
1Scientific Data |         (2025) 12:1167  | https://doi.org/10.1038/s41597-025-05519-2

www.nature.com/scientificdata

An Enhanced Phenology Dataset 
for Global Drylands from 2001 to 
2019
Yuqi Dong   1,2,3, Yu Zhou   4,5 ✉, Li Zhang1,2 ✉, Feng Tian   6, Qiaoyun Xie   7,8, 
Yiyang Chen1,2,3, Linlin Ruan1,2,3 & Bo Zhang1,2,3

Drylands dominate the interannual variability of global carbon sink, and phenology is a key driver of 
carbon sequestration. However, accurately retrieving dryland phenology from satellite data remains 
challenging due to sparse and heterogeneous vegetation. Existing land surface phenology (LSP) 
products exhibit low accuracy in drylands due to coarse spatiotemporal data sources and algorithms 
optimized for other ecosystems. Here we present the Global Dryland Phenology Dataset (GDPD) for 
2001–2019, derived from daily 500-m two-band Enhanced Vegetation Index using MODIS NBAR data 
and an improved retrieval algorithm with dynamic, pixel-wise amplitude thresholds. GDPD covers 
88.4% of global drylands, compensating for missing regions in other LSP products. GDPD shows strong 
agreements with in-situ phenology from PhenoCam GCC (SOS: r = 0.88; EOS: r = 0.72) and physiology 
from flux tower GPP (SOS: r = 0.96; EOS: r = 0.90). We highlight the importance of high-resolution data 
in improving dryland phenology retrieval. This dataset improves our understanding of how dryland 
ecosystems respond to climate change and supports the development of Earth system models.

Background & Summary
Accurately characterizing vegetation phenology in drylands is essential since drylands dominate the interan-
nual variability of the global carbon sink1,2 and their phenology plays an important role in determining carbon 
sequestration and understanding terrestrial ecosystem structure and function3. Vegetation phenology charac-
terizes the timing of seasonal biological events such as germination, flowering, and abscission4, reflecting the 
response of terrestrial ecosystems to global climate and hydrological changes and has been recognized as a key 
biological indicator of climate change impacts5,6.

Despite significant advancements in remote sensing techniques7,8, accurately retrieving dryland vegetation 
phenology from satellite images remains challenging due to the sparse coverage and high heterogeneity of dry-
land vegetation. Current global land surface phenology (LSP) products performe poorly in drylands compared 
to other ecosystems9,10. For example, the six major LSP products showed greate variation in onset dates in the 
continental United States with sparse vegetation cover11. Additionally, LSP products often fail to detect pheno-
logical events in drylands, such as the western United States10 and Australia12, or exhibit weak correlations with 
in-situ observations13.

One reason for the poor performance is that some global LSP products applied fixed amplitude thresh-
olds across diverse biome types without considering biome-specific variations (Table 1), resulting in neglect 
of subtle changes in dryland ecosystems. For example, a seasonal cycle is considered valid by the MODIS Land 
Cover Dynamics Product (MCD12Q2) when the seasonal amplitude of the two-band enhanced vegetation index 
(EVI2) is greater than or equal to 0.1 and greater than or equal to 35% of the maximum EVI2 variation exhibited 
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over the three-year period14. As a result, MCD12Q2 missed a large number of pixels with low seasonal amplitude 
in dryland ecosystems15–17.

Another reason is that spatiotemporal scale effects pose challenges to accurate retrieval of phenology18, espe-
cially in highly heterogeneous dryland ecosystems19, with mixed biomes including grasses, shrubs, and trees, as 
well as the high coverage of bare soil. Each component exhibits a distinct response to climatic drivers, especially 
precipitation, which is difficult to detect and distinguish from current LSP products using coarse spatial resolu-
tion data that are generally greater than 0.05 degrees20,21. Furthermore, it has been shown that the effect of spatial 
resolution on phenological indicators is complex and depends on the characteristics of the local biomes22. For 
example, Liu et al.23 found that phenological metrics retrieved from data at different spatial scales were similar in 
homogeneous grassland sites but less comparable at heterogeneous savanna sites. Coarse temporal resolutions, 
e.g., 8-day and 16-day adopted by existing LSP products, are unable to accurately capture the peak of vegetation 
growth in drylands, where vegetation responds rapidly to concentrated rainfall over short periods and exhibits 
high interannual variability compared to other ecosystems24. As temporal resolution decreases, fewer effec-
tive observations are available to characterize the growing season in dryland ecosystems, resulting in increased 
uncertainty in phenological metrics estimates25, particularly during the greening phase when EVI2 changes 
more rapidly than during the senescence phase26.

To our knowledge, several studies have focused on improving the accuracy of vegetation phenology retrieval 
in drylands27–30. Notably, Xie et al.12 modified the fixed seasonal amplitude threshold used in MCD12Q2 by 
applying pixel-wise EVI2 averages, resulting in an improved success rate of phenological metric retrieval in arid 
and semi-arid ecosystems in Australia. In this study, we further enhanced and extended this algorithm to gen-
erate the global dryland phenology dataset (GDPD) from 2001 to 2019 by replacing the original fixed amplitude 
threshold with a pixel-wise dynamic threshold. We compared GDPD against other commonly used LSP prod-
ucts in Table 1 and validated the results using PhenoCam GCC and flux tower GPP data. We further performed 
varying spatiotemporal resolution experiments at two sites with different vegetation types to assess the effects 
of spatial and temporal resolutions on dryland phenology retrieval. Our dataset outperformed existing datasets 
regarding both date accuracy and spatial coverage, and we highlighted both its values and limitations.

Methods
Study area.  Drylands are defined as areas where the Aridity Index (AI, the ratio of mean annual precipita-
tion to mean annual potential evapotranspiration) is less than 0.6531. In this study, we extracted dryland regions 
based on the Global Aridity Index and Potential Evapotranspiration Database version 3 at 30-arcsecond spatial 
resolution (https://csidotinfo.wordpress.com/2019/01/24/global-aridity-index-and-potential-evapotranspira-
tion-climate-database-v3)32. Vegetation types were identified using the MODIS Land Cover Type (MCD12Q1 
v061) product (https://doi.org/10.5067/MODIS/MCD12Q1.061)33, which follows the International Geosphere-
Biosphere Programme (IGBP) classification system at 500-m spatial resolution. To minimize anthropogenic 
influences on vegetation phenology, we excluded cropland, urban areas, and built-ups in this study. Study areas 
with consistent vegetation cover were identified by analyzing land cover maps from 2001, 2009, and 2018, and 
selecting pixels where vegetation types remained unchanged across these years (Fig. 1), thereby minimizing the 
impact of land cover change on the comparability of phenological metrics across periods.

Two-band enhanced vegetation index (EVI2).  The MODIS MCD43A4 (v061) product provides daily 
Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance (NBAR) at 500-m resolution using 
composites of Terra and Aqua MODIS data (https://doi.org/10.5067/MODIS/MCD43A4.061)34, which reduces 
the impact of solar zenith angles on phenology retrieval35. We performed quality control on each band using the 

Product name MODIS Phenology86 VIIRS/NPP Land Surface Phenology87 AVHRR-based Phenology88 Vegetation Index and Phenology38

Abbreviation MCD12Q2 VNP22Q2 AVH12 VIPPHEN

Data source MODIS NBAR-EVI2 VIIRS NBAR-EVI2 AVHRR EVI2 AVHRR and MODIS EVI2

Temporal coverage 2001–2021 2013–2022 1982–2019 1981–2014

Resolutions of data 
source 500 m, 16-day 500 m, daily 0.05 degrees, daily 0.05 degrees, daily

Interpolation and 
smoothing filter 
methods

Penalized cubic spline interpolation and 
the Savitzky-Golay filtering method

Moving average of the two neighboring high-
quality values, hybrid piecewise logistic model

Spline interpolation and 
the Savitzky-Golay filtering 
method

Temporal smoothing algorithm

Retrieval methods 
for phenological 
metrics

Amplitude threshold (15%) Extreme values of curvature change values

Amplitude threshold (20%); 
first-, second-, and third-
order derivatives; relative 
change rate; curvature 
change rate

Amplitude threshold (35%)

Main limitations in 
dryland phenology

1. The estimated greenup and dormancy 
are not accurate for some high-latitude 
dryland regions.
2. Pixel retrieval fails in drylands due to 
the low amplitude of EVI2 variation and 
fixed threshold.

1. Short temporal span.
2. Growth curves of dryland ecosystems 
generally do not follow the S-shaped curve 
generated by the logistic function89.
3. The data cycles are defined on four key 
phenological metrics without concern for 
the order of their appearance, so there will be 
regions where the greenup onset is later than 
the dormancy onset.

1. Data source with coarse 
spatial resolution.
2. SOS is later than EOS in 
some regions.
3. No retrieval of multiple 
growing seasons.

1. Data source with coarse spatial 
resolution.
2. Phenology is not considered 
below when EVI2 < 0.08 and a 
minimum seasonal EVI2 = 0.03 is 
required.

Table 1.  Information of existing global LSP products.
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quality assurance (QA) flags, retaining only high-quality pixels (QA = 0). The daily two-band enhanced vege-
tation index (EVI2, Eq. 1) was calculated for 2001–2019 to retrieve phenological metrics. EVI2 minimizes the 
influence of soil background and atmospheric interference36, and provides reliable monitoring of vegetation 
dynamics with low uncertainty37. To reduce noise, we excluded EVI2 values less than or equal to 0.08, which 
were considered to be non-vegetated or inactive areas (e.g., cloud shadows, snow, or bare soil)38. Univariate spline 
interpolation was used to fill in missing data in the EVI2 time series, followed by the Savitzky–Golay (SG) filtering 
method to smooth the data39.

= . ∗ −
+ . ∗ +

EVI NIR Red
NIR Red

2 2 5
2 4 1 (1)

where NIR is near-infrared band reflectance and Red is red band reflectance.

Estimation of vegetation phenological metrics.  The conceptual diagram of the phenological metrics 
retrieval algorithm is shown in Fig. 2. Based on the EVI2 time series, we retrieved phenological metrics account-
ing for up to two growing seasons per year. We defined the start of the growing season (SOS) as the point when 
the EVI2 value increased to 50% of the left-side amplitude (Fig. 2), and the end of the growing season (EOS) 
as the point when the EVI2 decreased to 50% of the right-side amplitude for each growing season. 50% ampli-
tude reduces the susceptibility of EVI2 values to background soil signals during early or late stages of vegetation 
growth40. The length of the growing season (LOS) was the difference between EOS and SOS. The peak of the 
growing season (POS) corresponded to the time when EVI2 reached the maximum value during the growing 
season. The baseline was the average of the left and right minimum values, and the seasonal amplitude was the 
difference between the maximum EVI2 value and the baseline.

To avoid spurious peaks, we modified the fixed amplitude threshold used by the MCD12Q2 and instead 
used dynamic pixel-wise EVI2 averages, i.e., we retrieved the phenological metrics only when the peak EVI2 
value was greater than or equal to the average EVI2 of the retrieval window (i.e., the target year with six months 
before and after) for each pixel. This improvement enhanced detection of more growing seasons with varying 
amplitudes across time and biomes, which has been shown to improve the retrieval ratio of phenological metrics 
in Australian arid and semi-arid ecosystems12,41.

To assess the impact of the spatio-temporal resolution selection of data sources on phenology retrieval, we 
conducted a varying spatiotemporal resolution experiment at two dryland sites with distinct vegetation types, 
including ES-LJu dominated by open shrublands (OSH) (https://doi.org/10.18140/FLX/1440157)42, and IT-Ro1 
dominated by deciduous broadleaf forest (DBF) (https://doi.org/10.18140/FLX/1440174)43. We resampled the 
original EVI2 (500 m, daily; referred to as EVI2O) into coarse temporal resolution (500 m, 16-day; EVI2CT) and 
coarse spatial resolution (0.05 degrees, daily; EVI2CS). Additionally, we compared the daily GPP time series for 
each site to evaluate the ability of different spatial and temporal resolutions of EVI2 data captured photosyn-
thetic dynamics.

To explore the robustness of the algorithm on future sensor series, we replaced MCD43A4 with the daily 
500-m VIIRS NBAR product as the input data source, and tested the improved amplitude threshold phenology 
retrieval algorithm. Detailed methodology and results are included in Text S6.

Fig. 1  Study area and the geographic distribution of the PhenoCam and flux tower sites used in this study.
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Accuracy assessment.  To evaluate the performance of GDPD and the other four LSP products, we cal-
culated their retrieval ratio (RR, Eq. 2) separately for each year from 2001 to 2019. A larger RR value indicates a 
higher success ratio of phenological metrics retrieval.

= ×RR m
M

100%
(2)

where m is the number of pixels with retrieved phenological metrics, and M is the number of total pixels in the 
study area.

For validation, we compared the phenological metrics derived from our study (i.e., GDPD) with ground 
observations (PhenoCam, FLUXNET 2015 and OzFlux). Additionally, the four LSP products (MCD12Q2, 
VNP22Q2, AVH12, and VIPPHEN) were similarly evaluated against PhenoCam, flux data following quality 
control (Text S1). PhenoCam (https://doi.org/10.3334/ORNLDAAC/1674) is a global network for tracking veg-
etation phenology using leverage near-surface remote sensing, primarily focused on North American terrestrial 
ecosystems44. PhenoCam cameras record three-layer JPEG images, from which we extracted mean intensity data 
for red, green, and blue (RGB) channels within a user-defined region of interest (ROI). To ensure high-quality 
data, we selected high-quality type I cameras and excluded sites lacking continuous observation for one year. 
Evergreen forest sites were excluded from this study, since PhenoCam does not effectively capture seasonal 
variation in these ecosystems45. In total, 169.5 site-years across 41 sites were used in this study (Fig. 1, Table S5). 
The green chromatic coordinate (GCC, Eq. 3) was calculated for each image within each ROI, which has been 
frequently used to derive near-surface time series for phenological metrics analysis46.

=
+ +

GCC Green
Red Green Blue (3)

where Red, Green, and Blue respectively represent the average red, green and blue digital numbers (a measure 
of intensity) in each ROI. A daily time series of GCC was generated by calculating the 90th percentile of GCC 
values for each day based on the 30-minute observations47. After applying the SG filter as described earlier, we 

Fig. 2  Conceptual diagram to illustrate the (a) improved algorithm for retrieving (b) phenological metrics from 
EVI2 time series.
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identified the SOS and EOS of the growing season by extracting 20% of the seasonal amplitude from the GCC 
time series48,49.

The flux tower GPP data (FLUXNET 2015 (https://fluxnet.org/data/fluxnet2015-dataset/) and OzFlux 
(https://ozflux.org.au/monitoringsites/index.html)) offers the opportunity to analyze the consistency of phe-
nological metrics with photosynthetic activity across numerous global sites11, which also compensates for the 
sparse spatial distribution of PhenoCam sites. As with PhenoCam, we excluded evergreen forests and selected 
24 sites with more than three years of high-quality carbon flux data (≥75% data completeness per year) (Fig. 1, 
Table S6). We used GPP estimates based on the nighttime partitioning method50. After smoothing the GPP time 
series with SG filters, we applied a 20% threshold of seasonal amplitude to define SOS and EOS for GPP. In con-
trast to the 50% threshold applied to EVI2 time series, the 20% threshold better captures subtle seasonal dynam-
ics present in continuous GPP and GCC measurements, and has the highest correlation with EVI2-retrieved 
phenological metrics (Text S2, Fig. S1). Since only a few pixels presented two growing seasons in dryland vege-
tation, we only evaluated phenological metrics for the first growing season in the Results section, and those with 
a confirmed second season based on validation data (PhenoCam GCC or flux-tower GPP) were presented in the 
Supplement (Text S4).

The Taylor diagram provides a concise statistical summary of the relationship between LSP products and 
validation data (PhenoCam GCC and flux tower GPP data) in terms of their correlation (r, Eq. 4), centered 
root-mean-square error (cRMSE, Eq. 5), and the standard deviation (SD, Eq. 6)51. It visually represents the 
distance between an LSP product and the validation data, with shorter distances indicating higher consistency.
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where n is the sample size; F  and O  are the mean values of F (phenology estimates of LSP product) and O (site 
observations), respectively.

To investigate if phenology retrieval is robust across different seasonal amplitudes of EVI2, we calculated the 
phenological metrics errors (relative to in-situ observations) and regressed against seasonal amplitude. We also 
stratified the sites into low-, medium-, and high-amplitude groups and tested whether SOS/EOS errors differed 
significantly among these groups (details in Text S5).

Data Records
GDPD provides annual 500-m vegetation phenological metrics in global drylands from 2001 to 2019 with up to two 
growth cycles per year, including the start of the growing season (SOS) and end of season (EOS). The unit of SOS 
and EOS is the day of year (DOY). The entire dataset is deposited at the open-access repository Figshare (https://
doi.org/10.6084/m9.figshare.27160602.v252) in the GEOTIFF format. The file names are structured according to 
the file naming scheme “GDPD_<year>_<name of phenological metrics>_<number of growing seasons>.tif ”.  
Here, GDPD is the abbreviation for Global Dryland Phenology Dataset, year is the retrieval year for phenological 
metrics, name of phenological metrics includes the start of the growing season (SOS) and the end of the growing 
season (EOS), and number of growing seasons includes the first (season1) and second (season2) growing seasons.

Technical Validation
Comparison of retrieval ratio of phenological metrics across global dryland.  The improved phe-
nology retrieval algorithm with dynamic pixel-wise amplitude threshold effectively improved the retrieval ratio 
(RR) of dryland phenology. The average RR of GDPD was 88.4% of global drylands over the period 2001–2019, 
outperforming other LSP products (Fig. 3a), which mainly benefited from the improved threshold12. The differ-
ence was also highlighted in several regions, such as the drylands of Australia and southwestern North America 
(Fig. 3b,c). In particular, MCD12Q2 retrieved phenology for only 39.5% of the global drylands on average, pri-
marily due to its restrictive fixed amplitude threshold. Although AVH12 and VIPPHEN could successfully retrieve 
phenological events for most dryland regions, with average RRs of 81.9% and 81.6%, respectively, they may not 
accurately reflect the vegetation dynamics in heterogeneous dryland ecosystems due to coarse spatial resolution.

Comparison of phenological metrics against PhenoCam GCC-retrieved results.  Comparing 
GDPD and other LSP products (i.e., MCD12Q2, VNP22Q2, AVH12 and VIPPHEN) against the phenological 
metrics retrieved from PhenoCam GCC, GDPD presented better agreement with PhenoCam GCC-retrieved 
phenology in terms of phenological dates and spatial coverage (Fig. 4). For SOS, GDPD presented a high cor-
relation (r = 0.88) and low bias (cRMSE = 29 days) compared to GCC (Fig. 4a), outperforming all LSP products 
except MCD12Q2 (r = 0.92, cRMSE = 23 days). However, MCD12Q2 showed much lower spatial coverage com-
pared to GDPD, with only 74 samples matching the PhenoCam sites compared to 169 samples in GDPD. Notably, 
GDPD effectively captured the variation across sites and years (SD = 60 days) as indicated by PhenoCam GCC, 
which showed a strong agreement with the 1:1 line in the scatterplots (Fig. S2), suggesting the robustness of the 
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improved phenology retrieval algorithm with dynamic pixel-wise amplitude threshold. Similarly, the EOS of 
GDPD also showed a higher correlation (r = 0.79) and a lower bias (cRMSE = 39 days) with the PhenoCam obser-
vations compared to other LSP products, except for VIPPHEN and MCD12Q2 with low spatial coverage (Fig. 4b). 
Additionally, the GDPD presented the largest standard deviation for EOS (SD = 63 days) among all LSP products, 
which matched the range indicated by PhenoCam GCC, highlighting its ability to capture a wider range of EOS 
variations. Notably, all LSP products generally performed better for SOS than for EOS, which was also observed 
in regional dryland30,46 and non-dryland biomes53,54. It may be due to the fact that vegetation indices (e.g., EVI2 
and NDVI) are primarily based on red and near-infrared reflectance to capture the change in greenness and vege-
tation health55,56. The other reason is the different viewing angles between the PhenoCam cameras and satellites57. 
The EOS starts with not only leaves browning but also leaves abscission58, the latter of which typically lags behind 
the color change during senescence59. Canopy gaps induced by leaf abscission are easily detected by the oblique 

Fig. 3  (a) Retrieval ratio (RR) and averages (barplot) of GDPD and the other four LSP products for global 
drylands phenology from 2001 to 2019, and their start of the growing season (SOS) in 2013 for (b) Australia and 
(c) southwestern North America drylands.

https://doi.org/10.1038/s41597-025-05519-2
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views of ground-based digital cameras but not the top-of-canopy zenith views of satellite sensors due to canopy 
structural complexity45. In contrast, the rapid and distinct change of structure and pigment from senescence of 
the previous growing season to greening makes SOS easier to detect than EOS60. Nevertheless, GDPD effectively 
captured the interannual and spatial variability of EOS better than other LSP products (Figs. 5 and 7), providing 
an important reference for interpreting the effects of the vegetation senescence phase on carbon uptake.

Furthermore, to test the temporal robustness of GPDP across various spatial coverages, we calculated the 
year-specific averaged SOS and EOS where data were available for both the LSP product and PhenoCam sites, 
with the number of site-year pairs (n) used in each LSP product shown in Fig. 4. The absolute value of the error 
(right y-axis in Fig. 5) between the LSP products and the PhenoCam GCC-retrieved phenological metrics was 
used to evaluate the performance and stability of the phenological retrieval algorithms. All LSP products, includ-
ing GDPD, presented similarly good agreement with the PhenoCam GCC-retrieved SOS (Fig. 5). For example, 
even though the site sets are different, all LSP products captured the widespread advancement in SOS in 2015 
compared to 2014 showed in PhenoCam observations, except for VIPPHEN that lacked data after 2014. The 
GDPD algorithm also exhibited stable performance over all years, with an error of 19 ± 5 days for SOS (Fig. 5a), 
outperforming the AVH12, which had standard deviation of 9 days (Fig. 5d). Although MCD12Q2 (15 days, 
Fig. 5b) and VNP22Q2 (9 days, Fig. 5c) showed slightly lower average errors, this may be due to their lower spa-
tiotemporal coverage (74 for MCD12Q2 and 146 for VNP22Q2). Both products also included notable outliers 
that inflated their overall variability. In contrast, GDPD exhibited the best performance for EOS retrieval among 
all LSP products, with the lowest error of 4 ± 3 days (Fig. 5a), closely matching the PhenoCam GCC-retrieved 
EOS. Moreover, GDPD more effectively captured the spatial variability of EOS indicated by PhenoCam (shaded 
area in Fig. 5) compared to MCD12Q2 and AVH12. The good performance in drylands was attributed to the 
fact that our algorithm prioritized dryland ecosystems, while other global LSP products did not. Nonetheless, 
the phenological metrics of all LSP products were generally later than those derived from the PhenoCam GCC.

Comparison of phenological metrics against flux tower GPP-retrieved results.  We further com-
pared GDPD and other four LSP products (MCD12Q2, VNP22Q2, AVH12, and VIPPHEN) against the phe-
nological metrics retrieved by daily GPP at flux tower sites. GDPD performed the best in matching flux tower 
observations, covering almost all flux tower sites (n = 164). Among LSP products with comparable spatial cover-
age, GDPD exhibited the highest correlation with both GPP-retrieved SOS (r = 0.97) and EOS (r = 0.90), along 
with the lowest bias (cRMSEs of 24 days for SOS and 37 days for EOS) (Fig. 6a). This indicated that GDPD was 
able to represent the onset and senescence of strong photosynthetic activity during the growing season. Moreover, 
the EOS of the GDPD exhibited the larger standard deviation (SD = 83 days), which better characterized the 
variation in EOS.

Similar to the evaluation with PhenoCam, we examined the temporal stability of retrieved phenological 
metrics from LSP products with the GPP-retrieved metrics (Fig. 7). For SOS, GDPD demonstrated high tem-
poral consistency with identified in GPP-retrieved metrics, particularly in capturing similar temporal patterns 
observed in 2009 and 2016 (Fig. 7a). Among the evaluated LSP products, GDPD showed competitive perfor-
mance in SOS estimation, with an error of 15 ± 10 days. Different from the evaluation with PhenoCam (Fig. 5d), 
AVH12 was difficult to accurately capture GPP-retrieved SOS, with an average error of 26 days, almost twice as 
great as other products (Fig. 7d). For EOS, GDPD showed the lowest temporal error (12 ± 14 days) compared 
to other LSP products. In addition, GDPD demonstrated strong consistency with the interannual variability of 
GPP-retrieved EOS. Notably, the year-to-year range of GDPD EOS across sites (shaded areas) closely aligns with 
that of the GPP data, particularly capturing early senescence events in dryland ecosystems. The better perfor-
mance of GDPD than other LSP products, consistent with the evaluation with PhenoCam, was attributed to the 

Fig. 4  Taylor diagrams of (a) SOS and (b) EOS retrieved from GDPD, MCD12Q2, VNP22Q2, AVH12, 
VIPPHEN and PhenoCam sites. The red dot represents the PhenoCam observations, the star represents the 
GDPD. The scatter size represents the number of site-year pairs (n) matched between each LSP product and 
PhenoCam observations.
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fact that our algorithm prioritized dryland ecosystems, which other LSP products did not. Therefore, our dataset 
would facilitate future studies exploring the intrinsic link between canopy structure (represented by EVI2), pig-
mentation changes (represented by GCC), and photosynthesis (represented by GPP) in drylands.

Impact of spatiotemporal resolutions of data source on phenological metrics.  To examine the 
influence of data sources with varying spatial and temporal resolutions on phenology retrieval, this study ana-
lyzed EVI2 time series at two spatial and two temporal scales and tested the retrieval algorithm at flux sites with 
two different vegetation types: ES-LJu with open shrubland (OSH) and IT-Ro1 with deciduous broadleaf forest 
(DBF). Here EVI2O was adopted by GDPD using 500-m spatial resolution at the daily time step. It clearly showed 
that increasing the temporal steps to 16-day intervals (EVI2CT) led to smoother seasonal variations compared to 
EVI2O at both flux sites, especially flattening the peak of the growing season. Consequently, SOS retrieved from 
EVI2CT was generally earlier, while EOS tended to be later than those retrieved from EVI2O (Fig. 8c). For instance, 
at the OSH site, EVI2CT-retrieved SOS was on average 13 days earlier and EOS was 2 days later than those from 
EVI2O. Similarly, at the DBF site, SOS occurred 3 days earlier and EOS 11 days later on average with EVI2CT. This 
is mainly because longer data intervals (i.e., coarser temporal resolutions) may skip or ignore the key phases of 
vegetation growth that are crucial for phenological metrics extraction, which was also shown in Tian et al.61.

In contrast, the effect of spatial resolution on phenological metrics varied depending on the local biomes. For 
example, at the OSH site with low vegetation coverage, finer spatial resolution data (500 m in EVI2O) successfully 
captured two growing seasons, while the second growing season was challenging to detect by coarser spatial 
resolution data (0.05 deg in EVI2CS) due to the mixed signals. In the other case of high vegetation coverage (DBF 
site), the second growing season was able to be detected by coarse resolution data for most years, but the dif-
ference of the EVI2 amplitude between fine and coarse resolution data was much larger for the second growing 
season than the first one. Considering such complexity due to heterogeneous ecosystems, finer resolution data 
are more appropriate for retrieving phenological metrics at the biome level or finer37,62,63.

Regarding physiological dynamics, EVI2O matched better with the seasonal pattern and phenological date 
of the GPP at the OSH site (Fig. 8c) than data with lower temporal or lower spatial resolution. This highlighted 
the advantage of EVI2O in accurately capturing seasonal carbon uptake dynamics64, which is critical for dryland 

Fig. 5  Comparison of the yearly average and variation of SOS and EOS at PhenoCam sites, using only sites 
available each year, between data from (a) GDPD, (b) MCD12Q2, (c) VNP22Q2, (d)AVH12, (e) VIPPHEN 
and GCC-derived SOS and EOS. Lines show the mean phenological metrics across available sites each year, 
with shaded areas representing the range between the earliest and latest values (i.e., minimum and maximum) 
among sites in each year. The blue boxplots (right y-axis) represent the average absolute error at PhenoCam sites 
across years where the horizontal lines represent the median values, “o” symbols indicate outliers. Gaps indicate 
years with missing data from LSP products.
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biomes that respond rapidly to irregular changes in water availability. At the DBF site, the first growing season 
indicated by EVI2O was consistent with GPP-retrieved phenological metrics, but the second growing season was 
barely shown by GPP. This discrepancy could be attributed to the fact that the flux tower GPP data primarily 

Fig. 7  Comparison of the yearly average and variation of SOS and EOS at flux tower sites, using only sites 
available each year, between data from (a) GDPD, (b) MCD12Q2, (c) VNP22Q2, (d)AVH12, (e) VIPPHEN 
and GPP-derived SOS and EOS. Lines show the mean phenological metrics across available sites each year, 
with shaded areas representing the range between the earliest and latest values (i.e., minimum and maximum) 
among sites in each year. The blue boxplots (right y-axis) represent the average absolute error at flux tower sites 
across years where the horizontal lines represent the median values, “o” symbols represent outliers in the error 
distribution. Gaps indicate years with missing data from LSP products.

Fig. 6  Taylor diagrams of (a) SOS and (b) EOS retrieved from GDPD, MCD12Q2, VNP22Q2, AVH12, 
VIPPHEN and flux tower GPP data. The red dot represents the flux tower observations, and the star represents 
the GDPD results. The scatter size represents the number of site-year pairs (n) matched between each LSP 
product and flux tower observations.
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reflects phenological events of the dominant deciduous broadleaf forest. In contrast, the coarser-resolution satel-
lite imagery may include mixed signals from surrounding vegetation types, such as grasses and shrubs (Fig. 8b). 
Consequently, the second growing season detected by EVI2O may reflect greenness from nearby non-forest 
vegetation, rather than the actual phenology of the DBF.

Usage Notes
GDPD provides high-accuracy and spatially extensive phenology information for global dryland regions, offering 
spatial coverage 2.2 times greater than that of MCD12Q2. However, there are still several limitations and directions 
for further investigation. Firstly, although the retrieval algorithm with dynamic, pixel-wise amplitude thresh-
olds used by GDPD effectively improves the spatial extent of phenological retrievals, it may still fail to capture 
low-amplitude phenological events, such as during post-disturbance recovery or severe drought. Uncertainties 
in GPDP-derived phenological metrics are substantially higher in low-amplitude pixels, with SOS/EOS  
error SDs of 34/44 days (GCC) and 26/45 days, exceeding those in medium- and high-amplitude pixels (see Text 
S5, Figs. S6, S7). Future efforts could explore adaptive or context-aware thresholding strategies41 and spectral 
unmixing with more MOIDS reflectance bands65 to better extract vegetation dynamics out of background noises 
from bare soil, combustion, and other disturbing factors.

Fig. 8  Time series of EVI2 at different spatial and temporal resolutions and daily GPP (green lines, right y-axis) 
at the (a,c) OSH (ES-LJu site) and (b,d) DBF (IT-Ro1 site) FLUXNET sites. EVI2O (red lines), EVI2CT (blue 
lines), and EVI2CS (orange lines) represent the EVI2 time series with a spatial resolution of 500 m per day, spatial 
resolution of 500 m per 16 days, and spatial resolution of 0.05 deg per day, respectively. Green dots and orange 
triangles represent the beginning (SOS) and end (EOS) of the growing season.
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Secondly, there are mismatches between satellite-based LSP and in-situ observations due to the differences 
in observational scales and geometries, as well as the functional meaning of these metrics. On the one hand, 
discrepancies arise from differences in observational scale and sensor viewing geometry and depend on local 
biomes22. Although both EVI2 and GCC are sensitive to vegetation greenness, they differ in how this greenness 
is captured. GCC is derived from digital images taken in the visible spectrum with near-horizontal viewing 
angles, while satellite-based vegetation indices such as EVI2 rely on broader footprints, nadir-viewing geom-
etries, and near-infrared reflectance. This mismatch is particularly pronounced in regions with low vegetation 
cover and heterogeneous landscapes (e.g., dryland shrub-grass-soil mosaics), where the seasonality of different 
biomes can be canceled out or aggregated within one pixel, resulting in large errors in retrieving phenological 
metrics than finer resolution data23,37,63. Scale limitations can be mitigated by using finer spatial resolution data, 
for example, using 30-m harmonized Landsat and Sentinel-2 (HLS) data, or even 3-m PlantScope images30 to 
accurately extract annual grasses28 and shrubs10 phenology in drylands. In addition, future research could use 
near-infrared-enabled digital cameras to calculate broadband (e.g., NDVI, EVI2) reflectance indices to match 
remote sensing-based phenological metrics30,59 and improve scalability as the network continues to expand.

On the other hand, mismatches are also driven by the fundamental decoupling between vegetation greenness 
and photosynthetic activity (represented by GPP). Theoretically, vegetation phenology is expected to be tightly 
coupled with photosynthetic processes66: climate warming often induces earlier green-up, which theoretically 
synchronizes with photosynthetic activation and promotes preferential carbon allocation to leaf development67. 
Photosynthesis in turn supplies essential substrates for vegetation growth, serving as the primary driver of 
canopy formation68. However, our results showed that GDPD-derived phenological metrics consistently lag 
behind in-situ observations, especially at the onset of the growing season (Figs. 5, 7). Similar lag pattern was 
also observed in other LSP products (Fig. 5) and previous studies30,58,59,69, suggesting a nonlinear relationship 
between canopy greenness and leaf physiology58,70. This decoupling may be due to differential responses of struc-
tural and physiological processes under stress, especially at specific growth stages71 and climatic conditions72. For 
example, drought-induced stomatal closure can significantly reduce photosynthetic activity even when canopy 
greenness remains high72. Such physiological lags are particularly common in dryland ecosystems73 and high-
light the limitations of using greenness as a proxy for phenological activity. The observed delays in GDPD esti-
mates are further supported by our evaluation results, where RMSE consistently exceeds cRMSE (Figs. S2, S3),  
indicating systematic bias in SOS retrievals linked to this greenness-photosynthesis decoupling. Recent advances 
in remote sensing technology offer new opportunities to better characterize vegetation physiological dynamics.  
In particular, solar-induced chlorophyll fluorescence (SIF) captures photosynthetic activity74 and can help bridge 
the gap between satellite-derived phenological metrics and the seasonal patterns of GPP observed at flux towers75,76.

Lastly, our results reveal that phenological retrievals in drylands exhibit greate variability and uncertainty 
across LSP products, highlighting the need for more in-situ observations and validations efforts in these regions. 
In particular, it is critical to expand field-based phenology monitoring in under-represented dryland areas, such 
as those in the Southern Hemisphere and high-latitude Northern Hemisphere77, to improve our understanding 
of vegetation dynamics across global drylands. Furthermore, existing in-situ datasets show an imbalanced rep-
resentation of plant functional types (PFTs), with grasslands and shrublands dominating over other vegetation 
types (Tables S5, S6; Figs. S2, S3). This sampling bias may affect the robustness of model evaluation across all 
PFTs78. Therefore, establishing new validation sites in ecologically diverse and underrepresented PFTs will be 
essential to enhance the accuracy and generalizability of phenological models in dryland ecosystems.

Overall, GDPD is a dataset with high accuracy and spatial explicitly for dryland vegetation phenol-
ogy, addressing critical gaps in existing dryland studies where low spatial coverage and coarse resolution 
satellite products (e.g., MCD12Q2) are limited in their ability to support a mechanistic understanding of 
vegetation-climate feedback in these fragile ecosystems. The enhanced spatiotemporal resolution of GDPD 
enables the detection of fine-scale phenological patterns across heterogeneous vegetation-soil mosaics, which 
is essential for capturing vegetation responses to climatic variability, land degradation, and disturbance 
regimes79,80. This capability is especially valuable for monitoring climate-sensitive species such as shrublands, 
which play a dominant role in the dryland carbon cycle but are often underrepresented in global LSP products10. 
Notably, the GDPD algorithm also demonstrates robustness across different satellite sensors (Text S6), support-
ing its applicability for future phenological monitoring as VIIRS increasingly replaces MODIS as the primary 
source of global optical remote sensing data. For future studies, GDPD can serve as a benchmark or assimilating 
dataset for the improvement of land surface models21,81, and inform the development of sustainable land use 
and resource management strategies82, including grazing practices83, restoration planning84, and early warning 
systems for drought and vegetation stress85.

Code availability
The Python code can be obtained through a public repository at https://github.com/ddd1207/GDPD.
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