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. Optical coherence tomography angiography (OCTA) has emerged as a promising tool for non-invasive

: vascularimaging in dermatology. However, the field lacks standardized methods for processing and

. analyzing these complex images, as well as sufficient annotated datasets for developing automated
analysis tools. We present DERMA-OCTA, the first open-access dermatological OCTA dataset,
comprising 330 volumetric scans from 74 subjects with various skin conditions. The dataset contains the
original 2D and 3D OCTA acquisitions, as well as versions processed with five different preprocessing
methods, and the reference 2D and 3D segmentations. For each version, segmentation labels are
provided, generated using the U-Net architecture as 2D and 3D segmentation approaches. By providing
high-resolution, annotated OCTA data across a range of skin pathologies, this dataset offers a valuable
resource for training deep learning models, benchmarking segmentation algorithms, and facilitating
research into non-invasive skin imaging. The DERMA-OCTA dataset is freely downloadable.

Background & Summary

Optical coherence tomography angiography (OCTA) has received much attention in recent years due to its
. non-invasiveness, label-free, and high-resolution properties’>. OCTA is an extension of optical coherence
© tomography (OCT), which exploits the backscattering principle of light mainly in the near-infrared region irra-
© diating the biological tissue to obtain morphological information. OCTA expands the morphological analysis
. to include a functional analysis by extracting angiographic information from consecutive OCT acquisitions,
. allowing the in vivo, 3D visualization and quantification of the vascular network. OCTA was firstly applied in

ophthalmology demonstrating its ability to create detailed images of blood vessels of the retina in different clin-

ical conditions, such as diabetic retinopathy®*, age-related macular degeneration®, glaucoma®, and retinal vein

occlusion’. The high-resolution images of the radial peripapillary capillary network and the intermediate and
. deep capillary plexuses in the eye made OCTA a powerful tool for the study of pathogenesis of eye diseases as
. well as a go-to solution for the development and evaluation of new treatments.
: Motivated by the success of OCTA in ophthalmology, there is a growing effort to apply OCTA in derma-
. tology. However, there are specific challenges in applying OCTA technology from ophthalmology to derma-
© tology. Skin tissue is extremely heterogeneous, with multiple scattering layers and varying optical properties,
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in contrast to the eye’s comparatively homogeneous and transparent structures. Increased motion artifacts,
variable penetration depth, and complex light scattering patterns are some of the ways that this complexity
degrades imaging quality. Moreover, other factors such as skin temperature, recent caffeine or other vaso-active
substances consumption, and pressure applied to the skin during image acquisition could physiologically influ-
ence vessel visibility and alter flow-based indices. Despite these challenges, previous studies have shown how
OCTA enables the assessment of various dermatological diseases and skin conditions, including melanoma,
non-melanocytic skin cancer, psoriasis and peri-ulcerous skin®'!. Moreover, investigations applying OCTA
revealed altered capillary structures and increased blood perfusion at the borders of venous leg ulcers compared
to healthy skin, indicating potential use of OCTA to non-invasively assess pathological vascular alterations
in chronic wounds'>. OCTA imaging led to the successful identification of distinct microvascular features in
nevi, achieving a differential diagnosis between melanomas and benign melanocytic lesions with high predic-
tive accuracy, potentially reducing unnecessary biopsies'?. Port wine birthmarks (PWBs) were also investigated
using OCTA, demonstrating that purple PWBs have superficial vessels located closer to the epidermis com-
pared to pink PWBs, which could influence the choice of laser treatment parameters. Additionally, vessel depth
in PWBs was associated with age and color, showing distinct changes in vessel depth as patients age'*. More
recently, the application of OCTA was expanded to chronic venous disease (CVD) revealing specific micro-
vascular patterns for each stage of the disease'>. For CVD patients, the disease severity was classified using the
clinical-etiology-anatomic-pathophysiologic (CEAP) classification'®. Following the CEAP classification system,
stage Cl includes patients with telangiectasias, C2 indicates varicose veins, C3 indicates lower leg edema, C4a,
b, and c indicate different kinds of skin alternations associated with CVD, C5 indicates a healed venous leg ulcer
and C6 an active ulceration. Using OCTA imaging, characteristic vascular patterns could be identified for the
following stages: patients with C1 and C4c displayed significantly larger vessel radii compared to healthy con-
trols; vessel length decreased as CVD progressed from stage C1 to C5; vessel tortuosity increased from stage C4
to C6 and patients in stage C6 showed increased microvascular density compared to healthy controls'®.

Most of the reported studies have examined OCTA both qualitatively and quantitatively, enhancing its rele-
vance and diagnostic value. Quantitative analysis of vasculature using OCTA is crucial for standardizing clinical
interpretation, with key indicators such as vessel density, diameter and lengthg’lz. Previous studies have shown
that segmentation errors in OCTA can compromise vessel density measurements in both healthy eyes and in
those affected by diabetic macular edema, which can significantly impact diagnostic accuracy*'”. Advances in
OCTA segmentation have recently been driven by technological improvements, especially in deep learning.
Indeed, artificial intelligence (AI) methods have been increasingly adopted in ophthalmology, leading to signifi-
cant improvements in segmentation accuracy and automation'®. It is well known that the output of an Al-based
algorithm is strictly dependent on the quality of the input data. To improve the generalizability of the networks
and to avoid a performance drop during testing, it is increasingly important to harmonize and enhance images
with unwanted variability, such as OCTA data from different devices, from skin samples with different optical
properties and affected by different artefacts'®.

Beyond the initial challenges of image acquisition, dermatological OCTA faces significant obstacles in data
analysis and interpretation. Vessel segmentation, crucial for quantitative analysis, becomes particularly complex
due to the three-dimensional nature of skin vasculature, varying vessel architectures across different pathologies,
and the presence of tissue-specific artifacts. Furthermore, this research field currently lacks both standardized
methods for processing these complex images and sufficient annotated datasets for developing automated anal-
ysis tools'. The retinal OCTA community instead has recently taken its first steps to standardize its workflow:
aunified framework for data acquisition, analysis, and reporting has been proposed, and a cross-platform tool-
box now allows microvascular metrics to be extracted from retinal scans produced by different instruments?'.

To address these limitations and drive the research field of dermatological OCTA forward, in this paper we
introduce a new dermatological OCTA dataset named DERMA-OCTA?%. Specifically, a cohort of 74 subjects
was recruited at the Department of Dermatology at the Medical University of Vienna. A total of 330 OCTA
volumes were acquired, with each 3D volume covering a skin surface area of approximately 1cm? and a depth
of 1 mm. For each original volume, multiple processed versions were generated in both 2D and 3D formats.
DERMA-OCTA? represents the first open-access collection of OCTA images specifically dedicated to derma-
tology, providing an unprecedented resource for researchers worldwide.

OCTA datasets. Despite the rapid growth of public OCTA datasets in retinal research, OCTA data for vas-
cular segmentation in dermatological applications remains largely unexplored. OCTA datasets like Giarratano?,
ROSE?!, OCTA-500% and Soul?® have emerged in the last decade, each dedicated to advancing vessel segmen-
tation in retinal OCTA images. The specifications of the mentioned datasets, compared to those of our dataset
DERMA-OCTA?, are reported in Table 1. The Giarratano dataset focuses solely on healthy vascular structures,
providing OCTA projection maps from 11 subjects to study standard vessel patterns. The ROSE dataset®* includes
vessel annotations to support detailed segmentation tasks in both superficial and deeper retinal layers, broaden-
ing its application for developing precise vascular models. The ROSE dataset includes more subjects and OCTA
images with higher resolution compared to the Giarratano dataset. OCTA-500% offers an even more extensive
dataset that includes a diverse array of retinal images and vessel segmentation labels across multiple fields of
view, enhancing model generalization potential. The more recent Soul dataset? collects 2D OCTA images from
53 patients and focuses on Branch retinal vein occlusion disease, implementing a human-machine collaborative
annotation framework.

Vessel segmentation. Although OCTA devices naturally acquire three-dimensional data, the vast majority
of studies employ segmentation methods on 2D images rather than analyzing 3D volumes. This preference is
primarily due to artifacts that hinder accurate visualization of the volumetric vascular network. Moreover, this
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Giarratano® | ROSE* OCTA-500* | Soul*® DERMA-OCTA
Application Ophtalmoloy | Ophtalmology | Ophtalmology | Ophtalmology | Dermatology
Subjects 11 151 500 53 74
Diseases — — >12 1 7
#Samples 55 images 229 images 500 volumes 178 images 330 volumes
2D/3D 2D 2D From 3D to 2D | 2D 3Dand 2D
FOV (mm?) 3%3 3%3 6x6 6%6 10 x 10
3x3
. . (304,304) (640,400,400)
Resolution (pixel) | (91,91) (512.512) (640,304,304) (304,304) (90,512,483)

Table 1. Summary of public OCTA datasets for vessel segmentation.

limitation is particularly evident in the lack of 3D ground truth segmentations, especially in dermatological appli-
cations where Al-based techniques remain less developed compared to ophthalmology.

In ophthalmology, both traditional and AI-based methods are used to segment the vasculature in OCTA
data. Most traditional techniques rely on simple thresholding, often supplemented by processes to reduce noise
and artifacts””. Other studies have proposed a graph reasoning convolutional neural network (CGNet)*® and
a transformer model®® to segment vessels in retinal 2D images. Although some research has been carried out
for pseudo-3D segmentation, e.g. reconstructing the 3D volume from 2D segmentations output by a classical
U-Net®, using a layer attention network® or an image projection network? to perform 3D-to-2D segmentation,
a relatively small amount of studies are available to obtain 3D labels*>**. In dermatological applications, the field
remains particularly limited, with existing studies primarily relying on basic thresholding-based methods for
vessel segmentation®*,

Common OCTA preprocessing techniques. OCTA imaging in dermatology presents unique challenges
compared to ophthalmology, particularly in terms of noise susceptibility due to the heterogeneous nature of skin
tissue layers, but some general challenges are also common among different applications. A significant common
challenge is the projection artifact (or tail artifact), where scattered and reflected light from superficial layers
creates false blood signals in deeper tissue regions. Numerous studies have explored solutions to these issues in
OCTA imaging in the ophthalmology field*. Projection artifacts can be attenuated using a simple slab subtrac-
tion method that consists in subtracting weighted values from the first layers of the volume to the deeper ones™.
Unfortunately, this method results in a loss of vascular detail and continuity. More advanced methods focus on
the application of k-mean classifiers to distinguish between superficial and deep vascular structures®”*® or use an
exponential decrease in intensity along the depth direction®. Another study employs EnhVess, a 3D convolu-
tional neural network (CNN) specifically trained to address this issue®.

The application of Gaussian or median filtering, as well as contrast enhancement, is crucial for improving
image clarity and reducing noise. These preprocessing techniques improve the visibility of critical structures,
thus supporting the clinician in the visual analysis and automated processing tasks including segmentation,
quantification, and classification. Efforts have been made to denoise OCTA images using both traditional and
Al-based methods. For instance, Ma et al. demonstrated improvements in the segmentation performance after
applying a contrast-limited adaptive histogram equalization (CLAHE) algorithm to the OCTA data*!, and
Abu-Qamar et al. implemented a deep-learning pseudo-averaging algorithm to enhance the quality of retinal
OCTA images*. Gaussian filtering has also been used to pre-process the OCTA projections acquired on human
skin®’. Other commonly employed preprocessing techniques include the 3D median filter and the Frangi vessel-
ness filter, which were used on OCTA volumes from subjects with basal cell carcinoma prior vascular parameters
extraction’. Frangi filters, also known as vesselness filters, are widely used as a precursor for vessel segmentation
in medical imaging due to their ability to enhance tubular structures. These filters analyze the eigenvalues of the
Hessian matrix, which captures the local curvature of an image, to detect regions with vessel-like characteristics
such as elongated, cylindrical shapes. By assessing the scale and orientation of these structures, Frangi filters
effectively suppress noise and non-vascular features while highlighting vessels across varying sizes. These filters,
while valuable, present specific limitations, such as a strong dependence on the employed scale parameters and
necessitating a careful parameter tuning process for obtaining optimal results*.

Recent toolkits aim to standardize the processing of retinal OCTA images. Quantitative OCTA (QOCTA)
implements a series of morphological openings and blur filters to delineate the Foveal Avascular Zone
(FAZ), that is the capillary-free region at the center of the fovea, and compute vessel density indices*. The OCTA
Analysis Toolkit (OAT) with its processing pipeline, introduced by Girgis et al., achieves excellent repeatability
for both FAZ and vessel metrics*®. OCTAVA offers a configurable chain that can include median smoothing plus
either a Frangi or Jerman vesselness filter before binarization*’. Hojati et al’s package first performs histogram
equalization and a low-pass filter to smooth images before locating the optic disc*®. Our DERMA-OCTA pipe-
line shares some of the previous stated blocks but is the first to integrate all of them in a volume-based workflow
for dermatological data. The processing codes are exposed in an open-source repository together with the data
so that future users can re-order, swap or omit steps as required.
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Fig. 1 Example of OCTA acquisitions from subjects with various diagnosis: healthy skin, early-stage CVD,
advanced-stage CVD, and a malignant skin lesion (specifically squamous cell carcinoma).

Methods

Data collection. A cohort of 74 subjects was recruited at the Department of Dermatology at the Medical
University of Vienna. The cohort included 13 healthy subjects, 52 patients with CVD and 9 patients with malig-
nant and benign skin lesions. The subjects were between 18 and 90 years old and both female and male individu-
als were recruited in a balanced way.

Every subject signed an informed consent form before OCTA images were acquired. The study protocol
and informed consent form were reviewed and approved by the Ethics Committee of the Medical University
of Vienna (EK- 1246/2013). For CVD patients, the disease severity was classified using the CEAP classifica-
tion, supported by diagnostic assessments including a physical examination and duplex ultrasound. Clinical
stages of the CEAP classification system range from C1 to C6, indicating increasing disease severity in higher
stages. Regarding patients with malignant and benign skin lesions, our dataset included the following diagno-
ses: 3 squamous cell carcinoma (SCC), 1 seborrheic keratosis, 4 Bowen’s disease, 4 actinic keratosis, 4 basal cell
carcinoma (BCC), and 3 systemic sclerosis. Diagnosis was confirmed through biopsy and histological assess-
ment. Contrary to CVD, malignant and benign skin lesions exhibit distinct different vascular patterns visible in
OCTA images, characterized by alternating avascular and densely vascularized regions and dotted vessels. This
variation prompted the evaluation of OCTA volumes obtained from these patients as a test set from different
pathologies. Figure 1 shows the differences between the various patterns from patients with the specific skin
conditions analyzed.

OCTA acquisitions were performed at the Center for Medical Physics and Biomedical Engineering at the
Medical University of Vienna. Each subject underwent an imaging session during which different imaging loca-
tions were investigated. A total of 330 volumes were acquired across all subjects, with an average of 4 volumes
per patient (range: 1-12 volumes). Multiple images from individual patients were captured at different loca-
tions to ensure data uniqueness for each region of interest. All scans were acquired in the same laboratory at
22+ 1°C. Probe pressure was kept minimal through operator training (no visible skin blanching), but was not
yet sensor-quantified; we are integrating an in-probe force sensor for future acquisitions. Participants followed
their usual routine; no restrictions on caffeine or other vaso-active substances were imposed.

The OCT system used in our work is dedicated to research and allows high resolution imaging of the skin, as
described in previous studies'**>*. The light source is an akinetic swept source (SS-OCT-1310, Insight Photonic
Solutions, US) operating at 1310 nm with a bandwidth of 29 nm. It is possible to scan a surface of 1 cm? (512
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a) OCT Bscan b) Skin surface detection

Fig. 2 Tilt correction of the acquired volumes. Bscan of an acquired OCT volume (a), same Bscan with a red
line overlay highlighting the individualized skin surface (b), same Bscan after the tilt correction (c). The scale
bar refers to 0.5 mm.

A-lines and 512 Bscans) with 1.3 mm depth penetration in skin. The lateral and axial resolution in air is 19.5 pm
and 13.7 pm, respectively. The axial resolution in air corresponds to an effective resolution of 9.8 pm in tissue,
factoring in a refractive index of 1.4 for soft tissues. For this study, a specialized probe was designed to adapt
the OCTA system for imaging the lower extremities. This probe possesses five degrees of freedom, allowing
translation in three orthogonal directions and rotation around two reference axes. To achieve refractive index
matching, a drop of distilled water was applied between the imaging window of the optical system and the skin.

Data preparation. An intensity-based algorithm® was coded in MATLAB (R2022a, Mathworks Inc., US)
to reconstruct the vasculature from 4 subsequent OCT scans. The intensity-based algorithm was chosen among
other reconstruction methods™, as it proved to be the most robust to the phase instability of the laser source. The
preprocessing workflow began with automatic skin surface detection and correction. As shown in Fig. 2a, the
initial Bscans exhibited a surface tilt, which was mapped in 3D (Fig. 2b). The detected surface points were used to
correct this tilt, ensuring all en face images were parallel to the skin surface (Fig. 2¢). The first 30 cross-sections
were removed from each volume as they were affected by an artefact due to the scanning pattern employed during
acquisitions, resulting in final volumes of 90 px x 512 px X 483 px.

To improve the image quality of dedicated OCTA image preprocessing methods, the following techniques
were adopted in sequence:

o Bscan normalization: each pixel’s intensity value was scaled relative to the mean intensity. After this operation,
the mean intensity of the resulting image will be the same, that is 1. This suppresses the pixel intensity shift
that happens in some Bscans due to patient movement during the acquisition.

« Projection artifact attenuation: projection artifacts were mitigated by the implementation of a step-down
exponential filtering method™.

o Filtering and contrast enhancement: A 3D median filter with a kernel of dimension 3x3x3 was employed to
smooth and to equalize local intensity across consecutive slices of the volume. Moreover, an enhancement of
the volume contrast based on mean luminance manipulation was applied™; the pixel’s intensity was increased
or decreased based on the difference between the pixel’s value and the mean luminance.

o Vesselness enhancement: a 3D Hessian-based Frangi vesselness filter> was then employed. The filter scale
range was set from 4 to 6. Each value in this range corresponds to a different level of gaussian smoothing
applied to the Hessian matrix calculated, allowing the filter to detect vessels of various diameters.

The filters’ parameters were determined empirically to balance noise suppression with preservation of the
smallest vessels, and the resulting configuration generalized reliably to the entire dataset.

The described processing steps are shown in Fig. 3. Each step created a distinct dataset, resulting in 5 differ-
ent versions of the 3D volumes. For each volume in every dataset, three average intensity projections (AIPs) were
created: full-depth projection, superficial vasculature (first half of depth slices) and deep vasculature (second
half of depth slices). This empirical division provided optimal visualization of both superficial and deeper ves-
sels. Each AIP was then saturated at the 99 intensity percentile and converted to uint8 format. AIP was utilized
for en face image generation, being less sensitive to extreme values caused by noise or artifacts in respect to a
maximum intensity projection.

Segmentation labels. The ground truth for the segmentation of vessels in OCTA volumes was created
using the software Amira (Amira 2020, Thermo Fisher Scientific Inc., US) through a semi-automatic process.
Four annotators spent an average of 20 minutes per 3D volume and one technician and one clinician verified the
segmentation reliability across the dataset. The objective was to generate an accurate and realistic 3D rendering
of the blood vessels, minimizing the negative effects of remaining noise and artifacts. The ground truth was
performed on the dataset after it underwent both Bscan normalization and Projection artifact attenuation, as raw
OCTA data would have severely limited human interpretation of vessel signals.

The segmentation process consisted of multiple sequential steps. Initially, a rough segmentation was achieved
through global thresholding to select relevant grey tones. Since noise frequently exhibited similar grey values to
vascular regions, manual refinement was necessary. This refinement included both removal of noisy areas and
addition of missed vessels, performed on individual 2D slices and in 3D views. The vessel contours were then
refined using the Smooth Labels tool with a 3D kernel of size 3 x 3 x 3, enhancing uniformity and anatomical
realism. As a final refinement step, isolated segments smaller than 200 voxels were automatically removed from
the continuous volume.
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Fig. 3 Data processing steps applied on one OCTA volume. The first row shows the en face median intensity
projections (AIPs) of the superficial layer and the second row represents the en face AIPs of the deep layer.
From left to right are the results from the different processing steps. The scale bar refers to 1 mm.

For the creation of the 2D segmentation labels, we implemented a systematic approach based on the 3D
masks. The complete 3D mask was divided into two sub-volumes: one containing the first half of the depth
slices (superficial vasculature) and another containing the second half (deep vasculature). Average intensity
projections (AIP) were calculated for each sub-volume by summing vessel-positive mask instances along the
z-direction and normalizing by the number of z-axis pixels. These projections resulted in 2D grayscale images,
which were then binarized using Otsu’s method. A similar AIP calculation was performed on the complete 3D
mask to create a comprehensive projection incorporating both superficial and deeper vascular layers.

Data Records
The DERMA-OCTA? dataset is freely downloadable at the following link: https://doi.org/10.5281/zenodo.15088516.
The DERMA-OCTA? dataset encompasses 330 OCTA volumes, organized into clinical subsets. The collec-
tion includes 235 volumes from patients with CVD, 76 volumes from healthy subjects, and 19 volumes from
patients with malignant and benign skin lesions. Each volume maintains consistent dimensions of 90 px x 512
Px X 483 px (Z x X x Y), corresponding to physical dimensions of 0.9 mm X 10.0mm x 9.5mm. As illustrated
in Fig. 4, every OCTA acquisition generates 24 distinct versions, stored in different formats: 3D volumes as TIF
files and 2D images as PNG files:

« five 3D volumes (original + one for each pre-processing step),

« one 3D ground truth segmentation,

o five 2D AIPs of the superficial half of the volume (original + one for each pre-processing step),
« five 2D AIPs of the deeper half of the volume (original 4 one for each pre-processing step),

« five 2D AIPs of the whole volume (original + one for each pre-processing step),

« one 2D ground truth segmentation of the superficial half of the volume,

o one 2D ground truth segmentation of the deeper half of the volume,

« one 2D ground truth segmentation of the whole volume,

o 3D and 2D automatic segmentations.

Each OCTA volume is complemented by metadata including patient demographics (age given in 10-year
age groups and gender), clinical information (disease type and imaging location), and a study-specific unique
identifier.

Technical Validation

Exclusion criteria. Both the imaging physician and the recruiting clinician reviewed each OCTA volume.
Any scans with artifacts that obscured in an excessive way vascular detail were excluded. Eligibility was not influ-
enced by subjects’ age, gender or status.

OCTA segmentation. To comprehensively assess the quality of our datasets, a 2D U-Net architecture using
projection images and a 3D U-Net architecture using the entire volumetric datasets were employed to segment
the vessels. The U-Net* architecture offers traditional encoder-decoder architecture with skip connections.
The 2D and 3D networks were developed on the TensorFlow platform using the Keras API. Consistent with the
method-dependent variability reported by Meha et al. on the segmentation of retinal OCTA images™, prelim-
inary tests have been carried out on our dataset also with other segmentation architectures. A dedicated study
detailing their results is in preparation.

The CVD volumes were distributed in a balanced manner on a patient-level basis into training, validation,
test sets and a separate test set with different pathologies was also created (Table 2 and Table 3, respectively).
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Fig. 4 Structure and contents of the DERMA-OCTA dataset.

#OCTA Healthy | CVDC1 | CVDC2 |CVDC3 | CVDC4a | CVDC4b | CVD C4c | CVDC5 | CVDC6 | Tot
Training set 53 7 34 37 26 5 14 2 20 198
Validation set | 12 4 9 13 7 4 10 2 7 68
Test set 11 1 3 6 7 5 5 3 4 45

#O0OCTA SCC | Seborrheic keratosis | Morbus Bowen | Actinic keratosis | BCC | Systemic sclerosis | Tot

Test set from different

pathologies 3 ! 4 4 4 3 9

Table 3. Acquired data volumes included in the test set from different pathologies.

The open DERMA-OCTA? dataset also includes the automatic segmentations obtained by each imple-
mented method, consisting of:

« three 2D automatic segmentation outputs for each OCTA data, for each processing step,

o one 3D automatic segmentation output for each OCTA data and for each processing step,

o three 2D automatic segmentation outputs for each OCTA data extracted from the 3D automatic segmentation
outputs.

Here we focus the technical validation on the U-Net segmentation as it is a widely recognized basic model.
Figure 5 presents an OCTA AIP example and its corresponding automatic 2D U-Net and 3D U-Net segmen-
tations, where overlapping manual and automatic predictions are shown in yellow, along with only automatic
prediction (green) and manual ground truth mask (red). In this case, particularly noteworthy was the ability of
the 2D U-Net trained segmentation network to correctly handle the intense white vertical artifact lines present
in the left portion of the OCTA image.

Figure 6 illustrates OCTA AIP examples processed through different preprocessing stages and segmented
using the 2D U-Net network. The average Dice obtained on the various stages was equal to 82.30 £ 8.09%. All
Dice results are shown in Table 4.
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2D U-Net 3D U-Net
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Fig.5 Left: original OCTA AIP with a notable vertical artifact in the left portion. Middle: 2D U-Net segmentation
(green) overlaid with the ground-truth mask (red); yellow indicates regions of perfect overlap. Right: 3D U-Net
segmentation (green) overlaid with the ground-truth mask (red); yellow indicates regions of perfect overlap.

Bscan
normalization
S\

mm Automatic
B Manual

Filtering and Vesselness Overlap

contrast enhancement enhancement

¢ R

Fig. 6 Qualitative segmentation results obtained with the 2D U-Net after applying preprocessing methods.
Automatic predictions (green) are overlaid with ground truth masks (red).

Original OCTA | Bscan normalization | Projection artifact attenuation | Filtering and contrast enhancement | Vesselness enhancement
2D U-Net | 79.62£8.45 81.94+8.40 84.56 +9.07 86.34+8.83 79.05+£5.68
3D U-Net | 71.32£12.69 71.14£16.46 64.20+18.08 66.70 £ 18.64 57.23+£16.36

Table 4. Dice similarity scores (in %) of the segmentation network on 2D and 3D datasets, evaluated across
different preprocessing methods.

These initial results show that the DERMA-OCTA? dataset may be used to support and expand the appli-
cation of deep learning methods for vessel segmentation in dermatological OCTA volumes. The dataset could
be extended to become more balanced with respect to various pathologies, specifically considering cancerous
dermatological lesions.

Code availability

The code supporting this study is openly available and archived on Zenodo*.
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