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A Large-Scale Synthetic Benchmark 
Dataset for Non-Cooperative Space 
Target Perception
Yuxuan Liu1,2 ✉, Chunjiang Bian1, Hongbin Nie1, Shi Chen1 & Ziqian Yang1,2

The automatic, accurate perception of targets in space is a crucial prerequisite for many on-orbit 
aerospace missions. Therefore, research on perception technologies within spaceborne images is 
meaningful. The development of deep learning has revealed its potential for application to space target 
perception. However, implementing deep learning models requires large-scale labelled datasets. 
Therefore, we build a multitask synthetic benchmark space target dataset, NCSTP, to address the 
limitations of current datasets. First, we collect and modify various space target models for satellites, 
space debris, and space rocks. By importing them into a realistic space environment simulated by 
Blender, 200,000 images are generated with different target sizes, poses, lighting conditions, and 
backgrounds. Then, the data are annotated to ensure the dataset supports simultaneous space target 
detection, recognition and component segmentation. All data can be used for training space target 
detection and recognition models. We further annotate the components of each satellite for component 
segmentation. Finally, we test a series of state-of-the-art object detection and semantic segmentation 
models on the dataset to establish a benchmark.

Background & Summary
With the development of space technology and the continuous launch of human spacecraft, the num-
ber of non-cooperative space targets is steadily increasing1,2. In addition to naturally occurring space 
rocks, various artificial satellites and debris resulting from the malfunction and disintegration of space-
craft are widely distributed in orbit. Throughout this paper, the term non-cooperative target is used in the 
rendezvous-and-proximity-operations (RPO) context. Such a target passively drifts in orbit, provides no relative 
navigation aids or telemetry, and lacks active attitude control. Therefore, these targets must be perceived through 
vision-based algorithms. To improve satellite safety and spacecraft life, developing on-orbit servicing technolo-
gies is crucial. As shown in Fig. 1, accurate aerospace perception3 is a critical prerequisite for successful on-orbit 
missions. Tasks such as target monitoring4 and debris removal5 rely on space target detection, so these tasks 
require detecting targets quickly and identifying their types. However, on-orbit assembly6 and maintenance7 
require the identification of components on satellites, these tasks are based on component segmentation tech-
niques, where various components are differentiated by their semantic labels. Traditional perception methods 
rely on ground-based optical sensors that are limited by atmospheric turbulence and adverse weather, reducing 
the accuracy and speed needed for on-orbit servicing tasks. Imagery from spaceborne sensors is more robust in 
achieving accurate, real-time perception of targets in space.

Artificial intelligence technologies, particularly deep learning, have developed rapidly in recent years. The 
biggest challenge in applying deep learning to space target perception is the lack of high-quality, large-scale 
annotated datasets. Obtaining sufficient images of actual targets is extremely difficult, unlike natural images. 
However, data are the core of deep learning models, and the quality of the training data largely determines the 
model’s performance. Therefore, a dataset that best simulates the actual space environment and contains many 
well-annotated space targets is urgently needed. In addition, current datasets are typically designed for specific 
perception tasks, such as space debris detection or satellite antenna recognition. However, actual on-orbit ser-
vicing requires the perception of multiple aspects of the same target. Establishing a space target dataset that 
supports multiple perception tasks is also essential.
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Motivated by these challenges, this study created a benchmark dataset that supports both space target detec-
tion and component segmentation tasks. With the help of Blender software, we simulated a realistic space envi-
ronment that included sunlight illumination, the Earth, a background of stars, and a spaceborne observation 
camera.

Next, we collected and refined 3D models of 26 space targets, including satellites, space debris, and space 
rocks. After importing the models into the simulation, we analyzed the surface materials, textures, orbital char-
acteristics, and operational states of the different space targets. We further refined and adjusted the models to 
make the scene more realistic. By randomly varying lighting conditions and camera positions, we generated 
200,000 images to support the subsequent training and validation of deep learning models.

The generated samples were annotated to meet the requirements of both space target detection and com-
ponent segmentation. For the object detection task, we divided all satellites into 10 categories based on their 
functions and distinct visual features, along with space debris and space rocks, resulting in 12 categories. Each 
image was annotated with bounding boxes and corresponding categories. Subsequently, we extracted all images 
in the dataset of the satellite target category. We used semantic segmentation annotations to label four distinct 
components: body, solar panels, antenna, and observation payloads. Note that our annotation method bridges 
two space target perception tasks. The model can detect and classify the type of satellite in an image and segment 
its components. This approach has not been explored in previous research.

After constructing the dataset, we conducted a statistical analysis of the space targets in the dataset, calcu-
lating their distribution according to their size, position, and other relevant characteristics. Further, we selected 
10 representative object detection methods and 10 semantic segmentation methods to test their performance 
on our dataset. We also analyzed the methods’ performance across different target categories for target detec-
tion. Similarly, for component segmentation, we evaluated the performance of each algorithm on different 
components. Beyond the supervised baseline models reported here, NCSTP is designed to support hybrid and 
self-supervised training paradigms, which hold strong potential for improving synthetic-to-real transfer in 
space imagery.

According to the results, we analyzed the performance of current methods and the characteristics and task 
challenges of the dataset, and also outline future directions for research.

Related dataset.  Many scholars have tried constructing space target datasets with different methods 
for perceptual tasks in recent years. The spacecraft pose estimation dataset (SPEED)8 was initially released by 
ESA and Stanford University to clarify satellite pose estimation. Because of such limitations as restricted pose, 
single-lighting conditions, and small datasets, this study developed an improved version of the Next-Generation 
Dataset for Spacecraft Pose Estimation (SPEED+)9. URSO10 comprises synthetic and actual images of the Soyuz 
and Dragon spacecraft in space, one dataset for the Dragon spacecraft and two datasets for the Soyuz model 
with different operating ranges. Hoang et al.11 collected 3117 images of satellites and space stations, including 

Fig. 1  Relationship between space target perception and space missions.
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synthetic and authentic images. It is the first publicly available dataset for space target detection and component 
segmentation. SPARK is a multi-modal dataset that provides paired RGB and depth images. The dataset con-
tains 150,000 images, including 11 types of spacecraft and space debris. Zhang et al.12 proposed a space target 
recognition dataset containing 50,000 Blender images, including 11 classes of satellites and 35 classes of space 
debris. STAR-24K13 is a dataset for space target detection with approximately 24,000 images. It was constructed 
by extracting images released by the NASA and ESA websites. UESD is a UE4-based dataset proposed by Zhao, et 
al.14. It is used for spacecraft component segmentation. In Table 1, We compared NCSTP with other space target 
datasets from multiple considerations, such as the number of images, target categories, annotation methods, and 
supported perception tasks.

The contributions of our work are summarized as follows.

	(1)	 This paper constructs a large-scale non-cooperative space target dataset, integrating multiple perception 
tasks, including space target detection and component segmentation. Fine-grained recognition and se-
quential perception tasks for the satellite targets are supported, detecting the satellite and then segmenting 
its components. The NCSTP dataset provides rich, high-quality data samples and benchmark evaluation 
conditions for space target perception research.

	(2)	 We present a comprehensive and systematic review of datasets and methods related to non-cooperative 
space target perception tasks, including space target detection and component segmentation, with analysis 
and perspective on future research trends.

	(3)	 This article evaluates the performance of 20 advanced methods for space target detection and component 
segmentation on NCSTP. It also presents a direction to improve tasks according to challenges and the 
characteristics of the dataset.

Methods
This section provides a detailed description of the generation and annotation process of the NCSTP dataset.

Data generation.  Training deep learning models requires many samples. However, the availability of directly 
collected 2D images of space targets is limited. To generate a rich and diverse set of space target images, we chose 
to use 3D models. After importing the models with optimized material types and spectral characteristics into the 
simulated space environment, we generated multiple samples of the same target by varying attributes such as size, 
pose, lighting condition and other properties.

Space target modelling.  The simulation of space objects can be divided into two parts: structural modeling 
and optical property modeling. The former involves constructing a three-dimensional geometric model of the 
object, while the latter requires selecting appropriate materials for the object to ensure it exhibits realistic surface 
spectral characteristics. We collected 3D models of space targets from official NASA repositories to ensure their 
reliability and authenticity (https://science.nasa.gov/3d-resources/). There were 26 types of 3D models, compris-
ing 16 types of satellites, 6 types of space debris, and 4 types of space rocks.

Although the three-dimensional models obtained by these authoritative agencies ensure the accuracy of 
the geometric structures, the material and texture information of these models is incomplete. Therefore, we 
inspected each model and added high-resolution texture maps and adjust its material properties based on the 
types of materials used in actual satellites.

Notably, the surface of the satellite body is typically covered with a layer of golden material. This material 
consists of a polymer compound of polyimide, combined withthin metallic films of gold, silver, or aluminum. 
It is commonly referred to as multi-layer-insulation (MLI). The primary material used in solar panels is silicon. 
Silicon is a crucial semiconductor material with strong absorption properties for sunlight. Antennas are typically 
constructed using aluminum alloy as the primary material, characterized by a gray or silver-gray appearance. 
This material offers excellent corrosion resistance, thermal conductivity, and electrical conductivity. The material 

Images Image Sources Satellite
Space 
debris

Space 
rock Target classes

Component 
classes Supported task

SPEED 15,300 Synthetic captured 1 — — 1 — Pose estimation

SPEED+ 69,531 Synthetic captured 1 — — 1 — Pose estimation

URSO 5,000 Synthetic 2 — — 2 — Pose estimation

BUAA-SID1.0 5,000 Synthetic 20 — — 20 — Recognition

Satellite Dataset 3,117 collect online √ √ — — 3 Detection Component 
segmentation

DSTD 50,000 Synthetic 11 35 — 6 — Recognition

UESD 10,000 Synthetic 33 — — — 5 Component segmentation

SPARK 150,000 Synthetic 10 5 — 15 — Detection Recognition

STAR-24K 24,000 collect online √ √ √ 3 — Detection Recognition

Ours 200,000 Synthetic 16 6 4 3(coarse) 10(fine) 4 Detection Recognition Component 
segmentation

Table 1.  Quantitative statistics for each dataset.
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of the observation payload is typically related to the type of payload. Here, we model it using a Disney-type mix-
ture of metallic and non-metallic components.

Different materials exhibit distinct thermal physical parameters and optical properties. The reflectivity, 
metallic, roughness, and IOR of a material all significantly influence its radiative characteristics. In Blender, we 
carefully configured these parameters to closely align with the actual properties of the materials.

Simulated space environment.  In this study, we simulated a space environment using Blender software. In addi-
tion to the optimized 3D target models, the simulation included the Earth, an observation camera, a star back-
ground, and a light source that mimicked the Sun.

Due to the significant distance between space objects and the light source, the sunlight in the scene can be 
approximated as parallel light that uniformly illuminates the entire target. To simulate this scenario, we utilize 
the ‘Sun’ type light source in Blender, which is positioned at an infinite distance. The star background is emulated 
in Blender using star-field textures to approximate realistic stellar density and brightness.

The Earth model also effectively replicated features of the Earth’s surface, such as mountains, deserts, for-
ests, and plains. Surrounding the Earth was an atmospheric layer model, which greatly enhanced the simulated 
Earth’s appearance. Additionally, the application of different texture maps on the Earth model are controlled by 
functions to vary Earth backgrounds under different lighting conditions, which made the images more closely 
resemble the real-space scenarios encountered in service missions.

To achieve realistic rendering of lighting and material appearances, it is necessary to calculate the radiance 
reaching the camera after accounting for the physical interactions of light, such as reflection and refraction, on 
the surfaces of spatial objects. This process requires analyzing the spectral reflectance properties of the object 
surfaces, specifically the variation of reflectance with respect to wavelength. Our approach primarily involves the 
definition of a Bidirectional Reflectance Distribution Function (BRDF) model (Eq. 1).
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Here, p denotes the surface point being shaded. The incident lighting direction ωi is defined as the unit vector 
pointing from the surface toward the light source, whereas the view direction ωo is the unit vector pointing from 
the surface toward the camera. The term ωL p( , )o o  represents the outgoing radiance at p in the direction oω , and 

ωdE p( , )i i  denotes the differential irradiance incident at p from the solid angle around ωi.
The spectral reflectance characteristics vary across different materials. The Cook-Torrance reflection model 

(Eq. 2), a key component of BRDF, can simulate micro-surface reflections on metallic and non-metallic surfaces. 
Therefore, we ultimately selected this model to calculate the radiance received by the camera after accounting 
for physical interactions, such as reflection and refraction, of light with the surfaces of various components of 
the space target.
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Here, iθ  denotes the incident zenith angle between the surface normal n and the incident direction l, while rθ  
denotes the reflection zenith angle between n and the view direction v. The diffuse reflectance coefficient is rep-
resented by Kd, and the specular reflectance coefficient by Ks. In addition, F, D and G denote the Fresnel term, 
the normal-distribution function of microfacets, and the geometric attenuation term, respectively.

Multiple Observation Angles Various Target Scales

Diverse Lighting Conditions Integrated Sensor Types

Dataset 

Fig. 2  Multiple imaging conditions in our dataset. Examples illustrate pose changes from diverse view angles, 
scale variation due to range, illumination extremes under different Sun–target–sensor geometries and sensor 
modalities.
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We utilized the Principled BSDF shader within Blender, along with the Cycles rendering engine, to imple-
ment this optical model. Through the modelling of the light source and the spectral reflectance characteristics 
of the material on the surface of the spatial target, we have achieved a lighting effect that closely approximates 
real-world conditions in space.

After the simulated environment was set up and the optimized 3D models imported, we conducted a com-
prehensive survey of each target’s functions and orbital distribution to enable us to generate trajectories for each 
model. To generate videos, the targets’ motion in space was stimulated by continuously altering the target’s pose 
and position, as well as the Earth parameters and lighting conditions. By extracting frames from the video, we 
obtained the required target images. For each spatial target in the generated data, Fig. 2 shows the different poses 
caused by various observation angles, different scales resulting from different observation distances, extreme 
imaging conditions such as high exposure or low lighting due to varying positions relative to the Sun, and RGB 
and grayscale images captured by different imaging sensors.

Data annotation.  We designed a two-level space target classification scheme for this study. Based on the 
origin of the targets, they were classified as satellites, space debris, or space rocks, as shown in Fig. 3. Because 
space missions require further identification of the types of satellites and their components, we performed a 
fine-grained classification for all categorized satellites. The functions and structural features were used to divide 
the satellites into 10 fine-grained categories: CubeSats, cylindrical satellites, geo-communication satellites, LEO 
communication satellites, the space telescope, SAR satellites, navigation satellites, symmetrical Earth observation 
satellites, and single-panel Earth observation satellites.

After the two-level classification rules were defined, we classified the images of the 26 space targets previously 
generated. Specifically, the images of the six types of space debris were categorized as space debris, and the four 
types of space rocks were classified as space rocks. The 16 types of satellite target images were then further cate-
gorized into 10 fine-grained satellite categories according to the second-level classification rules.

Based on the two-level classification criteria, we annotated the boundary boxes and categories of all tar-
gets in the images to meet the target detection and recognition requirements. All satellite components in the 
images identified as “satellite” were further annotated in the form of masks to support component recognition. 
Four components, solar panels, antennas, bodies, and observation payloads, were annotated according to the 
structural diagram of each type of satellite. Since our source 3D models arrive in heterogeneous formats and 

Cubesat Cylindrical Satellite GEO Communication Satellite

LEO Communication Satellite Space Telescope SAR Satellite

Navigation Satellite Space Probe

Symmetrical Earth Observation Satellite Single Panel Earth Observation Satellite

Space Debris Space Rock

Satellite

Fig. 3  Example of generated data and two-level space target categories.
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conventions, we normalize these component variants into a shared taxonomy so that models learn function 
rather than shape style.

Solar panels absorb energy from the Sun to power the satellite while the antenna collects signals. The body 
is the satellite’s core, where various support systems are typically integrated. The observation payload typically 
includes optical and infrared cameras. Because the payload often needs to be oriented toward the target, it is not 
usually integrated with the body, so we annotated it as a separate component.

The labels for object detection consist of the coordinates of the target’s bounding box and the target category. 
The labels for semantic segmentation are mask images of the same size as the original image, where each pixel 
value represents a specific component. Figure 4 shows the annotation results for a satellite image.

Data Records
The NCSTP15 dataset is available at https://doi.org/10.6084/m9.figshare.28606754. Figure 5 visualises the 
two top-level branches NCSTP_det_recog and NCSTP_comseg, each pre-split into train, valid and test sub-
sets. In the detection branch, lossless PNG frames are stored within the split folders, and the accompanying 
COCO-style16 annotation files (train.json, val.json, test.json) are placed in a directory that follows the official 
COCO field specification. In the segmentation branch, each image is associated with a single-channel, 8-bit 
mask named <basename>_mask.png.

The final dataset contains 200,000 images with a uniform resolution of 576 × 324 pixels. Each image includes 
a single space target. We provided annotations for the bounding boxes and category information of the targets 
for all images so that all images could be used to train and validate object detection and recognition models. We 
split the NCSTP dataset into training, validation, and test sets at a 7:1:2 ratio, with 140,000, 20,000, and 40,000 
images, respectively. Splits were stratified by top-level class (and 10 fine-grained satellite subtypes). We sampled 
each subset with a fixed seed.

The dataset has 100,000 satellite images. We annotated the components for these images and stored them as 
mask images with the same resolution. This means that there are a total of 100,000 satellite images of different 
categories that can be used for model training and validation of component segmentation. Similarly, we split this 
subset into training, validation, and test sets at a 7:1:2 ratio, with 70,000, 10,000, and 20,000 images, respectively.

Table 2 shows the statistical results of the dataset for each space target perception task and annotation format.

Data overview.  The dataset we constructed in this study has unique features and advantages, providing 
foundational data support for target visual perception tasks in space. Moreover, it presents new challenges for 
researchers in this field.

We have compiled statistical information on the sample distribution of the NCSTP dataset. Figure 6 illus-
trates the types of space targets included in the dataset and provides an intuitive visualization of the sample 
counts for each target class. It also presents a scatter plot of target size distributions. Figure 7 shows the pixel dis-
tribution for each component within the satellite category and calculates the proportion of pixels corresponding 
to each component (excluding the background) in the image.

The features of the NCSTP dataset are summarized as follows:

Origin image

Bounding Box and categories

Segmentation Mask

Fig. 4  Multi-task annotation provided by our dataset.
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	(1)	 Large scale: Our dataset is currently the most extensive space object dataset, containing 200,000 images. 
These images can be used for space object detection and recognition tasks. Among them, 100,000 images 
categorized as satellites can be used for component segmentation tasks.

	(2)	 Multiple and sequent tasks: Our dataset currently supports the most diverse range of space object per-
ception tasks, including detection, recognition, and satellite component segmentation. Additionally, our 
dataset supports subsequent tasks for the same object.

	(3)	 Reasonable classification approach: We designed a two-level classification approach for all space objects. 
We further performed a fine-grained classification of satellite objects based on their functions and signifi-
cant structural features.

Technical Validation
Based on the NCSTP, we evaluated and compared the performance of the proposed method with SOTA mod-
els. The technical validation included two parts: 1. Space Target Detection and Recognition, 2. Space Target 
Component Segmentation.

Space target detection and recognition.  In computer vision research, deep learning-based object 
detection models can simultaneously provide the bounding boxes and categories of objects in an image. Because 
each image in our dataset contains only one space target, a deep learning-based object detection algorithm can 
simultaneously perform both detection and recognition tasks for an image in the NCSTP dataset. We selected 10 
object detection methods for experiments on detection and recognition: Faster R-CNN17, Yolov318, Centernet19, 
DETR20, Sparse R-CNN21, YoloF22, deformable DETR23, YoloX24, VitDet25, and DiffusionDet26. These algorithms 
incorporate various methods, including two-stage and one- stage methods based on CNNs, anchor-free methods, 
transformer-based approaches, and the latest methods based on diffusion models. These models were fine-tuned 
for 12 epochs based on pre-trained weights. The performance of each method was evaluated after the final epoch. 
ResNet50 was used as the backbone of all methods except for YOLOv3, which uses Darknet53; YOLOX, which 

NCSTP

NCSTP_det_recog

train

xxx.png

val

test

annotations

train.json

test.json

NCSTP

NCSTP_det_recog

train

xxx.png

val

test

annotations

train.json

test.json

val.json

NCSTP_comseg

img_dir

val

test

train

xxx.png xxx.png

xxx.png

img_dir

val

test

train

xxx_mask.png

xxx_mask.png

Fig. 5  Directory structure of the NCSTP dataset.

Images Annotation Classes Supported Perception task

Satellite 100,000 Bounding Box categories Component mask 10 Detection Fine-grained Recognition 
Component segmentation

Space debris 60,000 Bounding Box categories — Detection Recognition

Space rock 40,000 Bounding Box categories — Detection Recognition

Table 2.  NCSTP dataset statistics.
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uses CSPDarknet; and ViTDet, which uses ViT-base. All methods were trained and tested on a server equipped 
with an NVIDIA RTX 4090 GPU, to ensure fairness in the comparative experiments.

Evaluation metrics.  We quantitatively evaluated the performance of the models using accuracy, model size, 
and computational complexity. For accuracy, we used mean average precision (mAP) as the standard metric to 
evaluate the model’s performance. mAP is the average of the average precision (AP) across different categories, 
where AP is the area under the precision-recall curve after interpolation. Calculating mAP requires precision 
and recall values.Precision is the ability of a model to identify only relevant objects. It is the percentage of correct 
positive predictions. Recall is the ability of a model to find all ground-truth bounding boxes. It is the percentage 
of correct positive predictions among all given ground truths. The formulas for calculating precision and recall 
are as follows:

Precision TP
TP FP (3)

=
+

Recall TP
TP FN (4)

=
+

where TP represents true positives (correctly detected objects), FP represents false positives (incorrectly 
detected objects), and FN represents false negatives (undetected objects). The above formulas require us to 
predefine what differentiates a correct detection from an incorrect detection. A common way to do so is using 
the intersection over union (IoU). In the object detection scope, the IoU measures the overlapping area of the 
predicted bounding box Bp and the ground-truth bounding box Bg divided by the area of their union; that is,
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Fig. 6  The quantity and size distribution of generated data according to target category.

Fig. 7  The distribution of pixel counts and proportions for each component.
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By comparing the IoU with a given threshold, t, we can classify a detection as correct or incorrect. If IOU ≥ t, 
then the detection is considered correct. If IoU < t, the detection is incorrect.

After obtaining the precision and recall values, we can calculate the AP, which considers both metrics. Before 
this, we need to interpolate the P-R curve to smooth it and reduce the impact of curve fluctuations. Given a 
recall value r, the interpolated precision Pinterp is the maximum precision value between the current recall value 
r and the next recall value rn. We can calculate the AP value by averaging the precision values corresponding 
to all different recall points. This is equivalent to the area under the interpolated precision-recall curve and the 
X-axis, as follows:
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The mAP is simply the average AP over all classes; that is,
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N

AP1
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N

i
1
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=

where APi is the AP in the ith class, and N is the total number of classes in the dataset.
In addition, we calculated the FLOPs and the number of parameters (Params) for each model. FLOPs are 

commonly used to measure the computational complexity of a model, indicating how many floating-point oper-
ations are required during execution. Params is the total number of parameters that need to be trained in the 
model, reflecting the size of the model.

Results and analysis.  Table 3 presents the overall performance of the 10 algorithms on the NCSTP dataset. 
Specifically, we provide the backbone, mAP, FLOPs, and Params of each algorithm. We set the IoU threshold t 
range from 0.5 to 0.95, with a step size of 0.05. The final mAP value was obtained by calculating the mAP at each 

Method mAP Flops(G) Params(M) backbone mAP_small mAP_medium mAP_large

Faster R-CNN 87.0 208 41.4 Resnet50 75.8 85.4 91.5

YOLOv3 72.6 11.6 61.6 Darknet53 60.4 69.9 78.7

Centernet 80.8 12.1 32.1 Resnet50 65.2 77.5 87.3

DETR 78.3 96.5 41.6 Resnet50 49.6 76.6 86.7

Sparse R-CNN 93.7 152 106 Resnet50 84.3 92.6 97.3

YOLOF 87.3 99.0 42.6 Resnet50 77.1 85.8 91.0

Deformable DETR 78.0 193 40.1 Resnet50 47.9 77.3 84.4

YOLOX 84.5 13.3 8.94 CSPdarknet 72.3 82.4 89.2

ViTDet 84.7 279 101 ViT-base 70.9 83.0 89.5

DiffusionDet 88.5 105 111 Resnet50 75.0 86.6 93.3

Table 3.  Comparison of benchmark evaluation results for target detection and recognition.

Method CU CY GE LE NA SA SI SY SP ST DE RO

Faster R-CNN 84.8 81.3 89.9 87.2 90.6 84.5 92.0 90.7 91.7 90.8 83.1 75.7

YOLOv3 66.3 66.9 73.3 72.0 78.8 74.0 77.9 68.9 71.8 80.9 73.7 68.1

Centernet 76.0 75.5 86.8 78.8 84.1 79.6 88.0 86.0 89.1 86.0 75.3 66.4

DETR 69.2 73.2 85.9 77.7 85.9 81.4 89.2 85.7 87.1 83.5 73.5 48.9

Sparse R-CNN 93.9 90.5 96.3 94.0 96.4 92.1 96.8 96.6 97.7 97.5 91.1 82.4

YOLOF 86.7 82.8 90.5 88.0 91.7 85.7 91.3 89.7 90.6 88.8 82.9 78.3

Deformable DETR 73.0 74.9 84.9 76.7 81.9 80.2 84.4 83.8 84.4 83.7 73.1 56.2

YOLOX 80.6 79.5 91.2 84.6 86.6 81.1 90.7 89.2 91.0 87.4 79.0 73.1

ViTDet 81.3 79.3 88.7 84.7 88.3 84.2 91.0 87.1 90.2 89.0 79.8 72.6

DiffusionDet 85.6 82.3 91.9 89.1 92.5 86.8 93.1 91.5 92.0 91.7 83.2 76.8

Table 4.  Comparison of mAP for each class.
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threshold within this range and then averaging the results. Additionally, following the definition of COCO16, we 
calculated the mAP values for each method on large, medium, and small objects separately.

Table 4 shows the mAP values of the 10 models for each space object category. The abbreviations of the 
category names in the table correspond to their full names as follows: CubeSat (CU), cylindrical satellite (CY), 
geo-communication satellite (GE), LEO communication satellite (LE), space telescope (ST), SAR satellite (SA), 
navigation satellite (NA), symmetrical Earth observation satellites (SY), single-panel Earth observation satellites 
(SI), space debris (DE), and space rocks (RO).

Figure 8 shows the overall performance of each algorithm in spatial object detection and recognition on the 
NCSTP dataset. Each circle in the figure represents a model. The horizontal axis indicates the FLOPs of the model, 
with further rightward positions representing higher computational costs. The vertical axis represents mAP, with 
higher positions indicating better model accuracy. The radius of each circle corresponds to Params in the model, 
with larger radii indicating more parameters. At the per-class level, satellite subclasses are generally easier than 
debris and rocks. DETR variants show the steepest drop on rocks, while Sparse R-CNN remains robust.

While Sparse R-CNN yields the highest AP on NCSTP, it is relatively demanding for embedded deployment. 
For on-orbit scenarios, compute and power budgets are tight, so models with small footprints are preferable. 
Yolov3 requires the fewest computational resources, but its mAP is lower than other algorithms, indicating 
lower accuracy. It also requires more storage space. YOLOX, however, has the smallest Params and a relatively 
lower FLOPs value, but its accuracy is worse than half of the other algorithms. Taking into account factors such 
as model accuracy, required storage space, and computational resources, YOLOF demonstrates a more balanced 
performance in on-orbit space target detection and recognition.

Overall, transformer-based algorithms typically have more parameters. Additionally, all methods experience 
a performance drop on small targets, indicating that further research is needed to improve the detection and 
recognition of distant spatial objects. We should consider the accuracy requirements and constraints of on-orbit 
resources for actual missions to select the most suitable method.

Space target component segmentation.  This study transformed space target component recognition 
into a semantic segmentation problem. For each input image, we labelled the various components of the satellite 
in the form of masks and separated them from the background. Semantic segmentation aims to assign each pixel 
in an image to a predefined object class.

We selected 10 semantic segmentation methods for satellite component recognition experiments, namely 
FCN27, U-Net28, DeepLabV3+29, GCnet30, Fast-SCNN31, SETR32, Segformer33, K-net34, MaskFormer35, and 
Mask2Former36. These methods cover two types: CNN- and transformer-based approaches. All these models were 
fine-tuned for 160,000 items based on pre-trained weights. The performance of each method was evaluated after the 
final epoch. For the backbone of the methods, except for SETR, which uses Vit-Large; Segformer, which uses mit_b0; 
and Fast-SCNN, which does not have a backbone—all other methods use ResNet50. As in space target detection and 
recognition experiments, all methods were trained and tested on a server with an NVIDIA RTX 4090 GPU.

Evaluation metrics.  Regarding object detection and recognition tasks, we also evaluated the performance of 
these models on segmenting satellite components in the NCSTP dataset according to accuracy, model size, and 
computational complexity. For the model size and computational complexity, we still use Params and FLOPs as 
evaluation metrics. The accuracy of the semantic segmentation models was based on the mIOU.

Fig. 8  Object detection model performance scatter plot on NCSTP dataset.
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In semantic segmentation, the IoU is the ratio of the intersection and union of the ground-truth labels and 
the predicted values for a specific class. The mIoU is the average of the IoU for each class in the dataset. Its cal-
culation formula is as follows:

∑=
+ ∑ + ∑ −− = =

mIOU
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p p p
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ij j
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where Pij represents the number of pixels of class i that are predicted as class j. In a confusion matrix for semantic 
segmentation, Pij indicates how many pixels from the ground truth of class i are misclassified as class j by the 
model. The formula can also be written as follows:
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where TP represents true positives, the number of correctly predicted pixels for a specific class; FN represents 
false negatives, the pixels of a specific class that were not predicted correctly; and FP represents false positives, 
the pixels incorrectly predicted as a specific class.

In addition to the mIOU, we also calculated another metric to measure model accuracy, mACC. Accuracy 
refers to the proportion of correctly predicted pixels to the total pixels. mACC is the average accuracy across all 
categories:
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Furthermore, the mACC only considers the ratio of true positives to false negatives, reflecting the model’s 
accuracy. However, unlike the mIOU, it does not account for the impact of false positives. Compared with the 
mACC, the mIOU can more rigorously evaluate the performance of segmentation models, especially in cases of 
class imbalance, and better reflect the model’s fine-grained prediction capabilities. Therefore, this paper primar-
ily uses mIOU to measure the model’s accuracy.

It is worth mentioning that in the images of the NCSTP dataset, aside from the pixels occupied by space 
targets, a significant portion is labeled as background with a pixel value of 0. Because our evaluation focuses 
solely on the segmentation accuracy of satellite components, the mIoU and mACC values we calculate exclude 
the background part (reduce zero label).

Results and analysis.  Table 5 presents the performance of these 10 representative semantic segmentation algo-
rithms on the NCSTP dataset. The table also presents the mIOU and mACC values for each model across all 
component categories and the IoU and accuracy values for the four components: body, solar panel, antenna, and 
observation load. In addition, we list the backbone used by each model, along with the number of parameters 
and FLOPs. Consistent with the object detection algorithms, to comprehensively compare the overall perfor-
mance of the models, we have plotted the mIOU, Params, and FLOPs information of all models in Fig. 9, where 
the X-axis represents FLOPs, the Y-axis represents mIOU, and each colored circle represents a model. The radius 
of the circle indicates the size of the model’s Params.

Among all the semantic segmentation models, Mask2Former36 achieved the highest accuracy, with an mIOU 
of 88.1. Its Params was at a moderate level, but its FLOPs value was relatively high, indicating that this model’s 
deployment and inference require considerable computational resources. In contrast, the Fast-SCNN model had 
very small Params and FLOPs, allowing it to be deployed and run under extremely limited storage and compu-
tational resources. However, its mIOU was also much lower than that of other models. Additionally, SegFormer 
and DeepLabv3+ exhibited high mIOU while maintaining relatively low Params and FLOPs, making their over-
all performance quite impressive.

Method mIOU mACC Flops(G) Params(M) backbone

Body Solar panel Antenna Observation load

Iou Acc Iou Acc Iou Acc Iou Acc

FCN 77.7 83.2 58.0 47.1 Resnet50 69.52 72.75 90.04 94.19 75.73 81.29 75.57 84.72

Unet 80.3 85.8 203 29.0 Resnet50 71.83 75.59 91.24 96.64 80.0 87.14 78.21 83.73

DeepLabV3+ 83.0 88.7 177 41.2 Resnet50 72.86 76.56 93.53 96.52 84.11 91.95 81.46 89.71

Gcnet 81.4 86.2 198 47.3 Resnet50 72.06 75.69 92.47 95.54 81.75 88.24 79.28 85.25

Fast-SCNN 43.90 56.0 0.936 1.40 — 41.37 74.49 45.94 46.48 38.15 40.41 46.44 62.46

SETR 71.2 79.7 367 309 ViT-Large 65.43 71.42 86.42 92.86 66.38 78.78 66.37 75.9

Segformer 79.9 86.4 7.90 3.72 Mit_b0 70.47 75.07 91.48 95.6 79.94 87.34 78.0 87.44

K-net 82.4 87.9 273 78.9 Resnet50 73.4 76.38 92.26 96.81 83.02 90.14 80.87 88.61

MaskFormer 84.8 89.5 181 45.0 Resnet50 74.5 77.33 93.44 96.61 86.69 93.48 84.48 90.72

Mask2Former 88.1 91.0 226 44.0 Resnet50 76.66 78.25 95.69 97.75 91.28 95.01 88.8 93.1

Table 5.  Comparison of benchmark evaluation results for component segmentation.

https://doi.org/10.1038/s41597-025-06056-8


1 2Scientific Data |         (2025) 12:1780  | https://doi.org/10.1038/s41597-025-06056-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

A detailed analysis of the models’ performance for each component category revealed that all models 
achieved higher segmentation accuracy for solar panels than other components. This may be because solar pan-
els typically have clear boundaries with other components, possess similar structures across different satellites, 
and generally occupy more pixel values than other types of components. In addition, the practical implication 
of this bias is that, in space operations, different components are of varying levels of interest. However, if a given 
space operation task places greater emphasis on antennas or payloads, it becomes necessary to design more 
targeted perception algorithms specifically tailored to those components.

The semantic segmentation algorithm can be chosen for tasks with different resource constraints. If higher 
accuracy is desired and resources are sufficient, Mask2Former36 can be selected. However, if the model needs 
to be deployed on platforms with limited computational and storage resources, such as small satellites or space 
drones, Fast-SCNN would be a better choice. While this sacrifices accuracy, it meets the requirements for 
real-time tasks.

Data availability
Our dataset15 is publicly available at https://doi.org/10.6084/m9.figshare.28606754.

Code availability
The code used in this research is available at https://github.com/LYXLYXlyv/NCSTP.
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