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An Hourly Dataset of Moisture 
Budget Components Over the 
Indian Subcontinent (1940–2024)
Akash Singh Raghuvanshi    & Ankit Agarwal   ✉

A gridded dataset of atmospheric moisture budget components constructed from ERA5 reanalysis 
over the Indian subcontinent and surrounding ocean regions for the period 1940–2024, referred to as 
ERA5moistIN. Available at 0.25 degree spatial and hourly temporal resolution, the dataset includes 
seven components of the column integrated moisture budget: change in storage, horizontal and 
vertical advection, horizontal and vertical convergence, and associated moisture flux convergence 
terms. These components are derived from pressure level variables including specific humidity and 
zonal, meridional, and vertical wind components using central finite difference methods and vertical 
integration, along with surface pressure. Validation against ERA5 single level outputs, such as total 
column water vapor and vertically integrated moisture divergence, demonstrates physical consistency 
and reliability. The diagnostic framework can be adapted to other reanalysis datasets and climate model 
outputs with minor code changes and is applicable to any region. ERA5moistIN supports high resolution 
analysis of moisture processes and is suitable for applications including monsoon studies, extreme 
event attribution, model evaluation, and predictive tool development.

Background & Summary
Atmospheric moisture plays a vital role in the Earth system by influencing energy exchange, sustaining life, 
and regulating temperature through latent heat release during phase changes of water. Water vapor contrib-
utes significantly to the greenhouse effect and modulates surface energy balance, with atmospheric transport of 
moisture redistributing latent heat across regions and timescales1,2. These processes form the foundation of the 
atmospheric branch of the hydrological cycle, which is closely linked to global and regional climate variability3–5.  
With ongoing anthropogenic climate change, there is growing concern about the intensification of hydrocli-
matic extremes including droughts, floods, and intense precipitation events which are expected to become more 
frequent and severe. These extremes are associated with both shifts in the mean state and variability of precipi-
tation, often arising from changes in the atmospheric moisture transport pathway6–8. Understanding the mecha-
nisms that drive these events requires a physically consistent quantification of the atmospheric moisture budget 
and its coupling to circulation dynamics and the energy cycle6,9,10.

However, deriving moisture budget components from reanalysis data presents challenges. Moisture con-
servation is maintained in numerical weather prediction models and reanalyses through forward integration 
of the moisture equation. While these products aim for long-term closure between precipitation, evaporation, 
and moisture convergence, diagnostic evaluations must rely on archived fields such as three-dimensional winds, 
specific humidity, and surface pressure. These variables are typically stored at sub-daily or coarser time inter-
vals and interpolated to standard vertical pressure levels, which differ from the native model grid6. Although 
past studies1,6,11 advocate for budget closure on the native model grid using model-level data, such diagnos-
tics remain impractical for long-term or multi-model comparisons, including those from the Coupled Model 
Intercomparison Project12. Several studies have investigated the atmospheric moisture budget over India13–15 
and other regions globally9,16–20, often focusing on individual components such as horizontal moisture conver-
gence or advection, especially during extreme events. However, these studies generally use coarse spatial and 
temporal resolutions and apply simplified assumptions or approximations, which limits their ability to resolve 
mesoscale and sub-synoptic processes associated with hydroclimatic extreme6,20.

To address these limitations, we introduce “ERA5moistIN”, an hourly dataset of atmospheric moisture 
budget components over the Indian subcontinent and adjoining ocean regions (see Fig. 1), spanning the period 
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1940 to 2024. The dataset is developed using ERA5 reanalysis data21 on interpolated pressure levels rather than 
native model levels, enabling broad accessibility and compatibility with existing observational and modeling 
frameworks. Using central finite difference approximations, we compute key moisture budget terms including 
change in storage, horizontal and vertical advection, wind convergence components, and corresponding moisture 
flux convergences. This dataset offers high-resolution insights into moisture transport dynamics without relying 
on oversimplified diagnostic approximations. Although ERA5moistIN is based on pressure-level data, its spatial 
(0.25° × 0.25°) and temporal resolution (1-hourly) is sufficient to capture a wide range of atmospheric processes 
from synoptic to sub-daily scales. The methodological framework provided in this study can be extended to 
other reanalysis products such as MERRA222, JRA5523, and to global climate model outputs including those 
from CMIP6. To validate the dataset, we compare selected moisture budget diagnostics with standard ERA5 
single-level outputs such as total column water vapor and vertically integrated moisture divergence, demon-
strating good agreement. ERA5moistIN provides a one-stop data resource to investigate the full atmospheric 
moisture budget and its role in shaping regional hydroclimate across the Indian subcontinent. It supports the 
diagnosis of both long-term climatological behavior and short-term hydroclimatic extremes, including droughts, 
floods, and episodes of intense precipitation. This dataset will enable researchers to uncover the large-scale 
atmospheric controls and regional feedbacks underlying precipitation variability, land–atmosphere interactions, 
and moisture transport pathways critical to understanding and predicting future climate risks.

Methods
Acquisition of ERA5 Reanalysis Data.  Modern meteorological reanalysis products aim to generate the 
most accurate possible reconstruction of the historical atmospheric state by integrating vast volumes of obser-
vational data with advanced numerical modelling and data assimilation systems24. These datasets have become 
essential tools in climate monitoring and research, offering long-term, physically consistent records of atmos-
pheric conditions. Among these, the ERA5 dataset, developed by the European Centre for Medium-Range 
Weather Forecasts (ECMWF), provides a comprehensive global reanalysis of atmospheric, surface, and ocean 
wave variables. Covering the period from 1940 to the present, ERA5 incorporates information from a diverse 
array of observations using state-of-the-art data assimilation techniques and numerical weather prediction 
models21,25. Relative to its predecessors—ERA-Interim and ERA-40—ERA5 includes enhanced assimilation of 

Fig. 1  Topographic map of the Indian subcontinent illustrating the geographical domain used for developing 
the ERA5moistIN dataset. Major physiographic features include the Western, Central, and Eastern Himalayas, 
Tibetan Plateau, Indo-Gangetic Plains, Western Ghats, East Coast, and adjoining oceanic regions such as the 
Arabian Sea and Bay of Bengal. Elevation is shown in meters.
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cloud- and rain-affected satellite radiances and features a significantly improved representation of the hydro-
logical cycle21. This renders ERA5 particularly suitable for applications involving moisture and precipitation 
processes.

ERA5 generally yields a reliable depiction of synoptic-scale atmospheric patterns over the Northern 
Hemisphere, even during the early 1940s, and captures long-term climate variability in line with other estab-
lished datasets26. Currently, ERA5 provides more than 85 years (1940–present) of 1-hourly global data, with 
three-dimensional atmospheric fields resolved on 137 vertical levels from the surface to ~80 km, and a hori-
zontal grid spacing of approximately 31 km (~0.25°). In addition to atmospheric variables, ERA5 includes fields 
describing land surface and ocean wave conditions. The dataset is publicly available via the Copernicus Climate 
Change Service Climate Data Store (https://cds.climate.copernicus.eu/datasets) and has been widely applied in 
numerous climate and weather studies, including recent advances in machine learning-based weather forecast-
ing27,28. The dataset is openly available under the Copernicus license and can be accessed as hourly single-level 
data29 (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview) and hourly 
pressure-level data30 (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-pressure-levels?tab=overview).

For the present study, we retrieved hourly ERA5 variables relevant to the atmospheric moisture budget. These 
include specific humidity (q), zonal (u), meridional (v) and vertical (ω) wind components on 20 pressure levels 
(from 1000 to 300 hPa). Additionally, single-level fields such as surface pressure (psf

), vertically integrated mois-
ture divergence (VIMD) and total column water vapour (TCWV, defined as vertically integrated specific humid-
ity) are obtained to construct and validate the ERA5moistIN dataset.

Production process of ERA5moistIN.  The conservation of atmospheric moisture is a fundamental physi-
cal principle governing Earth’s climate system and provides a critical diagnostic for assessing the internal consist-
ency of meteorological reanalysis datasets. The vertically integrated moisture budget, when expressed in pressure 
coordinates, takes the following general form:
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Here, g is the gravitational acceleration, ( )p tsf
 denotes the time varying surface pressure, and ptop

 is the top 
pressure level. The variables q, 
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V ui vjˆ ˆ= + , and ω represent specific humidity, horizontal wind vector, and 

vertical velocity (in pressure coordinates), respectively. The terms E and P are surface evaporation and precipi-
tation fluxes (kg m−2 s−1). The left-hand side quantifies the sum of the time rate of change in total column water 
vapor, horizontal moisture divergence, and vertical moisture transport. The right-hand side represents the net 
surface freshwater flux.

In the ERA5moistIN dataset, the vertical integration is conducted from the surface up to 300 hPa, a level 
near the tropopause. Given that specific humidity diminishes rapidly with altitude, extending the upper inte-
gration limit beyond 300 hPa introduces negligible impact on the total column moisture31. Thus, Eq. (1) can be 
rewritten specifically for this application as:
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To analyze contributions from individual physical processes, we decompose the divergence terms in Eq. (2) 
using the product rule. This yields a physically interpretable form of the moisture budget, expressed as:
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This expanded formulation facilitates the isolation and quantification of different physical processes driving 
moisture variability. The total moisture budget can therefore be summarized as:
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To derive these components, we use hourly ERA5 pressure-level fields of specific humidity and the three 
wind components (zonal, meridional, and vertical) across 20 pressure levels from 1000 to 300 hPa, in addition 
to surface pressure. These fields are used to compute seven physically interpretable components of the moisture 
budget: horizontal and vertical moisture flux convergence (HMFC and VMFC), each split into contributions 
from moisture advection and wind convergence, along with the change in storage. Together, these components 
form the foundation of the ERA5moistIN dataset. This formulation enables a physically consistent framework 
for diagnosing water cycle dynamics, validating reanalysis-based estimates, and assessing moisture transport 
processes under present and future climate conditions.

Numerical calculation for the moisture budget components.  To accurately compute the atmos-
pheric moisture budget from ERA5 reanalysis, we employ a finite-difference approach over a structured spa-
tiotemporal grid (Fig. 2). While the governing equations of the moisture budget are continuous in form (e.g., 
Eq. 5), numerical weather prediction and reanalysis systems approximate these using discrete schemes. The 
Integrated Forecast System (IFS), which underlies ERA5, uses a semi-Lagrangian formulation for advection and 
a finite-difference scheme for spatial derivatives32. These numerical approximations contribute to residual imbal-
ances in the moisture budget and must be considered when interpreting budget diagnostics from reanalysis data6. 
Within the ERA5moistIN dataset, we explicitly diagnose seven components of the vertically integrated moisture 
budget: (1) change in moisture storage, (2) horizontal moisture advection, (3) horizontal wind convergence, (4) 
vertical moisture advection, (5) vertical wind convergence, (6) horizontal moisture flux convergence (HMFC), 
and (7) vertical moisture flux convergence (VMFC). HMFC and VMFC are derived as sums of advection and 
convergence terms.

For specific humidity q, the temporal derivative is computed using a backward difference scheme:
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For boundary grid points, forward and backward differences are used:
Forward difference (for initial values):
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The horizontal wind divergence is computed following established formulations for spherical coordinates33:
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Similarly, the horizontal gradient of specific humidity is given by:
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To convert grid spacing to metric distances on the globe, the horizontal distances are defined as:

x x Rcos ( ) (15)i j t k i j t k j i i1, , , 1, , , 1 1λ λ− = ∅ −+ − + −·
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where, ∅ is latitude, λ is longitude, R is Earth’s radius.
The curvature correction term in Eq. (13) accounts for the convergence of meridians toward the poles33, an 

important consideration for vector fields such as wind velocity 
��
V( ). Notably, this correction is not applied in 

scalar field advection (e.g., specific humidity q) because it does not involve latitudinally varying vector 
components.

Vertical integration of all moisture budget terms extends up to 300 hPa from the surface pressure. The pres-
sure thickness of the lowest layer is approximated as the difference between surface pressure and the first model 
pressure level above it. Within this layer, the values of 

��
V , ω and q are taken from the first available level above the 

surface. Numerical errors may arise due to such approximations, as well as from inconsistencies between the 
time resolution of diagnostics and the model’s native time step. Hence, diagnostics based on higher temporal 
resolution (e.g., hourly) offer better fidelity compared to daily averages6.

Fig. 2  Schematic showing gridded data structure and numerical approximations used for moisture budget 
diagnostics. The ERA5moistIN dataset incorporates atmospheric variables (e.g., wind, humidity, pressure) 
on a 3D grid spanning multiple pressure levels and hourly time steps. The central 3D view shows the vertical 
structure used for computing vertical gradients and fluxes. The top-right horizontal grid highlights how finite-
difference approximations are applied at each level to estimate horizontal derivatives. The red box marks a 
representative grid point (i,j,k) at time t, where specific moisture budget terms such as advection, convergence, 
and flux divergence are evaluated. Central differences are used for interior points, while forward and backward 
differences are applied at boundaries. Horizontal grid spacing is converted from latitude–longitude coordinates 
to metric distances, with curvature corrections included for vector derivatives. This framework enables 
consistent computation of key moisture budget components, including horizontal and vertical advection, wind 
convergence, and moisture flux convergence.
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Data Records
The ERA5moistIN dataset is divided into seven components, each available via individual Zenodo repositories: 
change in storage34 (vidq_dt.year.nc, https://doi.org/10.5281/zenodo.15751200), horizontal moisture advection35 
(viqadv.year.nc, https://doi.org/10.5281/zenodo.15730248), horizontal wind convergence36 (viHCM.year.nc, 
https://doi.org/10.5281/zenodo.15751542), horizontal moisture flux convergence37 (viHMFC.year.nc, https://
doi.org/10.5281/zenodo.15753006), vertical moisture advection38 (viwdq_dp.year.nc, https://doi.org/10.5281/
zenodo.15753073), vertical wind convergence39 (viqdw_dp.year.nc, https://doi.org/10.5281/zenodo.15753104), 
and vertical moisture flux convergence40 (viVMFC.year.nc, https://doi.org/10.5281/zenodo.15753124). Each 
component is stored as yearly.nc files at hourly resolution, containing three-dimensional data arrays (longitude: 
66.5°E–98°E, latitude: 6.5°N–38.5°N, and hourly time steps starting from January 1st at 00:00 UTC). Each file is 
approximately 549 MB in size, resulting in ~45.4 GB per component and a total dataset size of around 318 GB. 
Data values are in kg m−2 s−1 and can be converted to hourly accumulated values (kg m−2 hr−1 or mm/hr) by 
multiplying by 3600, which can further be aggregated to daily totals (mm/day) for analyzing relevant hydrome-
teorological events.

Technical Validation
To assess the accuracy of the reconstructed moisture budget components in ERA5moistIN, we compare its 
diagnostics with standard ERA5 single-level outputs: total column water vapor (TCWV) and vertically inte-
grated moisture divergence (VIMD). The TCWV field enables estimation of the rate of change in 
column-integrated specific humidity, which corresponds to the change in storage term in the moisture budget. 
Similarly, the negative of VIMD yields the vertically integrated moisture convergence (VIMC), a proxy for the 
net inflow of moisture into an atmospheric column (Fig. 2). While these ERA5 diagnostics provide reference 
values for the quantities we aim to reconstruct from pressure-level variables (q, u, v, ω, psf

), it is important to note 
that due to the ERA5 data assimilation scheme, these diagnostics do not perfectly close the moisture budget. In 
particular, the sum of ERA5’s diagnosed moisture tendency and VIMD does not exactly balance surface fresh-
water fluxes (i.e., evaporation minus precipitation, E–P), even after accounting for changes in storage10.

To evaluate the internal consistency and reliability of ERA5moistIN, we compute the root mean square error 
(RMSE) between its reconstructed moisture budget terms and ERA5’s native diagnostics. Specifically, we com-
pare ERA5’s VIMC with the horizontal moisture flux convergence (HMFC; Fig. 3A), vertical moisture flux 
convergence (VMFC; Fig. 3B), and their sum (HMFC + VMFC; Fig. 3C), which together represent the total 
convergence in ERA5moistIN. Additionally, we assess the agreement between the ERA5moistIN storage term 
(∂q/∂t) and ERA5’s time derivative of TCWV (d TCWV

dt
( ) , Fig. 3D). RMSE values (in kg m−2 hr−1 or mm hr−1) are 

computed for each season (MAM, JJAS, ON, DJF) based on hourly accumulated data. Errors are lowest when com-
paring VIMC with the reconstructed total convergence (HMFC + VMFC), confirming that ERA5moistIN 
accurately reproduces ERA5’s convergence using independent finite-difference approximations. Likewise, the 
storage term from ERA5moistIN aligns closely with ERA5’s d TCWV

dt
( ) , reinforcing the validity of the method. 

Although ERA5moistIN integrates from the surface only up to 300 hPa unlike ERA5, which includes the full 
atmospheric column (to ~0.01 hPa), the strong agreement implies that moisture above 300 hPa contributes 
minimally to tropospheric moisture dynamics at the hourly timescale.

To further evaluate consistency with standard reanalysis products, we compute Pearson correlation coeffi-
cients between hourly accumulated values of ERA5moistIN diagnostics and ERA5’s native VIMC (Fig. 4). Since 
ERA5 provides only total VIMC, we compare it with HMFC (Fig. 4A), VMFC (Fig. 4B), and HMFC + VMFC 
(Fig. 4C). High correlations across all seasons, particularly in Fig. 4C, where r > 0.8 in most regions demonstrate 
the ability of ERA5moistIN to reliably reconstruct total VIMC using independently computed components. 
Correlations between ERA5moistIN’s storage term and ERA5’s d TCWV

dt
( )  (Fig. 4D) are similarly strong, further 

supporting the credibility of the diagnostics.
Notably, spatial patterns of correlation vary between HMFC and VMFC. High correlations for HMFC over 

the Indo-Gangetic Plain and central India (Fig. 4A) suggest dominance of horizontal convergence in lowland 
regions. In contrast, lower correlations along the Western Ghats and Himalayan foothills likely stem from com-
plex terrain, sharp moisture gradients, and uncertainties in wind fields, which can degrade horizontal conver-
gence estimates. Conversely, VMFC (Fig. 4B) shows better agreement in these orographic zones, indicating 
the dominant role of vertical transport associated with terrain-induced uplift and vertical velocity structure. 
Interestingly, this pattern reverses over the Tibetan Plateau, where HMFC exhibits stronger correlations with 
ERA5 native VIMC than VMFC. This behavior may be attributed to the Plateau’s extreme elevation (exceeding 
5000 m; Fig. 1), where much of the atmospheric column lies below the surface. ERA5’s hybrid sigma-pressure 
vertical coordinate system struggles to resolve vertical motion accurately over such high topography due to 
pressure levels intersecting the terrain, introducing uncertainty in vertical velocity (ω) and associated fluxes41. 
Additionally, the model’s reduced vertical resolution near the surface in this region (Fig. 1) likely contributes to 
weaker VMFC correlations21. On the other hand, the Plateau’s complex terrain significantly modulates horizon-
tal flows and convection patterns42, leading to stronger agreement in HMFC.

To validate ERA5moistIN under extreme precipitation conditions, we assess its performance during four 
catastrophic flood events: the 26 July 2005 Mumbai floods (Fig. 5A), 17 June 2013 Uttarakhand floods (Fig. 5B), 
14 August 2018 Kerala floods (Fig. 5C), and 9 July 2023 Himachal Pradesh floods (Fig. 5D). Each row of Fig. 5 
displays daily accumulated precipitation, ERA5 native VIMC, ERA5moistIN-derived VIMC, and the spatial 
bias between the two. ERA5moistIN computes VIMC by summing HMFC and VMFC components integrated 
from the surface up to 300 hPa. Despite differences in vertical integration limits and methodological formula-
tions, both datasets exhibit strong spatial agreement over the flood-affected regions (highlighted by red boxes). 
While most biases are modest, more pronounced deviations occur over regions with complex topography, 
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particularly along the Himalayas and Western Ghats. These discrepancies primarily stem from the cumulative 
aggregation of small hourly mismatches into daily values. Additionally, significant errors arise from the use of 
a simple centered finite-difference scheme to estimate the divergence operator, especially in coastal and moun-
tainous areas where spatial gradients in the moisture convergence field are large6.

Nonetheless, ERA5moistIN captures the key spatial patterns of moisture convergence during these 
events, underscoring its reliability even under dynamically complex and topographically challenging condi-
tions. The fidelity of these reconstructions highlights the importance of resolving the moisture budget at finer 
spatio-temporal scales. Prior studies6,20 have shown that computing VIMC at coarse temporal resolution (e.g., 
daily or monthly) can introduce significant biases, occasionally even altering the sign of moisture flux (from 

Fig. 3  Evaluation of moisture budget diagnostics in ERA5moistIN against ERA5 reference quantities (RMSE in 
kg m−2 hr−1). Root Mean Square Error (RMSE) maps (in kg m−2 hr−1, equivalent to mm hr−1) are shown for 
four seasons—MAM (March–May), JJAS (June–September), ON (October–November), and DJF (December–
February) over the period 1940–2024, comparing ERA5’s native vertically integrated moisture convergence 
(VIMC) with (A) horizontal moisture flux convergence (HMFC) from ERA5moistIN; (B) vertical moisture flux 
convergence (VMFC); (C) sum of HMFC and VMFC (i.e., reconstructed total moisture convergence from 
ERA5moistIN); and (D) ERA5’s time derivative of total column water vapor (d TCWV

dt
( ) ) with the change in 

storage term from ERA5moistIN. All quantities are vertically integrated from the surface to the top of the 
atmosphere. Notably, ERA5moistIN’s vertical integration extends only up to 300 hPa, whereas native ERA5 
products (VIMC and TCWV) are integrated up to 0.01 hPa. Despite this difference, RMSE values remain low, 
particularly in panels (C,D) indicating that ERA5moistIN diagnostics effectively capture the dominant 
components of moisture transport and storage within the troposphere.
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convergence to divergence). These errors stem from the inherent variability in wind direction at sub-daily 
scales, particularly under mesoscale and sub-synoptic systems. Averaging over longer periods may fail to cap-
ture this high-frequency variability, distorting spatial patterns of convergence. Additionally, biases from vertical 
discretization, physical parameterizations, and data assimilation methods can further compound the error in 
reanalysis-derived moisture budgets6,20.

Data availability
The datasets associated with this work are openly accessible via Zenodo repositories34–40.

Fig. 4  Spatial correlation between ERA5moistIN moisture budget components and ERA5’s native diagnostics 
of vertically integrated moisture convergence and change in storage. Each panel presents Pearson correlation 
coefficients between hourly accumulated values of ERA5moistIN-derived terms and the corresponding ERA5 
native fields for four climatological seasons: MAM (March–May), JJAS (June–September), ON (October–
November), and DJF (December–February) for period 1940-2024. (A) Correlation between ERA5moistIN 
horizontal moisture flux convergence (HMFC) and ERA5’s native vertically integrated moisture convergence 
(VIMC). (B) Correlation between ERA5moistIN vertical moisture flux convergence (VMFC) and ERA5’s 
VIMC. (C) Correlation between the sum of ERA5moistIN HMFC and VMFC and ERA5’s VIMC.  
(D) Correlation between the change in storage term derived from ERA5moistIN and the time derivative of total 
column water vapor (d TCWV

dt
( ) ) from ERA5. All values are calculated after accumulating hourly tendencies and 

converting units to kg m−2 hr−1. ERA5moistIN diagnostics are integrated from the surface up to 300 hPa, 
whereas ERA5 native fields are up to the top level (~0.01 hPa).
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Code availability
The NCL (NCAR Command Language) scripts43 used to estimate the moisture budget components are available 
at https://doi.org/10.5281/zenodo.15760435. Two separate scripts are provided: one for computing horizontal 
components (Moist_H.ncl; change in storage, horizontal advection, horizontal convergence, and horizontal 
moisture flux convergence) and another for vertical components (Moist_V.ncl; vertical advection, vertical 
convergence, and vertical moisture flux convergence). For each year, the horizontal script stores all computed 

Fig. 5  Comparison of moisture convergence diagnostics during four major flood-inducing extreme 
precipitation events. Panels show spatial maps of daily accumulated precipitation (1st column), vertically 
integrated moisture convergence (VIMC) from ERA5 (2nd column), VIMC computed using the ERA5moistIN 
diagnostic framework (3rd column), and their difference (ERA5 − ERA5moistIN; 4th column) during four 
catastrophic flood events: (A) 26 July 2005 Mumbai floods, (B) 17 June 2013 Uttarakhand floods, (C) 14 August 
2018 Kerala floods, and (D) 9 July 2023 Himachal Pradesh floods. VIMC from ERA5 represents the native 
reanalysis output, while ERA5moistIN values are derived by vertically integrating horizontal and vertical 
moisture flux convergence (up to 300 hPa) using finite-difference approximations. All quantities are shown in 
mm day−1. Red boxes denote the core flood-affected regions.
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horizontal components in a single NetCDF file, while the vertical script stores all vertical components in a 
separate NetCDF file, ensuring organized and efficient data handling for reproducible analysis.
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