www.nature.com/scientificdata

scientific data

OPEN : Multiaxial vibration data for
DATA DESCRIPTOR blade fault diagnosis In multirotor
- unmanned aerial vehicles

Luttfi A. Al-Haddad '™, Alaa Abdulhady Jaber®?, Mohsin N. Hamzah?, Habib Kraiem?2™?,
Mustafa I. Al-Karkhi' & Aymen Flah3**

. This dataset presents multiaxial vibration signals collected from a multirotor unmanned aerial vehicle

. (UAV) operating in hover mode for the purpose of blade fault diagnosis. Vibration measurements were
recorded at the geometric center of the UAV, where the centerlines of the four rotor arms intersect,
using a triaxial accelerometer. The dataset captures variations across the X, Y, and Z axes under different
blade fault conditions, including healthy, minorimbalance, severe imbalance, and screw loosening
scenarios. Each flight scenario was repeated under controlled conditions to ensure consistency and

. high-quality labeling. The resulting soft-labeled dataset includes time-domain signals from numerous

. test flights and has been used in multiple prior studies involving classical and deep learning-based fault
classification techniques. This curated data collection provides a valuable resource for researchers in
UAV health monitoring, vibration analysis, and machine learning-based fault diagnosis. The dataset
is particularly useful for the development and benchmarking of signal processing pipelines and
classification models aimed at identifying blade-level faults in multirotor UAV systems.

Background & Summary
Unmanned aerial vehicles (UAVs) are increasingly integrated into modern applications across diverse fields,
including logistics?, surveillance?, research?, and recreation?. As UAV deployment scales, the importance of
real-time fault diagnosis systems grows in parallel to ensure operational safety in work efficiency and general
reliability®-®. Among the various components vulnerable to malfunction, propeller blades are particularly criti-
cal; their imbalances or structural anomalies can cause flight instability or failure. Vibration-based monitoring,
especially when paired with Artificial Intelligence (AI) intelligent algorithms, offers a promising approach to
: identify such faults preemptively. With the advancement of onboard sensing, data acquisition, and Al-enabled
: processing, the development and public availability of curated vibration datasets is essential to accelerate
research and standardize evaluation in UAV health diagnostics.
The dataset described in this paper has been extensively utilized in previously published works. In the first
: study, a structured protocol for UAV fault diagnosis was developed, where the dataset was used to demonstrate
: the workflow for collecting, preprocessing, and analyzing vibration signals through machine learning (ML)’. In
. the second study, multi-resolution transform features were extracted and fed into a deep neural network for fault
. classification!’. In the third, an unbalance classification method was implemented using an optimized stochastic
gradient descent logistic regression model!!. In the fourth study, feature selection using the ReliefF method was
applied prior to fault classification using variant ML models, namely SVM and kNN models'?. In the fifth, signal
filtering was compared with multiresolution analysis methods to assess their performance in fault detection>.
. In the sixth, finite element analysis was conducted alongside experimental validation using the dataset to study
© the impact of consumed propellers on UAV airworthiness'. In the seventh study, frequency-domain vibration
signal analysis was applied on the dataset’s time-domain signals to classify unbalance faults'®. Finally, in the
eighth study, discrete wavelet and fast Fourier transforms were combined to enhance signal decomposition and
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Dataset Used

Methodology

Approach

Evaluation Criteria

Multiaxial Vibration Signals at UAV
Center with Blade Faults (MVS-UAV-BF)

Protocol-based data collection and ML
framework

Both (Signal Processing + ML)

Workflow protocol description

MVS-UAV-BF

Multi-resolution features + DNN

AI (ML - DNN)

Classification Accuracy

Logistic Regression with SGD

1 MVS-UAV-BF AR AI (ML - OSGD-LR) Accuracy
optimization
12 MVS-UAV-BF ReliefF feature selection + SVM/KNN | Al (ML - SVM, kNN) Accuracy, Processing Time
13 MVS-UAV-BF Kalman Filtering & Wavelet Transform | Signal Processing Fault detection performance
14 . . Finite Element 4 Experimental . . Modal/Natural Frequency
MVS-UAV-BF Validation Signal Processing Matching
15| MVS-UAV-BF Frequency-domain Both Fault Classification

analysis + Classification
DWT + FFT fusion

1o MVS-UAV-BF Signal Processing Fault Identification Resolution

Table 1. Summary of prior studies using the dataset.

Parameter Value

Takeoff Weight 249¢g

Max Flight Time 31 minutes

Max Hover Time 29 minutes

Max Flight Speed 16m/s

GNSS GPS + GLONASS + Galileo
Max Altitude 4000 m above sea level
Dimensions (Folded) 138 x 81 x 58 mm

Rotor Configuration 4 rotors (quadcopter)

Table 2. Specifications of the DJI Mini 2 Combo UAV.

improve fault identification'®. The diverse applications and methodologies employed across these studies are
summarized in Table 1.

This repeated application across eight peer-reviewed studies highlights the dataset’s robustness, consistency,
and value across different domains. This ranged from purely analytical signal transformations to advanced
Al-based deep learning classifiers. The dataset is particularly effective in capturing and distinguishing multiax-
ial vibration responses of multirotor UAVs under various propeller fault conditions which makes it a versatile
and reusable resource for researchers, educators, and developers of embedded health monitoring systems. Its
availability encourages continued experimentation, benchmarking, and innovation in UAV fault diagnosis. In
prior studies utilizing this dataset, both time-domain statistical features (e.g., RMS, standard deviation) and
frequency-domain features derived from FFT or wavelet transforms have been used for fault classification. The
dataset’s proven utility across multiple published studies ensures it can serve as a foundation for future advance-
ments in the field.

Recent advancements in UAV diagnostics have highlighted the benefits of incorporating richer sensor
modalities, real-time processing, and embedded implementations. For instance, Kim et al. demonstrated effec-
tive fault localization and severity estimation in multicopters using accelerometer and gyroscope data with PCA
and ANN/SVM models'”. Yaman et al. proposed an embedded SVM-based fault detection method optimized
for low-cost onboard implementation'®, while Baldini et al. employed vibration analysis to enable real-time
propeller fault detection under operational conditions". In a more hardware-centric approach, Sadhu et al.
implemented onboard deep learning fault classification using FPGA-based systems for real-time diagnosis®.
Additionally, the predictive scope of UAV reliability has been extended to battery performance, as shown by
Al-Haddad et al., who utilized deep neural networks for forecasting energy consumption and efficiency degrada-
tion trends in UAV power systems?!. Collectively, these works underscore the relevance of curated datasets like
ours, which provide high-quality, reusable vibration data that can serve as a diagnostic benchmark, simulation
input, or model training foundation within a rapidly evolving UAV research landscape.

Methods
This section is to detail the adopted methodology, the used tools, and the experimental setup for the acquired
dataset.

UAV model and tools. In this study, a DJI Mini 2 Combo quadcopter was used as the aerial platform for
vibration data collection. This compact UAV offers reliable stability in hover mode and is suitable for replicable
laboratory experiments. The key specifications of the UAV are listed in Table 2.

To capture the vibration signals, an ADXL335 triaxial analog accelerometer was mounted at the geomet-
ric center of the UAV—specifically at the point where the four motor arms intersect. This placement allows
equal sensitivity to all axis-aligned vibrations resulting from blade imbalances. The ADXL335’s specifications
are provided in Table 3.
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Parameter Value

Axes X, Y, Z

Output Type Analog
Measurement Range +3g

Sensitivity 300mV/g (typical)
Power Supply 1.8Vto3.6V
Operating Temperature —40°Cto+85°C
Bandwidth (typical) 1600 Hz

Table 3. Specifications of the ADXL335 accelerometer.

Parameter Value

Analog Inputs 8 channels (12-bit)
Sample Rate 10 kS/s (max)

Analog Output 2 channels (8-bit)
Digital I/O 12 lines

Communication USB 2.0

Software Compatibility LabVIEW, MATLAB, etc

Table 4. Specifications of the NI USB-6008 Data Acquisition System.
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Fig. 1 LabVIEW block diagram used for real-time signal calibration.

The accelerometer was interfaced with a National Instruments DAQ-6008 USB data acquisition device,
which relayed signals to the PC. Specifications of the DAQ system are shown in Table 4.

Sensor calibration was carried out by subtracting the mean from each raw signal in a continuous loop within
LabVIEW. This eliminated initial signal drift and ensured zero-centered vibration recordings. The calibration
method ensured smooth acquisition and alignment across all three axes. The LabVIEW block diagram repre-
senting this calibration logic is illustrated in Fig. 1.

It is noted that only external accelerometer data are included in this dataset, while onboard gyroscope and
magnetometer readings were intentionally excluded to maintain a focused scope on time-domain vibration
signals suitable for frequency-domain and time-frequency domain transformations.

Fault initiation and flight conditions.  All vibration recordings were acquired while the UAV operated in
hover mode at a fixed altitude of 1.2 meters. Two primary fault types were introduced to simulate propeller-level
imbalances:

o Mass Removal Fault: A small section of the blade was trimmed to simulate mechanical wear or damage.
o Weight Unbalance Fault: Small adhesive sticky tape was affixed to one side of a blade to induce mass
asymmetry.

Each type of fault was implemented independently on individual blades. For reference, blade numbering fol-
lows a clockwise pattern as viewed from above: Blade 1 (lower right), Blade 2 (upper right), Blade 3 (upper left),
and Blade 4 (lower left). The fault configurations and blade numbering scheme are presented in Fig. 2.

SCIENTIFICDATA|  (2025) 12:1383 | https://doi.org/10.1038/s41597-025-05692-4 3


https://doi.org/10.1038/s41597-025-05692-4

www.nature.com/scientificdata/

UAV Blade

Blade 3
Blade 2

Upper
Left / L Ypper Right
\ Alade 1

Blade 4 Lower Right
Lower Left L

Unbalance Blade
Healthy Blade Weight Added
(Sticky Tape)

Fig. 2 Blade numbering and fault application methods (mass removal and weight unbalance).
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Each flight session lasted 7 minutes (420 seconds), during which approximately 400,000 vibration samples
were collected per case. All experiments were conducted indoors in a controlled environment with no wind
interference and stable room temperature, ensuring consistency and high-quality data across recordings.

This dataset is limited to a single UAV model operated at a fixed altitude under windless indoor condi-
tions, which should be considered when evaluating its applicability to real-world scenarios. It is also acknowl-
edged that the dataset is limited to hover-mode data collected in a controlled indoor setting, and future
versions may incorporate dynamic flight conditions and environmental variations to enhance real-world
applicability.

Control input data such as roll, pitch, and thrust commands were not recorded in this study, as the UAV was
operated in a steady hover mode with minimal control variation; however, their integration will be explored in
future datasets involving dynamic flight conditions.

Data acquisition and preprocessing. The full experimental workflow is summarized in Fig. 3, which
shows the step-by-step process from UAV flight setup and sensor mounting to data recording, labeling, and
storage.

The actual experimental setup including the UAV, DAQ system, sensors, and PC platform is visually
represented in Fig. 4.

Vibration signals were recorded directly in the time domain and stored as Excel (.xlsx) files on the PC plat-
form. To ensure usability and clarity, each signal file was manually labeled by the experimenter, indicating
the type and location of the fault. For each flight condition—healthy, mass removal on one blade, and weight
unbalance on another—recordings were repeated five times, resulting in a comprehensive and reliable dataset
spanning five healthy and five faulty scenarios.

Data Records

The dataset is available at Figshare??. The complete dataset consists of five Excel files, each corresponding to
a specific flight condition of the UAV, including both healthy and faulty cases. These cases involve controlled
modifications to the UAV’s propeller blades, such as mass removal (to simulate damage) and weight addition
using adhesive tape (to induce imbalance). The dataset was collected under repeatable indoor hover flight
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Accelerometer
Sensor

Software Processing

First column: Time domain in seconds, Second column: X -axis vibrations,
Third column: Y-axis vibrations, and Fourth column: Z-axis vibrations.

4 A [} c | D |
Time (s) ] X rati !Y i | z i |
0.000977 -0.491271 -0.070434 -0.152043
0.001953 -0.253358 0.090947 -0.305018
0.00293 0.273451 0.235334 0.272888
0.003306 0.451886 0.158922 0.017929
0.004883 0.222469 0.328859 0.340877

[N IR

Name = |

wis W

@ Damaged Bottom Right Blade
@ Damaged Top Right Blade

@ Healthy
B33 Unbalanced Bottom Right Blade Data starts from row 1 to around

£33 Unbalanced Top Right Blade row 400,000 with the same instances
of m/s"2 vibration signals

=)

4 A | B C | D
399995/ 421.511286 0.061028 -0.316904 -0.007566
N - 399996/ 421.512262 -0.049432 -0.444357 -0.135046
Datafile contains 399997| 421513239 -0.397805 -0.036507 -0.126547
. . 399998/ 421.514215 -0.185382 0.60076 -0.007566
ﬁve excel ﬁles 3999?? 421.515192 0.154494 0.609256 0.238894
400000| 421.516168 0.315935 -0.095985 0.162406

Fig. 5 Structure and contents of the dataset files. Each Excel file includes vibration data recorded across the X,
Y, and Z axes, sampled over 400,000 instances per flight condition.

conditions, using a centrally mounted ADXL335 triaxial accelerometer connected to a NI USB-6008 DAQ sys-
tem, as described in Section 3. Each file contains approximately 400,000 rows of raw, high-resolution vibration
signals recorded continuously over a 7-minute period. The files are named clearly to reflect the specific fault
case they represent:

o Healthy

« Damaged Bottom Right Blade

o Damaged Top Right Blade

o Unbalanced Bottom Right Blade
« Unbalanced Top Right Blade

Each Excel file includes four columns, structured as follows:

o Column A: Time (in seconds)

o Column B: X-axis acceleration (m/s?)
o Column C: Y-axis acceleration (m/s?)
o Column D: Z-axis acceleration (m/s?)

Manual labeling was used to ensure maximum clarity, with filenames explicitly indicating the fault condition
and blade position. All data are recorded in the time domain, suitable for transformation into frequency or
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Fig. 6 Classification results of unseen damaged blade instances using pre-trained ML models.

time-frequency domains depending on user needs. These characteristics make the dataset especially useful for
UAYV diagnostics, machine learning classification tasks, and vibration signal analysis. Figure 5 details the data
records.

Technical Validation

To ensure the reliability, quality, and scientific usability of the presented vibration dataset, two independent
validation techniques were employed. These methods served to verify the clarity of the signal response, con-
firm accurate labeling, and assess noise consistency throughout the recordings. Both approaches provided
robust support for the technical validity of the dataset in the context of blade fault diagnosis in multirotor
UAVs.

Classification-based validation using additional experimental data. In the first validation
approach, an external test set comprising newly collected vibration signals—generated exclusively under blade
damage scenarios involving mass removal—was used. These unseen samples were tested against machine learn-
ing classifiers originally trained on the main dataset. The objective was to assess whether the trained models could
reliably generalize and correctly identify the same type of faults based on real-world vibrations not present during
training. The results were found to be highly consistent with the expected outputs, confirming both the clarity
of the measured signals and the strength of the class separability. Notably, the classifier accurately identified all
fault instances with minimal false predictions. The classification achieved an accuracy, precision, and recall of
0.91, with a specificity of 0.978 and an area under the ROC curve (AUC) of 0.987 which confirms the reliability
of the trained model. These results are visually summarized in Fig. 6, where each classified sample is mapped and
annotated.

Frequency-domain comparison of blade conditions. To complement the time-domain and
time-frequency validation methods, a frequency-domain analysis was conducted using the Fast Fourier
Transform (FFT) on the X-axis vibration signals from all five flight conditions. This transformation enables vis-
ualization of the signal energy distribution across frequencies, highlighting the spectral differences caused by
blade faults. As illustrated in Fig. 7, the healthy UAV condition presents a relatively uniform low-frequency sig-
nature, whereas the damaged and unbalanced blade scenarios exhibit noticeable peaks and variations, indicating
fault-induced harmonic content. These spectral characteristics offer an additional diagnostic dimension for future
researchers and model developers, supporting more informed preprocessing strategies and feature extraction
methods. The figure serves as a visual reference to underscore the separability and richness of the dataset in the
frequency domain.

Multi-resolution analysis using discrete wavelet transform.  The second validation technique relied
on a six-level Discrete Wavelet Transform (DWT) to examine the signal’s frequency content and identify any
latent noise or inconsistency in the recordings. The Daubechies (db4) wavelet was used for decomposition due to
its suitability for vibration signal analysis and effective time-frequency localization. Healthy and damaged blade
signals were decomposed across multiple levels to isolate high- and low-frequency components. This analysis
enabled evaluation of noise presence, the clarity of signal transitions, and determination of the most suitable
decomposition level for feature extraction. The quality of the decomposition was remarkable, and no signifi-
cant noise distortions were observed across any level, demonstrating the integrity of the original measurements.
Additionally, a fusion of selected decomposition levels was tested to simulate hybrid signal processing strategies,
which yielded superior signal clarity and class distinctiveness. Calibration of the accelerometer sensor also played
a critical role in achieving consistent and artifact-free recordings, ensuring the dataset is ready for further trans-
formation into either frequency-domain or time-frequency domain representations with minimal preprocessing
effort. Figure 8 illustrates a side-by-side wavelet decomposition of healthy and damaged blade signals, highlight-
ing the smooth transitions and well-preserved waveform structure across all levels.
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Fig. 7 FFT plots of X-axis vibration signals for all UAV blade conditions, illustrating frequency-domain
differences between healthy, damaged, and unbalanced states.
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Fig. 8 Six-level wavelet decomposition of vibration signals for healthy vs. damaged blades.

Usage Notes

The dataset is compatible with a variety of ML platforms and can be easily processed using both traditional and
deep learning techniques. The current study particularly reccommends the use of Orange Data Mining?, an
open-source data visualization and analysis tool, for rapid prototyping of classification pipelines**?*. Orange
allows users to create workflow-based data analysis structures with minimal coding experience as it is especially
suitable for researchers and educators working in topics of fault diagnosis, specifically UAV fault detection.
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Fig. 9 Orange data mining prediction structural workflow utilizing a simple neural network°.

Figure 9 illustrates an example Orange workflow used for classification in a previously published study based

on this dataset. The visual workflow provides a clear representation of how features were selected, processed, and
classified and generally serves as a helpful reference for future reuse and experimentation.

Code availability

No custom code was used to generate or process the dataset described in this manuscript.
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