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Salvador Urban Network 
Transportation (SUNT):  
A Landmark Spatiotemporal 
Dataset for Public Transportation
Marcos V. Ferreira1, Matheus Souza2, Tatiane N. Rios1,3, Islame F. C. Fernandes1, Jorge Nery1,2, 
João Gama   4, Albert Bifet3 & Ricardo A. Rios   1,3 ✉

Efficient public transportation management is essential for the development of large urban centers, 
providing several benefits such as comprehensive coverage of population mobility, reduction of 
transport costs, better control of traffic congestion, and significant reduction of environmental 
impact limiting gas emissions and pollution. Realizing these benefits requires a deeply understanding 
the population and transit patterns and the adoption of approaches to model multiple relations and 
characteristics efficiently. This work addresses these challenges by providing a novel dataset that 
includes various public transportation components from three different systems: regular buses, subway, 
and BRT (Bus Rapid Transit). Our dataset comprises daily information from about 700,000 passengers 
in Salvador, one of Brazil’s largest cities, and local public transportation data with approximately 2,000 
vehicles operating across nearly 400 lines, connecting almost 3,000 stops and stations. With data 
collected from March 2024 to March 2025 at a frequency lower than one minute, SUNT stands as one of 
the largest, most comprehensive, and openly available urban datasets in the literature.

Background & Summary
In this work, we focus our investigation on efficient urban mobility by modeling data from public transpor-
tation systems due to its importance to the population. Any decision regarding this system directly impacts 
urban mobility, especially in developing countries, where it is often the only means of transport available to 
low-income populations. When poorly planned, it delivers low-quality services with delayed and overloaded 
vehicles, concentrates traffic in specific regions while leaving others unattended, and aggravates pollution with 
higher gas emission rates.

Efficient urban mobility depends on a comprehensive set of strategies to optimize traffic management, 
yielding benefits such as improved safety, reduced travel time, lower costs, and enhanced environmental sus-
tainability. These strategies have led researchers to explore various solutions, including vehicle-to-vehicle com-
munication, route optimization, the integration of the Internet of Things for connected transportation systems, 
and more effective public transit scheduling1–5.

According to Ceder6, the success of intelligent transportation systems (ITS) relies on collecting and analyzing 
accurate data, which has led several studies to focus on data-driven approaches. In this sense, Wang et al. and 
Gordon et al.7,8 have used passenger fare data and vehicle location tracking to develop heuristics to better esti-
mate boarding and alighting times and locations in London (England). Similarly, researchers collected passenger 
and vehicle data from Harbin (China), which was later modeled using unsupervised machine learning methods 
to understand public transit riders’ travel patterns better9. Researchers from Seoul (the Republic of Korea) also 
developed a methodology for estimating non-tagged alighting stop information gradually, by considering the 
characteristics of trip types and utilizing transportation card data10. In New York (USA), researchers analyzed 
data from the transit system, where riders swipe a fare card only when entering a station or boarding a bus. They 
used this information to estimate alighting stops based on the bus boarding locations11. A similar problem was 
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addressed in Southeast Queensland (Australia) by using a Deep Neural Network to predict unknown alight-
ing locations after being trained in a dataset with a combination of transactional and public transit network 
attributes12. Although these aforementioned citations are more related to our work, further research on the 
problem of inferring boarding-alighting locals in public transportation systems is detailed in a review published 
by Mohammed and Oke (2023)13.

As extensively discussed in the literature, understanding and improving public transportation directly 
impact urban mobility, particularly in developing countries, where it is often the primary means of transport for 
low-income populations. Poorly planned systems provide low-quality services, leading to delays, overcrowded 
vehicles, traffic congestion in specific areas while neglecting others, and increased pollution due to higher gas 
emissions. After an in-depth investigation of published manuscripts focused on public transportation, we 
noticed a limitation in the availability of a totally public dataset containing comprehensive quantitative, spatial, 
and temporal information about passengers, vehicles, lines, stops, and stations. Moreover, despite the increasing 
advancements in Machine Learning (ML) methodologies, particularly for intelligent transportation systems 
(ITS), there remains a significant lack of datasets with detailed information about public transportation with 
their respective passengers.

To address this limitation, we present the Salvador Urban Network Transportation (SUNT) dataset, the 
most comprehensive public transportation dataset currently available in the literature. Collected in Salvador, 
Brazil, between March 2024 and March 2025, SUNT covers an area of approximately 694 km2 and serves nearly  
3 million residents. The transportation used by the local population in Salvador comprises three systems: regu-
lar buses, subway, and BRT (Bus Rapid Transit). The regular bus system is the most extensive transportation in 
Salvador, serving most of the population. Currently, there are about 1,900 buses distributed on approximately 
400 lines with around 3,000 stops and stations, supporting roughly 470,000 passengers daily. The subway system 
spans about 35 km across 2 lines with 20 stations. Approximately 210,000 passengers use this system daily. The 
BRT (Bus Rapid Transit) system was recently inaugurated, further enhancing urban mobility and serving about 
30,000 passengers daily. Currently, about 40 buses are operating on 3 lines and 20 stations.

In addition to publicly available vehicle information, which is commonly shared by several cities worldwide, 
SUNT stands out for its innovative inclusion of passenger data, such as boarding and alighting details, and its 
diverse data formats. These include graph representations with over 2,000 nodes and 4,000 edges, as well as tem-
poral data streams with a granularity of less than one minute.

In Table 1, we summarize important related works, which models different urban datasets. The missing infor-
mation ("NA”) in this table reflects the fact that several datasets commonly used in research articles are partially 
described in the publications and are not freely shared in public repositories with the same level of detail as ours. 
For example, we have noticed that information about the number of nodes, edges, or specific temporal intervals 
is often unavailable. As a result, researchers face challenges in reproducing experiments or fully understanding 
the scope and limitations of the datasets referenced in these studies.

On the other hand, we offer the Salvador Urban Network Transportation (SUNT) dataset, which stands out 
as an exception, offering 2,871 nodes, 4,526 edges, and a temporal granularity of less than one minute, with 
an in-depth dataset construction, which are pivotal for addressing key deficiencies identified in recent studies 
on learning benchmarks. SUNT offers a robust foundation for developing models that can learn complex spa-
tiotemporal patterns and adapt to rapidly changing conditions in ITS scenarios. Additionally, being recently 
collected, it reflects an updated urban configuration, in contrast to the most recent previously available dataset, 
which dates back to 2019.

The significance of sharing the SUNT dataset lies in its dual impact: advancing scientific research and 
informing public policy. For researchers, SUNT provides a comprehensive and high-quality resource to develop 
and evaluate a wide range of data-driven methods, such as supervised and unsupervised learning, concept drift 
and anomaly detection, time series analysis, graph-based optimization, and high-performance computing 
techniques for large-scale transit data. For policymakers and transit agencies, SUNT enables the simulation of 

Dataset #Nodes #Edges Period Shortest time interval

METR-LA22–25 207 2,369 March 1, 2012 to June 30, 2012 5 minutes

PeMS-BAY23–28 325 1,515 January 1, 2017 to May 31, 2017 5 minutes

TaxiBJ29,30 *NA NA July 1, 2013 to October 30, 2013 30 minutes

March 1, 2014 to June 30, 2014

March 1, 2015 to June 30, 2015

November 1, 2015 to April 10, 2016

BikeNYC29,30 50 NA April 1, 2014 to September 30, 2014 1 hour

Shanghai Metro31 288 958 July 1, 2016 to September 30, 2016 15 minutes

Hangzhou Metro31–33 80 248 January 1, 2019 to January 31, 2019 15 minutes

Beijing Metro31,34 276 NA February 29, 2016 to April 3, 2016 NA

Chongqing Metro31 170 NA March 1, 2019 to March 31, 2019 15 minutes

Stockholm County35 NA NA NA NA

UVDS2,36 104 NA Three months 5 minutes

SUNT 2,871 4,526 March 01, 2024 to March 31, 2025  <  1 minute

Table 1.  Key Characteristics of SUNT in Comparison with Existing Datasets from the Literature.
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real-world transportation scenarios, supporting evidence-based decisions and reducing risks when planning or 
modifying public transportation systems. This combination of scientific utility and practical application under-
scores the dataset’s relevance and potential to contribute meaningfully to the fields of urban mobility and smart 
city development.

Methods
This section describes the steps taken to create the SUNT dataset. First, we present in detail the data collected 
from four distinct public transportation sources. We then explain the use of the Trip Chaining approach to 
integrate these data sources, resulting in a complete origin-destination matrix. Finally, we describe the process 
of modeling this matrix as a graph that connects stops, enriched with several attributes related to passenger 
boarding and alighting.

Raw Datasets.  In this study, we utilized an Automated Data Collection System (ADCS) to gather data from 
multiple sources13. The first source was the Automatic Vehicle Location (AVL) system, which monitors all regular 
and BRT buses, providing details about their geospatial positions over time.

In summary, AVL records real-time vehicles’ geographical locations, which are important to estimate several 
relevant information, such as passengers boarding and alighting, public transportation network planning, and 
monitoring and controlling traffic operations. The daily AVL information shared in our repository14 contains 
two different set of features: AVL-lines and AVL-vehicles. AVL-lines comprise static information regarding 
the lines, whose features are shown in Table 2. These columns provides different information about the lines: 
route_short_name – identification; pt_sequence – stop sequence order; direction_id – direction, 
where 1 stands for one-way and 0 for return trip; longitude and latitude – geographical coordinates for 
the bus stop identified in column stop_id;route_long_name – stop names; service_code – the trip 
along the line. 

Table 3 presents AVL-vehicles features, which comprise information concerning vehicles’ routes and bus 
schedules. One of the most important columns is gps_datetime, which provides the vehicle’s arrival date 
and time at the stop identified by the stop_id column. If gps_datetime contains two values, the earlier 
timestamp corresponds to the bus arrival time at the stop, while the later one represents the departure time. The 
stop sequence of the bus line must be consistent with the values in gps_datetime; that is, for each stop, the 
arrival time must be earlier than the departure time, and the departure time must be earlier than the arrival time 
at the next stop. The remaining columns are similar to those described in Table 2.

The second collecting source is the Automatic Fare Collection (AFC) system, which contains information 
from the ticketing systems, recording the time when users’ contactless cards are used for payments. In addition 
to the exact time of card usage, it also includes details on the vehicles and their respective lines. In our sce-
nario, AFC is used to gather data from passengers using regular buses, subway, and BRT. For buses, data collec-
tion occurs at two points: when passengers validate their tickets either at the vehicle’s built-in turnstile or at a 
mobile turnstile. In the case of the subway, the AFC system records entries through turnstiles located at station 
entrances. For the BRT system, AFC combines both methods—collecting data through turnstiles inside vehicles 
as well as those installed at station entrances.

A subsample of AFC, shown in Table 4, illustrates the available attributes: cod_card is the number of 
passenger’s card, randomly generated to avoid recovering any user identification, afc_datetime represents 
the time when the passenger registers the payment, integration indicates the possibility of a connection 
between vehicles, route_short_name is the route identification, direction_id shows the bus direction 

route_short_name pt_sequence direction_id longitude latitude stop_id route_long_name service_code

0116 1 1 − 38.51123 − 12.983389 43768720 Avenida Vale Do Tororo 53786

0116 2 1 − 38.511097 − 12.986428 45832898 Avenida Vale do Tororo, 291 53786

0116 3 1 − 38.511448 − 12.990091 44782328 Praça Dr. João Mangabeira 53786

0116 4 1 − 38.504387 − 12.990533 44784448 Av. Vaco da Gama, S/N - 5378

0116 5 1 − 38.501972 − 12.992005 44784449 Av. Vasco da Gama, 271 - 53786

0116 6 1 − 38.499004 − 12.993324 45833116 Av. Vasco da Gama, S/N - 53786

Table 2.  AVL-lines features: information regarding bus lines.

vehicle route_short_name direction_id gps_datetime longitude latitude stop_id service code

20001 0310 0 2024-03-01 05:53:20 − 38.512428 − 12.978642 45834426 45546

20001 0310 0 2024-03-01 05:53:53 − 38.509964 − 12.975935 45834425 45546

20001 0310 0 2024-03-01 05:53:57 − 38.509964 − 12.975935 45834425 45546

20001 0310 0 2024-03-01 05:54:02 − 38.508957 − 12.975689 44782954 45546

20001 0310 0 2024-03-01 05:54:47 − 38.508957 − 12.975689 44782954 45546

20001 0310 0 2024-03-01 05:55:58 − 38.507446 − 12.97867 44428471 45546

Table 3.  AVL-vehicle features: information concerning vehicles’ routes and bus schedules.
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(I – one way or V – return) considering its initial and final stops, value is the trip cost, and vehicle is the 
code used to identify the vehicle. This dataset contains approximately 35 million records per month.

Additionally, we used static data based on the General Transit Feed Specification (GTFS) format, which 
defines a standard format for public transportation schedules associated with geographic information (http://
gtfs.org/). Using this format, we provided geospatial details about stations and stops along with their sequential 
order, lines, and directions. In the SUNT dataset, the GTFS provides 5 files (GTFS Agency, GTFS Routes, GTFS 
Trips, GTFS Stops Times, and GTFS Stops) that describe the entire network and services of public transporta-
tion related to local companies. GTFS Agency, illustrated in Table 5, contains information about the bus com-
panies, which are associated with GTFS Routes (Table 6) by the attribute agency_id. GTFS Routes contains 
information about bus lines and is associated with GTFS Trips (Table 7) by the attribute route_id. GTFS Trips 
shows all the trips and the paths followed by the bus and is directly associated with GTFS Stops Times (Table 8), 
which maps the chronological order of bus stops where each trip paused. Finally, GTFS Stops (Table 9) contains 
information about each bus stop and is associated with the GTFS Stops Times by the attribute stop_id.

cod_card afc_datetime integration route_short_name direction_id value vehicle

02310034266847 2024-03-01 06:22:03 False 1386 I 0.0 20390

02310034266847 2024-03-01 06:22:10 False 1386 I 0.0 20390

02310033002113 2024-03-01 06:22:57 False 1386 I 0.0 20390

02310032345960 2024-03-01 08:12:25 False 1386 I 0.0 20390

02320033736512 2024-03-01 06:04:08 False 1386 I 0.0 20390

03620033306428 2024-03-01 06:10:17 False 1386 I 5.2 20390

Table 4.  Illustrative example of the AFC dataset.

agency_id agency_name agency_url agency_timezone agency_lang agency_phone

1 company_I www . America/Sao_Paulo pt

2 company_II www . America/Sao_Paulo pt

Table 5.  GTFS Agency: information about the bus companies.

route_id agency_id route_short_name route_long_name route_type

4089 1 1230 Sussuarana x Barra R1. 3

4450 1 1321 São Marcos x Barroquinha 3

4518 1 1103 Alto do Cruzeiro/Pernambués x 
Shop.Bela Vista/Term Ac.Norte 3

4523 1 1405 Estação Pirajá x Cajazeiras 8 3

4524 1 1137 Pernambués x Barra 3

Table 6.  GTFS Routes: information about bus lines.

route_id service_id trip_id direction_id block_id shape_id

4089 26082_D_1046761 1046761_D_1_0 0 4089_001M 26082_I

4089 26082_D_1046761 1046761_D_1_1 1 4089_001M 26082_V

4089 26082_D_1046761 1046761_D_2_0 0 4089_002M 26082_I

4089 26082_D_1046761 1046761_D_2_1 1 4089_002M 26082_V

4089 26082_D_1046761 1046761_D_3_0 0 4089_002T 26082_I

Table 7.  GTFS Trips: information about the trips and the paths followed by the bus.

trip_id arrival_time departure_time stop_id stop_sequence pickup_type drop_off_type

1046761_D_1_0 08:30:00 08:30:00 43968810 1 0 0

1046761_D_1_0 08:31:41 08:31:41 47566106 2 0 0

1046761_D_1_0 08:33:49 08:33:49 44782337 3 0 0

1046761_D_1_0 08:34:55 08:34:55 44784470 4 0 0

1046761_D_1_0 08:35:44 08:35:44 44784471 5 0 0

Table 8.  GTFS Stops Times: the chronological order of bus stops where each trip paused.
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Finally, we also provide a dataset containing Local Trip Information (LTI), which includes details about the 
expected and actual departure and arrival times for all vehicles on every line and in each direction. Due to the 
dynamic nature of data collected from the AVL system, missing data may occur, resulting in random loss of 
information about vehicle activities. This issue can be easily addressed by combining redundant vehicle infor-
mation from GTFS and LTI. Table 10 summarizes the attributes of the trip mapping dataset. The most important 
attributes are start_trip and end_trip, which indicate the start and end times of each trip, respectively. 
The activity attribute categorizes the trip as either a regular service, a departure from the garage, or a return 
to the garage. This dataset complements the AVL dataset by providing trip-level information, which is not 
included in the AVL records. On average, it contains approximately 700,000 records per month.

Trip Chaining.  After organizing these four datasets (AVL, AFC, GTFS, and LTI), the first challenge is to find 
out the boarding locations for all users. As illustrated in Fig. 1(a), this information is computed by integrating 
AVL and AFC, and retrieving the exact latitude and longitude positions when the users’ cards performed the 
payments. Using these positions, we can estimate the closest stop or station that indicates the boarding local. 
Next, we merge multiple boarding locations to classify the users’ trips as initial, intermediate, and final. Such a 
classification is relevant to map all possible connections that compose a complete user’s trip. Finally, all boarding 
positions with their respective time instants are used to organize trip chains that describe passengers’ behavior, as 

stop_id stop_name latitude longitude location_type parent_station

43968810_S R. São Cristóvão 2 − 12.931565284729 − 38.444393157959 1

43968810 R. São Cristóvão 2 − 12.931565284729 − 38.444393157959 0 43968810_S

47566106_S Av. Ulysses Guimarães 4067 − 12.93385887146 − 38.4467735290527 1

47566106 Av. Ulysses Guimarães 4067 − 12.93385887146 − 38.4467735290527 0 47566106_S

44782337 Av. Ulysses Guimarães 4314-4322 − 12.9351501464844 − 38.4405784606934 0

Table 9.  GTFS Stops: information about each bus stop.

route_short_name service_code direction_id vehicle start_trip end_trip activity

T014 74335 I 20401 01/03/2024 17:03:49 01/03/2024 17:10:45 Leaving the garage

T014 74335 I 20516 01/03/2024 05:37:16 01/03/2024 05:40:36 Leaving the garage

T014 74335 I 20516 01/03/2024 17:11:40 01/03/2024 17:20:58 Normal

T014 74335 I 20086 01/03/2024 05:39:27 01/03/2024 05:46:38 Leaving the garage

T014 74335 I 20401 01/03/2024 12:37:47 01/03/2024 12:42:04 Returning to the garage

Table 10.  LTI: the start of each trip made by a vehicle on a specific route.

Fig. 1  Steps used to create our origin-destination dataset. Red boxes represent boarding data with no alighting 
correspondence.
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summarized in Table 11. As shown, most attributes in this table result from the integration process, with bus type 
being a particularly important attribute in the dataset.

In the next phase, Fig. 1(b), we assess the validity of the boarding registration by checking two specific con-
ditions. Firstly, a user’s boarding is discarded if the time difference between the AFC-recorded fare payment and 
the AVL-recorded bus arrival at the stop exceeds a certain threshold. This threshold has two possible values: (i) 
20 minutes for bus stations; and (ii) 5 minutes for regular stops. This differentiation is necessary because buses 
typically remain longer at stations. Secondly, another discarding possibility happens when there is no direct 
connection between AVL and AFC records, which is considered in this figure as “out of trip”. According to the 
literature7, appropriate time intervals for integration depend on the specific dynamics of each city. For instance, 
in London, a 5-minute interval is considered suitable for integrating payment and boarding processes. In the 
case of Salvador, local studies conducted by the bus operating companies, taking into account factors such as 
delays, low-frequency routes, scheduled departures, and traffic conditions, led to the definition of time intervals 
considered most appropriate for modeling the dynamic interactions between passengers and buses.

In the subsequent phase, Fig. 1(c), we analyzed user types to determine the feasibility of estimating their 
alighting points. In Salvador, there is no device to validate the passengers’ alighting; therefore, the main chal-
lenge is to estimate it by analyzing the following boarding. Moreover, in Salvador, passengers aged 65 or older are 
entitled to free public transportation and are not required to use any form of electronic ticket or identification 
card. They can board simply by presenting a personal document. As a result, their boarding and alighting events 
are not recorded in the system. However, this group represents only a small portion of the total passenger vol-
ume. To account for their presence in the dataset, we apply a probability distribution to allocate these passengers 
along the bus line within the analyzed time interval. Another particular case that prevents us from identifying 
users’ alighting points occurs when there is only a single trip registration on a given day. In such cases, we 
can only determine the boarding point, with no information available about the alighting point. Therefore, we 
cannot consider such situations in our analyses. The alighting dataset, illustrated in Table 12, is one of the most 

Column Sample Value Dtype

tripuserid 02300033357538_20240301184830 object

type_bus bus object

user_type driver object

set company_i object

registers 2 int64

trip_id 20097_0310_7 object

start_trip 2024-03-01 17:56:43 datetime64[ns]

end_trip 2024-03-01 20:08:27 datetime64[ns]

tolerance NaT datetime64[ns]

integration False bool

cod_card 2300033357538 object

stop_time 2024-03-01 19:36:35 datetime64[ns]

register_time 2024-03-01 18:48:30 datetime64[ns]

service_code 45546 object

route_short_name 0310 object

vehicle_afc 20097 object

vehicle 20097 object

stop_id 44782849 object

order 1 float64

direction_id I object

trip_em 7.0 float64

dif_boarding 48.083 float64

trip Inside object

classification irregular object

motive excessive time object

trip firt_trip object

set_nb company_i object

stop_time_nb 2024-03-01 20:04:39 datetime64[ns]

route_short_name_nb 1067 object

vehicle_nb 20446 object

stop_id_nb 44164980 object

diff_nb 0.53 float64

motive_pe regular object

target_boarding irregular object

Table 11.  Description of Columns in the Dataset Boarding.

https://doi.org/10.1038/s41597-025-05674-6
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important dataset produced by our research, whose examples of relevant attributes are: stop_time_ali – the 
estimated alighting time, stop_id_ali – the stop ID where alighting is inferred; walk_target – classifica-
tion of walking behavior post-alighting, walk_dis – estimated walking distance in kilometers, walk_time 
– estimated walking time in minutes, wait_time – estimated waiting time at the stop in minutes, trip_dis 
– distance covered during the trip in kilometers, and trip_time – duration of the trip in minutes. A complete 
description of all features is available in our repositories.

For all remaining cases, alighting points can be inferred by analyzing each user’s sequence of boarding points, 
i.e., by applying the Trip Chaining strategy, which is widely adopted in the ITS literature as discussed in the 
previous section6–8,10,11,13. To better understand this inference, consider the three scenarios illustrated in Fig. 2. 
In Scenario I, we observe a passenger boarding at 8:00 AM (B1) at Stop (b) and then boarding again at 6:00 PM 
(B2) at Stop (f). Therefore, it can be inferred that the passenger boarded at Stop (b), disembarked at Stop (f) on 
the first trip (b → f), and then made the return journey at the end of the day (f → b).

In the second scenario, we observe a user trip with a connection. In this situation, there are two boarding 
points for each trip. Initially, the user boarded at Stops (b), at 8:00 AM (B1), and (d), 8:20 AM (B2), being the 
first alighting registered at Stop (d). At the end of the day, the user boarded at Stops (j), at 6:00 PM (B3), and 
(d), at 6:10 PM (B4), respectively. Therefore, we infer the first user’s trip was b → j starting at 8:00 AM, and their 
return was j → b at 6:00 PM.

In our final scenario, we illustrate a situation when a user utilizes a connection between two different stops 
by walking a short distance between them. In this case, they register a first boarding at Stop (b), at 8:00 AM (B1), 
and the second one at Stop (x), 8:50 AM (B2). As one may notice, Stop (x) is in a different line. Hence, we look 
for its closest stop, respecting the maximum walking distance (Δ), Stop (f) in this case, to represent the first 
alighting. Considering they register another boarding at Stop (u), at 7:00 PM (B3), followed by boarding at Stop 
(f), at 7:30 PM (B4), we can map their full daily trip using the same rule previously considered. Therefore, we 
infer the first user’s trip was b → fΔx → u starting at 8:00 AM, and their return was u → xΔf → b at 7:00 PM.

As shown in Fig. 1(d), a walking distance is deemed acceptable if it is limited to 1.1 km. Concerning the 
average velocity, Fig. 1(e), and the trip time, Fig. 1(f), all registers with values greater than 80 km/h and 2 hours 
are unconsidered. These values were estimated by local specialists based on the passengers’ usage patterns and 
the transportation infrastructure in Salvador. Similar to the time interval, walking distance is also influenced by 
the specific infrastructure of each city. In London, for example, two different studies adopted thresholds of 1 km8 
and 750 meters7. In the case of Salvador, the walking distance was defined by the operational planning team of 
the city’s bus consortium, based on the typical spacing between local stops and stations. It is important to note 
that both the time and distance thresholds can be adjusted by readers to suit their own scenarios, as we provide 
access to both raw and processed data.

In Fig. 1, all red boxes represent situations in which we cannot precisely use the passengers’ occurrences in 
our analyses. Nevertheless, even in minority cases, it is essential to consider their general behavior to mitigate 
imprecision in further estimations, such as the load of passengers on the buses. In this case, we use the data 
distribution for each line to allocate these occurrences across different buses, as recommended by the literature. 

Column Sample Value Dtype

tripuserid 02300033520791_20240301104958 object

stop_time_ali 2024-03-01 10:55:27 datetime64[ns]

stop_id_ali 44165441 object

order_ali 6.0 float64

walk_target excessive object

trip_ali 8.0 float64

walk_dis 1.299 float64

walk_time 15.588 float64

walk_speed 5.5 float64

diff_de_pe 68.4 float64

wait_time 52.812 float64

trip_dis 1.884 float64

trip_time 5 float64

vel_media 22 float64

bridge False bool

bridge_type no bridge object

bridge_id None object

chain bus-bus object

target_ws regular object

target_avs regular object

target_tt regular object

target_td regular object

target_alighting regular object

Table 12.  Dataset summary Alighting.
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After this correction, we have the processed Origin-Destination (OD) dataset, whose attributes are illustrated 
in Table 13. In this example, it is important to clarify that, at the first stop or station of each trip, the same times-
tamp is recorded for both the “start_trip” and “stop_time” attributes. This occurs because the bus is initiating 
its route, as indicated by the attribute “pt_sequence = 1”. At this initial point, the bus is empty, as expected at 
the beginning of all trips. For instance, in such cases, the number of boardings ("n_boardings”) reflects the total 
number of passengers entering the bus, while no alighting occurs ("n_alighting” = 0, “lag_loading” = 0, and 
“balance” = 0). Consequently, the loading after this first stop corresponds exactly to the number of boarded 
passengers.

Graph Modeling.  The organization of the OD dataset with passengers’ boarding and alighting allowed us 
to create the SUNT dataset, embedding a set of quantitative, temporal, and geospatial variables as a complex 
network. Formally, we have used information on latitude, longitude, and time to create a spatial-temporal graph 
G = {G1, G2, ..., GT}. For all t = 1, ..., T, Gt = (V, E) stands for an attributed and directed graph at time t, where 
V = {v1, v2, ..., vN} is the set of N vertices corresponding to the bus stops and stations, and E is the set of edges 
corresponding to feasible routes. A directed edge (vi, vj) ∈ E connects vertices vi, vj ∈ V if, and only if, there is a 
feasible route for the bus traffic from the corresponding station vi to vj in the network. Gt is a fixed graph structure 
since sets V and E do not change over time.
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Fig. 2  Scenarios illustrating three different boarding-alighting situations: (I) a single line, (II) lines with a 
connection, and (III) two lines connected by walking distance.
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Figure 3(a) shows the map of Salvador with all vertices stored in our SUNT dataset, i.e., stops and stations 
used by regular and BRT buses, as well as subways. The geospatial information allows us to place them on the 
map, respecting their actual geographic position and the distances connecting them by the physical streets.

In our context, spatial data do not depend on time t, i.e., their information is time-invariant. Specifically, in 
every vertex vi ∈ V, we store the following features: geographical position, number of boarding and alighting per 
vehicle, and passenger load. The features specifically concerning edges (vi, vj) ∈ E include the distance between 
stops and stations, the trip duration, the mean velocity, and the Renovation Factor (RF). RF is a well-known 
metric used in transportation research to assess the total demand in a line, i.e., it is computed on a set of edges 
that belong to the line15. Formally, this metric is the ratio of the total demand of a line to the load on its critical 
link. Higher renovation factors occur when there are many short trips along the line. Corridors with very high 
renovation factor rates are more profitable because they handle the same number of paying customers with fewer 
vehicles15. Besides the individual features, there is relevant information shared by both vertices and edges, such 
as the number of passengers per vehicle, lines and directions, vehicle characteristics, altitude, and trips.

The black bounding box in Fig. 3(a) represents an essential region of the city, which gathers different lines and con-
nections. Figure 3(b) zooms in this region with a portion of the full graph, illustrating some bus stops as vertices and 
lines connecting them as edges. The red explaining box contains some features related to that bus stop (vertex) such as 
its latitude and longitude position, and the amount of boarding and alighting passengers. In the green explaining box, 

Attribute Description Sample Values Data Type

route_short_name Route identification code 1521 object

register_code Unique identifier in the database 55037 int64

direction_id Vehicle direction: Inbound (I) or Outbound (V) I object

pt_sequence Stop sequence number 1 int64

stop_id Unique stop identifier 46021891 int64

vehicle Vehicle identifier 30661 int64

trip_number Trip sequence number 1 int64

trip_id Unique trip identifier 30661_1521_1266 object

start_trip Timestamp when the trip started 2024-03-01 06:59:11 datetime64[ns]

end_trip Timestamp when the trip ended 2024-03-01 07:15:22 datetime64[ns]

stop_time Timestamp when the vehicle arrived at the stop (e.g. 46021891) 2024-03-01 06:59:11 datetime64[ns]

n_boardings Number of passengers boarding at the stop (e.g. 46021891) 42.0 float64

n_alighting Number of passengers alighting at the stop (e.g. 46021891) 0 float64

lag_loading Passenger load before the vehicle arrives at the stop (e.g. 46021891) 0 int64

balance Passenger load after alighting (previous load minus alightings) at the stop (e.g. 46021891) 0 int64

loading Passenger load after boarding (balance plus boardings) at the stop (e.g. 46021891) 42 int64

Table 13.  Summary of the OD dataset.

Fig. 3  (a) Salvador map with all stops and stations used by regular buses, BRT, and subway; (b) a sample of 
stops and stations (nodes) represented by blue dots and their respective lines (edges).
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we illustrate some features related to a line (edge), such as the distance connecting two stops, the mean velocity and 
trip duration among the buses in that section, and the total amount of traveling passengers.

In Table 14, we illustrate how edge information is shared: src – origin stop/station; dst – the destination; 
distance – the distance between them; src_lat, dst_lat, src_lon, and dst_lon – their geospatial 
locations; average_speed – the average speed; trip_time – the total time trip; and loading – the pas-
senger load in a given edge (street or avenue).

In Table 15, we share information about nodes, i.e., details related to stops and stations. Some rele-
vant information containing average values considering vehicles are: loading – passenger loading that 
crossed a given node; n-boarding and n-alighting – amount of boarding and alighting; n-routes, 
n-trips, and n-vehicles contain the number of routes, trips, and vehicles; and average_speed 
is the average of speed for each vehicle during their last trip up to the destination node. A complete discus-
sion of all datasets is documented at https://github.com/LabIA-UFBA/SUNT/blob/main/docs/datasets.md, 
and the corresponding source code is available at https://github.com/LabIA-UFBA/SUNT/blob/main/docs/
dataloader_sample.ipynb.

Positive Impacts and Future Works.  This paper introduced SUNT, a novel dataset collected from 
public transportation in Salvador, Brazil. This dataset is notably relevant to the scientific community for 
supporting investigations in several domains, such as planning public transportation, designing computa-
tional approaches, and managing environmental impact. As previously mentioned, other researchers have 
published related datasets, ratifying the importance of this subject. However, our dataset stands out due to 
its massive information and complete availability. Unlike manuscripts that only share outcomes, we have 
fully shared collections of raw and graph-based details of vehicles, passengers, stations, time, and geographic 
properties.

In summary, SUNT paves new ways to provide positive social impacts, such as better planning the allo-
cation of buses to lines, reasonably defining regular and express trips, thus reducing traffic jams and carbon 
emissions, and offering better trip experiences. By sharing SUNT, we expect to provide a robust dataset for 
the community, supporting the advancement of several investigation possibilities like time-based models, 
graph algorithms, spatial approaches, deep neural networks, routing simulations, and search heuristics. To 
illustrate such possibilities, we have listed future work that is worth investigating from our perspective: (i) 
graph-based learning approaches designed to pass messages using both temporal and spatial information; (ii) 
Multi-objective optimization approaches to find the shortest path based on edges weighted by distance and 
time considering traffic jam; (iii) Multimodal ML models that combine different features (e.g., temporal, spa-
tial, numerical, and categorical data) with varying encoding approaches as message passing; (iv) Queue the-
ory to address the problem of attending passengers from a stop A to B; (v) Concept Drift methods designed 
to identify when passengers’ pattern changes in real-world automatically; (vi) in multi-agent evolutionary 
algorithms, each agent handles a part of the search and, in each generation, spatial-temporal model could 
help to select the most suitable agent at each step of the evolutionary process; and (v) SUNT can be used to 
fine-tune time series foundation models, enabling similar transportation analyses in cities that lack equally 
complete and detailed datasets.

Ethical Declarations.  Our datasets has no human ethical concern. The identification of users’ cards in the 
AFC data does not correspond to the actual card numbers, but rather an internal code that cannot be used to 
retrieve any personal information from external access. Although such recovery is highly unlikely, we imple-
mented a hash-based solution (collision-free) to convert all internal identifications, adding a layer of privacy. It is 
important to note that no other attribute links individual users to their public transportation usage.

src dst distance src_lat dst_lat src_lon dst_lon average_speed trip_time loading

100009577 345936831 0.254 −12.902 −12.902 −38.42 −38.417 25.6 4 78

100722777 100722778 0.362 −12.899 −12.897 −38.408 −38.408 11.3 8 20

100722777 44782645 1.062 −12.899 −12.899 −38.408 −38.413 40.2 5 45

100722777 45833440 0.417 −12.899 −12.897 −38.408 −38.409 50.5 10 90

100722777 66771046 0.934 −12.899 −12.897 −38.408 −38.413 26.2 6 30

Table 14.  Sample of edge features.

node loading n-alighting n-routes n-boarding n-trips n-vehicles average_speed

100009577 2.77 0.0 1.08 0.23 1.1 1.1 6.31

100722777 28.54 4.43 1.54 4.49 1.56 1.56 22.86

100722778 36.72 1.39 1.83 0.1 2.04 2.04 16.06

101214305 12.53 3.97 1.0 1.66 1.0 1.0 19.95

101269104 125.57 3.55 4.57 9.48 5.28 5.28 38.25

Table 15.  Examples of node features.
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Data Records
The dataset is available at Mendeley Data14. The raw data were categorized into the following folds: AFC 
(Automatic Fare Collection), AVL (Automatic Vehicle Location), GTFS (General Transit Feed Specification), 
and LTI (Local Trip Information). The processed data were then organized into three distinct folds: Alighting, 
containing information about where passengers began their trips; Boarding, including all estimated stops where 
passengers ended their trips; and OD, which provides complete origin-destination information, enabling the 
data to be modeled as a graph. These folds contain data from March 2024 to March 2025. For updates and new 
data, we recommend accessing the GitHub repository: https://github.com/LabIA-UFBA/SUNT.

Technical Validation
This section aims to demonstrate the quality, consistency, and technical validity of SUNT by detailing the pro-
cedures implemented to ensure data integrity. It includes statistical and temporal visualizations that confirm 
the dataset contains accurate and practically useful information. It is important to emphasize that this section 
focuses on evaluating the dataset itself (its structure, reliability, and coherence) rather than performing extensive 
machine learning experiments or domain-specific analyses.

Statistical Validation.  This section presents a set of descriptive statistics used to demonstrate whether our 
datasets contains accurate and useful information about public transportation in Salvador. Table 16 summarizes 
the statistics of the five most relevant attributes in the OD dataset: “n_boardings”, “lag_loading”, “n_alighting”, 
“balance”, and “loading”. A detailed examination of these attributes provides valuable insight into the overall 
dynamics of public transportation in Salvador. Moreover, these statistics provide a foundational understanding 
of data distribution, variability, and potential anomalies, which is essential for designing experiments, selecting 
models, and interpreting results using the SUNT dataset.

In addition to the basic statistics, Fig. 4 presents box plots for all attributes, highlighting the challenges of 
modeling transport data. These challenges arise from sensitivity to rush hours, unexpected transit events, and 
various seasonal and daily patterns. An important detail in both Table 16 and Fig. 4 is the presence of outliers 
with values exceeding 250. For instance, a recorded boarding count (n_boardings) of 264 for a single vehicle 
far surpasses its actual capacity. This occurs in rare cases when a mobile turnstile registers multiple passengers 
at a location, even though they board different buses. Although this is part of the local public transportation 
dynamic, such events are rare, occurring in only 0.5% of cases. The presence of a mobile turnstile also impacts 
other variables, but with the same low probability. 

Figure 5 illustrates the data distribution for these attributes. While the box plots reveal the presence of outli-
ers, the overall distribution follows a skewed distribution, as expected in public transportation, with a majority 
of values concentrated near the lower stops and occasional extreme values indicating stops with significantly 
higher activity. The “n-boardings” and “n-alightings” histograms confirm that the previously discussed outliers 
are rare, low-frequency events.

Variable Mean Std Min 25% 50% 75% Max

n_boardings 1.37 4.09 0 0.00 0.00 1.00 264

lag_loading 20.28 18.44 0 6.00 15.63 29.48 264

n_alighting 0.98 2.50 0 0.00 0.00 1.21 85

balance 19.30 17.84 0 5.54 14.67 28.00 264

loading 20.67 18.29 0 6.68 16.00 29.75 264

Table 16.  Basic descriptive statistics.

Fig. 4  Box plots summarizing descriptive statistics focused on passengers’ behaviors.
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The exponential distribution pattern suggests that while most bus stops experience relatively low passenger 
movement, a few stops handle significantly higher volumes. Together, these figures emphasize the high vari-
ability in passenger demand, the presence of peak usage at specific stops, and the challenges associated with 
modeling and optimizing transit operations.

The next statistics (Table 17) extracted from SUNT summarize key aspects of vehicle trips, including individ-
ual and cumulative distances between stops, total trip time, cumulative stop time, and cumulative trip duration. 
In addition to cumulative data, SUNT also provides individual trip details. We compiled the accumulated values 
to highlight the volume of processed data. 

Figure 6 presents box plots for the variables presented in Table 17, illustrating both general trends and the 
presence of outliers. In these cases, outlier values remain within the expected range. However, an analysis of 
“Total Trip Time” (Total Time) and “Cumulative Trip Duration” (Cum. Trip Duration) reveals negative values, 
which are inconsistent with time-based attributes. These anomalies arise due to real-world monitoring chal-
lenges, where delays in the internal clocks of devices collecting GTFS data can cause discrepancies. The apparent 
magnitude of these negative values, exceeding 4, 000, is a result of the large dataset. In practice, the actual time 
differences between stops amount to only a few seconds. To mitigate this issue, transportation companies aggre-
gate data into one-hour intervals, and delayed clocks can be corrected through interpolation.

Likewise, the histograms in Fig. 7 highlight that the overall trip behavior follows the expected pattern for 
public transportation. The outliers with negative time values are rare events that can be excluded from analyses 
without impacting modeling performance. However, we chose to retain these values in SUNT to preserve the 
dataset’s real-world nature and provide researchers with the flexibility to address them through alternative meth-
ods, such as estimating corrected values.

Fig. 5  Histogram describing different attributes related to passengers’ behaviors.

Mean Std Min 25% 50% 75% Max

Distance 0.458 0.472 0.000 0.251 0.367 0.546 23.758

Cumulative Distance 9.902 8.032 0.000 3.382 7.946 14.781 40.506

Total Trip Time 85.453 89.147 0.000 41.000 66.000 104.000 5,590.000

Cumulative Stop Time 448.724 400.953 0.000 137.000 344.000 660.000 6,027.000

Cumulative Trip Duration 1,379.671 1,172.054 0.000 447.000 1,083.000 2,038.000 9,281.999

Table 17.  Descriptive statistics of the variables related to vehicle trips.

Fig. 6  Box plots summarizing descriptive statistics focused on trips’ behaviors.
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The statistical patterns observed in the OD dataset are also reflected in the derived datasets, supporting 
further exploration and analysis. Building on the previous descriptive analysis, the SUNT dataset was examined 
as a time series to investigate temporal patterns, including cyclical and seasonal behaviors related to weekdays, 
weekends, and holidays. This analysis of temporal dynamics helps identify key characteristics, contributing to 
the validation of the dataset’s consistency and overall quality.

Temporal Validation.  To check the temporal characteristics of the SUNT dataset, we selected several stops 
and stations with high passenger flow and multiple connection options between lines and buses. Figure 8 shows 
a time series (in blue) whose observations represent the loading of passengers at a given station, collected every 
5 minutes from March 1st, 2024 to March 9th, 2024. As one may notice, the time series is characterized by a sig-
nificant frequency fluctuation as noise that may affect its modeling and prediction. To address this issue, a simple 
moving average (SMA) with a window size of 12 observations can be applied to smooth the time series, as illus-
trated by the red line. The key advantage of selecting this window size is its ability to capture seasonal and cyclical 
patterns. As expected, analyzing SUNT as a time series allows for modeling daily variations (higher frequencies 
during rush hours) and differences between business days and weekends (lower frequencies on weekends).

Similarly, to illustrate the seasonal relationships between stations and highlight the importance of the under-
lying graph structure, we selected the top five stations (nodes: 694, 2772, 1203, 592, and 561) with the highest 
passenger transit from a total of 2,871 possible stations represented in the SUNT graph. Figure 9 presents the 
smoothed time series for these stations, revealing how their patterns relate to one another while exhibiting dis-
tinct amplitude variations.

Continuing the focus on temporal relationships, Fig. 10 illustrates passenger volume over time across three 
transportation modes: BRT, subway, and regular bus. This analysis enables the investigation of how demand 
varies and interacts across different systems, supporting the development of forecasting models that incorporate 
multiple modes of transportation.

Spatial Validation.  Leveraging the inherent spatial structure of SUNT represented as a graph, where nodes repre-
sent stop-time events and edges denote direct connections between them, we conducted two preliminary graph-based 
learning tasks, node classification and edge classification. These illustrative experiments highlight the dataset’s 
spatio-temporal potential and its applicability to real-world scenarios, particularly in the context of route optimization.

Fig. 7  Histogram describing different attributes related to trips’ behaviors.

Fig. 8  In blue, the time series containing loading information in a bus station, collected every 5 minutes 
between March 1st, 2024, and March 9th, 2024. In red, we show the time series transformed by SMA using a 
window size of 12 observations.
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We selected eight features from the dataset, including passenger loading, mean velocity, distance between 
stops or stations, boarding and alighting counts, and the total number of lines, vehicles, and trips. To validate 
the spatial utility of SUNT, passenger loading was used as the target variable for node classification, while mean 
velocity served as the target for edge classification. These tasks are particularly relevant for route optimization, 
as they leverage the rich spatio-temporal information embedded in the graph structure to uncover patterns 
in passenger demand and traffic flow—key factors for improving transit planning, operational efficiency, and 
overall network performance.

For the node classification, passenger loading, a numerical variable, was discretized into four categories 
based on its quartiles: “maximum”, “high”, “medium”, and “low”. Similarly, for edge classification, mean velocity 
was binarized using the median value as a threshold. These class intervals were designed to illustrate local trans-
portation demand. Alternative discretization schemes can be easily applied using our publicly available dataset. 
The spatial relationships between these attributes were then assessed using Graph Neural Networks (GNNs): 
Graph Convolutional Network (GCN)16, Chebyshev spectral graph convolutional operator (CHEB)17, SAmple 
and aggreGatE (SAGE)18, and Graph Attention Networks (GAT)19. GCN employs a graph convolution opera-
tion to learn representations of nodes in a graph. A key characteristic of GCNs is weight sharing, meaning the 
same weight matrix is applied to all nodes. This is achieved through symmetric normalization of the adjacency 
matrix and the inclusion of self-loops to ensure each node incorporates its own features during the aggregation 
process. CHEB implements an efficient generalization of Convolutional Neural Networks (CNNs) to arbitrary 
graph structures by expressing graph convolutional filters as polynomials of the graph Laplacian L of a graph 
G. As discussed in20, using a polynomial of degree M ensures that the output at each node is influenced by 
information from its M-hop neighborhood, enabling localized and scalable filtering on graphs. SAGE is a GNN 
architecture that, instead of learning individual embeddings for each node, learns a set of aggregation functions 
that operate over a node’s local neighborhood to generate its embedding18. Each aggregator function combines 
information from neighbors at a specific distance, referred to as the number of hops or search depth, allowing 
the model to capture multi-scale structural and feature information. GAT is a type of GNN that incorporates 

Fig. 9  Five time series with intense transit of passengers to illustrate the node regression task.

Fig. 10  Time series representing multiple transportation modes.
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attention mechanisms to learn node representations in a graph19. These mechanisms enable the model to assign 
different importance weights to each neighbor, allowing it to focus on the most relevant nodes during the aggre-
gation process and thereby improving performance. GATs can also employ multiple attention heads, a concept 
closely related to the multi-head attention mechanism introduced in the transformer architecture by (Vaswani, 
Ashish, et al., 2017)21. Our validation of node and edge classification employed 10-fold cross-validation, a widely 
accepted method in machine learning to ensure robust and reliable evaluation. We used the same set of evalua-
tion metrics for both tasks: Accuracy, F1-score, Matthews Correlation Coefficient (MCC), Precision, and Recall.

These comprehensive metrics are particularly important given the nature of transportation data, where cer-
tain categories (e.g., high passenger loads or low velocities) may be less frequent but critical for decision-making. 
The detailed evaluation framework thus ensures that the models’ strengths and limitations are fully understood, 
guiding future improvements and practical applications of the SUNT dataset in transit system analysis.

Table 18 summarizes all results obtained from our illustrative experiments. In Table 18(a), SAGE achieved the 
best performance across all metrics, except for precision, where CHEB performed slightly better. In Table 18(b), 
all models exhibited very similar behavior, with a slight advantage for GCN. The results demonstrate satisfac-
tory performance, with values exceeding 60%, which is notable given the inherent complexity of predicting 
numerical values on edges. The balanced nature of the dataset ensures that the models are effectively learning 
meaningful patterns. Furthermore, these outcomes highlight opportunities for future research, encouraging the 
development of novel GNN architectures and preprocessing strategies to further enhance performance using 
our dataset as a benchmark.

Importantly, the results from both node and edge classification tasks underscore the value of represent-
ing urban mobility data as a graph. The SUNT dataset, by encoding spatio-temporal relationships in a graph 
structure, enables the application of graph-based learning methods that can capture complex patterns, such as 
variations in passenger flow and average velocity across different segments of the network, that are often lost 
in traditional flat or tabular representations. These preliminary experiments GNNs demonstrate the feasibility 
and potential of such models to extract meaningful insights from our dataset. This reinforces not only the rele-
vance of the graph-based representation itself, but also the utility of the SUNT dataset as a foundation for future 
research on graph-based learning tasks.

Transportation Planning Validation.  By analyzing passenger loads through an Origin-Destination (OD) 
dataset and applying these insights to timetable planning, we demonstrate how SUNT is currently used to support 
transportation planning decisions. In the first example, the OD dataset was utilized to determine the maximum 
passenger load across different time intervals. According to (Ceder, 2016)6, one of the fundamental objectives of 
transit service provision is to ensure sufficient capacity to accommodate the maximum number of passengers on 
board along the entire route within a given time period. Let us denote this time period (typically one hour) as j. 
Based on the peak-load factor concept, the required number of vehicles for period j is given by: 

γ
=M

P

c (1)
j

mj

j

In this equation, Pmj is the average maximum number of passengers (max load) observed on-board in period 
j, c denotes the vehicle’s capacity (the total number of seats plus the maximum allowable standees), and γj is the 
load factor for period j, where 0 ≤ γj ≤ 1.0.

To illustrate the importance of calculating the max load Mj, we have selected a specific line and analyzed the 
max-load stops in Fig. 11 during four different time intervals: (a) 7 a.m. (morning rush hour), (b) 4 p.m. (afternoon 
rush hour), (c) 10 a.m. (morning off-peak), and (d) 3 p.m. (afternoon off-peak). By analyzing these maps, one can 
observe how the locations of maximum load stops vary across different time intervals. This information has been 
used to improve bus planning and allocation, enhancing service delivery to better meet the needs of the population. 
Notably, the highlighted maximum-load stops align well with the actual local transportation dynamics.

In our second example presented in Fig. 12, we illustrate how the information about max load can be used in 
practice to plan timetables, specifying which buses must be set as Express and Normal. Typically, when passenger 

(a) Node Classification Results

Model Accuracy F1 MCC Precision Recall

GCN 0.67 ± 0.06 0.64 ± 0.08 0.57 ± 0.08 0.70 ± 0.09 0.66 ± 0.07

CHEB 0.72 ± 0.06 0.68 ± 0.08 0.65 ± 0.07 0.76 ± 0.06 0.72 ± 0.06

SAGE 0.76 ± 0.1 0.75 ± 0.1 0.68 ± 0.14 0.75 ± 0.11 0.76 ± 0.11

GAT 0.67 ± 0.08 0.66 ± 0.09 0.56 ± 0.1 0.68 ± 0.09 0.67 ± 0.07

(b) Edge Classification Results

Model Accuracy F1 MCC Precision Recall

GCN 0.62 ± 0.03 0.62 ± 0.03 0.24 ± 0.06 0.62 ± 0.03 0.62 ± 0.03

CHEB 0.61 ± 0.03 0.61 ± 0.03 0.23 ± 0.07 0.61 ± 0.03 0.61 ± 0.03

SAGE 0.61 ± 0.03 0.61 ± 0.03 0.23 ± 0.07 0.61 ± 0.04 0.61 ± 0.03

GAT 0.61 ± 0.03 0.61 ± 0.03 0.22 ± 0.06 0.61 ± 0.03 0.61 ± 0.03

Table 18.  GNN results for node and edge classification.
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data at stops/stations and along routes is unavailable, it becomes difficult to optimize bus services effectively. For 
example, during a rush hour interval (e.g., 8 AM-9 AM) with arrivals randomly defined, 9 buses (3 normal and 
6 express) might be scheduled to serve passengers traveling from stop A to stop B, passing through intermediate 
stops. Without an estimate of maximum passenger load, all buses would need to return from stop B to stop A via 
the same route, stopping at all intermediate stations. Such a strategy has some problems: it wastes time and fuel, 
besides delaying the arriving time at A. Considering A is a neighborhood and B downtown, the amount of pas-
sengers from B to A is considerably lower during this rush time. Knowing the optimal number of buses required 
for the return trip and their appropriate schedules can significantly mitigate these issues.

Fig. 11  Max load calculated for a specific line during different relevant time intervals.
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In Fig. 12, we illustrate three strategies for determining the bus type: (i) randomly selecting buses (Random 
information); (ii) dividing the hour into intervals based on the expected number of normal buses and designat-
ing the next bus within each interval as normal (Next information); and (iii) assigning normal buses based on 
the nearest neighbor approach, aiming to minimize the interval between them (Nearest information). The errors 
shown in this figure represent the differences, in minutes, between the estimated intervals – obtained using the 
random, next, and nearest neighbors strategies – and the optimal intervals. With this information, policymakers 
can effectively reduce passengers’ waiting times at stops and stations while optimizing the management of bus 
transit within the city.

Cross-Dataset Validation.  Another important validation was performed by integrating SUNT with other 
urban data sources. By combining it with a publicly available dataset on public schools in Salvador, made avail-
able by the Municipal Department of Education at https://dados.salvador.ba.gov.br/search?tags=educacao (in 

Fig. 12  Planning timetables after calculating max load.

Fig. 13  Integrating SUNT with data from public schools. The total number of passenger per stop/station is 
shown in red. Students are represented by blue dots.
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Portuguese), it was possible to confirm the expected passenger load near schools during specific time periods. 
This dataset contains information on public schools, including their name, geographic coordinates (latitude and 
longitude), neighborhood, full address, and administrative details.

This example demonstrates the feasibility of integrating the SUNT dataset with external urban data sources, 
such as public school records, thereby expanding its range of applications beyond traffic analysis. As illustrated 
in Fig. 13, specialists analyze student passenger loads at bus stops or stations located near schools on specific 
days and times. In the visualization, the total number of passengers per stop or station is shown in red, while 
school locations are marked with blue dots. To enable this integration, each school is matched to its nearest stop 
or station based on geographic coordinates. Additionally, passengers in the SUNT dataset are identified as stu-
dents through their transportation card classification.

This integrated analysis supports a variety of new research directions, such as evaluating school accessibility, 
understanding student mobility patterns, and informing policies for public transport planning in educational 
contexts.

Usage Notes
The dataset is licensed under Creative Commons (CC) BY 4.0. We encourage all interested researchers to down-
load and use it to develop new AI-based methods and approaches aimed at enhancing urban mobility and public 
transportation management.

Code availability
The source code, models, and datasets, replicated from the Mendeley Repository, are freely available at https://
github.com/LabIA-UFBA/SUNT. The repository is organized into a set of folders, each containing specific 
resources:

• data — raw data and graph-based representations;
• data_design — source code used to generate the datasets and train learning models;
• docs — dataset documentation;
• images — example of plots and visualizations summarizing dataset attributes;
• integration — examples of how to integrate other databases with the SUNT dataset;
• models — frozen AI models used to perform various prediction tasks;
• outputs — sample of model weights and prediction results;
• stats — Jupyter notebooks containing dataset statistics.
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