
1Scientific Data |         (2025) 12:1383  | https://doi.org/10.1038/s41597-025-05692-4

www.nature.com/scientificdata

Multiaxial vibration data for 
blade fault diagnosis in multirotor 
unmanned aerial vehicles
Luttfi A. Al-Haddad   1 ✉, Alaa Abdulhady Jaber   1, Mohsin N. Hamzah1, Habib Kraiem2 ✉, 
Mustafa I. Al-Karkhi1 & Aymen Flah3,4,5

This dataset presents multiaxial vibration signals collected from a multirotor unmanned aerial vehicle 
(UAV) operating in hover mode for the purpose of blade fault diagnosis. Vibration measurements were 
recorded at the geometric center of the UAV, where the centerlines of the four rotor arms intersect, 
using a triaxial accelerometer. The dataset captures variations across the X, Y, and Z axes under different 
blade fault conditions, including healthy, minor imbalance, severe imbalance, and screw loosening 
scenarios. Each flight scenario was repeated under controlled conditions to ensure consistency and 
high-quality labeling. The resulting soft-labeled dataset includes time-domain signals from numerous 
test flights and has been used in multiple prior studies involving classical and deep learning-based fault 
classification techniques. This curated data collection provides a valuable resource for researchers in 
UAV health monitoring, vibration analysis, and machine learning-based fault diagnosis. The dataset 
is particularly useful for the development and benchmarking of signal processing pipelines and 
classification models aimed at identifying blade-level faults in multirotor UAV systems.

Background & Summary
Unmanned aerial vehicles (UAVs) are increasingly integrated into modern applications across diverse fields, 
including logistics1, surveillance2, research3, and recreation4. As UAV deployment scales, the importance of 
real-time fault diagnosis systems grows in parallel to ensure operational safety in work efficiency and general 
reliability5–8. Among the various components vulnerable to malfunction, propeller blades are particularly criti-
cal; their imbalances or structural anomalies can cause flight instability or failure. Vibration-based monitoring, 
especially when paired with Artificial Intelligence (AI) intelligent algorithms, offers a promising approach to 
identify such faults preemptively. With the advancement of onboard sensing, data acquisition, and AI-enabled 
processing, the development and public availability of curated vibration datasets is essential to accelerate 
research and standardize evaluation in UAV health diagnostics.

The dataset described in this paper has been extensively utilized in previously published works. In the first 
study, a structured protocol for UAV fault diagnosis was developed, where the dataset was used to demonstrate 
the workflow for collecting, preprocessing, and analyzing vibration signals through machine learning (ML)9. In 
the second study, multi-resolution transform features were extracted and fed into a deep neural network for fault 
classification10. In the third, an unbalance classification method was implemented using an optimized stochastic 
gradient descent logistic regression model11. In the fourth study, feature selection using the ReliefF method was 
applied prior to fault classification using variant ML models, namely SVM and kNN models12. In the fifth, signal 
filtering was compared with multiresolution analysis methods to assess their performance in fault detection13. 
In the sixth, finite element analysis was conducted alongside experimental validation using the dataset to study 
the impact of consumed propellers on UAV airworthiness14. In the seventh study, frequency-domain vibration 
signal analysis was applied on the dataset’s time-domain signals to classify unbalance faults15. Finally, in the 
eighth study, discrete wavelet and fast Fourier transforms were combined to enhance signal decomposition and 
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improve fault identification16. The diverse applications and methodologies employed across these studies are 
summarized in Table 1.

This repeated application across eight peer-reviewed studies highlights the dataset’s robustness, consistency, 
and value across different domains. This ranged from purely analytical signal transformations to advanced 
AI-based deep learning classifiers. The dataset is particularly effective in capturing and distinguishing multiax-
ial vibration responses of multirotor UAVs under various propeller fault conditions which makes it a versatile 
and reusable resource for researchers, educators, and developers of embedded health monitoring systems. Its 
availability encourages continued experimentation, benchmarking, and innovation in UAV fault diagnosis. In 
prior studies utilizing this dataset, both time-domain statistical features (e.g., RMS, standard deviation) and 
frequency-domain features derived from FFT or wavelet transforms have been used for fault classification. The 
dataset’s proven utility across multiple published studies ensures it can serve as a foundation for future advance-
ments in the field.

Recent advancements in UAV diagnostics have highlighted the benefits of incorporating richer sensor 
modalities, real-time processing, and embedded implementations. For instance, Kim et al. demonstrated effec-
tive fault localization and severity estimation in multicopters using accelerometer and gyroscope data with PCA 
and ANN/SVM models17. Yaman et al. proposed an embedded SVM-based fault detection method optimized 
for low-cost onboard implementation18, while Baldini et al. employed vibration analysis to enable real-time 
propeller fault detection under operational conditions19. In a more hardware-centric approach, Sadhu et al. 
implemented onboard deep learning fault classification using FPGA-based systems for real-time diagnosis20. 
Additionally, the predictive scope of UAV reliability has been extended to battery performance, as shown by 
Al-Haddad et al., who utilized deep neural networks for forecasting energy consumption and efficiency degrada-
tion trends in UAV power systems21. Collectively, these works underscore the relevance of curated datasets like 
ours, which provide high-quality, reusable vibration data that can serve as a diagnostic benchmark, simulation 
input, or model training foundation within a rapidly evolving UAV research landscape.

Methods
This section is to detail the adopted methodology, the used tools, and the experimental setup for the acquired 
dataset.

UAV model and tools.  In this study, a DJI Mini 2 Combo quadcopter was used as the aerial platform for 
vibration data collection. This compact UAV offers reliable stability in hover mode and is suitable for replicable 
laboratory experiments. The key specifications of the UAV are listed in Table 2.

To capture the vibration signals, an ADXL335 triaxial analog accelerometer was mounted at the geomet-
ric center of the UAV—specifically at the point where the four motor arms intersect. This placement allows 
equal sensitivity to all axis-aligned vibrations resulting from blade imbalances. The ADXL335’s specifications 
are provided in Table 3.

Ref. Dataset Used Methodology Approach Evaluation Criteria

9 Multiaxial Vibration Signals at UAV 
Center with Blade Faults (MVS-UAV-BF)

Protocol-based data collection and ML 
framework Both (Signal Processing + ML) Workflow protocol description

10 MVS-UAV-BF Multi-resolution features + DNN AI (ML – DNN) Classification Accuracy

11 MVS-UAV-BF Logistic Regression with SGD 
optimization AI (ML – OSGD-LR) Accuracy

12 MVS-UAV-BF ReliefF feature selection + SVM/kNN AI (ML – SVM, kNN) Accuracy, Processing Time
13 MVS-UAV-BF Kalman Filtering & Wavelet Transform Signal Processing Fault detection performance

14 MVS-UAV-BF Finite Element + Experimental 
Validation Signal Processing Modal/Natural Frequency 

Matching

15 MVS-UAV-BF Frequency-domain 
analysis + Classification Both Fault Classification

16 MVS-UAV-BF DWT + FFT fusion Signal Processing Fault Identification Resolution

Table 1.  Summary of prior studies using the dataset.

Parameter Value

Takeoff Weight 249 g

Max Flight Time 31 minutes

Max Hover Time 29 minutes

Max Flight Speed 16 m/s

GNSS GPS + GLONASS + Galileo

Max Altitude 4000 m above sea level

Dimensions (Folded) 138 × 81 × 58 mm

Rotor Configuration 4 rotors (quadcopter)

Table 2.  Specifications of the DJI Mini 2 Combo UAV.
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The accelerometer was interfaced with a National Instruments DAQ-6008 USB data acquisition device, 
which relayed signals to the PC. Specifications of the DAQ system are shown in Table 4.

Sensor calibration was carried out by subtracting the mean from each raw signal in a continuous loop within 
LabVIEW. This eliminated initial signal drift and ensured zero-centered vibration recordings. The calibration 
method ensured smooth acquisition and alignment across all three axes. The LabVIEW block diagram repre-
senting this calibration logic is illustrated in Fig. 1.

It is noted that only external accelerometer data are included in this dataset, while onboard gyroscope and 
magnetometer readings were intentionally excluded to maintain a focused scope on time-domain vibration 
signals suitable for frequency-domain and time-frequency domain transformations.

Fault initiation and flight conditions.  All vibration recordings were acquired while the UAV operated in 
hover mode at a fixed altitude of 1.2 meters. Two primary fault types were introduced to simulate propeller-level 
imbalances:

•	 Mass Removal Fault: A small section of the blade was trimmed to simulate mechanical wear or damage.
•	 Weight Unbalance Fault: Small adhesive sticky tape was affixed to one side of a blade to induce mass 

asymmetry.

Each type of fault was implemented independently on individual blades. For reference, blade numbering fol-
lows a clockwise pattern as viewed from above: Blade 1 (lower right), Blade 2 (upper right), Blade 3 (upper left), 
and Blade 4 (lower left). The fault configurations and blade numbering scheme are presented in Fig. 2.

Parameter Value

Axes X, Y, Z

Output Type Analog

Measurement Range  ± 3 g

Sensitivity 300 mV/g (typical)

Power Supply 1.8 V to 3.6 V

Operating Temperature −40 °C to + 85 °C

Bandwidth (typical) 1600 Hz

Table 3.  Specifications of the ADXL335 accelerometer.

Parameter Value

Analog Inputs 8 channels (12-bit)

Sample Rate 10 kS/s (max)

Analog Output 2 channels (8-bit)

Digital I/O 12 lines

Communication USB 2.0

Software Compatibility LabVIEW, MATLAB, etc

Table 4.  Specifications of the NI USB-6008 Data Acquisition System.

Fig. 1  LabVIEW block diagram used for real-time signal calibration.
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Each flight session lasted 7 minutes (420 seconds), during which approximately 400,000 vibration samples 
were collected per case. All experiments were conducted indoors in a controlled environment with no wind 
interference and stable room temperature, ensuring consistency and high-quality data across recordings.

This dataset is limited to a single UAV model operated at a fixed altitude under windless indoor condi-
tions, which should be considered when evaluating its applicability to real-world scenarios. It is also acknowl-
edged that the dataset is limited to hover-mode data collected in a controlled indoor setting, and future 
versions may incorporate dynamic flight conditions and environmental variations to enhance real-world 
applicability.

Control input data such as roll, pitch, and thrust commands were not recorded in this study, as the UAV was 
operated in a steady hover mode with minimal control variation; however, their integration will be explored in 
future datasets involving dynamic flight conditions.

Data acquisition and preprocessing.  The full experimental workflow is summarized in Fig. 3, which 
shows the step-by-step process from UAV flight setup and sensor mounting to data recording, labeling, and 
storage.

The actual experimental setup including the UAV, DAQ system, sensors, and PC platform is visually 
represented in Fig. 4.

Vibration signals were recorded directly in the time domain and stored as Excel (.xlsx) files on the PC plat-
form. To ensure usability and clarity, each signal file was manually labeled by the experimenter, indicating 
the type and location of the fault. For each flight condition—healthy, mass removal on one blade, and weight 
unbalance on another—recordings were repeated five times, resulting in a comprehensive and reliable dataset 
spanning five healthy and five faulty scenarios.

Data Records
The dataset is available at Figshare22. The complete dataset consists of five Excel files, each corresponding to 
a specific flight condition of the UAV, including both healthy and faulty cases. These cases involve controlled 
modifications to the UAV’s propeller blades, such as mass removal (to simulate damage) and weight addition 
using adhesive tape (to induce imbalance). The dataset was collected under repeatable indoor hover flight 

Damaged BladeUAV Blade

Blade 1
Lower Right

Blade 2
Upper Right

Blade 3
Upper
Left

Blade 4
Lower Left

Healthy Blade
Unbalance Blade

Weight Added 
(Sticky Tape)

Fig. 2  Blade numbering and fault application methods (mass removal and weight unbalance).

Signal Processing

Fault Diagnosis

; If 
Required

AI ML

Tools/Algorithms

Fig. 3  Graphical methodology outlining the data acquisition and preprocessing workflow.
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conditions, using a centrally mounted ADXL335 triaxial accelerometer connected to a NI USB-6008 DAQ sys-
tem, as described in Section 3. Each file contains approximately 400,000 rows of raw, high-resolution vibration 
signals recorded continuously over a 7-minute period. The files are named clearly to reflect the specific fault 
case they represent:

•	 Healthy
•	 Damaged Bottom Right Blade
•	 Damaged Top Right Blade
•	 Unbalanced Bottom Right Blade
•	 Unbalanced Top Right Blade

Each Excel file includes four columns, structured as follows:

•	 Column A: Time (in seconds)
•	 Column B: X-axis acceleration (m/s²)
•	 Column C: Y-axis acceleration (m/s²)
•	 Column D: Z-axis acceleration (m/s²)

Manual labeling was used to ensure maximum clarity, with filenames explicitly indicating the fault condition 
and blade position. All data are recorded in the time domain, suitable for transformation into frequency or 

Software Processing

Z

Y

X Data Acquisition

Multirotor UAV

Healthy/Damaged Blades

Accelerometer 
Sensor

Fig. 4  Experimental setup showing the UAV, DAQ device, accelerometer, and PC platform.

Data starts from row 1 to around 
row 400,000 with the same instances 

of m/s^2 vibration signals

Data file contains
five excel files

First column: Time domain in seconds, Second column: X -axis vibrations, 
Third column: Y-axis vibrations, and Fourth column: Z-axis vibrations.

Fig. 5  Structure and contents of the dataset files. Each Excel file includes vibration data recorded across the X, 
Y, and Z axes, sampled over 400,000 instances per flight condition.
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time-frequency domains depending on user needs. These characteristics make the dataset especially useful for 
UAV diagnostics, machine learning classification tasks, and vibration signal analysis. Figure 5 details the data 
records.

Technical Validation
To ensure the reliability, quality, and scientific usability of the presented vibration dataset, two independent 
validation techniques were employed. These methods served to verify the clarity of the signal response, con-
firm accurate labeling, and assess noise consistency throughout the recordings. Both approaches provided 
robust support for the technical validity of the dataset in the context of blade fault diagnosis in multirotor 
UAVs.

Classification-based validation using additional experimental data.  In the first validation 
approach, an external test set comprising newly collected vibration signals—generated exclusively under blade 
damage scenarios involving mass removal—was used. These unseen samples were tested against machine learn-
ing classifiers originally trained on the main dataset. The objective was to assess whether the trained models could 
reliably generalize and correctly identify the same type of faults based on real-world vibrations not present during 
training. The results were found to be highly consistent with the expected outputs, confirming both the clarity 
of the measured signals and the strength of the class separability. Notably, the classifier accurately identified all 
fault instances with minimal false predictions. The classification achieved an accuracy, precision, and recall of 
0.91, with a specificity of 0.978 and an area under the ROC curve (AUC) of 0.987 which confirms the reliability 
of the trained model. These results are visually summarized in Fig. 6, where each classified sample is mapped and 
annotated.

Frequency-domain comparison of blade conditions.  To complement the time-domain and 
time-frequency validation methods, a frequency-domain analysis was conducted using the Fast Fourier 
Transform (FFT) on the X-axis vibration signals from all five flight conditions. This transformation enables vis-
ualization of the signal energy distribution across frequencies, highlighting the spectral differences caused by 
blade faults. As illustrated in Fig. 7, the healthy UAV condition presents a relatively uniform low-frequency sig-
nature, whereas the damaged and unbalanced blade scenarios exhibit noticeable peaks and variations, indicating 
fault-induced harmonic content. These spectral characteristics offer an additional diagnostic dimension for future 
researchers and model developers, supporting more informed preprocessing strategies and feature extraction 
methods. The figure serves as a visual reference to underscore the separability and richness of the dataset in the 
frequency domain.

Multi-resolution analysis using discrete wavelet transform.  The second validation technique relied 
on a six-level Discrete Wavelet Transform (DWT) to examine the signal’s frequency content and identify any 
latent noise or inconsistency in the recordings. The Daubechies (db4) wavelet was used for decomposition due to 
its suitability for vibration signal analysis and effective time-frequency localization. Healthy and damaged blade 
signals were decomposed across multiple levels to isolate high- and low-frequency components. This analysis 
enabled evaluation of noise presence, the clarity of signal transitions, and determination of the most suitable 
decomposition level for feature extraction. The quality of the decomposition was remarkable, and no signifi-
cant noise distortions were observed across any level, demonstrating the integrity of the original measurements. 
Additionally, a fusion of selected decomposition levels was tested to simulate hybrid signal processing strategies, 
which yielded superior signal clarity and class distinctiveness. Calibration of the accelerometer sensor also played 
a critical role in achieving consistent and artifact-free recordings, ensuring the dataset is ready for further trans-
formation into either frequency-domain or time-frequency domain representations with minimal preprocessing 
effort. Figure 8 illustrates a side-by-side wavelet decomposition of healthy and damaged blade signals, highlight-
ing the smooth transitions and well-preserved waveform structure across all levels.

Damaged Blade 1 Prediction Results Damaged Blade 2 Prediction Results

Fig. 6  Classification results of unseen damaged blade instances using pre-trained ML models.
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Usage Notes
The dataset is compatible with a variety of ML platforms and can be easily processed using both traditional and 
deep learning techniques. The current study particularly recommends the use of Orange Data Mining23, an 
open-source data visualization and analysis tool, for rapid prototyping of classification pipelines24,25. Orange 
allows users to create workflow-based data analysis structures with minimal coding experience as it is especially 
suitable for researchers and educators working in topics of fault diagnosis, specifically UAV fault detection.

Fig. 7  FFT plots of X-axis vibration signals for all UAV blade conditions, illustrating frequency-domain 
differences between healthy, damaged, and unbalanced states.

Healthy Blade 1 Damaged

Fig. 8  Six-level wavelet decomposition of vibration signals for healthy vs. damaged blades.
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Figure 9 illustrates an example Orange workflow used for classification in a previously published study based 
on this dataset. The visual workflow provides a clear representation of how features were selected, processed, and 
classified and generally serves as a helpful reference for future reuse and experimentation.

Code availability
No custom code was used to generate or process the dataset described in this manuscript.
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