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Crypto-asset trading on top 
of Ethereum Blockchain 
comprehensive dataset
Shahar Somin1,2 ✉, Yaniv Altshuler2 & Alex Pentland2

Blockchain technology, once limited to niche technological communities, has seen widespread global 
adoption in recent years, with the potential to reshape financial and social systems. Launched in July 
2015, the Ethereum blockchain introduced programmable Smart Contracts. This innovation enabled 
the creation of user-defined crypto-assets adhering to the ERC-20 standard, supporting a wide range 
of decentralized applications beyond simple value transfer. We present a large-scale, temporally 
annotated dataset of ERC-20 token transactions recorded on the Ethereum blockchain. Spanning 
from November 2015 to December 2024, the dataset encapsulates the trading activity of 216,336,529 
users trading 1,138,136 unique tokens, offering a detailed view of crypto-market activity over time. 
Uniquely, it enables the analysis of a financial ecosystem from its inception, providing rare insights into 
its structural evolution, participant dynamics, and emergent behaviors. As the largest publicly available 
resource of its kind, it supports research in blockchain analytics, market dynamics and temporal 
network analysis. The full dataset and accompanying code are released for public use.

Background & Summary
Blockchain technology provides a decentralized framework for recording transactions across a distributed net-
work, eliminating the need for a central authority. Transactions are grouped into blocks, validated through 
consensus protocols, and permanently appended to the ledger. Each entry is cryptographically signed, ensuring 
data integrity and tamper resistance. Ethereum, launched in 20151,2, extends the original design of the Bitcoin 
blockchain3 by introducing a built-in computational layer known as the Ethereum Virtual Machine (EVM). 
This allows users to deploy and interact with Smart Contracts4, autonomous code executed on the blockchain. 
Through this mechanism, Ethereum enables the creation of decentralized applications and user-defined digital 
assets, including fungible tokens adhering to the ERC-20 standard. Ethereum operates on an account-based 
model, in which each address maintains a persistent balance and transaction history. Unlike Bitcoin’s 
UTXO-based model, this structure facilitates address-level modeling and the direct analysis of trader behavior 
over time. The Ethereum ecosystem has since evolved into a cornerstone of decentralized finance (DeFi)5, ena-
bling a wide range of activities such as trading, lending, fundraising, and resource sharing. These capabilities 
have positioned Ethereum as a valuable resource across diverse research domains, including network science6,7, 
economic behavior analysis8–11, privacy and security aspects12–14, fraud and illegal activity detection15–17, finan-
cial regulation18, and decentralized governance19–21.

Despite the importance of the Ethereum blockchain to a broad range of research fields, a comprehensive, 
large-scale dataset capturing the full scope of ERC-20 token trading remains largely unavailable to date. While 
several studies have focused on subsets of token activity or limited timeframes22, these datasets often exclude 
critical temporal information23, or restrict access to only a small fraction of the token ecosystem24–26. Part of 
this gap stems from the technical complexity involved in extracting ERC-20 transaction data: unlike native 
ETH transfers, ERC-20 token movements are implemented as function calls to Smart Contracts and are not 
recorded as direct transactions between wallets. Instead, they are observable only through emitted Transfer 
events, which reside within transaction logs and require dedicated parsing from the blockchain’s event layer, 
making large-scale extraction of ERC-20 activity non-trivial. Given the rapid expansion and heterogeneity of 
ERC-20 tokens, ranging from high-value assets to experimental or fraudulent contracts, there is a clear need for 
a unified, temporal dataset that reflects the complete financial ecosystem.
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To this end, we introduce an open-source dataset capturing all ERC-20-compliant token transactions con-
ducted on the Ethereum blockchain between November 2015 and December 2024, based on a curated list of 
verified ERC-20 token contracts from Etherscan (https://etherscan.io/), consider the Methods section for details 
on the verification criteria. This dataset encompasses 216,336,529 users and 1,138,136 distinct crypto-tokens. 
Figure 1 presents weekly transaction amounts alongside weekly amounts of unique buyers and sellers. Figure 2A 
(light-blue bars) presents the monthly dynamics of crypto-token emergence, showing the number of tokens 
traded for the first time during each month. Furthermore, we examine the number of tokens that were traded 
for the last time in each month, serving as an approximation for the number of vanished tokens. These counts 
are represented by the purple bars in Fig. 2A. This analysis is limited to data up to June 2022, as we define a 
token as vanished if it has not been traded for at least six months. Figure 2C presents the distribution of token 
lifespan (period between first and last trade, in days) and Fig. 2B presents the distribution of the number of 
transactions performed with each token. The dataset offers a detailed, time-resolved view of activity across the 
ERC-20 ecosystem. By spanning the entire lifecycle of the market—from its inception through multiple cycles of 
growth and contraction, and across major global events such as the COVID-19 pandemic, shifts in crypto regu-
lation, and the Russia-Ukraine war—this dataset enables comprehensive analysis of how decentralized financial 
systems evolve under both routine and extreme conditions. It provides a rare opportunity to study the evolu-
tion of a decentralized financial ecosystem at scale, enabling analysis of market-wide dynamics that are seldom 
observable in traditional financial systems and providing a unique lens into the development of complex digital 
economies.

Fig. 1  Crypto-token trading dynamics. Daily transaction count of ERC-20 crypto-tokens over the 
Ethereum blockchain (orange curve), and weekly buyers and sellers count depicted by red and green curves, 
correspondingly.

Fig. 2  Crypto-token lifespan and characteristics. Panel A presents monthly counts of new emerged crypto-
tokens (light blue bars), alongside monthly counts of vanished crypto-tokens (no longer traded, purple bars), 
indicating the high crypto-tokens turnover level. This analysis is limited to data up to June 2024, as we define a 
token as vanished if it has not been traded for at least six months. Panel B depicts the distribution of transaction 
amount per crypto-token, presenting a long-tailed distribution, Panel C depicts the distribution of crypto-token 
lifespan (period between first and last trade, in days).
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Methods
Ethereum’s infrastructure eliminates the need for centralized control by relying on cryptographic protocols and 
distributed consensus. Each user operates through a wallet address derived from a public-private key pair, where 
the private key is used to sign transactions and the public key allows others to verify them. All transactions, 
including those involving ERC-20 tokens, are propagated to the network and validated independently by all par-
ticipating nodes. Once confirmed, transactions are grouped into blocks and appended to the blockchain through 
a consensus mechanism. To maintain user anonymity on the Ethereum Blockchain, transactions exclude any 
personally identifiable information. Each user interacts through one or more wallet addresses, which are gen-
erated by applying the Keccak-256 hash function to their public key. While a wallet address is often treated as a 
proxy for a user, this is an approximation, as individuals may control multiple addresses11.

The Ethereum Blockchain supports various types of transactions, including the transfer of Ether between 
wallets, the deployment of new Smart Contracts, and the invocation of existing contract functions. Smart 
Contracts, being immutable code stored on the Blockchain, are also assigned unique addresses. Interacting with 
a Smart Contract involves sending a transaction to its address, which triggers its autonomous execution across 
all nodes in the network, following the logic encoded in the contract and the input data provided in the transac-
tion. ERC-20 tokens are implemented as Smart Contracts that adhere to a standardized interface governing both 
token transfers and data accessibility. A core requirement of this standard is the implementation of a transfer 
function, which facilitates the movement of tokens between wallets. As a result, each ERC-20 token transfer 
is executed by sending a transaction to the appropriate Smart Contract. This transaction includes a call to the 
transfer function within its data section, specifying the recipient’s address and the amount to be transferred. 
The transaction modifies the internal state of the Smart Contract by updating the token balances maintained 
in its storage and emits a transfer event which is recorded in the transaction’s logs, saving essential details about 
the transaction. Panel A in Fig. 3 presents the operational flow of ERC-20 token transfers over the Ethereum 
blockchain.

In order to retrieve ERC-20 token transfers, we first compiled a list (denoted LC) of verified ERC-20 token 
contract addresses. To this end, we followed a two-stage validation process. First, we queried the Ethereum 
public dataset hosted on Google BigQuery to retrieve all unique token addresses involved in token transfers 
(bigQuery_token_adds. csv). Specifically, we executed:

SELECT DISTINCT token_address
FROM 'bigquery-public-data.crypto_ethereum.token_transfers`

This query yields all contract addresses that have emitted events matching the canonical ERC-20 
Transfer(address indexed from, address indexed to, uint256 value) signature. However, the presence of this log 
structure alone does not guarantee full ERC-20 compliance or verification status. To address this limitation, 
we cross-referenced the resulting token addresses using the Etherscan API. For each address, we requested the 
verified contract ABI using the getabi endpoint. Etherscan assigns verified status to contracts whose source code 

Fig. 3  ERC-20 transfers On-chain execution and their extraction. Panel A presents the operational flow of 
ERC-20 token transactions over the Ethereum blockchain. A diagram that illustrates the internal process 
by which ERC-20 token transfers are executed and recorded on-chain. A user initiates a transfer by sending 
a transaction to a token smart-contract, specifying the recipient and amount (stage 1). The transaction is 
validated and included in a block (stage 2), after which the Ethereum Virtual Machine (EVM) executes the 
transfer() function within the smart contract (stage 3), the smart-contract updates token balances and emits a 
Transfer event, which is recorded in the transaction’s receipt logs (stage 4). Panel B presents the data extraction 
process, occurring off-chain. A public node, which hold a mirror of the blockchain, is queried for logs by our 
data extraction code. The code parses these logs and filters transfer events associated to ERC-20 trading.
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has been publicly submitted and successfully matched against the deployed bytecode. This guarantees that the 
contract’s logic conforms to its declared interface. We parsed the ABI and confirmed the presence of key ERC-20 
methods (totalSupply, balanceOf, and transfer) to ensure functional compatibility. Only addresses passing this 
verification check were retained in LC. While LC covers the vast majority of widely used ERC-20 tokens, it may 
exclude contracts that were never submitted for verification or that do not strictly adhere to the standard inter-
face. This list is included in the public repository accompanying the dataset (named erc20_token_adds. csv). The 
script used for querying the Etherscan API (etherscan_API_query. ipynb) and the initial token list (bigQuery_to-
ken_adds. csv) are included in the auxiliary data supplied with this dataset .

Next, we used the Ethereum infrastructure provider Infura (https://infura.io/) as our backend node. Infura 
exposes a standard Ethereum full node via the JSON-RPC API, and we accessed it using the Python web3.py 
library. For each contract c ∈ LC, we performed eth_getLogs queries in small block intervals, filtering by the 
canonical Transfer event topic hash. While the Transfer event is used in both ERC-20 and ERC-721 standards 
and shares the same topic hash, our dataset construction methodology ensures that only ERC-20 transfers are 
included. Specifically, by querying eth_getLogs over a predefined list of verified ERC-20 token contract addresses, 
we ensure only ERC-20 transactions are collected. From each log, we extracted the emitting contract address, 

Fig. 4  Different network types. Panel A presents a wallet-to-wallet network, with edges representing all crypto-
token trading (buy or sell), during a 30 minutes period. Panel B presents a wallet-to-wallet network, trading a 
single crypto-token (USDC) throughout a single hour. Panel C presents token-to-token network, where two 
crypto-tokens are connected if were bought by the same trader, during a 30 minutes period. throughout the 
different panels, node size is proportional to its degree, and red nodes represent crypto-exchanges.

Fig. 5  Diagram of dataset structure.
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sender and recipient addresses, transferred value, block number, and transaction hash. To enrich the dataset 
with token-level metadata, we issued additional eth_call instructions to each contract, invoking the standard 
ERC-20 methods name(), symbol(), and decimals(). Although we used a paid Infura plan to allow long-range, 
sustained querying, we provide code in the auxiliary data repository (blockchain_scraper. ipynb) which is fully 
compatible with Infura’s free tier and can also reproduce smaller portions of the dataset, subject to Infura’s rate 
limitations. The following auxiliary files are included in the public dataset repository: 

	1.	 The list of verified contract addresses (erc20_token_adds. csv).
	2.	 The list of initial contract addresses (bigQuery_token_adds. csv).
	3.	 The Etherscan API querying script (etherscan_API_query. ipynb).
	4.	 The data extraction script (blockchain_scraper. ipynb).

The data extraction script is extensible and can also be used to include unverified or newly deployed ERC-20 
contracts.

Accordingly, we collected the set of ERC-20 token transactions conducted between November 2nd, 2015 
(block id: 477958) to December 31st, 2024 (block id: 21525890), totaling in 1,943,438,828 trades, executed by 
216,336,529 users and 1,138,136 different crypto-tokens. The data extraction methodology ensures that the data-
set includes all Transfer events emitted by ERC-20 contracts, regardless of whether they were initiated by exter-
nally owned accounts or triggered as part of a contract-to-contract interaction. Any transaction that resulted 
in the emission of a Transfer log is captured by our extraction method, consistent with the observable Transfer 
event recorded on the Ethereum blockchain.

Additionally, since Smart Contracts on the Ethereum blockchain are immutable, any update to a token’s logic 
necessitates the deployment of a new Smart Contract, resulting in a new Contract Address. Consequently, a 
crypto-token may be associated with multiple addresses over time. However, at any given moment, each token 
corresponds to a single active Contract Address. Thus, the total number of distinct contract addresses observed 
should be interpreted as an upper bound on the actual number of unique tokens.

Network construction.  The ERC-20 dataset enables the construction of various types of networks, each 
offering a distinct representation for analyzing the ERC-20 financial ecosystem. The most natural representation 
is the wallet-to-wallet transaction network, where nodes represent wallet addresses and edges indicate token 
transfers between them. Figure 4A presents a wallet-to-wallet network, with edges representing trading across 

block-id

Transaction

Time

Token Token Token Token

Sender Recipient Valuehash Address Name Symbol Decimals

5 1 13-10-2021 22:11:32 0x1i876 Tether USDT 18 0x987j0 0x8754h 100

6 2 04-04-2019 12:22:01 0xo98n6 0x token ZRX 18 0x8764h 0x5326j 23

7 3 12-05-2016 10:33:05 0x87b75 SHIBA INU SHIB 18 0x98753 0x7643g 45

8 4 22-02-2021 01:55:08 0xu65b3 Wrapped BTC WBTC 18 0x8764h 0x86bl9 43

Table 1.  Example of dataframe and the columns in the ERC-20 dataset.

A B C

Fig. 6  Long-tailed degree distributions. Panel A depicts the long-tailed degree distribution of a weekly wallet-
to-wallet all crypto-tokens trading network. Panel B depicts the dynamics of γ, the truncated power-law 
parameter of the degree distributions, along time. Panel C depicts goodness-of fit tests, standing for the weekly 
percentage of networks whose Log-Likelihood Ratio is positive and statistically significant (p-value < 0.1), 
when compared to power-law, exponential and lognormal models. The weekly networks present high agreement 
with the truncated power-law model.
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all possible tokens. These networks can be constructed statically or at various temporal resolutions (e.g., daily, 
weekly, monthly), and can be either aggregated across all tokens or filtered by specific assets. Figure 4B presents 
a wallet-to-wallet network with edges representing trading in a specific crypto-token. Edges may be weighted 
by the number of transfers or the cumulative volume transferred, which could support analysis of flow intensity, 
centrality, and hub structures within the ecosystem. This representation illustrates potential use-cases, including 
identifying influential traders, detecting anomalous behavior, and examining patterns of wealth redistribution.

Beyond direct transfers, the dataset also supports the construction of higher-order or multi-modal networks. 
For instance, a bipartite network can be built linking wallets to the tokens they interact with, enabling analysis 
of token co-ownership or specialization. Alternatively, one may define a token-to-token similarity network, 
where edges link tokens that share overlapping traders. Figure 4C presents a sample token-to-token network. 
Dynamic network representations can also be derived by constructing time-evolving sequences of transaction 
graphs, allowing for the study of structural shifts, market fragmentation, and coordination patterns over time. 
These diverse network views allow researchers to represent the ERC-20 token space not merely as a collection of 
transactions, but as a dynamic, evolving financial ecosystem.

Data Records
The ERC-20 trading dataset is available at the Harvard Dataverse27–37. It contains all ERC-20 trades during 7 
years. Figure 5 describes the dataset structure and its organization. The origin is the “ERC-20 Trading 2015-
2022” dataverse. Each of the blue rectangles stands for different datasets within this dataverse. The first one hold-
ing all auxiliary data, including a README file, the list of all ERC-20 crypto tokens, a list of exemplary labeled 

51.6%

A B

Fig. 7  Node-level and network level connectivity dynamics. Panel A presents node-level connectivity, as 
indicated by the averaged node clustering coefficient along time, demonstrating its stabilization process. Panel 
B presents the network level connectivity, as the percentage of nodes within the largest connected component 
(LCC) over time in weekly wallet-to-wallet networks, presenting the formation of a giant connected component. 
Inset image presents the different components of an outlier weekly network, obtaining an LCC percentage as 
low as 51.6%, with the LCC depicted by the red node.

Fig. 8  Core-number dynamics. Panel A depicts the maximal core-number dynamics, presenting an increase 
along time. Panel B presents the connected component responsible for the anomalously high core number 
associated with the weekly network starting at April 16th, 2018, with node color representing the node’s core-
number. Panel C presents the structure of nodes with the highest core-number.
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wallet addresses, pertaining to service providers such as crypto-exchanges, and a jupyter notebook containing 
the scraping code we have utilized for extracting the data, in order to facilitate further data extraction. The rest 
of the datasets hold ERC-20 trading data for each year, divided by months. 

Table 1 presents an example of a monthly transactions file. Each record refers to a single ERC-20 transaction 
and contains the following fields: 

	1.	 Token Address: indicating the address of the Smart Contract governing the crypto-token.
	2.	 Token Name: String identifying the crypto-token.
	3.	 Token symbol: The abbreviated shorthand of the crypto-token, 3 to 4 characters long.
	4.	 Token Decimals: The number of decimal places a token supports, determining its smallest transferable unit.
	5.	 Value: denoting the transferred token amount.
	6.	 Sender: wallet address representing the seller.
	7.	 Recipient: wallet address representing the buyer.
	8.	 Time: the time at which the transaction took place.
	9.	 Transaction hash: a unique transaction identifier.
	10.	 Block-id: the unique integer identifier of a block in the Ethereum blockchain.

We also release a supplementary dataset (labeled_addresses__enriched. csv) of labeled Ethereum wallet 
addresses, intended to support downstream tasks such as wallet classification, behavioral analysis, and entity 
prediction. The dataset includes 10,627 addresses associated with 52 known entities, spanning centralized 
exchanges, decentralized finance (DeFi) protocols, and other blockchain-based service providers. To con-
struct this dataset, we first identified labeled wallet addresses directly from Etherscan, which annotates cer-
tain addresses with verified entity names. For each of these labeled addresses, we then manually searched for 
additional information online, including the project’s official website and service type, in order to enrich the 
dataset with contextual metadata. By providing ground-truth labels for a diverse set of actors in the Ethereum 
ecosystem, this resource enables supervised learning approaches and enhances interpretability in network-based 
or transaction-based analyses. Each record in this dataset refers to a single Ethereum wallet, containing the 
following fields: 

	1.	 Address: the address of the labeled Ethereum wallet.
	2.	 Name: the name identifier of the Ethereum wallet.
	3.	 Type: the service this address is associated with.
	4.	 URL: a url address associated with the service provider.

Technical Validation
To demonstrate the structural richness and temporal consistency of the dataset, we present a series of validations 
on the derived wallet-to-wallet transaction networks. These validations aim to demonstrate that the dataset not 
only captures the full breadth of ERC-20 token activity but also reflects meaningful patterns and dynamics that 
evolve over time. By presenting key network-theoretic properties, including core number distributions, clus-
tering coefficients, and degree distributions, we show that the data preserves both the micro- and macro-level 
behaviors expected in complex networks. These dynamics further illustrates the dataset’s capacity to capture 
structural variations in the ERC-20 token ecosystem across different market periods. Due to computational 
considerations, all analyses in this section are restricted to data from 2015 through 2022 (inclusive).

Specifically, prior studies have consistently shown that the degree distributions of complex networks, particu-
larly in economic systems, tend to exhibit long-tailed behavior38–41. As illustrated in Fig. 6A, the degree distri-
bution of a representative weekly wallet-to-wallet transaction graph (over all ERC-20 tokens) similarly displays 
a heavy-tailed structure, aligning with these established findings. As an example of dataset validation, we apply 
established statistical methodologies42 to illustrate how truncated power-law provides the best fit to the observed 
degree distributions, similarly to a variety of other complex systems. Specifically, we perform a goodness of fit 
test calculating the Log-Likelihood Ratio (LLR) of the different models and the corresponding p-values. Panel C 
in Fig. 6 presents the comparison of the truncated power-law to the power-law, exponential and the lognormal 
models for each of the weekly networks. The bars signify the percentage of networks for which the LLR is posi-
tive and the test achieved p − value < 0.1. The results suggest that the truncated power-law model better fits the 
majority of networks compared to all heavy-tailed models (78%, 99% and 63% for comparing with power-law, 
exponential and lognormal correspondingly).

Furthermore, illustrating the evolution of connectivity in transaction networks can help demonstrate how 
the dataset may support studies of systemic robustness and the potential for information or value propagation. 
In the context of ERC-20 trading, local and global connectivity measures serve as examples of how fragmen-
tation or cohesion can be observed over time using the dataset. Fig. 7 illustrates these dynamics in weekly 
wallet-to-wallet transaction networks. Panel A shows the average clustering coefficient over time, illustrating a 
gradual stabilization of local connectivity among wallets. This stabilization over time suggests that the micro-
structure of wallet interactions reaches a steady regime, consistent with patterns that may emerge in mature 
ecosystems. Such stabilization may point to the maturation of the ecosystem, where transactional behaviors 
become more structured and less volatile, even as the network continues to grow. This phenomenon also implies 
that localized trading relationships or community structures remain relatively stable, which could be relevant for 
exploring the efficiency, resilience, and vulnerability of the system to shocks in future work. Panel B depicts the 
emergence of network-level connectivity through the proportion of nodes present in the largest connected com-
ponent (LCC), illustrating its formation along time. The inset figure highlights an outlier network presenting a 
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structural fragmentation, where its LCC contained only 51.6% of wallets. The rapid growth of the LCC indicates 
that a substantial share of wallets became mutually reachable early in the network’s development. This early 
formation suggests that the conditions for large-scale interaction were established relatively quickly, allowing 
for system-wide patterns, such as collective trading behavior or shared responses to market events, to begin 
emerging even in the initial phases of the ERC-20 ecosystem.

Presenting another notion of connectivity, we analyze the core-number43 dynamics of weekly wallet-to-wallet 
networks. Figure 8A presents the maximal core number obtained by nodes on a weekly basis, manifesting an 
increasing dynamics over time. The increasing maximal core number over time reflects the growing presence of 
densely connected substructures within the network. Rather than remaining loosely organized, certain subsets 
of wallets become more deeply embedded in the transactional fabric, providing an example of how the dataset 
may support examination of connectivity, centralization, or vulnerability to targeted disruptions. Panel B depicts 
the anomalous weekly network, responsible for a maximal core-number of over 200, where panel C presents the 
structure of nodes obtaining this high core-number.

Code availability
No custom code was generated for this work.
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