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Labeled dataset of X-ray protein 
ligand images in 3D point cloud and 
validated deep learning models
Cristina F. Bazzano1,2, Luiz F. G. Alves2, Guilherme P. Telles1 ✉ & Daniela B. B. Trivella   2 ✉

LigPCDS (Ligand Point Cloud Data Set) is the first dataset of chemically labeled 3D point clouds of 
protein ligands. 3D images and structures of ligands were derived from X-ray protein crystallography 
experimental datasets deposited at the Protein Data Bank. The 3D point cloud format allowed for a 
computer-comprehensive representation of the ligand’s experimental data, enabling the interpretation 
of the ligand’s chemical structure using a building block-like labeling approach. For constructing 
LigPCDS, the images of the ligands were interpolated from their difference electron density map into 
a 3D grid-like structure, filtered around their atomic spheres, and stored in point clouds. The density 
value was used as a single feature. Chemical vocabularies, based on atoms and their cyclic structural 
arrangements, were designed and used to pointwise label these 3D representations of the ligands. The 
proposed imaging and labeling approaches were validated by training semantic segmentation deep 
learning models on a stratified dataset from LigPCDS, which could recover the protein ligand’s chemical 
structure with good performance. LigPCDS can be used to achieve solutions for building known and yet 
unknown protein ligands (small organic molecules) from experimental X-ray protein crystallography, in 
silico ligand screening, drug design, and to understand protein function in basic biology.

Background & Summary
Ligands are small molecules that bind to proteins, generally modifying their function. These molecules repre-
sent the active principles of known medicines (active pharmaceutical ingredient, API), or drug prototypes (e.g. 
natural products, fragments and other synthetic small molecules) in drug discovery pipelines. Currently, the 
3D structure of protein-ligand complexes is mostly obtained by X-ray protein crystallography1. Experimental 
X-ray protein crystallographic data are freely available at the data centers of the global Protein Data Bank (PDB, 
https://www.wwpdb.org/)2,3, a worldwide archive of macromolecular structure data.

The electron density map is the primary result of an X-ray protein crystallography experiment4. It is a con-
tinuous function ρ(x,y,z) of intensity values in the real space, being measured in electrons per cubic angstrom 
(eÅ−3). It represents the electron cloud around each atom of the protein and of its ligands in the 3D space, allow-
ing for deciphering the protein-ligand atomic 3D structure4,5. The presence of ligands in X-ray protein structures 
can be detected in the calculated difference electron density map, the Fo-Fc map, which highlights the presence 
of additional molecules binding to the protein, such as the ligands4,6–9. The 3D image of a ligand is observed in 
high intensity regions of the Fo-Fc map, being named blob or density cluster. A ligand blob is displayed by apply-
ing a contour to the Fo-Fc, usually using the sigma (σ) scale, which filters the points above a cutoff value (e.g. 
3σ), highlighting the ligand structural features4,6–9. The interpretation of the chemical structure of a ligand in the 
Fo-Fc map is a central task for understanding the functionality of the protein and guiding structure-based drug 
design (SBDD) in modern drug discovery pipelines.

Existing solutions for known ligand building are based on up to 200 known and common molecules from 
PDB. These solutions use mathematical and topological descriptors of Fo-Fc maps and suggest a list of molecules 
that best explain and fit into a blob10–14. While identifying known ligands with such approaches, the accuracies 
range from 32% to 72.5% for the best prediction12. This indicates that the ligand building problem still lacks 
accurate solutions, even for known ligand building, and that there is potential for improvement. A very recent 
development was reported by Karolczak and coworkers15 using deep learning and point clouds, with average 
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accuracies reaching 67.2% and 93.6% in the top-10 known ligand suggestions. However, their approach still 
relies on the whole known protein ligand structures as the training and searching sets. When the ligand is 
unknown, as the case of novel natural products6,9,16 or other molecules with yet unknown chemical structures in 
X-ray protein databases, the current automated solutions are not accurate and cannot provide a reliable support 
for the crystallographer’s interpretation of the ligand blob and of the chemical structure of this new ligand.

PDB2,3 is a leading global resource for experimental data which is growing tremendously fast, with around 10 
thousand deposits per year17. However, mining PDB data is difficult, mainly due to human errors in ligand inter-
pretation and local low-quality blobs5,11,18,19. In addition, retrieving and manipulating ligand data in 3D grid-like 
format requests specific knowledge and crystallographic packages capable of reading crystallographic data. This 
may explain the lack of deep learning (DL)17,20 approaches for ligand prediction from their blobs. DL with 3D 
point cloud have been showing remarkable results in other fields21–24, and has started to be used for ligand inter-
pretation in X-ray protein crystallography15. However, no chemical labeling of the ligand blobs is available nor 
has been validated (i.e., is capable of being learned by a supervised machine learning – ML – model) to reconsti-
tute novel protein ligand chemical structures.

To fill these gaps, we have created and validated the first chemically labeled dataset of experimental 3D 
images of protein ligands in 3D point clouds representations, named LigPCDS, with 244,226 ligand entries from 
PDB. The workflow for obtaining LigPCDS and its validation through successfully trained DL models is pre-
sented in Fig. 1.

For LigPCDS construction, a list of valid ligands from the Research Collaboratory for Structural Bioinformatics 
Protein Data Bank3 (RCSB PDB, the US data center at https://www.rcsb.org/) was filtered and downloaded 
with experimental data. The entries were refined with Dimple v2.6.1 (https://ccp4.github.io/dimple/)25  
in a standardized procedure, without any added ligand (no heteroatoms), intended to normalize data quality and 
evidence the ligand blob in the Fo-Fc maps. The 3D image of the ligands were derived from their Fo-Fc maps 
with Gemmi26 v0.5.8, based on the atomic positions of the ligand entries. Gemmi v0.5.8 was further used to cre-
ate their representations in 3D point clouds, with an adequate scale, background removal, mask and contours. 
Finally, ligand 3D point clouds were labeled pointwise using an atomic sphere modelling, and designed chem-
ical vocabularies. Different labeling approaches were proposed as vocabularies based on the atoms themselves 
and their cyclic structural arrangements, representing building blocks to construct the entire ligand chemical 
structure (Fig. 1a).

For validation of the labeling approach, a stratified training dataset (n = 78,902) from LigPCDS was used 
to train DL models for the semantic segmentation of the ligand’s 3D representation (Fig. 1b). Four vocabu-
laries led to good performance DL models (Fig. 1c): (i) the “Vocabulary of the Ligand Region”, composed by 
generic atoms of any type; (ii) the “Vocabulary of Generic Atoms and Cycles”, composed by generic atoms out-
side cyclic arrangements and generic atoms into cyclic structures (called here cycles); (iii) the “Vocabulary of 
Generic Atoms and Cycles C347CA56”, composed by generic atoms outside cyclic arrangements, generic atoms 
in non-aromatic cyclic structures of size 3 to 7 and in aromatic cyclic structures of sizes 5 and 6; and (iv) the 
“Vocabulary of Atom Symbols with Groups”, composed by the atom symbols with groupings. All vocabularies 
also contain the background class (regions in the images with no ligand atom), which is an important category 
to separate the background noise from the ligand itself. The mean accuracy of the validated models in their 
cross-validation, ranged from 49.7% (SEM = 0.4, CI = [−19.4, 20.2]) to 77.4% (SEM = 0.2, CI = [−11.7, 12.1]) 
in terms of the Intersection over Union (mIoU) metric27; and from 62.4% (SEM = 0.4, CI = [−18.8, 19.7]) to 
87.0% (SEM = 0.2, CI = [−8.4, 8.8]) in F1-score (mF1)28. The accuracy of the validated models reinforces the 
reliability of the methods used to construct LigPCDS and suggests its future use by other machine learning tasks.

The robustness, size and labeling approaches of LigPCDS, together with the validated DL models, expands 
the possibility of interpreting unknown protein ligands, and further opens avenues for other DL applications 
based on protein ligands (e.g. in basic biology, natural product and drug discovery). As a first application using 
the validated DL models from LigPCDS, we have developed the NP³ Blob Label (https://github.com/danielatri-
vella/np3_ligand/tree/master/np3_blob_label), an open source application designed to assist unknown ligand 
building in high performance drug discovery pipelines, including those focused on novel natural products (to 
be published). LigPCDS may also be used to address the problem of known ligand building, by using the ligands 
codes (unique structures) as labels for training DL classification tasks.

Methods
The LigPCDS dataset creation followed six major steps (Fig. 1), which are summarized below and explained in 
detail in the next subsections.

	 1.	 Creation of a list of valid ligands from RCSB PDB.
	 2.	 Creation of the representations of the ligand 3D image in 3D point clouds.
	 3.	 Creation of chemical vocabularies and ligand structure labeling.
	 4.	 Labeling ligand 3D point clouds.
	 5.	 Creation of a stratified training dataset from LigPCDS.
	 6.	 Training, optimization and validation of DL models.

The validation steps (steps 5 and 6 in Fig. 1b,c) of LigPCDS methodology are presented in the Technical 
Validation section.

Hardware.  The hardware used to execute the LigPCDS creation and the DL models training is a computer 
with the following configuration: AMD Ryzen 9 3950X CPU, 16 cores and 32 threads, 128 Gb RAM and 2x 
GeForce RTX 2080 SUPER GPUs with 8 Gb of dedicated RAM each (hardware A). Exceptions were for specific 
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DL models analyses that are point out in the text and used hardware B, a cluster with the following configuration: 
AMD EPYC 7742 CPU with 64 cores and 80 threads, 384 Gb RAM and 4 GPUs NVIDIA HGX A100 with 40 Gb 
of dedicated RAM each.

List of valid ligands.  To obtain a list of ligands (step 1, Fig. 1), the advanced search tool of the RCSB 
PDB (https://www.rcsb.org/) was initially used to retrieve all entries with resolution between 1.5 Å and 2.2 Å, 
in December 2019. The chosen resolution range aligns with the most frequent resolution values found in the 

Fig. 1  Workflow used to obtain LigPCDS, the deep learning models training and the validated labeling 
approaches. (a) LigPCDS creation schema. In step 1, a list of PDB entries, with resolutions ranging from 1.5 to 
2.2 Å, was retrieved from RCSB (.pdb and.mtz) and their free and organic ligands were downloaded, filtered 
and validated (.sdf). It resulted in the list of valid ligands with 244,226 entries. In step 2, Dimple v2.6.1 was 
used to refine the PDB entries and calculate their Fo-Fc maps. Next, for each ligand, a grid sizing was defined to 
cover its entire blob. Each ligand’s grid was interpolated from its Fo-Fc map to a 3D point cloud and processed 
to create the final 3D representations of the ligands. In step 3, vocabularies of chemical classes were created 
and used for labeling the structure of the valid ligands atom-wise. They were based on the chemical atoms 
themselves and on cyclic substructures of the ligands. Finally, in step 4 the labels of the structure of the ligands 
were extrapolated pointwise, using an atomic sphere model, for labeling the final 3D representations of the 
ligands, resulting in LigPCDS. (b) General schema used to train and obtain the validated DL models. A stratified 
training dataset was created from LigPCDS with n = 78,902 ligand entries, separated in k = 13 similar groups 
(step 5). The LigPCDS entries of this dataset were used to train DL models in semantic segmentation tasks using 
the Minkowski Engine47 architecture and networks based on the 3D U-Net52. Cycles of training, evaluation and 
changes continued until good performance DL models were obtained and validated (step 6). (c) Four of the 
proposed labeling approaches were validated and are illustrated with ligand FUL from PDB (entry 4Z4T). The 
average performance in the cross-validation of the best DL model trained with each vocabulary is presented by 
the mIoU and the mF1 metrics, with corresponding SEM and confidence interval (CI). k = 1 was used in the 
tests except for the model trained with the vocabulary of “Generic Atoms and Cycles C347CA56”, which used 
the average k-fold value and k = 13. Image “Machine Learning” is by Srinivas Agra and image “intelligence” is by 
Gacem Tachfin from the Noun Project (CCBY3.0).
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PDB (Supplementary Figure 1) and those typically obtained in structural biology and drug discovery projects. 
Additional selections to the retrieved RCSB PDB files were: the presence of free ligands (non-covalent), availabil-
ity of experimental data (entries with electron density maps also deposited), data originated from X-ray experi-
ments with proteins, and deposited at PDB after January 2008 (more stringent validation metrics in PDB). For the 
free ligands, we have selected organic molecules formed by atoms of carbon, oxygen, nitrogen, phosphor, sulfur, 
iodine, fluorine, chlorine, bromine or selenium; hydrogen atoms were omitted here due to their poor detection 
by X-ray crystallography at the chosen resolution range. At this stage, this resolution range would reduce data 
variations caused by large differences in resolution for LigPCDS construction, while keeping ligand information 
that is still difficult to predict. Other ranges were not tested so far, and may be used in the future.

A total of 39,353 PDB entries were selected using the above criteria, containing 13,189 unique ligand codes 
(unique ligand structure). The.pdb and.mtz files of these RCSB PDB entries were downloaded automatically. 
The coordinate lines representing the ligands present in the protein chains of these PDB entries were isolated 
from the retrieved files and saved into individual.pdb files. This procedure resulted in a total of 293,822 available 
ligand entries from 39,169 PDB entries, containing 13,074 unique ligand codes.

The Structure Data Format (SDF) file of each ligand entry was also downloaded from RCSB PDB. An SDF 
file is a chemical file format for molecular data based on the MOL-file format - which can store single or multiple 
molecules, describing all their atoms in 3D coordinates. Each ligand’s SDF file was used to build and validate 
the ligand representative molecular graph (chemical structures). The free ligand entries with validated SDF 
files were used to propose chemical vocabularies for labeling the structure of protein ligands using a building 
block-like approach. This structure validation resulted in a total of 259,606 ligand entries from 39,052 PDB 
entries, containing 12,972 unique ligand codes.

To validate the experimental data of each PDB entry, a standardized procedure was proposed to refine the 
datasets downloaded from RCSB PDB (.mtz and.pdb files), without the ligand atomic entries, aiming to improve 
the blob imaging and to remove any failed PDB entry (described in the next subsection). In addition, the ligand 
entries with validated SDF files were also used to extract the ligand’s 3D representations from their correctly 
refined Fo-Fc maps (described in the next subsections). The ligand entries that raised an error in any step were 
removed from the list of valid ligands.

The final list of valid ligands contains 244,226 entries of ligands from 36,202 PDB deposits. These ligands 
represent non-covalent protein ligands composed by C, O, N, P, S, Se, F, Cl, Br and/or I atoms, where 12,239 
are unique ligand codes (unique structures) with frequencies ranging from 1 to 33,063 occurrences (20 ± 526). 
Single atoms or ions (e.g. Cl-) correspond to 8.6% of the ligand entries (n = 21,003), while the other 91.4% are 
valid molecular structures (n = 223,223). The median size of valid ligands is 6 atoms and the mean size is 11 
non-hydrogen atoms, with sizes ranging from 1 to 140 non-hydrogen atoms. These statistics indicate a great 
imbalance problem in the list of valid ligands, which is related to the diversity of non-covalent ligands deposited 
in PDB. They also highlight the diversity of potential protein ligands with importance in biology and drug dis-
covery. Many of such ligands are still to be discovered and will have to be interpreted in the future, as novel X-ray 
protein structures in complex with ligands are obtained.

The RCSB PDB downloads were automated with Python v3.8 scripts, and the ligand entries validation used 
the functionalities of the RDKit package v2019.09.3 (https://www.rdkit.org). 16.9% of the ligand entries and 8% 
of the PDB entries were excluded during validation, 11.6% of the ligand entries due to invalid SDF files (minor 
download errors are also included), 4.0% due to refinement errors and 1.3% due to errors in the creation and 
labeling of the ligand’s 3D representation. This indicates poor quality of part of the ligand entries, further high-
lighting the difficulties for directly applying data mining techniques on PDB data19.

Ligand 3D representation in point cloud.  Next in LigPCDS creation, the 3D representations of the lig-
ands present in the list of valid ligands were designed and created. Considering the variability and flexibility in the 
size and conformation of ligands, the ease and speed of manipulating point clouds29, and the availability of many 
good performance deep learning architectures for 3D point clouds30, we have chosen point clouds as the format 
to represent the 3D images of ligands in LigPCDS.

The point clouds were initially extracted from the Fo-Fc maps using a ligand grid. For this, a 3D grid box 
was drawn around the ligand and the electron density intensity values in each x,y,z coordinate of the grid was 
computed and stored in the color channels of the point cloud. Then, contours and scales were applied to extract 
the 3D representations of the ligand images, without background and noise. Nine types of 3D representations 
(at different contours and scales) were generated to each ligand and are available at LigPCDS. The representation 
type to be used in a given application will depend on the desired application of the user, in a case-by-case basis. 
For our deep learning model of ligand chemical structure prediction, the qRankMask_5 representation showed 
the best results.

The detailed schema used in LigPCDS for creating the 3D representations of ligands in 3D point cloud format 
(step 2, Fig. 1) is shown in Fig. 2. A step-by-step explanation of this process is given below.

Refinement of the Fo-Fc maps (experimental data preparation).  Before extracting the 3D representations of 
the ligand’s blob in 3D point clouds, each PDB entry in the list of valid ligands were first refined using the 
Dimple software v2.6.1 (https://ccp4.github.io/dimple/), a macromolecular crystallographic pipeline for refine-
ment incorporated into the CCP4 program suite25. A standardized Dimple refinement was performed for each 
PDB entry using their respective downloaded.mtz and.pdb files, with the option of removing heteroatoms (it 
removes all ligands from the.pdb file) and with two refinement cycles (longer refinement). The other parameters 
of Dimple received their default values. Dimple refinement was carried out with two primary objectives: first, 
to highlight the presence of any ligand blob in the crystal structure. With the “remove heteroatom” parameter 
active, the unmodeled electron density related to the ligands (high values in the Fo-Fc maps) could be revealed, 
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and any bias related to incorrect ligand structure modelling on the PDB deposit would be removed. Second, to 
improve the overall Fo-Fc map and the local quality of the ligand blob, further normalizing the model refine-
ment standards for the different crystal structures present in the list of valid ligands. The PDB entries that pre-
sented errors in the refinement were excluded. The list of valid ligands at this point contained 36,325 PDB 
entries successfully refined, with 247,878 ligand entries listed, from which 12,250 were unique ligands.

Extraction of the ligand grid representation in 3D point cloud (procedure 1, Fig. 2).  A ligand grid was then cre-
ated to extract the 3D image of each ligand blob (found in the refined Fo-Fc map) into the 3D point cloud format. 
The ligand grid is a bounding box defined on the boundary of the ligand’s atomic positions, plus a gap, designed 
to cover the complete shape of the ligand blob. This procedure used the original SDF coordinates of the ligand 
to locate the center of its molecular structure in the refined Fo-Fc map, and to retrieve the ligand’s atomic 3D 
coordinates, thus computing the bounding box on the boundary of its atomic positions. Through experimental 
inspection, this box was expanded with an additional gap equal to 4.2 Å in its boundaries (equal to the diameter 
of the largest theoretical radius31 - Supplementary Table 1), and then, a second 120% expansion of its size was 
performed. The obtained dimensions defined the size of the ligand grid in the Fo-Fc map, centered on the ligand 
boundary box.

The Gemmi package26 v0.5.8 was then used to interpolate the values of the Fo-Fc map for all x,y,z positions of 
the ligand grid. The obtained 3D grid was stored in a point cloud format, named the ligand grid representation. 
The difference electron density value of each point was chosen as the feature for the ligand 3D representation. 
The interpolated density value of each point (feature) was stored in the color channels of the 3D point clouds of 
the ligand grid representation. A spacing equal to 0.5 Å for the points of the ligand grid was tested and chosen. 
This value is smaller than the distance of a chemical bond (a sigma C-C bond measures around 1.54 Å) and 
allows to retain more details in the final 3D representations.

The Gemmi v0.5.8 Python package26 for structural biology provides a framework of functions to manipulate 
electron density maps in indexable 3D grids, behaving like standard numerical vectors. Gemmi v0.5.8 allows 

Fig. 2  Schema for creating the labeled representations of ligands in 3D point cloud format for LigPCDS. The 
ligand FUL of PDB (entry 4Z4T) was used to exemplify the creation of the ligand’s 3D point cloud starting 
from the grid up to the final 3D representations. (1) The ligand’s grid representation is sized and interpolated 
from its Fo-Fc map in all its x,y,z positions, using the Gemmi package26. The ligand’s grid is stored in point 
cloud format (.xyzrgb) with the density value of each point saved in its RGB channels (feature as colors). (2) 
The density values of the ligand’s grid 3D point cloud are transformed and normalized using the quantile 
rank scale33. (3) The points of the ligand’s grid within a contour of 0.95 (value > 0.95) are selected and only 
the points near the ligand’s atomic positions and closely connected (with a distance between points smaller 
than grid space * 1.42 + 0.15) are retained, the rest is removed as noise. This creates the fine ligand blob 
representation. (4) The ligand’s mask point cloud is created from this fine ligand blob by applying a 1.1 Å radius 
expansion from its borders and is named “qRankMask”. (5) The final representations of the ligands are created 
by applying different contours in the ligand’s mask representation and extracting the selected 3D point cloud. 
The final representations are named as “qRank” followed by the contour value, e.g. “qRank0.95”. Additionally, 
a representation equal to the ligand’s mask and with all values below 0.5 set to zero is created and named 
“qRankMask_5”. This schema corresponds to the procedures used to complete step 2 in the LigPCDS creation 
workflow (Fig. 1a). (6) Finally, the labels of the ligand’s structure are used for pointwise labeling the final 3D 
representations of the ligands, which corresponds to step 4 of the LigPCDS workflow (Fig. 1a).
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extracting 3D grids from specific regions of an electron density map with different spacing between the points. 
It uses an implementation of the trilinear interpolation of the 8 closest points32 of a given position of a map to 
compute its electron density value.

Transformation and scale of the ligand grid representation (procedure 2, Fig. 2).  The quantile rank scale was then 
used to transform and scale the ligand grid to allow for their correct comparison. This is an equivalent approach 
to histogram equalization33,34 in image processing. This scale normalizes the values in the range from 0 to 1. The 
quantile rank scale is used in other crystallography applications33, and replaces the density value ρ(x,y,z) of each 
point by its position in the quantile distribution of the points for the region being considered. This scale does not 
change the shape of the electron density, all points that have the same ρ density values have the same value in this 
function. Furthermore, unlike the sigma scale, which must be applied globally across the entire electron density 
map, the quantile rank scale can be applied locally within a box to compare the same region. The sigma and 
quantile rank scales are comparable, with 1σ, 2σ or 3σ contours corresponding to quantile positions that vary 
approximately between 0.85, 0.95 and 0.9833. The use of the quantile rank scale allows to speed up calculations 
for data extraction, improves comparison, and excludes noise from the electron density map of distant regions, 
since the resolution of X-ray protein crystallographic data varies locally35.

A fast implementation of the quantile rank scale function was created for this project: first it sorts the density 
values inside the ligand grid representation and then replaces the value of each point by its position in the ranked 
quantile distribution of the 3D-grid. Ties receive the first occurring position to the left. The scaled ligand grid 
representation for 247,424 ligand entries, 12,245 being unique ligands, were successfully created at this step.

Extraction of the fine ligand blob 3D representation (procedure 3, Fig. 2).  The next step consisted in removing 
noise from the scaled ligand grid. For this, the scaled ligand grid representation was filtered to retrieve only the 
points within a contour of 0.95 (value > 0.95). Then, only the points near the ligand atomic positions and closely 
connected (with a distance between points smaller than the grid space × 1.42 + 0.15) were retained. By apply-
ing a neighborhood searching approach it was possible to remove the noisy points filtered from the ligand grid 
representation at 0.95 contour; in other words, the points that were not closely connected to the ligand atomic 
positions were removed here. This created the fine ligand blob 3D representation with a strong signal level 
and without noise. Python’s Open3D package29 v0.12 functionality was used to create the 3D point cloud of the 
ligand grid, mask and final representations (described in the next section). This package has an implementation 
of KDTrees using the FLANN library36 for quick access of the closest neighborhood of the point clouds. This 
allowed searching with good performance.

Creation of the ligand mask representation (procedure 4, Fig. 2).  The fine ligand blob 3D representation at 0.95 
contour was then used as a reference for the blob location and shape. This 3D representation was expanded from 
its boundary points with a radius equal to 1.1 Å in the scaled ligand grid. The resulting 3D point cloud was stored 
as the final ligand mask representation and was named qRankMask. By doing this expansion on the “fine ligand 
blob 3D representation”, instead directly on the scaled ligand grid representation at 0.95 contour (no filters), we 
could prevent distant noisy points from being included in the qRankMask and further in the final representa-
tions of the ligands.

Creation of the final representations of the ligands in 3D point cloud (procedure 5, Fig. 2).  Finally, the 3D rep-
resentations of the list of valid ligands in 3D point cloud were created. Nine types of 3D representations were 
generated per ligand entry by exploring different contour levels. All of them compose LigPCDS. The representa-
tion types were named: qRank0.5, qRank0.7, qRank0.75, qRank0.8, qRank0.85, qRank0.9, qRank0.95, qRank-
Mask, and qRankMask_5. These fine sliced 3D point clouds were obtained by applying, to the ligand mask 
representation (qRankMask), contours at 0.5, 0.7, 0.75, 0.8, 0.85, 0.9 and 0.95 on the quantile rank scale. The 
different contours used are related to the representation name suffix. These point clouds have as a single feature 
the scaled density value of the qRankMask normalized again from 0 to 1, where each contour value is the new 0 
in the final representation. For qRankMask_5 a different approach was used, aiming to join types qRank0.5 and 
qRankMask which gave better results in the models training: values below 0.5 were set to 0 in the qRankMask, 
and all the normalized values of contour 0.5 were directly used as feature. In other words, week points (below 
0.5) were clipped.

The ligand mask representations (qRankMask and qRankMask_5) and the representations with a quantile 
rank contour ≤ 0.8 (qRank0.5, qRank0.7, qRank0.75, qRank0.8) gave better results when training the validated 
deep learning models, with a very small difference between their accuracies. The representation qRankMask_5 
was chosen as the best result for the validated segmentation models; it maintains the ligand mask shape with 
good accuracy. Depending on the usage goals of this dataset, different representation types may give the best 
results.

A total of 244,283 ligand entries, 12,239 being unique ligands, had their final 3D representations success-
fully created. The first and fourth columns of Fig. 3 show the final 3D point clouds of two different ligands in four 
different representation types and the ligand mask. This figure illustrates the impact of the contour value on the 
final 3D point cloud of the ligands.

The mean time to create the ligand grid representation in 3D point cloud was 0.33 seconds per ligand. The 
mean time to create all representation types was 0.39 seconds per ligand (mean time for a spacing of the points 
equal to 0.5 Å). Other ways to create the 3D representations of ligands in 3D point clouds may also be tested in 
the future. This work provides one of the possible frameworks of functions to create 3D representations of pro-
tein ligands in 3D point clouds (imaging approach), which were successfully tested to be used in ML approaches.
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Chemical vocabularies and ligand structure labeling.  Chemical vocabularies were designed (step 3, 
Fig. 1) to compose the building blocks to label the created 3D representations of ligands in 3D point clouds from 
LigPCDS. The set of uniquely used labels is referred to as vocabulary and the unique labels are referred to as 
classes.

Data labeling can be very difficult depending on the amount of data and on the availability of validated 
references37. The labeling in LigPCDS was designed to first label the ligand’s structure atom-wise with building 
blocks (classes) and then to extrapolate it to the ligand 3D representations (the ligand chemical structure – next 
subsection). The implemented structure labeling approach was inspired by ML solutions that model chemical 
structures of small molecules for drug design38.

Four simplified chemical vocabularies were designed and validated (please see Technical Validation section) 
for labeling the ligand’s structure (Table 1). They are based on the atom’s symbol (the atom itself), which repre-
sent the individual scattering contribution of each atom to the electron density map; and on cyclic structures 
information, which adds a layer of 3D spatial distribution and geometrical restrains for the ligand region, and 
consequently to the blob region. All vocabularies also contain the background class, which represents non-atom 
regions of the ligands, and is only used in the labeling of the ligand 3D point cloud.

The four valid vocabularies designed are simplifications of two major labeling approaches: i) the 
AtomSymbol-based, with the chemical symbol of organic atoms (e.g. C, O, N, P, S, Se, Br, Cl, F, I); and ii) the 
SP-based, with the SP hybridization attributed to each atom (e.g., sp, sp2, sp3, sp3d1, sp3d2, sp3d3), which is 
defined by the atom steric number. The cyclic structure arrangement information is also included in both Atom 

Fig. 3  Example of a ligand’s 3D point cloud labeling for five different representation types. Two ligands are used 
for illustration: 4ZV (PDB entry 5cc6, resolution 2.1 Å) and FUL (PDB entry 4z4t, resolution 1.8 Å). Their blobs 
from their Fo-Fc maps are shown in the top of the panel with a contour of 3σ (image created with Coot). The 
LigPCDS visualization script was used to draw the ligands’ 3D point clouds. For ligand FUL, it is possible to see 
the pattern of a ring in the qRank0.95 representation; it results from the cyclic substructure of size six, present 
in its structure. In ligand 4ZV this pattern is not clear, possibly due to the mobility of this molecule - which is 
indicated by the presence of noise around its image (blob) and its representations (bottom left and top right of 
the ligand region – black points labeled as background). Furthermore, the qRank0.95 representation of ligand 
4ZV is partially fragmented, with missing points, while for ligand FUL all points with labels are completely 
covered. There is more visual correspondence between the ligand’s image in the 3σ Fo-Fc maps and the 
qRank0.95 point cloud.
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Symbol and SP hybridization labeling. Please refer to Supplementary Note 1 for more information about the 
process in designing the chemical vocabularies. A brief explanation of the four valid vocabularies, which are 
directly mapped from the major labeling approaches, is given below and is summarized in Table 1:

	 I)	 “Vocabulary of the Ligand Region” (SP-based, 2 classes): labels all atoms with the generic atom class;
	II)	 “Vocabulary of Generic Atoms and Cycles” (SP-based, 3 classes): labels the atoms as generic atoms outside 

cyclic structures and atoms in generic cyclic structures (of any size and type);
	III)	 “Vocabulary of Generic Atoms and Cycles C347CA56” (SP-based, 9 classes): labels the atoms as generic 

atoms outside cyclic structures and atoms in cyclic structures with sizes (ranging from 3 to 7), where cyclic 
structures with sizes 5 and 6 are further labeled according to their aromaticity (aromatic or not). Aromatic 
cyclic structures of sizes 4 and 7 are not distinguished from non-aromatic ones due to their low abundance. 
Cyclic structures with more than 7 atoms are not distinguished from atoms outside cyclic structures as 
large cyclic arrangements are more flexible and may not have a shape pattern in the Fo-Fc map;

	IV)	 “Vocabulary of Atom Symbols with Groups” (AtomSymbol-based, 6 classes): labels the ligand atoms with 
their chemical symbol, if it is one of the most common atom symbols in organic molecules (C, O, N); or 
with the following groupings: the “halo” group, if it is a halogen atom (atom symbols F, Cl, Br and I), and 
the “PSe” group, if it is one of the remaining atoms with lower abundance in the dataset (atom symbols P, S 
and Se).

The ligand structure labeling procedure was automated in a Python script with the RDKit package v2019.09.3 
and was used to implement both the AtomSymbol-based and SP-based approaches. It works as follows. For each 
ligand: (i) all cyclic structures in the ligand structure are retrieved; (ii) for each atom of the ligand, its label is set 
to its SP hybridization (one of sp, sp2, sp3, sp3d, sp3d2, sp3d3), or its atom symbol (one of C, O, N, P, S, I, F, Se, 
Cl and Br), depending on the parameters. This label is concatenated with the smaller cyclic structure in size and 
aromatic cyclic arrangement type in which this atom appears (one of C3, CA4, C4, CA5, C5, CA6, C6, CA7 or 
C7 in this order), if any. Finally, (iii) the labels of all atoms are returned. The labels are mapped to the atoms using 
their unique coordinates in the 3D space.

These two major approaches (AtomSymbol-based and SP-based) were used to label the structures of the lig-
ands in the list of valid ligands, resulting in 244,226 ligand structures successfully labeled. The ligands structural 
labeling results were saved to tables in .xyz files (CSV format), with one atom per row and their information 
and label by column. These results were stored in the xyz directory of the data record of each major approach: 
SP-based and AtomSymbol-based labeling (detailed in the Data Records section). The mapping from the two 
major approaches to the four validated vocabularies was performed by matching their labels with the provided 
mapping tables presented in Supplementary Tables 2, 3 (see Usage Note for more details). Examples of structure 
labeling with these two major approaches and their four mapped and validated vocabularies are illustrated for 
the molecules beta-L-fucose and 1H-indole-5-carboxylic acid, which have the following ligand codes in PDB: 
FUL and 4ZV, respectively (Fig. 4).

The four valid vocabularies are further described with the distribution of occurrences of their classes by atom 
in the final list of valid ligands (Figs. 5 and 6). These distributions help visualize the class imbalance problem39,40 
present in LigPCDS, a crucial information to understand its limits for semantic segmentation tasks. Also, the 
maximum imbalance ratio40 (dmax, Eq. 1) was computed to indicate, for each vocabulary, the maximum level 
imbalance across classes and to help the comparison of the viability of the different vocabularies.39,40
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i

i  are the maximum and minimum 
number of labeled atoms among classes, respectively.

Figure 5 displays the distribution of class occurrences using the SP-based vocabularies for the atoms of the 
ligands in the list of valid ligands. Figure 6 displays this distribution for the AtomSymbol-based vocabularies.

The two vocabularies that kept more chemical information and had good accuracy in relevant classes of 
the validated models (please see Technical Validation) were selected as the best labeling approaches: the 
“Vocabulary of Generic Atoms and Cycles C347CA56” and the “Vocabulary of Atom Symbols with Groups”.

Vocabulary Labeling Approach dmax Classes Number of Classes

Ligand Region SP 1 Background, Atom 2

Generic Atoms and Cycles SP 2.1 Background, Atom, C (Cycle – generic cyclic structure) 3

Generic Atoms and Cycles C347CA56 SP 1,535.2 Background, Atom, C5 (Cycle of size 5), CA5 (Aromatic 
Cycle of size 5), C6, CA6, C3, C4, C7 9

Atom Symbols with Groups AtomSymbol 41.4 Background, C, O, N, PSe, Halo 6

Table 1.  Description of the four valid vocabularies. All valid vocabularies are presented with their maximum 
imbalance ratio (dmax) in the valid ligands list, their classes names and size.
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Labeling of the final representations of the ligands in 3D point clouds.  The last step to obtain 
LigPCDS (step 4, Fig. 1; procedure 6, Fig. 2) is the pointwise labeling of the final representations of the list of valid 
ligands in 3D point clouds. This was done with the atom-wise extrapolation of the labels of the ligands’ structures 
(previous section) to their final representations in 3D point clouds.

A widely used model to calculate the atomic volume of molecules is to treat atoms as rigid spheres41. These 
spheres have a radius equal to the van der Waals theoretical atomic radius for each atom type, and serve as 
a model to represent the electron density volume that would be occupied by each atom of the molecule. The 
electron density is theoretically distributed as a Gaussian centered on each atom41, with high intensity values at 
the center. When a contour is applied to the electron density (e.g. in the sigma or quantile rank scale), only the 
central peak of each Gaussian is visible42. Batsanov’s work31 summarizes the available data on the van der Waals 
theoretical atomic radius for molecules and crystals. The work that describes XGen42, for fitting ligands in the 
real space of electron density maps, provided information for the typical experimental X-ray radius for organic 
elements at different experimental electron density resolutions.

It was thus decided to use the modeling of an atomic sphere to extrapolate the labeling from the atoms of 
the ligands structure to their final 3D point clouds, using as radius 65% of the experimental radius provided by 
XGen for each atom type. This percentage was chosen to recover the central region of the density peak of each 
atom, while keeping the contour of the ligand’s structure. The resolution of the PDB entries was used to select 
the sets of radii for each ligand entry, rounding the resolution to the first decimal place (values tabled for resolu-
tions 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1 and 2.2 Å in Supplementary Table 1). For Selenium (Se) atom, which does not 
appear in the XGen table, it was assigned the radii of the Bromine (Br) atom. The points in the representation 
of the ligands that are not covered by the atomic spheres with 65% of the experimental radius of XGen received 
the labeling of background noise (“background” class – regions in the Fo-Fc map without a ligand atom). Points 
in the intersection region of two or more atomic spheres received the label of the nearest atom center. Other 

Fig. 4  Examples of a ligand’s structure labeling. Ligands 4ZV and FUL from PDB (entries 5CC6 and 
4Z4T, respectively) are shown on the top left panel and were used as example to illustrate all the proposed 
vocabularies: the “Vocabulary of SP hybridization with Cycles” and its three mappings (SP-based approach), 
which are shown on the right panel; and the “Vocabulary of Atom Symbols with Cycles” and its mappings 
(AtomSymbol-based approach), which are shown on the bottom left panel. The label of each atom is written 
inside its atomic sphere (represented by a circle), which is colored according to its label in the filling and the 
border color received the atom color in the 2D structure.
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percentages of atomic radii were not tested. This procedure was implemented with the functionality of the 
Open3D v0.12 library for quick access of the neighborhood of each point.

The ligand’s structure labeling was extrapolated to the final 3D representations of the ligands present in the list 
of valid ligands using the two major labeling approaches (SP-based and AtomSymbol-based). A dataset of labe-
led 3D representations of the difference electron density of ligands in point cloud was obtained for each major 
vocabulary. The ligand final 3D point clouds that were correctly labeled and tested constitute 244,226 entries in 
the final list of valid ligands. The point cloud labeling testing is detailed in the Technical Validation section.

The labeled records of ligand images in 3D point cloud representations were called “LigPCDS-SP” and 
“LigPCDS-AtomSymbol”, which correspond to the SP-based and AtomSymbol-based labeling approaches, 
respectively, and compose LigPCDS. This dataset covers entries of free protein ligands of organic molecules 
(non-covalent protein ligands composed by C, O, N, P, S, Se, F, Cl, Br or I atoms), obtained from X-ray pro-
tein crystallography, with experimental resolutions ranging from 1.5 to 2.2 Å. These records (SP-based and 
AtomSymbol-based) are organized by PDB entry and contain all the final 3D point clouds of the list of valid 
ligands that appear in the respective entry. The organization of this dataset is detailed in the Data Records 
section. Two examples of final labeled 3D point clouds of ligands with the “Vocabulary of Generic Atoms and 
Cycles C347CA56” and the “Vocabulary of Atoms Symbols with Groups” are presented in Fig. 3 for different 
representation types.

Data Records
The LigPCDS dataset v1.0.1 is stored in the Zenodo repository (https://doi.org/10.5281/zenodo.15174758)43 
from CERN, the European Organization for Nuclear Research. The LigPCDS-SP and LigPCDS-AtomSymbol 
records were deposited in separated files named LigPCDS-SP_record and LigPCDS-AtomSymbol_record, 
respectively, in.zip format, each one containing:

•	 A zipped file with the dataset of labeled ligand representations in 3D point cloud, named LigPCDS-SP or 
LigPCDS-AtomSymbol, concatenated with the string “_reso-1.5-2.2_gridspace-0.5.zip” (resolution range and 

Fig. 5  Class distribution of SP-based vocabularies. Distribution of the class occurrence in the SP-based 
vocabularies by labeled atom of all entries of the final list of valid ligands. Their corresponding imbalance 
ratio (dmax) is also presented. The distribution for the “Vocabulary of the Ligand Region” is omitted because all 
2,566,614 atoms were labeled with the same generic class of atoms. The background class is not used in these 
distributions.
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grid spacing used). This folder is organized with a subfolder for each PDB entry, named with the respective 
PDB entry ID, which contains:

•	 The 3D point cloud of all the valid ligands that appear in the respective PDB entry for all the nine final 
representation types (qRank0.5, qRank0.7, qRank0.75, qRank0.8, qRank0.85, qRank0.9, qRank0.95, 
qRankMask, and qRankMask_5) and their corresponding labels. The format of these files are as follows:

•	 The ligand 3D representations in point cloud are stored in .xyzrgb files in CSV format and are 
named with a unique ligand ID equal to the PDB entry ID concatenated with the ligand code, 
the chain code and the residue number in which it appears in the respective protein structure. 
This filename is followed by the string “lig_point_cloud_fofc” plus the representation type. These 
.xyzrgb files contain:

•	 The x,y,z position of each point of the 3D point cloud in the first three columns and their 
feature in the following three columns (color channels). These feature columns have the same 
values.

•	 The labels of the ligand 3D point clouds are stored in.txt files with the index of the vocabulary class 
of each point by row, in the same order of the points of the representation. The vocabulary index 
ranges from 0 to the number of classes of the respective vocabulary minus one, or “−1” to indicate 
the “background” label. These files are named with a unique ligand ID equal to the PDB entry 
ID, the ligand code, the chain code and the residue number in which it appears in the respective 
protein structure. The string “lig_pc_labels” plus the representation type completes the file name. 
The representation type qRankMask_5 uses the same label file named with the qRankMask type.

Fig. 6  Class distribution of AtomSymbol-based vocabularies. Distribution of class occurrence in the 
AtomSymbol-based vocabularies by labeled atom of all entries of the final list of valid ligands. Their 
corresponding imbalance ratio (dmax) is also presented.
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•	 One folder with the proposed vocabularies and mappings named as “vocabulary_” followed by the respective 
labeling approach, SP or AtomSymbol, containing:The major vocabulary used to label each dataset in a.txt 
file containing one class by row. The order of the classes by row defines the classes order and index, which 
starts with 0 in the first row and ends with the size (number of classes) of the vocabulary minus one. Only the 
“background” class is not present in the vocabulary file and will always receive an index equal to −1 in the 
ligand labels files. The vocabulary files are named with the prefix “vocabulary_valid_ligands_PDB_1.5_2.2_” 
followed by a suffix equal to the labeling approach “SP-based” or “AtomSymbol-based”.

•	 The mapping tables for the valid vocabulary are in CSV files and are named with the prefix equal to 
“mapping_”, followed by a suffix equal to the vocabulary name. These tables contain one column named 
“source”, with the index of the source class in the respective major vocabulary based (SP or Atom-
Symbol) and another column named “target”, with the index of the target class in the new mapped 
vocabulary. In these mapping tables the “background” class receives a source index equal to the size 
of the respective vocabulary instead of −1, to facilitate the mapping (explained in the Usage Notes). 
Additionally, there are two columns named “classes” and “mapping”, that contain the classes names of 
the source and target vocabularies, respectively.

•	 Another folder named “ligands_lists” containing three tables with a list of ligands:

•	 One table is a CSV file with the final list of valid ligands and their classes count in the respective major 
labeling approach. This table is named with the prefix “valid_ligands_list” followed by the filters used to 
select this set of entries and a suffix equal to the base vocabulary used (SP or AtomSymbol). This table 
contains one ligand by row and their information by column, such as: ligand code and ID, PDB entry 
ID, PDB entry resolution, global B factor and the vocabulary classes count by labeled atom (these col-
umns are detailed in the table listed below).

•	 Another table in CSV file describing the columns in the table of the final list of valid ligands named 
“valid_ligands_list_columns_description.csv”. It contains two columns: one named “column_name” 
which contains the names of columns of the valid ligands list table, and another column named “col-
umn_description” with the description of the named columns.

•	 A table with the stratified training dataset named as “training_dataset_valid_ligands_undersam-
pling_maxLigCode_1000_kfolds_13_gridspace_0.5_” followed by the base labeling used (SP or 
AtomSymbol).

•	 A zipped file containing the xyz directory with the ligands structure labeling result for the list of valid ligands. 
This file is named with the prefix “xyz_” followed by the filters used to create the list of valid ligands and a 
suffix equal to the base labeling approach (SP or AtomSymbol). The xyz directories contain one .xyz file for 
each labeled ligand entry which is named with the ligand ID followed by “_class.xyz”.

•	 A zipped file with the validated DL models of each labeling approach, named with a prefix equal to “DL_mod-
els_” followed by SP or AtomSymbol. The DL models are stored in checkpoint files (.ckpt) named with the 
model name followed by the tag “ligs” and the number of ligands used in the training dataset, the tag “img” 
and the representation type used, the tag “gridspace” and the grid spacing used and the tag “k” followed by the 
subset k used for test and validation.

•	 There is also a metadata table for each model describing some of the training setup (e.g. number of 
epochs) of each DL model.

The ligands grid representation of the list of valid ligands is also available as a different zipped file named 
“LigPCDS-Grids_reso-1.5-2.2_gridspace-0.5.zip”. It contains one subfolder for each PDB entry containing their 
ligand grid representations in .xyzrgb files.

•	 The ligand grid files are named with the ligand ID followed by the string “grid_point_cloud_fofc.xyzrgb”.

Technical Validation
Structure labeling automatic test.  An automatic test based on reverse engineering was implemented in 
the algorithm that labels the ligand structure (step 3, Fig. 1). This test increased the structure labeling quality in 
the final list of valid ligands by using the SMILES (Simplified Molecular Input Line Entry System) of the ligands 
present in their retrieved SDF files, as a ground truth for their chemical structure. SMILES is commonly used 
in chemistry to write the chemical structure of molecules in a simplified and short ASCII string. The structure 
labeling automatic test uses the SMILES of the ligand entries to retrieve the expected labeling for their structure 
and then verifies if it matches the structure labeling from their deposited chemical structure (3D atomic positions 
and chemical bonds) defined in their SDF files. The script validates the set of returned classes and, if any conflict 
is found, it marks the ligand entry with an error tag. Ligands with mismatching labels between their SMILES and 
deposited chemical structure in the SDF files were not included in the final list of valid ligands. This automatic test 
of the structure labeling procedure removed 588 ligand entries (0.2% of the initial list with 293,822 ligands). Most 
errors were due to wrongly defined SDF files (e.g. a chemical bond defined between wrong atoms) or missing 
atoms in the deposited structure that affected the labeling and prevented the match.
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Structure labeling manual test.  Automated labeling is a very error-prone process, as variations in the data 
that deviate from the expected structure can generate undesirable behavior in the algorithms and create labeling 
noise in the dataset. To increase the quality of the algorithms used in the ligand’s structure labeling, automated 
case tests were performed with 8 manually labeled structures of ligands. The ligand’s structures were labeled with 
the SP-based and the AtomSymbol-based approaches. The chosen ligands that compose the list of test cases have 
the following codes in PDB: 0YB, 1EJ, 58 T, DJ4, I3C, MB5, MTE and Q0S. The choice for these ligands sought to 
cover a wide range of classes from the proposed vocabularies in different chemical arrangements. This test auto-
matically compares the automatic structure labeling result against the manually labeled structures, defined as the 
truth table of each test case.

More ligands may be manually labeled and added to the list of structure labeling test cases. The user must 
follow the format expected by the testing script to correctly evaluate the new structures. All the ligands present 
in the list of structure labeling test cases are automatically tested against the automatic labeling function. This 
ensures the correctness of the algorithms in the manually labeled structures.

Point cloud labeling test.  A test to verify the creation and labeling of the final 3D point clouds of ligands 
was also implemented. It checks if all the points of the final representations of the ligands, that are covered by 1/4 
of an atomic sphere of its structure, have the same label as the respective atom label. The ligand entries that had 
their final 3D point cloud created and that raised a mismatch in this checking were removed and not included 
in the final list of valid ligands. This represented only 57 entries (0.02% of the final point clouds created). The 
remaining 244,226 entries compose the final list of valid ligands.

Stratified training dataset.  An undersampling technique39 was applied to the final valid ligands list (step 5,  
Fig. 1) to create a stratified training dataset that deals with the imbalance problem present in the classes distribu-
tion (Figs. 5, 6) and in the chemical diversity of the ligands structure (many repetitions of few common structures, 
more than one class by entry and with both very frequent and rare classes).

The undersampling in the list of valid ligands was implemented to remove noise from non-relevant struc-
tures (few atoms) or tiny point clouds (having a small size), and to prevent losing entries with rare classes or 
including many repetitions of the same structure. It works as follows: (1) it removes all entries with less than the 
minimum number of atoms (set equal to 4); (2) it removes all entries with “qRank0.95” point cloud size smaller 
than 150 points; and, (3) it removes the entries of frequent ligand structures (maximum occurrence by ligand 
code was set to 1,000). By using an anti-clustering method44, this maintained the diversity among entries related 
to the following selected characteristics: B factor, minimum occupancy, resolution and size of the ligand mask 
point cloud. At the end of this process, a stratified training dataset with 78,902 entries of ligands from 26,976 
PDB entries and 11,925 unique structures was obtained.

Subsequently, this training dataset was partitioned in train, test and validation datasets using a 
cross-validation (CV) technique45 to avoid overfitting46. The CV implemented to partition the training dataset 
was the k-fold cross-validation. The average performance of the model trained on each subset is the performance 
of the CV46.

To ensure diversity in the k-fold subsets, a stratified separation was performed in the training dataset using 
the anti-clustering algorithm44. It partitioned the ligand entries into k similar groups, maintaining, within each 
group, a diversity of entries in relation to the same selected characteristics. Furthermore, each group was further 
separated into two subgroups referring to the test and validation set using the anti-clustering algorithm with 
the same selected characteristics. Due to time constraints for training a deep learning model, only a subset k 
was selected for testing and validation in most training jobs, and the applied CV method was the “hold-out”45.

The 78,902 entries of the stratified training dataset of ligands were partitioned in k=13 similar groups. Each 
group was also partitioned into two other subgroups corresponding to the entries selected for validation and 
test of the respective group. Thus, for each k, 72,833 ligand entries are used for training, 3,034 for validation and 
3,035 for testing. These values may vary by at most 2 units depending on the group.

The four mapped vocabularies had dmax < 2000 (Table 1) and were selected as viable for training: “Ligand 
Region”, “Generic Atoms and Cycles”, “Generic Atoms and Cycles C347CA56” and “Atom Symbols with Groups”. 
The occurrence distribution of the classes in these four viable vocabularies were recomputed using only the labe-
led atoms present in the stratified training dataset. These distributions are presented in Fig. 7 together with their 
new maximum imbalance ratio (dmax) in the stratified training dataset. The distribution for the “Vocabulary 
of the Ligand Region” is omitted again because all 1,671,853 atoms were labeled with the same generic class of 
atoms. The background class is not used in these distributions.

These four vocabularies continued to show a viability for training a DL model (dmax < 1000) using the 
obtained stratified training dataset. Only the “Vocabulary of Atom Symbols with Groups”, which had a dmax < 50, 
had an increase in its imbalance ratio. This may be due to rare atoms that repeatedly appear in the same ligand 
structure (same ligand code) and these frequent structures were limited by the undersampling procedure (i.e. 
chlorine ions were removed), but this did not affect the viability of the respective vocabulary.

Deep learning architecture, training pipeline and evaluation metrics.  The Minkowski Engine 
(ME)47, an open-source deep learning architecture for sparse tensor pointwise convolution in 3D point clouds, 
was used for training semantic segmentation tasks with LigPCDS (step 6, Fig. 1). A hybrid dilated (or atrous) 
3D convolution48–50, called “MinkUNet34C_CONVATROUS_HYBRID”, was implemented by modifying 
the provided “MinkUNet34C” network, which was used in semantic segmentation tasks with good results51. 
These networks are based on the 3D U-Net network52, they accept inputs of different sizes and are illustrated in 
Supplementary Figure 2.
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LigPCDS training pipeline was implemented with the pytorch-lightning Python library47,53. The user selects 
the value of k to be used in the training and the entries in the k-th group are used for the validation and test sets. 
The remaining entries are used for the train set.

The hyperparameters implemented and evaluated in the training pipeline are (with the value that gave the 
best results between brackets): the total batch size (16 entries), the loss function (wSL - weighted Symmetric 
cross entropy Learning54), the loss weight (yes), the random rotation rate (50%), the deep neural network 
(MinkUNet34C_CONVATROUS_HYBRID) and the optimizer function (SGD - Stochastic Gradient Descent55). 
The training parameters related to the ligand 3D point clouds that were evaluated are (best value between brack-
ets): the representation type (qRankMask_5) and the representation spacing (0.5 Å). The best setup is summa-
rized in Supplementary Table 4 and detailed in Supplementary Note 2 and Supplementary Note 4. The main 
evaluation metric used in this project is the Intersection over Union (IoU)27. The mean IoU (mIoU) of all classes 
is used as a global training metric51,56. Additionally, the F1 score (or Dice Coefficient)28 and the Recall and 
Precision rates by class are also computed. These metrics are computed using the accumulated hit and missing 
points of all entries in the respective set. The 95% bootstrap confidence interval (CI)57,58 of the evaluated metrics 
in the test set was also computed for individual predictions, together with the standard error of the mean (SEM), 
using the evaluation by entry. More details on these metrics are presented in Supplementary Note 3.

Validation of DL models and best results.  The four viable vocabularies were validated by training good 
performance DL models for the semantic segmentation of the stratified dataset from LigPCDS (Table 2) with 
the best setup. The four validated DL models trained with these labeling approaches were named, respectively 
(and following Fig. 1c in clockwise order, starting from the top vocabulary): “LigandRegion”, “AtomCycles”, 
“AtomC347CA56” and “AtomSymbolGroups”. The CV method used in the evaluation of these four models was 
the hold-out with k = 1, except for the model AtomC347CA56 which used the k-fold cross validation method 
(evaluated using hardware B). The value k = 13 gave the best result in the k-fold CV of model AtomC347CA56 
(Supplementary Table 5). The average time to train the DL models in the best setup and using two GPUs of hard-
ware A was of about 4.5 hours for each 10 epochs.

The confusion matrices of the test of these four validated DL models are presented in Fig. 8. This matrix 
summarizes the hits and errors of the models by class using the IoU metric. This data helps visualize the impact 
of the class imbalance problem on the model’s performance. It allows checking the confusion between classes, 

Fig. 7  Class distribution of the viable and validated vocabularies in the stratified training dataset from 
LigPCDS. Data shown refers to the distribution of class occurrence in the viable vocabularies by labeled atom on 
the entries of the stratified training dataset. Their corresponding imbalance ratio is also displayed.
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helps to understand the errors that are occurring and the impact of minor or difficult to converge classes59. 
Additionally, the distribution of the overall accuracy of the validated models is presented in Fig. 9, showing a 
higher concentration of values above 80%.

The learning curves of the different classes are shown for all models together in Supplementary Figure 3. 
The loss weights used in each model training to deal with the imbalance between classes are presented in 
Supplementary Note 4. The reasoning for the groupings proposed for the vocabulary “Atom Symbols with 
Groups” is also presented in Supplementary Note 4 using a not validated model named AtomSymbol (from an 
unviable labeling used for comparison).

The four validated models (“LigandRegion”, “AtomCycles”, “AtomC347CA56” and “AtomSymbolGroups”) 
had more than 49% of accuracy in mIoU and more than 62% in F1-score. Although there is no reference for an 
acceptable accuracy cutoff, the visual inspection of the results showed that values above 50% can still present 
correct predictions or very close to the expected. One reason for this low cutoff is that differences between the 
expected and predicted ligand conformation and atomic radii sizes may decrease the model’s overall accuracy 
and increase the confusion with the background class (an error in the border of the ligand region), which is noted 
in Fig. 8 with the high values of the first column of all matrices. In other words, the correct predictions may be 
dislocated in space and result in lower accuracy. The other confusions presented in Fig. 8 are between very sim-
ilar classes, and thus, are consistent with the proposed labeling approaches. The imbalance between the classes 
can greatly affect the average accuracy of the models, as is seen in the relation between their average accuracy 
and dmax (Table 2). This highlights the difficulty of dealing with rare classes and/or difficult to converge classes.

The two validated models that kept more chemical information in the vocabularies and had good accu-
racy in relevant classes were selected as the best results: the model “AtomC347CA56” and the model 
“AtomSymbolGroups”. The first model can bring macro information about the arrangement of the ligand struc-
ture in cyclic structures, while the second model can bring micro information about its atom types. These results 
validated the imaging and labeling approaches of LigPCDS, and indicate its use by machine learning solutions. 
Other vocabulary mappings from the proposed labeling approach may be tested. The user may decide which 
data best suits their needs depending on their goals.

The two best models were also used to plot their mIoU by ligand entry in the k = 1 test subset against the 
resolution, size of the qRank0.95 3D point cloud and B-factor characteristics of the entries from the stratified 
dataset of LigPCDS (Fig. 10 below and Supplementary Figure 5). Lower resolutions (higher numbers meaning 
lower global quality), in the test range 1.5 to 2.2 Å, slowly decreased the performance of the DL models with high 
variance. High average B factors of the ligand entries, which is directly related to the local quality of the ligand 
blob, was the characteristics evaluated that most explained the decreasing performance of the models, still with 
high variance. This corroborates with the fact that the noise in experimental crystallographic data varies locally, 
and therefore, entries with poor global resolution may still have good predictions, if the local ligand image 
(blob) is well defined and has low noise (but this is not always the case). More details on this analysis are given 
in Supplementary Note 5.

Usage Notes
The ligand 3D point clouds files are in .xyzrgb format. This is a well-known and used format to store 3D point 
clouds, which has customized reading functions in libraries aimed to manipulate point cloud representations. In 
addition, the Open3D Python package may be used to read and manipulate the ligand representations.

The visualization of the 3D point clouds in LigPCDS-SP and LigPCDS-AtomSymbol can be assessed 
with the Python script named “visualize_LigPCDS”, provided in the “src” folder of the “np3_LigPCDS” 
repository (open access described in the Code Availability section). This script will render, for each ligand 
ID present in the dataset (user provided), the 3D point clouds of its representations, further colored by the 
feature value of its points and for each representation type selected by the user. The representation types 
are separated by columns in the x-axis, with a distance equal to 2 times the x-axis size of the ligand’s 3D 
point cloud. The representations may also be rendered in another row colored by the labeled class of each 
point from the ligand’s label files (user provided). The rows are translated in the z-axis by 3 times the z-axis 
size of the ligand’s 3D point cloud. The script opens a new window that contains a 3D display in the xyz 
space of the Open3d Python package v0.12. This display allows zoom, translation and rotation of the point 

DL Model dmax Epochs Test mIoU F1 score Precision Recall

Ligand Region k = 1 1 120 77.38
0.22 [−11.7,12.1]

86.96
0.16 [−8.4,8.8]

86.53
0.16 [−8.7,9.1]

87.42
0.14 [−7.8,8.2]

Atom Cycles k = 1 1.4 120 70.95
0.30 [−16.3,17.1]

82.49
0.27 [−14.7,15.6]

80.46
0.26 [−13.7,14.5]

84.86
0.22 [−11.7,12.6]

Atom C347CA56 k-fold* 865 200 49.66
0.36 [−19.4,20.2]

62.41
0.35 [−18.8,19.7]

58.2
0.29 [−15.7,16.6]

74.09
0.28 [−14.9,15.8]

Atom Symbol Groups k = 1 81.5 160 59.03
0.37 [−19.8,20.5]

73.16
0.36 [−19.6,20.3]

68.67
0.35 [−18.8,19.5]

79.61
0.29 [−15.4,16.2]

Table 2.  Test evaluation of the four viable and validated models. Results from the hold-out CV against 3,035 
ligands from the k = 1 test subset of the stratified training dataset, except for model “AtomC347CA56” which 
results from the k-fold cross validation method. The imbalance ratio (dmax) was recomputed for the stratified 
training dataset. The standard error of the mean (SEM) is provided below the overall for each metric and their 
confidence interval is provided between square brackets, both computed for individual predictions. *The SEM 
and confidence intervals for model AtomC347CA56 were computed using k = 13.
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Fig. 8  Confusion matrices with the test IoU evaluation of the four validated models: “LigandRegion”, 
“AtomCycles”, “AtomC347CA56” and “AtomSymbolGroups”. Results from the hold-out CV against 3,035 
ligands from the k = 1 and k = 13 test subsets of the stratified training dataset. It contains the expected classes 
(true label) by row and the predicted classes (predicted label) by column. It was normalized by row. The SEM 
for individual predictions is provided below the overall by model, and the CI is provided between square 
brackets and below the overall by class (main diagonal). For model “AtomCycles”, the Cycle class is abbreviated 
in the deposited vocabulary as “C”. Similarly for model “AtomC347CA56”, the “C” in the classes names is an 
abbreviation for “Cycle”. The model’s classes are illustrated with ligand FUL from PDB (entry 4Z4T), the classes 
that appear in this structure have their column names colored accordingly, and the background class always 
receives the black color.
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clouds and point size scaling. The user can register the best poses by taking pictures of the display (more 
information on this display capabilities in the Open3D http://www.open3d.org/docs/latest/tutorial/Basic/
visualization.html).

In the vocabulary mapping tables, it is expected that the “background” class is assigned with a source index equal to 
the size of the respective vocabulary (last index). This format allows an easy indexing of the mapping for fast replace-
ment: the new target index can be ordered by the source index and used to replace the old source index values by the 
new target index values in a given set of labels. To apply a mapping in a ligand label file the user may first order the 
mapping table by the “source” column in increasing order; then, get the values of the “target” column as a NumPy60 
v1.17 array. Next, the user should read the set of labels from the ligand label file, convert the labels to a Numpy array 
and replace the values equal to −1 with the size of the vocabulary (“background” label index adjustment). Finally, the 
Numpy array with the target index column ordered by source may be indexed with the labels array to return the new 
set of mapped labels. The classes of the mapped vocabulary are stored in the “mapping” column and may be ordered 
ascending by the “target” column. This is how the mapping is implemented for this work and for the training pipeline.

The visualizations of the predictions can be assessed with the Python script named “visualize_predictions”, 
which is in the “src” folder of the np3_DL_repository (see Code Availability). This repository also contains one 
script named “plot_learning_curves.py” with auxiliary functions to plot the learning curves of a training process 
(data retrieved with TensorBoard61 v2.2).

Code availability
The code used to create LigPCDS and to train the DL models is freely available in the “np3_ligand” repository 
of Github in v1.0.1: https://github.com/danielatrivella/np3_ligand. This repository also contains installation 
instructions with the full list of used packages and their versions. These two tasks are separated in two 

Fig. 9  Evaluation of the validated DL Models in the test set used to plot the histogram and density distribution 
of the 3,035 individual overall predictions for metrics IoU, F1-score, Precision and Recall. The test subsets k = 1 
and k = 13 were used and are indicated after the model’s name.

https://doi.org/10.1038/s41597-025-06002-8
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directories named “np3_LigPCDS” and “np3_DL_segmentation”, respectively. There is also a directory in this 
repository for the NP³ Blob Label application (to be published). The “np3_ligand” repository also contains 
a manual of use for each task and installation instructions. With this open-source project, all steps of the 
workflow - presented in Fig. 1 - may be reproducible using the pipeline of available scripts (detailed in the 
repository documentation). The scripts of the first step of this workflow need special attention. This step 
depends on the APIs of RCSB PDB to download the entries data and it was designed to work with the RCSB 
PDB version available in December 2019. Any new updates to access RCSB PDB must be updated in the code 
for new downloads to work.

Data availability
The LigPCDS dataset v1.0.1 is available at https://doi.org/10.5281/zenodo.1517475843. Code, additional files and 
scrips are available at https://github.com/danielatrivella/np3_ligand, as mentioned above.

Received: 22 January 2025; Accepted: 15 September 2025;
Published: xx xx xxxx

Fig. 10  Model AtomC347CA56 accuracy in mIoU against characteristics of the k = 1 test ligands. Resolution, 
size of the qRank0.95 point cloud, and B-factors values for the ligand and protein were investigated. The plots 
were constructed with Orange62. All plots are colored by the resolution of the entries, grouped in intervals of 
0.1 Å. A simple linear regression was performed on all plots and the Pearson’s correlation coefficient, variable r, 
is shown along with the regression-fitted line. The variable r squared (r2) is the coefficient of determination.
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