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DERMA-OCTA: A Comprehensive 
Dataset and Preprocessing Pipeline 
for Dermatological OCTA Vessel 
Segmentation
Giulia Rotunno1,12, Massimo Salvi   1,12, Julia Deinsberger2, Lisa Krainz3, Benedikt Weber2, 
Christoph Sinz4, Harald Kittler   2, Leopold Schmetterer   3,5,6,7,8,9,10,11, Wolfgang Drexler3, 
Mengyang Liu3,5 & Kristen M. Meiburger   1 ✉

Optical coherence tomography angiography (OCTA) has emerged as a promising tool for non-invasive 
vascular imaging in dermatology. However, the field lacks standardized methods for processing and 
analyzing these complex images, as well as sufficient annotated datasets for developing automated 
analysis tools. We present DERMA-OCTA, the first open-access dermatological OCTA dataset, 
comprising 330 volumetric scans from 74 subjects with various skin conditions. The dataset contains the 
original 2D and 3D OCTA acquisitions, as well as versions processed with five different preprocessing 
methods, and the reference 2D and 3D segmentations. For each version, segmentation labels are 
provided, generated using the U-Net architecture as 2D and 3D segmentation approaches. By providing 
high-resolution, annotated OCTA data across a range of skin pathologies, this dataset offers a valuable 
resource for training deep learning models, benchmarking segmentation algorithms, and facilitating 
research into non-invasive skin imaging. The DERMA-OCTA dataset is freely downloadable.

Background & Summary
Optical coherence tomography angiography (OCTA) has received much attention in recent years due to its 
non-invasiveness, label-free, and high-resolution properties1,2. OCTA is an extension of optical coherence 
tomography (OCT), which exploits the backscattering principle of light mainly in the near-infrared region irra-
diating the biological tissue to obtain morphological information. OCTA expands the morphological analysis 
to include a functional analysis by extracting angiographic information from consecutive OCT acquisitions, 
allowing the in vivo, 3D visualization and quantification of the vascular network. OCTA was firstly applied in 
ophthalmology demonstrating its ability to create detailed images of blood vessels of the retina in different clin-
ical conditions, such as diabetic retinopathy3,4, age-related macular degeneration5, glaucoma6, and retinal vein 
occlusion7. The high-resolution images of the radial peripapillary capillary network and the intermediate and 
deep capillary plexuses in the eye made OCTA a powerful tool for the study of pathogenesis of eye diseases as 
well as a go-to solution for the development and evaluation of new treatments.

Motivated by the success of OCTA in ophthalmology, there is a growing effort to apply OCTA in derma-
tology. However, there are specific challenges in applying OCTA technology from ophthalmology to derma-
tology. Skin tissue is extremely heterogeneous, with multiple scattering layers and varying optical properties, 
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in contrast to the eye’s comparatively homogeneous and transparent structures. Increased motion artifacts, 
variable penetration depth, and complex light scattering patterns are some of the ways that this complexity 
degrades imaging quality. Moreover, other factors such as skin temperature, recent caffeine or other vaso-active 
substances consumption, and pressure applied to the skin during image acquisition could physiologically influ-
ence vessel visibility and alter flow-based indices. Despite these challenges, previous studies have shown how 
OCTA enables the assessment of various dermatological diseases and skin conditions, including melanoma, 
non-melanocytic skin cancer, psoriasis and peri-ulcerous skin8–11. Moreover, investigations applying OCTA 
revealed altered capillary structures and increased blood perfusion at the borders of venous leg ulcers compared 
to healthy skin, indicating potential use of OCTA to non-invasively assess pathological vascular alterations 
in chronic wounds12. OCTA imaging led to the successful identification of distinct microvascular features in 
nevi, achieving a differential diagnosis between melanomas and benign melanocytic lesions with high predic-
tive accuracy, potentially reducing unnecessary biopsies13. Port wine birthmarks (PWBs) were also investigated 
using OCTA, demonstrating that purple PWBs have superficial vessels located closer to the epidermis com-
pared to pink PWBs, which could influence the choice of laser treatment parameters. Additionally, vessel depth 
in PWBs was associated with age and color, showing distinct changes in vessel depth as patients age14. More 
recently, the application of OCTA was expanded to chronic venous disease (CVD) revealing specific micro-
vascular patterns for each stage of the disease15. For CVD patients, the disease severity was classified using the 
clinical-etiology-anatomic-pathophysiologic (CEAP) classification16. Following the CEAP classification system, 
stage C1 includes patients with telangiectasias, C2 indicates varicose veins, C3 indicates lower leg edema, C4a, 
b, and c indicate different kinds of skin alternations associated with CVD, C5 indicates a healed venous leg ulcer 
and C6 an active ulceration. Using OCTA imaging, characteristic vascular patterns could be identified for the 
following stages: patients with C1 and C4c displayed significantly larger vessel radii compared to healthy con-
trols; vessel length decreased as CVD progressed from stage C1 to C5; vessel tortuosity increased from stage C4 
to C6 and patients in stage C6 showed increased microvascular density compared to healthy controls15.

Most of the reported studies have examined OCTA both qualitatively and quantitatively, enhancing its rele-
vance and diagnostic value. Quantitative analysis of vasculature using OCTA is crucial for standardizing clinical 
interpretation, with key indicators such as vessel density, diameter and length9,12. Previous studies have shown 
that segmentation errors in OCTA can compromise vessel density measurements in both healthy eyes and in 
those affected by diabetic macular edema, which can significantly impact diagnostic accuracy4,17. Advances in 
OCTA segmentation have recently been driven by technological improvements, especially in deep learning. 
Indeed, artificial intelligence (AI) methods have been increasingly adopted in ophthalmology, leading to signifi-
cant improvements in segmentation accuracy and automation18. It is well known that the output of an AI-based 
algorithm is strictly dependent on the quality of the input data. To improve the generalizability of the networks 
and to avoid a performance drop during testing, it is increasingly important to harmonize and enhance images 
with unwanted variability, such as OCTA data from different devices, from skin samples with different optical 
properties and affected by different artefacts19.

Beyond the initial challenges of image acquisition, dermatological OCTA faces significant obstacles in data 
analysis and interpretation. Vessel segmentation, crucial for quantitative analysis, becomes particularly complex 
due to the three-dimensional nature of skin vasculature, varying vessel architectures across different pathologies, 
and the presence of tissue-specific artifacts. Furthermore, this research field currently lacks both standardized 
methods for processing these complex images and sufficient annotated datasets for developing automated anal-
ysis tools19. The retinal OCTA community instead has recently taken its first steps to standardize its workflow:  
a unified framework for data acquisition, analysis, and reporting has been proposed20, and a cross-platform tool-
box now allows microvascular metrics to be extracted from retinal scans produced by different instruments21.

To address these limitations and drive the research field of dermatological OCTA forward, in this paper we 
introduce a new dermatological OCTA dataset named DERMA-OCTA22. Specifically, a cohort of 74 subjects 
was recruited at the Department of Dermatology at the Medical University of Vienna. A total of 330 OCTA 
volumes were acquired, with each 3D volume covering a skin surface area of approximately 1 cm2 and a depth 
of 1 mm. For each original volume, multiple processed versions were generated in both 2D and 3D formats. 
DERMA-OCTA22 represents the first open-access collection of OCTA images specifically dedicated to derma-
tology, providing an unprecedented resource for researchers worldwide.

OCTA datasets.  Despite the rapid growth of public OCTA datasets in retinal research, OCTA data for vas-
cular segmentation in dermatological applications remains largely unexplored. OCTA datasets like Giarratano23, 
ROSE24, OCTA-50025 and Soul26 have emerged in the last decade, each dedicated to advancing vessel segmen-
tation in retinal OCTA images. The specifications of the mentioned datasets, compared to those of our dataset 
DERMA-OCTA22, are reported in Table 1. The Giarratano dataset23 focuses solely on healthy vascular structures, 
providing OCTA projection maps from 11 subjects to study standard vessel patterns. The ROSE dataset24 includes 
vessel annotations to support detailed segmentation tasks in both superficial and deeper retinal layers, broaden-
ing its application for developing precise vascular models. The ROSE dataset includes more subjects and OCTA 
images with higher resolution compared to the Giarratano dataset. OCTA-50025 offers an even more extensive 
dataset that includes a diverse array of retinal images and vessel segmentation labels across multiple fields of 
view, enhancing model generalization potential. The more recent Soul dataset26 collects 2D OCTA images from 
53 patients and focuses on Branch retinal vein occlusion disease, implementing a human-machine collaborative 
annotation framework.

Vessel segmentation.  Although OCTA devices naturally acquire three-dimensional data, the vast majority 
of studies employ segmentation methods on 2D images rather than analyzing 3D volumes. This preference is 
primarily due to artifacts that hinder accurate visualization of the volumetric vascular network. Moreover, this 
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limitation is particularly evident in the lack of 3D ground truth segmentations, especially in dermatological appli-
cations where AI-based techniques remain less developed compared to ophthalmology18.

In ophthalmology, both traditional and AI-based methods are used to segment the vasculature in OCTA 
data. Most traditional techniques rely on simple thresholding, often supplemented by processes to reduce noise 
and artifacts27. Other studies have proposed a graph reasoning convolutional neural network (CGNet)28 and 
a transformer model29 to segment vessels in retinal 2D images. Although some research has been carried out 
for pseudo-3D segmentation, e.g. reconstructing the 3D volume from 2D segmentations output by a classical 
U-Net30, using a layer attention network31 or an image projection network25 to perform 3D-to-2D segmentation, 
a relatively small amount of studies are available to obtain 3D labels32,33. In dermatological applications, the field 
remains particularly limited, with existing studies primarily relying on basic thresholding-based methods for 
vessel segmentation9,34.

Common OCTA preprocessing techniques.  OCTA imaging in dermatology presents unique challenges 
compared to ophthalmology, particularly in terms of noise susceptibility due to the heterogeneous nature of skin 
tissue layers, but some general challenges are also common among different applications. A significant common 
challenge is the projection artifact (or tail artifact), where scattered and reflected light from superficial layers 
creates false blood signals in deeper tissue regions. Numerous studies have explored solutions to these issues in 
OCTA imaging in the ophthalmology field35. Projection artifacts can be attenuated using a simple slab subtrac-
tion method that consists in subtracting weighted values from the first layers of the volume to the deeper ones36. 
Unfortunately, this method results in a loss of vascular detail and continuity. More advanced methods focus on 
the application of k-mean classifiers to distinguish between superficial and deep vascular structures37,38 or use an 
exponential decrease in intensity along the depth direction39. Another study employs EnhVess, a 3D convolu-
tional neural network (CNN) specifically trained to address this issue40.

The application of Gaussian or median filtering, as well as contrast enhancement, is crucial for improving 
image clarity and reducing noise. These preprocessing techniques improve the visibility of critical structures, 
thus supporting the clinician in the visual analysis and automated processing tasks including segmentation, 
quantification, and classification. Efforts have been made to denoise OCTA images using both traditional and 
AI-based methods. For instance, Ma et al. demonstrated improvements in the segmentation performance after 
applying a contrast-limited adaptive histogram equalization (CLAHE) algorithm to the OCTA data41, and 
Abu-Qamar et al. implemented a deep-learning pseudo-averaging algorithm to enhance the quality of retinal 
OCTA images42. Gaussian filtering has also been used to pre-process the OCTA projections acquired on human 
skin43. Other commonly employed preprocessing techniques include the 3D median filter and the Frangi vessel-
ness filter, which were used on OCTA volumes from subjects with basal cell carcinoma prior vascular parameters 
extraction9. Frangi filters, also known as vesselness filters, are widely used as a precursor for vessel segmentation 
in medical imaging due to their ability to enhance tubular structures. These filters analyze the eigenvalues of the 
Hessian matrix, which captures the local curvature of an image, to detect regions with vessel-like characteristics 
such as elongated, cylindrical shapes. By assessing the scale and orientation of these structures, Frangi filters 
effectively suppress noise and non-vascular features while highlighting vessels across varying sizes. These filters, 
while valuable, present specific limitations, such as a strong dependence on the employed scale parameters and 
necessitating a careful parameter tuning process for obtaining optimal results44.

Recent toolkits aim to standardize the processing of retinal OCTA images. Quantitative OCTA (QOCTA) 
implements a series of morphological openings and blur filters to delineate the Foveal Avascular Zone 
(FAZ), that is the capillary-free region at the center of the fovea, and compute vessel density indices45. The OCTA 
Analysis Toolkit (OAT) with its processing pipeline, introduced by Girgis et al., achieves excellent repeatability 
for both FAZ and vessel metrics46. OCTAVA offers a configurable chain that can include median smoothing plus 
either a Frangi or Jerman vesselness filter before binarization47. Hojati et al.’s package first performs histogram 
equalization and a low-pass filter to smooth images before locating the optic disc48. Our DERMA-OCTA pipe-
line shares some of the previous stated blocks but is the first to integrate all of them in a volume-based workflow 
for dermatological data. The processing codes are exposed in an open-source repository together with the data 
so that future users can re-order, swap or omit steps as required.

Giarratano23 ROSE24 OCTA-50025 Soul26 DERMA-OCTA

Application Ophtalmoloy Ophtalmology Ophtalmology Ophtalmology Dermatology

Subjects 11 151 500 53 74

Diseases — — >12 1 7

#Samples 55 images 229 images 500 volumes 178 images 330 volumes

2D/3D 2D 2D From 3D to 2D 2D 3D and 2D

FOV (mm2) 3 × 3 3 × 3 6 × 6
3 × 3 6 × 6 10 × 10

Resolution (pixel) (91,91) (304,304)
(512,512)

(640,400,400)
(640,304,304) (304,304) (90,512,483)

Table 1.  Summary of public OCTA datasets for vessel segmentation.
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Methods
Data collection.  A cohort of 74 subjects was recruited at the Department of Dermatology at the Medical 
University of Vienna. The cohort included 13 healthy subjects, 52 patients with CVD and 9 patients with malig-
nant and benign skin lesions. The subjects were between 18 and 90 years old and both female and male individu-
als were recruited in a balanced way.

Every subject signed an informed consent form before OCTA images were acquired. The study protocol 
and informed consent form were reviewed and approved by the Ethics Committee of the Medical University 
of Vienna (EK- 1246/2013). For CVD patients, the disease severity was classified using the CEAP classifica-
tion, supported by diagnostic assessments including a physical examination and duplex ultrasound. Clinical 
stages of the CEAP classification system range from C1 to C6, indicating increasing disease severity in higher 
stages. Regarding patients with malignant and benign skin lesions, our dataset included the following diagno-
ses: 3 squamous cell carcinoma (SCC), 1 seborrheic keratosis, 4 Bowen’s disease, 4 actinic keratosis, 4 basal cell 
carcinoma (BCC), and 3 systemic sclerosis. Diagnosis was confirmed through biopsy and histological assess-
ment. Contrary to CVD, malignant and benign skin lesions exhibit distinct different vascular patterns visible in 
OCTA images, characterized by alternating avascular and densely vascularized regions and dotted vessels. This 
variation prompted the evaluation of OCTA volumes obtained from these patients as a test set from different 
pathologies. Figure 1 shows the differences between the various patterns from patients with the specific skin 
conditions analyzed.

OCTA acquisitions were performed at the Center for Medical Physics and Biomedical Engineering at the 
Medical University of Vienna. Each subject underwent an imaging session during which different imaging loca-
tions were investigated. A total of 330 volumes were acquired across all subjects, with an average of 4 volumes 
per patient (range: 1–12 volumes). Multiple images from individual patients were captured at different loca-
tions to ensure data uniqueness for each region of interest. All scans were acquired in the same laboratory at 
22 ± 1 °C. Probe pressure was kept minimal through operator training (no visible skin blanching), but was not 
yet sensor-quantified; we are integrating an in-probe force sensor for future acquisitions. Participants followed 
their usual routine; no restrictions on caffeine or other vaso-active substances were imposed.

The OCT system used in our work is dedicated to research and allows high resolution imaging of the skin, as 
described in previous studies10,43,49. The light source is an akinetic swept source (SS-OCT-1310, Insight Photonic 
Solutions, US) operating at 1310 nm with a bandwidth of 29 nm. It is possible to scan a surface of 1 cm2 (512 

Fig. 1  Example of OCTA acquisitions from subjects with various diagnosis: healthy skin, early-stage CVD, 
advanced-stage CVD, and a malignant skin lesion (specifically squamous cell carcinoma).
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A-lines and 512 Bscans) with 1.3 mm depth penetration in skin. The lateral and axial resolution in air is 19.5 μm 
and 13.7 μm, respectively. The axial resolution in air corresponds to an effective resolution of 9.8 μm in tissue, 
factoring in a refractive index of 1.4 for soft tissues. For this study, a specialized probe was designed to adapt 
the OCTA system for imaging the lower extremities. This probe possesses five degrees of freedom, allowing 
translation in three orthogonal directions and rotation around two reference axes. To achieve refractive index 
matching, a drop of distilled water was applied between the imaging window of the optical system and the skin.

Data preparation.  An intensity-based algorithm50 was coded in MATLAB (R2022a, Mathworks Inc., US) 
to reconstruct the vasculature from 4 subsequent OCT scans. The intensity-based algorithm was chosen among 
other reconstruction methods51, as it proved to be the most robust to the phase instability of the laser source. The 
preprocessing workflow began with automatic skin surface detection and correction. As shown in Fig. 2a, the 
initial Bscans exhibited a surface tilt, which was mapped in 3D (Fig. 2b). The detected surface points were used to 
correct this tilt, ensuring all en face images were parallel to the skin surface (Fig. 2c). The first 30 cross-sections 
were removed from each volume as they were affected by an artefact due to the scanning pattern employed during 
acquisitions, resulting in final volumes of 90 px × 512 px × 483 px.

To improve the image quality of dedicated OCTA image preprocessing methods, the following techniques 
were adopted in sequence:

•	 Bscan normalization: each pixel’s intensity value was scaled relative to the mean intensity. After this operation, 
the mean intensity of the resulting image will be the same, that is 1. This suppresses the pixel intensity shift 
that happens in some Bscans due to patient movement during the acquisition.

•	 Projection artifact attenuation: projection artifacts were mitigated by the implementation of a step-down 
exponential filtering method39.

•	 Filtering and contrast enhancement: A 3D median filter with a kernel of dimension 3x3x3 was employed to 
smooth and to equalize local intensity across consecutive slices of the volume. Moreover, an enhancement of 
the volume contrast based on mean luminance manipulation was applied52; the pixel’s intensity was increased 
or decreased based on the difference between the pixel’s value and the mean luminance.

•	 Vesselness enhancement: a 3D Hessian-based Frangi vesselness filter53 was then employed. The filter scale 
range was set from 4 to 6. Each value in this range corresponds to a different level of gaussian smoothing 
applied to the Hessian matrix calculated, allowing the filter to detect vessels of various diameters.

The filters’ parameters were determined empirically to balance noise suppression with preservation of the 
smallest vessels, and the resulting configuration generalized reliably to the entire dataset.

The described processing steps are shown in Fig. 3. Each step created a distinct dataset, resulting in 5 differ-
ent versions of the 3D volumes. For each volume in every dataset, three average intensity projections (AIPs) were 
created: full-depth projection, superficial vasculature (first half of depth slices) and deep vasculature (second 
half of depth slices). This empirical division provided optimal visualization of both superficial and deeper ves-
sels. Each AIP was then saturated at the 99th intensity percentile and converted to uint8 format. AIP was utilized 
for en face image generation, being less sensitive to extreme values caused by noise or artifacts in respect to a 
maximum intensity projection.

Segmentation labels.  The ground truth for the segmentation of vessels in OCTA volumes was created 
using the software Amira (Amira 2020, Thermo Fisher Scientific Inc., US) through a semi-automatic process. 
Four annotators spent an average of 20 minutes per 3D volume and one technician and one clinician verified the 
segmentation reliability across the dataset. The objective was to generate an accurate and realistic 3D rendering 
of the blood vessels, minimizing the negative effects of remaining noise and artifacts. The ground truth was 
performed on the dataset after it underwent both Bscan normalization and Projection artifact attenuation, as raw 
OCTA data would have severely limited human interpretation of vessel signals.

The segmentation process consisted of multiple sequential steps. Initially, a rough segmentation was achieved 
through global thresholding to select relevant grey tones. Since noise frequently exhibited similar grey values to 
vascular regions, manual refinement was necessary. This refinement included both removal of noisy areas and 
addition of missed vessels, performed on individual 2D slices and in 3D views. The vessel contours were then 
refined using the Smooth Labels tool with a 3D kernel of size 3 × 3 × 3, enhancing uniformity and anatomical 
realism. As a final refinement step, isolated segments smaller than 200 voxels were automatically removed from 
the continuous volume.

Fig. 2  Tilt correction of the acquired volumes. Bscan of an acquired OCT volume (a), same Bscan with a red 
line overlay highlighting the individualized skin surface (b), same Bscan after the tilt correction (c). The scale 
bar refers to 0.5 mm.
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For the creation of the 2D segmentation labels, we implemented a systematic approach based on the 3D 
masks. The complete 3D mask was divided into two sub-volumes: one containing the first half of the depth 
slices (superficial vasculature) and another containing the second half (deep vasculature). Average intensity 
projections (AIP) were calculated for each sub-volume by summing vessel-positive mask instances along the 
z-direction and normalizing by the number of z-axis pixels. These projections resulted in 2D grayscale images, 
which were then binarized using Otsu’s method. A similar AIP calculation was performed on the complete 3D 
mask to create a comprehensive projection incorporating both superficial and deeper vascular layers.

Data Records
The DERMA-OCTA22 dataset is freely downloadable at the following link: https://doi.org/10.5281/zenodo.15088516.

The DERMA-OCTA22 dataset encompasses 330 OCTA volumes, organized into clinical subsets. The collec-
tion includes 235 volumes from patients with CVD, 76 volumes from healthy subjects, and 19 volumes from 
patients with malignant and benign skin lesions. Each volume maintains consistent dimensions of 90 px × 512 
px × 483 px (Z × X × Y), corresponding to physical dimensions of 0.9 mm × 10.0 mm × 9.5 mm. As illustrated 
in Fig. 4, every OCTA acquisition generates 24 distinct versions, stored in different formats: 3D volumes as TIF 
files and 2D images as PNG files:

•	 five 3D volumes (original + one for each pre-processing step),
•	 one 3D ground truth segmentation,
•	 five 2D AIPs of the superficial half of the volume (original + one for each pre-processing step),
•	 five 2D AIPs of the deeper half of the volume (original + one for each pre-processing step),
•	 five 2D AIPs of the whole volume (original + one for each pre-processing step),
•	 one 2D ground truth segmentation of the superficial half of the volume,
•	 one 2D ground truth segmentation of the deeper half of the volume,
•	 one 2D ground truth segmentation of the whole volume,
•	 3D and 2D automatic segmentations.

Each OCTA volume is complemented by metadata including patient demographics (age given in 10-year 
age groups and gender), clinical information (disease type and imaging location), and a study-specific unique 
identifier.

Technical Validation
Exclusion criteria.  Both the imaging physician and the recruiting clinician reviewed each OCTA volume. 
Any scans with artifacts that obscured in an excessive way vascular detail were excluded. Eligibility was not influ-
enced by subjects’ age, gender or status.

OCTA segmentation.  To comprehensively assess the quality of our datasets, a 2D U-Net architecture using 
projection images and a 3D U-Net architecture using the entire volumetric datasets were employed to segment 
the vessels. The U-Net54 architecture offers traditional encoder-decoder architecture with skip connections. 
The 2D and 3D networks were developed on the TensorFlow platform using the Keras API. Consistent with the 
method-dependent variability reported by Meha et al. on the segmentation of retinal OCTA images55, prelim-
inary tests have been carried out on our dataset also with other segmentation architectures. A dedicated study 
detailing their results is in preparation.

The CVD volumes were distributed in a balanced manner on a patient-level basis into training, validation, 
test sets and a separate test set with different pathologies was also created (Table 2 and Table 3, respectively).

Fig. 3  Data processing steps applied on one OCTA volume. The first row shows the en face median intensity 
projections (AIPs) of the superficial layer and the second row represents the en face AIPs of the deep layer.  
From left to right are the results from the different processing steps. The scale bar refers to 1 mm.
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The open DERMA-OCTA22 dataset also includes the automatic segmentations obtained by each imple-
mented method, consisting of:

•	 three 2D automatic segmentation outputs for each OCTA data, for each processing step,
•	 one 3D automatic segmentation output for each OCTA data and for each processing step,
•	 three 2D automatic segmentation outputs for each OCTA data extracted from the 3D automatic segmentation 

outputs.

Here we focus the technical validation on the U-Net segmentation as it is a widely recognized basic model. 
Figure 5 presents an OCTA AIP example and its corresponding automatic 2D U-Net and 3D U-Net segmen-
tations, where overlapping manual and automatic predictions are shown in yellow, along with only automatic 
prediction (green) and manual ground truth mask (red). In this case, particularly noteworthy was the ability of 
the 2D U-Net trained segmentation network to correctly handle the intense white vertical artifact lines present 
in the left portion of the OCTA image.

Figure 6 illustrates OCTA AIP examples processed through different preprocessing stages and segmented 
using the 2D U-Net network. The average Dice obtained on the various stages was equal to 82.30 ± 8.09%. All 
Dice results are shown in Table 4.

Fig. 4  Structure and contents of the DERMA-OCTA dataset.

# OCTA Healthy CVD C1 CVD C2 CVD C3 CVD C4a CVD C4b CVD C4c CVD C5 CVD C6 Tot

Training set 53 7 34 37 26 5 14 2 20 198

Validation set 12 4 9 13 7 4 10 2 7 68

Test set 11 1 3 6 7 5 5 3 4 45

Table 2.  Acquired data volumes divided into train, validation and test set.

# OCTA SCC Seborrheic keratosis Morbus Bowen Actinic keratosis BCC Systemic sclerosis Tot

Test set from different 
pathologies 3 1 4 4 4 3 19

Table 3.  Acquired data volumes included in the test set from different pathologies.
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These initial results show that the DERMA-OCTA22 dataset may be used to support and expand the appli-
cation of deep learning methods for vessel segmentation in dermatological OCTA volumes. The dataset could 
be extended to become more balanced with respect to various pathologies, specifically considering cancerous 
dermatological lesions.

Code availability
The code supporting this study is openly available and archived on Zenodo22.

Fig. 5  Left: original OCTA AIP with a notable vertical artifact in the left portion. Middle: 2D U-Net segmentation 
(green) overlaid with the ground-truth mask (red); yellow indicates regions of perfect overlap. Right: 3D U-Net 
segmentation (green) overlaid with the ground-truth mask (red); yellow indicates regions of perfect overlap.

Fig. 6  Qualitative segmentation results obtained with the 2D U-Net after applying preprocessing methods. 
Automatic predictions (green) are overlaid with ground truth masks (red).

Original OCTA Bscan normalization Projection artifact attenuation Filtering and contrast enhancement Vesselness enhancement

2D U-Net 79.62 ± 8.45 81.94 ± 8.40 84.56 ± 9.07 86.34 ± 8.83 79.05 ± 5.68

3D U-Net 71.32 ± 12.69 71.14 ± 16.46 64.20 ± 18.08 66.70 ± 18.64 57.23 ± 16.36

Table 4.  Dice similarity scores (in %) of the segmentation network on 2D and 3D datasets, evaluated across 
different preprocessing methods.
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