

scientific data

OPEN

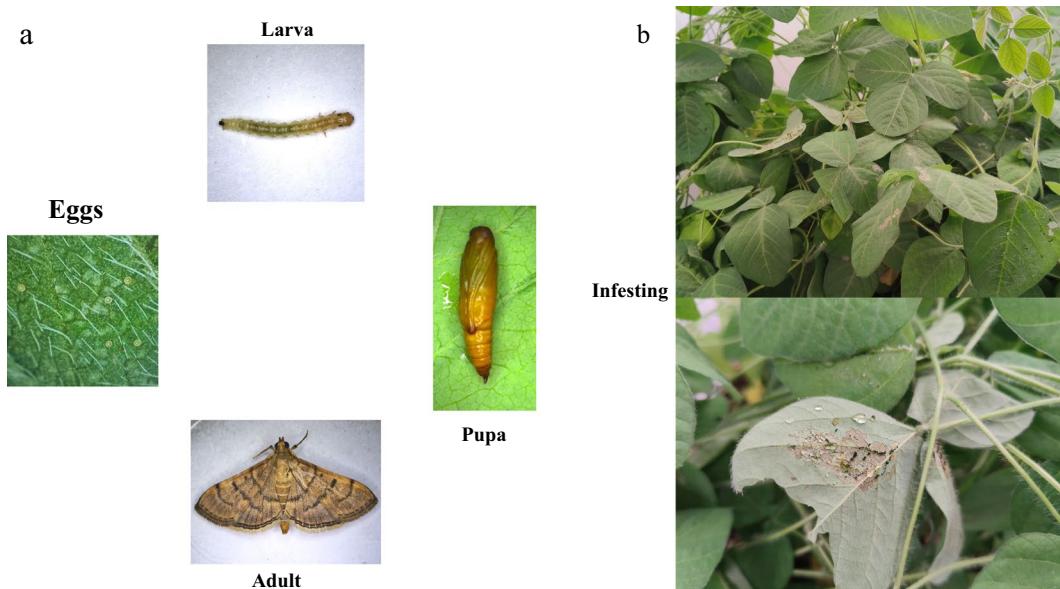
DATA DESCRIPTOR

A chromosomal-level genome assembly of *Omiodes indicata* Fabricius (Lepidoptera: Crambidae)

Xiuxian Shen¹, Feiran Wang¹, Jie Hu¹, Xiangqin Bai¹, Jianfeng Jin¹ , Xiaofei Yu³, Xiang Yang⁴ & Maofa Yang^{1,3}

Omiodes indicata, a significant pest of legumes, impacts food security in tropical and subtropical regions of Asia, Africa, and the Americas. However, the lack of high-quality genomes has limited our understanding of the ecology of *O. indicata*. In this study, we present a high-quality genome assembly of *O. indicata* generated using advanced sequencing technologies, including PacBio HiFi long reads, Illumina short-read, and Hi-C platforms. The final assembly spans 493.08 Mb, comprising 59 scaffolds (scaffold N50: 17.25 Mb) and 100 contigs (contig N50: 15.72 Mb), with 99.80% of the total assembly (492.12 Mb) successfully anchored to 31 chromosomes. BUSCO analysis ($n=1,367$) indicates a high level of completeness, with 99.1% of genes detected: 96.6% as single-copy and 2.5% as duplicated. Repetitive elements constitute 38.13% (188.00 Mb) of the genome, and 14,713 protein-coding genes were predicted. The high-quality *O. indicata* genome represents a valuable resource for diverse molecular ecology studies and will contribute to the advancement of modern pest management strategies.

Background & Summary


Omiodes indicata (Fabricius) is an important pest of leguminous crops, and its incidence has become increasingly severe in major legume-producing regions of tropical and subtropical Asia, Africa, and the Americas in recent years¹. This species, a polyphagous member of the family Crambidae, subfamily Spilomeliniae (Lepidoptera), primarily damages a wide range of legumes including soybean (*Glycine max*), black gram (*Vigna mungo*), common bean (*Phaseolus vulgaris*), mung bean (*Vigna radiata*), cowpea (*Vigna unguiculata*), and lablab bean (*Lablab purpureus*)^{2,3}. The larvae inflict damage by leaf rolling, webbing, and feeding, resulting in skeletonization of leaves. Severe infestations not only reduce the photosynthetic capacity of the crop but also adversely affect pod development and yield, making *O. indicata* one of the key constraints to legume productio^{3,4}.

The larvae of *O. indicata* are adept at using silk to bind leaves together, constructing protective webbed shelters inside which they feed⁴. This behavior not only exacerbates crop losses but also increases the difficulty of effective pest management. The entire larval stage is spent concealed within leaf folds; pupation also occurs inside the rolled leaves, and adults subsequently emerge⁵. In tropical and subtropical regions, *O. indicata* is multivoltine, exhibiting overlapping generations and causing damage throughout the year, with particularly severe outbreaks during the vegetative and reproductive stages of host crops. Economic threshold investigations have indicated that when 8–9 rolled leaves per plant are observed, chemical intervention is warranted^{6–8}.

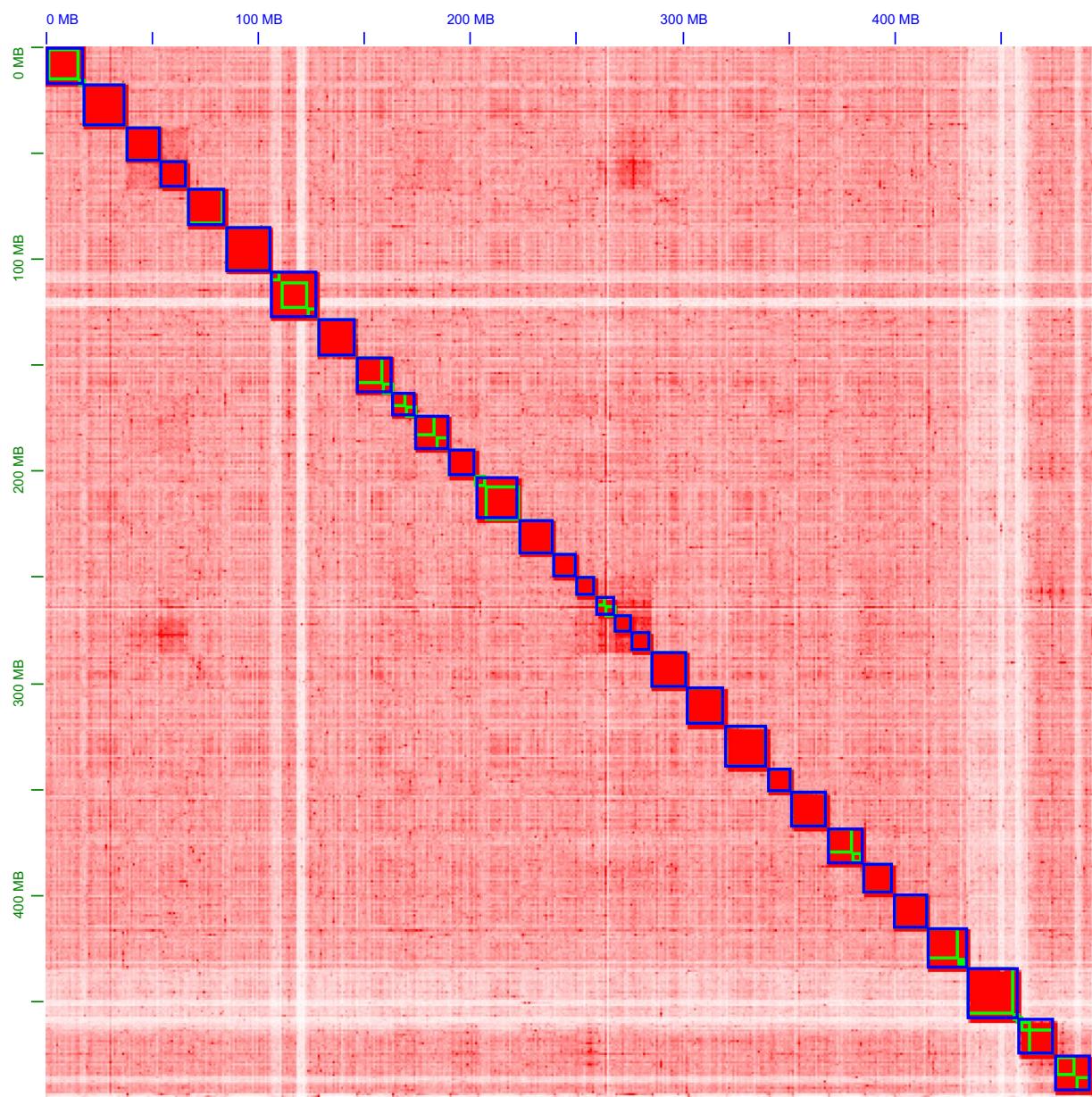
Currently, field management relies mainly on chemical insecticides. However, the cryptic feeding habit of the larvae within leaf rolls renders chemical control less effective, and improper or untimely application can result in unsatisfactory outcomes, increased risk of resistance, and food safety concerns. Therefore, a lack of high-quality genomic resources has greatly hampered our in-depth understanding of the biology and ecology of *O. indicata*. This study integrated data from three sequencing platforms to obtain a high-quality chromosome-level genome assembly of *O. indicata*. Comprehensive annotation of repetitive elements, non-coding RNAs, and protein-coding genes was performed, providing a valuable genomic resource for future ecological and functional genomics research.

¹Institute of Entomology, Guizhou Key Laboratory of Agricultural Biosecurity, College of Agriculture, Guizhou University, Guiyang, 550025, China. ²College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.

³College of Tobacco Sciences, Guizhou University, Guiyang, 550025, China. ⁴Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, 564200, China. e-mail: 18786231085@163.com; mfyang@gzu.edu.cn

Fig. 1 Life cycle of *Omiodes indicata* and its damage on soybeans. **(a)** Different developmental stages of *O. indicata*. **(b)** The symptom of soybean leaves damaged by *O. indicata*.

Libraries	Insert sizes (bp)	Clean data (Gb)	Sequencing coverage (x)
Illumina	300	34.73	70.44
PacBio	20,000	15.11	30.65
Hi-C	300	52.38	106.23
RNA	300	8.82	—


Table 1. Sequencing data generated for the *Omiodes indicata* genome assembly and annotation.

Methods

Sample collection and sequencing. The *O. indicata* population used in this study was originally collected on May 27, 2024, from a soybean test field at the Teaching Experimental Farm of Guizhou University in Guiyang, China (26°23'49.538"N, 106°40'31.616"E). The colony has since been maintained for more than five consecutive generations in an artificial climate chamber at the Natural Enemy Propagation Center of Guizhou University under controlled conditions: temperature of 26 ± 1 °C, photoperiod of 14 L:10 D, and relative humidity of 75 ± 5%. Larvae were reared on fresh soybean plants, while adults were supplied with a 15% (w/v) honey solution for genome sequencing (Fig. 1). Using sterile forceps, gently transfer the target female adult into a pre-prepared centrifuge tube containing sterile PBS buffer. The tube was gently inverted or shaken to wash the insect's surface for 10 minutes, effectively removing any adhering debris and microorganisms. After washing, excess liquid was blotted from the insect using sterile filter paper. The sample was then immediately flash-frozen in liquid nitrogen for 20 minutes and subsequently transferred to a -80 °C ultra-low temperature freezer for storage.

Genomic DNA and RNA were isolated from the specimen using the DNeasy Blood & Tissue Kit (Qiagen) and TRIzol Reagent (Thermo Fisher Scientific), respectively, by the manufacturers' instructions. Short-read libraries were prepared without PCR amplification using the Illumina TruSeq DNA PCR-Free Kit, generating 150 bp paired-end reads with 350 bp inserts. For Hi-C sequencing, we implemented a standard protocol⁹, including DNA crosslinking, MboI digestion, end repair, and DNA purification. All short-read sequencing was conducted using an Illumina NovaSeq X Plus system. For long-read sequencing, we constructed a 20 kb SMRTbell library (PacBio SMRTbell Express Template Prep Kit 2.0) and sequenced it on the PacBio Revio system in HiFi mode. Library construction and sequencing were conducted at Berry Genomics (Beijing, China). A total of 110.04 Gb of high-quality sequencing data was generated, comprising 15.11 Gb of PacBio HiFi reads (30.65 × coverage), 34.73 Gb of Illumina short reads (70.44 × coverage), and 52.38 Gb of Hi-C data (106.23 × coverage) (Table 1).

Genome survey. Raw Illumina reads were processed for quality control using BBTools v38.82¹⁰. Duplicate reads were first removed using "clumpify.sh". Subsequently, "bduk.sh" was employed to trim adapter sequences and low-quality bases (Q < 20) according to stringent quality criteria. Specifically, sequences with quality scores below 20 were discarded, reads containing more than five Ns were filtered out, poly-A/G/C tails longer than 10 bp were trimmed, and overlapping paired reads were corrected. To estimate the genome size, heterozygosity, and repetitive sequence content in the *O. indicata* genome, a genome survey was conducted using GenomeScope v2.0¹¹. K-mer frequency analysis was performed using khist.sh (BBTools) with a k-mer length of 21. Based on the

Fig. 2 The chromosomal heatmap visualization of *Omiodes indicata* genome assembly displays complete chromosomes in blue, with individual contigs demarcated by green borders.

coverage and frequency distribution of the k-mers, the genome size of *O. indicata* was estimated to be approximately 477.29 Mb, with a heterozygosity rate of 1.33% (Fig. S1).

Genome assembly. The initial genome assembly was generated using PacBio HiFi long reads and assembled with Hifiasm v0.19.8¹² under default parameters. After that, the primary assembly was polished twice with Illumina reads and NextPolish v1.3.1¹³. For chromosome-scale scaffolding, Hi-C reads were first quality-filtered and then aligned to the assembly using Juicer v1.6.2¹⁴. Contigs were subsequently anchored and ordered into chromosomes using 3D-DNA v.180922¹⁵. The final assembly was manually verified and corrected in Juicebox v.1.11.0¹⁴ to resolve potential misjoins or orientation errors. To ensure the assembly's purity, we screened for contaminants using MMseqs2 v1.1¹⁶ against the NCBI nucleotide (nt) and UniVec databases, removing any detected foreign sequences. Potential vector contaminants were identified using v2.11.0¹⁷ against the UniVec database, with sequences showing >90% similarity flagged as contaminants. Additional sequences exhibiting >80% similarity were further validated through BLASTN searches against the NCBI nucleotide database (NT). All identified bacterial and fungal contaminants were thoroughly removed from the assembly scaffolds. The final chromosome-scale assembly of *O. indicata* spans 493.08 Mb, consisting of 59 scaffolds and 100 contigs, which is consistent with the genome size estimated in the genome survey. The assembly exhibited high continuity, with scaffold and contig N50 values of 17.25 Mb and 15.72 Mb, respectively (Table 3). Notably, 99.80% of the assembled

Fig. 3 The genomic features of *Omiodes indicata* are displayed in a circular layout. Moving inward from the outermost ring, the visualization depicts (1) chromosome length, (2) GC content, (3) gene density, and (4) various repetitive elements, including transposable elements (DNA, SINEs, LINEs, and LTRs), along with simple repeat sequences.

sequences (492.12 Mb) were successfully anchored to 31 chromosomes (Figs. 2, 3). Furthermore, BUSCO analysis indicated a genome assembly completeness of 99.1% (Table 2). Collectively, these findings demonstrate that our genome assembly achieves outstanding continuity and structural integrity.

Genome annotation. The species-specific repeat library of *O. indicata* was generated using RepeatModeler v2.0.4¹⁸ and integrated with known repeats from RepBase-20130909¹⁹ and Dfam 3.5²⁰ to construct a comprehensive repeat database. The custom repeat database was employed as input for RepeatMasker v4.1.4²¹ to systematically identify and mask repetitive elements throughout the genome, followed by soft-masking of these regions. The analysis revealed that repetitive sequences account for 38.13% of the *O. indicata* genome assembly. These elements were classified into major categories, including unclassified elements (17.92%), LINE transposons (6.71%), LTR transposons (2.77%), DNA transposons (2.60%), and other repeat types (Table 3).

Non-coding RNAs (ncRNAs) in *O. indicata* were identified using Infernal v1.1.4²² with the Rfam v14.10 database²³, while tRNA detection was performed with tRNAscan-SE v2.0.9²⁴. The analysis revealed a diverse ncRNA repertoire, comprising 490 tRNAs, 104 rRNAs, 75 microRNAs, and 91 small nuclear RNAs, totaling 822 ncRNAs (Table 3).

Protein-coding gene annotation of the *O. indicata* genome was performed using MAKER v3.01.03²⁵, which integrated transcriptomic evidence, ab initio predictions, and protein homology information data. Transcriptome sequences were aligned to the genome using HISAT2 v2.2.1²⁶, followed by genome-guided assembly with StringTie v2.1.6²⁷. For ab initio gene prediction, BRAKER v2.1.6²⁸ was employed, incorporating GeneMark-ES/ET/EP 4.68_lic²⁹ and Augustus v3.4.0³⁰, both of which were trained using transcriptomic sequences and protein data from OrthoDB v11³¹. Additionally, homology-based gene prediction was conducted

Content	Omiodes indicata
Genome assembly	
Assembly size (Mb)	493.08
Number of pseudo-chromosomes (sizes, Mb)	31 (492.12)
Number of scaffolds/contigs	59/100
N50 scaffold/contig length (Mb)	17.25/15.72
GC content (%)	37.57
BUSCO completeness (%) ¹	99.1
S	96.6
D	2.5
F	0.2
M	0.7
Mapping ratio of BGI reads (%)	
Illumina	95.57
HIFI	99.90
RNA-seq	89.87

Table 2. Genome assemblies results of *Omiodes indicate*. BUSCO: Benchmarking Universal Single-Copy Orthologs; C, complete BUSCOs; D, complete and duplicated BUSCOs; F, fragmented BUSCOs; M, missing BUSCOs.

	Omiodes indicata
Structure annotation	
Number of protein-coding genes	14,713
Mean protein length (aa)	567.7
Mean gene length (bp)	13,357.6
Number of exons per gene	7.6
Mean exon length (bp)	304.7
Number of CDSs per gene	7.4
Mean CDS length (bp)	223.2
Number of introns per gene	6.6
Mean intron length (bp)	1735.3
BUSCO completeness (%)	99.6
Repeat annotation	
Repetitive elements size (Mb)	188.00 (38.13%)
DNA transposons (Mb)	13.09 (2.60%)
SINEs (kb)	20.66 (4.19%)
LINEs (Mb)	33.13 (6.71%)
LTRs (Mb)	13.66 (2.77%)
Unclassified (Mb)	88.34 (17.92%)
ncRNA annotation	
Number of ncRNA	822
rRNA	104
miRNA	75
snRNA	91
tRNA	490

Table 3. Genome annotation statistics of the *Omiodes indicate*.

using GeMoMa v1.9³², utilizing protein sequences from six reference species: *Drosophila melanogaster* (GCF_000001215.4)³³, *Apis mellifera* (GCA_003254395.2)³⁴, *Ostrinia nubilalis* (GCF_963855985.1)³⁵, *Bombyx mori* (GCF_014905235.1)³⁶, and *Tribolium castaneum* (GCA_031307605.1)³⁷. The annotation pipeline identified 14,713 protein-coding genes in the *O. indicata* genome, with an average gene length of 13,357.6 bp (Table 3). On average, each gene contained 7.6 exons, 6.6 introns, and 7.4 coding sequences (CDS). Gene structure analysis revealed mean exon, intron, and CDS lengths of 304.7 bp, 1,735.3 bp, and 223.2 bp, respectively. To evaluate the quality of the gene predictions, gene set completeness was assessed using BUSCO with the Insecta dataset (n = 1,367). An assessment of the completeness of the protein-coding genes was performed by BUSCO, which resulted in a high score of 99.6% (n = 1,367) (Table 3).

Function annotation	Number
Number of genes matching Uniprot records	12,286
Number of genes with InterProScan annotations	12,190
Number of genes with GO items from InterProScan annotations	7,433
Number of genes from eggNOG annotations	
gene names (function)	13,946
Enzyme Codes (EC)	2,913
COG Functional Categories	12,194
GO items	8,653
KEGG ko terms	8,039
KEGG pathway terms	4,967
Number of genes with GO items (combining InterProScan and eggNOG results)	10,485

Table 4. Genome function annotation statistics of *Omiodes indicata*.

Functional annotation was performed by aligning protein sequences against the UniProtKB database using DIAMOND v2.0.11³⁸. Additionally, Gene Ontology (GO) terms, KEGG/Reactome pathways, and protein domains were annotated using eggNOGmapper v2.0.14³⁹ and InterProScan 5.53–87.0⁴⁰. The InterProScan analysis integrated data from five databases: Pfam⁴¹, SMART⁴², Superfamily⁴³, Gene3D⁴⁴, and CDD⁴⁵. Functional annotation identified 12,194 COG categories, 8,653 GO terms, 4,967 enzyme codes, and 4,967 KEGG pathways in *O. indicata*, based on the integration of InterProScan and eggNOG annotations (Table 4). Chromosomal features, including repeat elements, gene density, and GC content, were visualized using TBtools v2.305⁴⁶.

Data Records

The sequencing data generated in this study are available under the following National Center for Biotechnology Information (NCBI), which BioProject was PRJNA1193224 with the submission SAMN45134265, and the raw sequencing data SRA numbers: transcriptome reads (SRR33699163)⁴⁷, Hi-C data (SRR33699162)⁴⁸, Illumina short reads (SRR33699164)⁴⁹, and PacBio HiFi long reads (SRR33699165)⁵⁰. The final genome assembly is available under NCBI accession GCA_050947735.1⁵¹. We have deposited the annotation results for repeated sequences, gene structure, and functional prediction in the Figshare database⁵².

Technical Validation

Genome assembly quality was evaluated using two complementary approaches. First, assembly completeness was assessed with BUSCO v5.0.4⁵³ against the Insecta reference dataset, which comprises 1,367 conserved single-copy orthologs. The assembly exhibited a BUSCO completeness of 99.1%, with 96.6% of genes present as single copies, 2.5% duplicated, 0.2% fragmented, and 0.7% missing (Table 2). Second, assembly accuracy was evaluated by calculating mapping rates through the alignment of PacBio, Illumina, and RNA-seq reads to the final assembly using Minimap2 v2.23⁵⁴ and SAMtools v1.9⁵⁵. The assembly demonstrated high mapping rates for PacBio (99.90%), Illumina (95.57%), and RNA-seq (89.87%) reads (Table 2). The genome annotation completeness of *O. indicata* was confirmed to be 99.6% by BUSCO (Table 2). These comprehensive analyses confirm the high quality of our genome assembly and annotation.

Code availability

No specific script was used in this work. All commands and pipelines used in data processing were executed according to the manual and protocols of the corresponding bioinformatic software.

Received: 11 June 2025; Accepted: 17 July 2025;

Published online: 29 August 2025

References

- Anonymous. CABI Compendium: <https://doi.org/10.1079/cabicompendium.26689> (2021).
- Naik, D. J., Bharat, G. S., Santosh, M. & Thammali, H. Seasonal incidence of bean leaf webworm moth, *Omiodes indicata* Fab. (Lepidoptera: Crambidae) on French bean (*Phaseolus vulgaris* Linn.) in Cauvery command area, Karnataka. *Trends in Biosciences*. **8**, 3121–3124 (2015).
- Favetti, B. M., Catoia, B., Gerico, T. G. & Bueno, R. C. O. F. Population Dynamics of *Omiodes indicata* (Fabricius) (Lepidoptera: Pyralidae) on Soybean in Brazil. *Journal of Agricultural Science*. **10**, 245–248 (2018).
- Pasam, M. R., Muddappa, S. M. & Aralimarad, P. Taxonomy of agriculturally important Spilomelinae (Lepidoptera: Pyraloidea: Crambidae) of Karnataka, India. *Oriental Insects*. **57**, 839–897 (2023).
- Choi, K. H. *et al.* Development under constant temperatures and seasonal prevalence in soybean field of the bean pyralid, *Omiodes indicates* (Lepidoptera: Crambidae). *Korean Journal of Applied Entomology*. **47**, 353–358 (2008).
- Meena, A. K., Nagar, R. & Swaminathan, R. Incidence of *Omiodes indicata* (Fabricius) on soybean in Rajasthan. *Indian Journal of Entomology*. **80**, 1585–1590 (2018).
- Pattar, R., Kandakoor, S. B. & Balol, G. Incidence of leaf folder (*Omiodes indicata* Fab.) and management of defoliators in soybean. *Journal of Food Legumes*. **38**, 135–140 (2025).
- Kumar, C. P. & Kandibane, M. Population dynamics of defoliator and sucking pests in black gram. *Journal of Entomology and Zoology Studies*. **9**, 248–252 (2021).

9. Belton, J. M. *et al.* Hi-C: A comprehensive technique to capture the conformation of genomes. *Methods*. **58**, 268–276 (2012).
10. Bushnell, B. BBtools. Available online: <https://sourceforge.net/projects/bbmap/> (accessed on 1 October 2022) (2014).
11. Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. *Nat Commun*. **11**, 1432 (2020).
12. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. *Nat Methods*. **18**, 170–175 (2021).
13. Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. *Bioinformatics*. **36**, 2253–2255 (2020).
14. Durand, N. C. *et al.* Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. *Cell Syst*. **3**, 95–98 (2016).
15. Dudchenko, O. *et al.* De novo assembly of the *Aedes aegypti* genome using Hi-C yields chromosome-length scaffolds. *Science*. **356**, 92–95 (2017).
16. Steinegger, M. & Soding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive datasets. *Nat. Biotechnol*. **35**, 1026–1028 (2017).
17. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J. Mol. Biol*. **215**, 403–410 (1990).
18. Flynn, J. M. *et al.* RepeatModeler2 for automated genomic discovery of transposable element families. *Proc. Natl. Acad. Sci. USA*. **117**, 9451–9457 (2020).
19. Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. *Mob. Dna*. **6**, 11 (2015).
20. Hubley, R. *et al.* The Dfam database of repetitive DNA families. *Nucleic Acids Res*. **44**, D81–D89 (2016).
21. Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. Available online: <http://www.repeatmasker.org> (accessed on 1 October 2022) (2013–2015).
22. Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. *Bioinformatics*. **29**, 2933–2935 (2013).
23. Griffiths-Jones, S. *et al.* Rfam: annotating noncoding RNAs in complete genomes. *Nucleic Acids Res*. **33**, D121–124 (2005).
24. Chan, P. P. & Lowe, T. M. TRNAscan-SE: Searching for tRNA genes in genomic sequences. *Methods Mol Biol*. **1962**, 1–14 (2019).
25. Holt, C. & Yandell, M. MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. *Bmc Bioinformatics*. **12**, 491 (2011).
26. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. *Nat. Methods*. **12**, 357–360 (2015).
27. Kovaka, S. *et al.* Transcriptome assembly from long-read RNA-seq alignments with StringTie2. *Genome Biol*. **20**, 278 (2019).
28. Bruna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: Automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. *Nar Genom. Bioinform*. **3**, lqaa108 (2021).
29. Bruna, T., Lomsadze, A. & Borodovsky, M. GeneMark-EP: Eukaryotic gene prediction with self-training in the space of genes and proteins. *Nar Genom. Bioinform*. **2**, lqaa26 (2020).
30. Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: A web server for gene finding in eukaryotes. *Nucleic Acids Res*. **32**, W309–W312 (2004).
31. Kriventseva, E. V. *et al.* OrthoDB v10: Sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. *Nucleic Acids Res*. **47**, D807–D811 (2019).
32. Keilwagen, J., Hartung, F., Paulini, M., Twardziok, S. O. & Grau, J. Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi. *Bmc Bioinformatics*. **19**, 189 (2018).
33. Hoskins, R. A. *et al.* The Release 6 reference sequence of the *Drosophila melanogaster* genome. *Genome research*. **25**, 445–458 (2015).
34. Gibbs, R. A. *et al.* Insights into social insects from the genome of the honeybee *Apis mellifera*. *Nature*. **443**, 931–949 (2006).
35. Boyes, D. *et al.* The genome sequence of the European corn borer, *Ostrinia nubilalis* Hübner, 1796. *Wellcome Open Research* **10**, 12 (2025).
36. Kim, S. W. *et al.* Whole-genome sequences of 37 breeding line *Bombyx mori* strains and their phenotypes established since 1960s. *Sci Data*. **189**, 1–8 (2022).
37. Herndon, N. *et al.* Enhanced genome assembly and a new official gene set for *Tribolium castaneum*. *BMC Genomics*. **21**, 47 (2020).
38. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. *Nat. Methods*. **12**, 59–60 (2015).
39. Huerta-Cepas, J. *et al.* Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. *Mol. Biol. Evol*. **34**, 2115–2122 (2017).
40. Finn, R. D. *et al.* InterPro in 2017—Beyond protein family and domain annotations. *Nucleic Acids Res*. **45**, D190–D199 (2017).
41. El-Gebali, S. *et al.* The Pfam protein families database in 2019. *Nucleic Acids Res*. **47**, D427–D432 (2019).
42. Letunic, I. & Bork, P. 20 years of the SMART protein domain annotation resource. *Nucleic Acids Res*. **46**, D493–D496 (2018).
43. Wilson, D. *et al.* SUPERFAMILY—Sophisticated comparative genomics, data mining, visualization and phylogeny. *Nucleic Acids Res*. **37**, D380–D386 (2009).
44. Lewis, T. E. *et al.* Gene3D: Extensive Prediction of Globular Domains in Proteins. *Nucleic Acids Res*. **46**, D1282 (2018).
45. Marchler-Bauer, A. *et al.* CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. *Nucleic Acids Res*. **45**, D200–D203 (2017).
46. Chen, C. *et al.* TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. *Mol. Plant*. **13**, 1194–1202 (2020).
47. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR33699163> (2025).
48. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR33699162> (2025).
49. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR33699164> (2025).
50. NCBI Sequence Read Archive <https://identifiers.org/ncbi/insdc.sra:SRR33699165> (2025).
51. NCBI Assembly https://identifiers.org/ncbi/insdc.gca:GCA_050947735.1 (2025).
52. Shen, X. Genome annotation. *figshare. Dataset*. <https://doi.org/10.6084/m9.figshare.29150930.v1> (2025).
53. Waterhouse, R. M. *et al.* BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. *Mol. Biol. Evol*. **35**, 543–548 (2018).
54. Li, H. Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics*. **34** (2018).
55. Dudchenko, O. *et al.* Twelve years of SAMtools and BCFtools. *GigaScience*. **10**(2), giab008 (2021).

Acknowledgements

This study was supported by the Major Special Project of the Guizhou Branch of the China National Tobacco Corporation (2023XM06) and Guizhou Province Science and Technology Project (Qian Ke He Pingtai Rencai - CXTD [2021] 004; Qian Ke He-ZSYS [2025] 024).

Author contributions

M.Y. and X.Y. supervised the project. X.S., F.W., J.J. and X.Y. contributed to the research design. X.S., F.W., J.H., and X.B. collected the samples for PacBio, Illumina, Hi-C, and RNA sequencing. M.Y., J.J. and X.Y. performed the genome assembly and annotation. X.S., F.W., J.H. and X.B. performed transcriptome analysis. X.S., F.W., J.H., X.B. M.Y., J.J., X.Y. and X.Y. wrote the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41597-025-05644-y>.

Correspondence and requests for materials should be addressed to X.Y. or M.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025