution within the room, and a visualization of data collected from a walking person.

•	 Outdoor Ground: The data collection environment is an open outdoor playground where the vibration sig-
nals of 15 individuals were recorded. Due to the open nature of the space, extraneous noise from activities 
such as people walking, running, and playing cricket was unavoidable. Open ground is used for data collec-
tion of two modalities, structural and vision based; the structural based vibration collected data named as 
A4_1 and vision based collected data is used to formulate A4_2. Figure 7 shows the location setup, a sample 
of noise distribution and a visualization of data collected from a walking person.

Fig. 4  (a) Empty wooden floor room, (b) Participant walking in front of the sensor during data collection,  
(c) Raw noise signal acquired from the geophone sensor, (d) Raw vibration signal recorded during a participant’s  
walk, (e) Continuous Wavelet Transform (CWT) of the noise signal, (f) CWT of the walking signal, highlighting 
the transformed features.
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Data Pre-processing.  We processed our data using standard method2, which uses Gaussian Mixture 
Model-based clustering to extract footstep events based on both statistical features (skewness and kurtosis) and 
spectral features based on energy bins. We take a rolling window of 375 ms and calculate 134 features. After 
preprocessing, we structured the dataset based on footstep events, grouping them so that each row represents 
one sample. As shown in the Fig. 8, we converted the extracted footstep events to 2-D time-frequency images 
using Continuous Wavelet Transform to focus on the changes in energy distribution, which is unique for each 
and every individual6. We use the Mask R-CNN model (pre-trained on the ImageNet dataset) to detect humans 
within each image frame, allowing us to isolate the human silhouettes from the background18. This step ensures 
that the image is normalized based on the extracted silhouette, focusing solely on the relevant body region for gait 
analysis. Finally, for processed files we formulate the Gait Energy Images (GEIs) by merging the gait cycle images. 
This consistent size ensures compatibility during subsequent processing and analysis.

Data Records
The dataset is publicly hosted on the Open Science Forum portal (Reference Number : VPWCZ)19. As shown 
in Fig. 9, it is organized into three stages: raw, interim, and processed. The corresponding folder and file 
naming conventions are summarized in Table 3. A detailed breakdown is provided below. Figure 10 highlights 
the file structure arrangements.

Raw data.  The A1 Dataset is structured to contain one folder for each individual, with folder names labeled 
as P1, P2, up to P100. Each folder includes at least 4 .mat files, where each file represents 5 minutes of vibration 
data. The file naming convention follows the pattern FolderName_FileNumber, such as P1_1.mat and 
P1_2.mat. The A2 Dataset contains three folders representing different distances from the geophone sensor: 
A2_1 (1.5 m), A2_2 (2.5 m), and A2_3 (4.0 m). Each folder has subfolders for individual participants, labeled 
as P1, P2, up to P30, with each subfolder containing at least 3 .mat files, where each file represents 5 minutes of 
vibration data and follows the same naming convention. The A3 Dataset consists of three folders corresponding to 

Fig. 5  (a) Empty carpet floor room, (b) Participant walking in front of the sensor during data collection,  
(c) Raw noise signal acquired from the geophone sensor, (d) Raw vibration signal recorded during 
a participant’s walk, (e) Continuous Wavelet Transform (CWT) of the noise signal, (f) CWT of the walking 
signal, highlighting the transformed features.
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different floor types: A3_1 (Wooden), A3_2 (Carpet), and A3_3 (Cement). Similar to A2, each folder includes 
subfolders for individual participants (P1, P2, to P40), with each subfolder containing at least 3 .mat files rep-
resenting 5 minutes of vibration data and named using the same convention. The A4 Dataset contains contains 
subfolders for each participant (P1, P2, to P15). In A4_1, each subfolder contains one .mat file representing  
10 minutes of vibration data, named using the same convention. The A5 Dataset captures vibration data of partic-
ipants walking at different speeds and is structured into three main folders. The folder A5_1 contains data of par-
ticipants walking at a fast speed (120–140 steps per minute), A5_2 includes data of participants walking at their 
normal pace (90–120 steps per minute), and A5_3 stores data of participants walking at a slow speed (80–90 steps 
per minute). Each folder is organized into subfolders for individual participants, labeled as P1, P2, up to P15. 
Each subfolder contains at least 2 .mat files, where each file represents 5 minutes of vibration data corresponding 
to the specified walking speed. The file naming convention follows the format FolderName_FileNumber, 
such as P1_1.mat and P1_2.mat.

Interim Data.  The interim datasets (A1–A5) are provided as single .mat files, such as A1.mat, A2.mat, and 
A3.mat, where each file contains individual samples represented as rows. Each row consists of 1,500 data-points 
capturing the characteristics of a single footstep event and an associated target label or person_id. The structure of 
each file is as follows:A1.mat contains data with a shape of (samples, 1501), where columns 0–1499 correspond 
to the features, and column 1500 represents the person_id, ranging from 1 to 100. Similarly, the dataset A2_1.
mat includes data with a shape of (samples, 1501), where the person_id ranges from 1 to 30 for participants walk-
ing at 1.5m, and the corresponding features are stored in columns 0–1499. The structure is the same for A2_2.
mat and A2_3.mat, which contain data for participants at 2.5m and 4.0m, respectively. For A3_1.mat, the 
data shape is (samples, 1501), with participants walking on a Wooden floor. The person_id ranges from 1 to 40, 
while the features occupy columns 0–1499. Similarly, A3_2.mat and A3_3.mat represent data for participants 
walking on Carpet and Cement floors, respectively. The interim dataset A4_1.mat captures vibration data on 
Wooden floors, with each row containing 1,500 features and the person_id ranging from 1 to 15. A4_2a and 
A4_2b store .jpg files of human silhouettes captured from Right and Left cameras, organized similarly, with 

Fig. 6  (a) Empty cement floor room, (b) Participant walking in front of the sensor during data collection,  
(c) Raw noise signal acquired from the geophone sensor, (d) Raw vibration signal recorded during a participant’s  
walk, (e) Continuous Wavelet Transform (CWT) of the noise signal, (f) CWT of the walking signal, highlighting 
the transformed features.

https://doi.org/10.1038/s41597-025-05517-4


8Scientific Data |         (2025) 12:1617  | https://doi.org/10.1038/s41597-025-05517-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

person_id values from 1 to 15. Finally, the A5_1.mat, A5_2.mat, and A5_3.mat files contain samples cor-
responding to participants walking at fast, normal, and slow speeds. Each row includes 1,500 features in columns 
0–1499 and the person_id ranging from 1 to 15, capturing the vibration characteristics for different walking paces.

Processed Data.  The processed data (A1-A5) is organized into folders named (A1-A5), with each directory 
containing subdirectories that store CWT images (224 × 224) in .jpg format for individual events. The structure of 
each dataset is as follows: The A1 folder includes subdirectories labeled as P1, P2, up to P100. For the A2 dataset, 
the folder is divided into three subdirectories: A2_1, A2_2, and A2_3, each containing participant-specific sub-
folders labeled P1, P2, up to P30. Similarly, the A3 dataset is organized into subfolders A3_1, A3_2, and A3_3, 
each with participant directories ranging from P1 to P40. The A4_1 dataset is split into subdirectories with each 

Fig. 8  Data Processing Steps: (a) Raw vibration signal acquired from the geophone sensor. (b) Pre-processed 
signal after noise reduction and event segmentation. (c) Extracted events converted into a CWT image for 
further analysis.

Fig. 7  (a) Empty outdoor ground, (b) Participant walking in front of the sensor during data collection, (c) Raw 
noise signal acquired from the geophone sensor, (d) Raw vibration signal recorded during a participant’s walk, 
(e) Continuous Wavelet Transform (CWT) of the noise signal, (f) CWT of the walking signal, highlighting the 
transformed features.
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subfolder containing participant-specific directories labeled P1, P2, up to P15. Lastly, the A5 dataset consists of 
three subdirectories: A5_1, A5_2, and A5_3, with subfolders for each participant named P1, P2, up to P15.

Technical Validation
Before each data acquisition session, we calibrated the sensor to ensure its reliability in detecting ground vibra-
tions in the given environment. Participant walked 30 steps in 30 seconds, matching their pace to a metronome 
set at 60 beats per minute. Participant walked directly away from the sensor, eventually moving beyond its 

Fig. 9  Data Structure Overview: The dataset is organized into three sub-categories—‘raw,’ ‘interim,’ and 
‘processed.’ Each category is further divided by use-case (A1 - A5), containing recordings, events, Silhouettes, 
and spectrograms, respectively.
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sensing range (approximately 6-10 meters). We processed the recorded vibration signals with a peak detection 
algorithm to identify individual footstep events. The algorithm first applied a 50 ms moving average filter to 
smooth the signal, then detected steps using a minimum peak height of 0.022. It reported the total number of 
detected steps, offering a straightforward and effective method for extracting step patterns from normalized 
vibration signal. Over 250 days of recordings, spanning 750 sessions, the algorithm detected footstep peaks with 
an error rate of just 0.003, showing high accuracy even beyond the typical sensing range. We began with a con-
trolled footstep test to evaluate the sensor’s response to low-frequency, periodic vibrations generated by human 
movement. Figure 11 shows a representative structural vibration signal from one session. To maintain data qual-
ity, we established a twofold non-seismic buffer zone around the recording area and prohibited all concurrent 
human activity during data acquisition. We validated the dataset using established protocol2. We report the aver-
age accuracy across multiple datasets. While our current work does not introduce a new methodology, it ensures 
reproducibility and facilitates benchmarking through publicly available code and results. Detailed experimental 
results, including discussions on validation metrics and performance across varying environments and users, 
can be accessed via our github repository: https://github.com/Mainak1792/Terra. The geophone-based data col-
lected are available in raw, interim and processed formats, using well-established de-noising and normalization 
procedures2,6. This provides flexibility for future researchers to either utilize the raw data and apply their own 
post-processing methods or directly work with the ready-to-use post-processed data. To evaluate data integrity, 
the post-processed data have been plotted for visualization in Fig. 12.

Dataset Data Type Structure Naming Convention

Raw Folders P1-P100, each with ≥4 .mat files PX_Y.mat (e.g., P1_1.mat)

A1 Interim Single .mat file A1.mat (1501 columns: features + person_id 1-100)

Processed Folders P1-P100 with images PX/event_Z.jpg (224 × 224 CWT images)

Raw A2_* (1.5m/2.5m/4.0m)  →  P1-P30 PX_Y.mat

A2 Interim Three .mat files A2_*.mat (person_id 1-30 per distance)

Processed A2_1, A2_2, A2_3 →  P1-P30 Subfolder per distance, then participant

Raw A3_* (Wooden/Carpet/Cement)  →  P1-P40 PX_Y.mat

A3 Interim Three .mat files A3_*.mat (person_id 1-40 per floor type)

Processed A3_1, A3_2, A3_3 →  P1-P40 Subfolder per floor, then participant

Raw P1-P15 folders PX_1.mat (one per participant)

A4 Interim A4_1.mat + image folders A4_1.mat, A4_2a/PX.jpg, A4_2b/PX.jpg

Processed A4_1 →  P1-P15 Participant folders with CWT images

Raw A5_* (speed)  →  P1-P15 PX_Y.mat (≥2 files/participant)

A5 Interim Three .mat files A5_*.mat (person_id 1-15 per speed)

Processed A5_1, A5_2, A5_3 →  P1-P15 Subfolder per speed, then participant

Table 3.  Dataset naming conventions and structures. Each dataset includes raw, interim, and processed stages, 
with specific folder and file naming schemes.

Fig. 10  Overview of the code repository structure. The repository includes the Demographic Details folder 
containing participant demographic data, and the event detection folder comprising MATLAB scripts 
and related functions. Additional files include README.md for usage instructions, requirements.txt for 
dependencies, and specmeaker.py for signal processing utilities.
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Usage Notes
Alongside our datasets, we provide starter codes to facilitate loading in both MATLAB and Python environ-
ments. The datasets are structured into raw, interim, and processed forms, allowing researchers to selectively uti-
lize them based on specific use cases and research objectives. Raw datasets are ideal for developing novel signal 
processing algorithms and techniques for distinguishing human-generated signals from noise. Interim datasets, 
which consist of footstep events, provides a foundation for directly developing use-case wise problems and clas-
sification algorithms. Lastly, processed datasets in the form of Continuous Wavelet Transform images support 
deep learning based applications. Alternatively users can use their own strategy to develop methods better suited 
for their problem statement (i.e. domain adaptation, multi-modal gait recognition, gait abnormality, biomechan-
ical analysis etc.). This tiered data structure enables flexibility in method development and application across a 
range of signal processing and analysis scenarios.

Code availability
We have provided starter codes in the Open Sciene Forum19 and github repository. All data processing procedures 
described in this paper were performed using MATLAB R2022b and Python 3.9.13. As shown in Fig. 10, code 
File Structure includes two sub-folders—Demographic_Details and event_detection—along with 
README.md, requirements.txt, and specmeaker.py files. The Demographic_Details folder 
contains statistical details for each sub-dataset. The event_detection folder includes essential MATLAB code 
files for extracting time-frequency events from the vibration signal. All our processed datasets can be easily loaded 
to train models, and hosting site automatically generates a croissant metadata file. Each dataset is labelled and 
annotated. Complete metadata records for raw data and code are found at https://github.com/Mainak1792/Terra.

Received: 5 February 2025; Accepted: 2 July 2025;
Published: xx xx xxxx

Fig. 11  Vibrational signal with detected footsteps. Red dots mark peaks from synchronized walking at 60 BPM.

Fig. 12  This image depicts vibration signal from three individuals collected from wooden floor: (a) Person 1, 
(b) Person 50, and (c) Person 100. The corresponding CWT images for each person’s footprint are shown in  
(d), (e), and (f) respectively.
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