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A relaxation-diffusion MRI dataset 
of aging mouse brains at 9.4 Tesla
Baoxing Ren1,2, Ye Wu3, Yan Liu1,2, Yongpeng Bai1,2, Quan Tao1,2, Yanqiu Feng1,2,4,5,6 ✉ & 
Xinyuan Zhang   1,2 ✉

Relaxation-diffusion MRI (rdMRI) is an advanced imaging technique that acquires diffusion MRI data 
across multiple echo times (TEs), enabling the disentanglement of relaxation and diffusion effects. This 
approach offers deeper insights into tissue microstructure, making it especially powerful for studying 
complex tissue organization and developmental processes. However, the lack of publicly available 
rdMRI datasets in mouse models has significantly limited its application in preclinical research. Here, 
we present a high-quality in-vivo rdMRI dataset of aging mouse brains, collected from five different age 
groups (n = 6 per group) using a 9.4 T ultra-high field MRI scanner. The rdMRI data were acquired at 5 
different TEs, with multi-shell diffusion scans at each TE. Each rdMRI dataset was processed through a 
specialized pipeline, with systematic quality control to ensure the reliability of the data. This dataset 
provides a foundation for validating and optimizing rdMRI techniques and serves as a valuable resource 
for investigating age-related structural alterations in the mouse brain.

Background & Summary
Diffusion magnetic resonance imaging (dMRI) is a non-invasive imaging technique that characterizes brain 
microstructure by probing the displacement of water molecules in tissue1. Beyond conventional dMRI, 
relaxation-diffusion MRI (rdMRI) integrates both diffusion and relaxation properties, such as longitudinal (T1) 
or transverse (T2) relaxation, which enhances the sensitivity to microstructural heterogeneity and improves 
compartment-specific contrast2–5. Among rdMRI techniques, T2-relaxation-diffusion imaging acquires 
diffusion-weighted data at multiple echo times (TEs), enabling the separation of diffusion from transverse relax-
ation effects across tissue compartments6–9. This addresses key limitations of traditional single-TE dMRI, which 
assumes uniform T₂ within each voxel and may bias diffusion estimates in complex tissue environments10–12. By 
disentangling these effects, T2-relaxation-diffusion MRI allows for more precise and robust characterization of 
complex brain microstructure4,5.

Age-related alterations in brain microstructure, including axonal degeneration, myelin breakdown, and 
changes in cellular density13, are closely associated with cognitive decline and the development of neurodegen-
erative diseases such as Alzheimer’s disease14,15. Accurately characterizing these changes is essential for under-
standing brain aging and its pathological mechanisms16. Mouse models play a vital role in aging research due to 
their genetic modifiability, experimental control, and widespread use in preclinical studies17,18.

Given the sensitivity of rdMRI in detecting subtle neural microstructure changes5,19, it is particularly 
well-suited for investigating age-related alterations in the brain20,21. However, despite its potential, publicly avail-
able rdMRI datasets for aging studies in mouse models remain scarce. Thus, we have released a high-quality 
rdMRI dataset of the aging mouse brain covering five different age groups. This dataset comprises multi-shell 
diffusion-weighted images acquired at five TEs using a 9.4 T ultra-high field animal MRI scanner. A customized 
preprocessing pipeline tailored for rdMRI data was employed, followed by the calculation of relaxation-regressed 
diffusion signals and transverse relaxation rates using the RElaxation-Diffusion Imaging Moments (REDIM)5 
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framework. Comprehensive quality control measures were applied, including signal-to-noise ratio (SNR) quan-
tification and standardized assessments using the DSI Studio software (version 2022.07.06), ensuring data accu-
racy and consistency.

By sharing these data openly, we aim to support the optimization of rdMRI algorithms, particularly in pre-
clinical mouse models. Moreover, we hope this dataset serves as a foundational resource, inspiring the develop-
ment of novel approaches for studying aging and neurodegenerative diseases in preclinical research.

Methods
Animals.  All animal experiments were conducted in accordance with the Institutional Animal Care and Use 
Committee of Southern Medical University. This dataset involved 30 male C57BL/6 mice, divided into five age 
groups (2, 6, 12, 18, and 24 months), with 6 mice per group (Fig. 1). The animals were housed in standard labo-
ratory conditions with controlled temperature and a 12-hour light/dark cycle, with free access to food and water.

MRI acquisitions.  All in-vivo MRI experiments were conducted with a Bruker BioSpin 9.4 T scanner 
(Software: ParaVision 360). An 86 mm volume coil was used for transmission and a 2 × 2 mouse brain surface 
array coil was used for signal reception. Diffusion weighted imaging (DWI) was performed with a slew rate of 
4497 T/m/s and the maximum gradient amplitude of 660 mT/m. During scanning, the mice were anesthetized 
with 1%-1.5% isoflurane (RWD Life Science, China). The mice were restrained in an animal holder with ear pins 
and a bite bar. Respiration rate was monitored with a pressure transducer placed under the abdomen, just below 
the ribcage. Respiration ranged between 60 and 70 breaths per minute during scanning. A circulating water heat-
ing pad was used to maintain the temperature of the animals at 37.5 ± 0.1 °C.

All diffusion MRI data were acquired in the coronal plane using a multi-shot 2D spin echo echo-planar imag-
ing (SE-EPI) pulse sequence, with the phase encoding direction set to Inferior-Superior (IS) for all acquisitions. 
The TEs were acquired in ascending order: TE = 22, 37, 52, 67, and 82 ms. For each TE, 30 gradient directions 
were acquired at b-values of 500, 1000, 1500, and 2500 s/mm² (Fig. 2a), along with six in-phase encoding (IS) 
b0 images and six reversed phase encoding (SI) b0 images. The same set of 30 gradient directions was used 
across all TEs and b-values. TR = 3200 ms, FOV = 18 × 15 mm², matrix size = 180 × 150, slices = 15, in-plane 
resolution = 0.1 × 0.1 mm2, slice thickness = 0.5 mm, flip angle = 90°, bandwidth = 345 kHz, average = 1, seg-
ments = 4. The diffusion gradient duration (δ) was 4 ms, and the diffusion gradient separation (∆) was 10 ms. 
The total scan time was 27 minutes per TE, resulting in 135 minutes per mouse for the full rdMRI protocol.

T2-weighted anatomical images were acquired using a 2D turbo rapid acquisition with relaxation 
enhancement (TurboRARE) sequence. The parameters included: TR = 3200 ms, TE = 11 ms, rare factor = 8, 
FOV = 18 × 15 mm², matrix size = 225 × 187, slices = 15, in-plane resolution = 0.08 × 0.08 mm2, slice thick-
ness = 0.5 mm, average = 3, excitation flip angle = 90°, bandwidth = 1400 kHz, scan time = 4 minutes.

Data processing.  The raw data were converted from Digital Imaging and Communications in Medicine 
(DICOM) to Neuroinformatics Informatics Technology Initiative (NIfTI) format using dcm2niix in MRIcroGL 
(version 1.2). Preprocessing of the dMRI data for each TE session was conducted in MRtrix3 (version 3.0.1)22 
and included the following steps: denoising23 (using magnitude data only), unringing24, distortion and motion 
correction25, and bias field correction26, as shown in Fig. 2b. Whole brain masks for each subject were manually 
edited using the segmentation editor in ITK-SNAP (version 4.0). Subsequently, the 4D dMRI data acquired at 
TEs of 37, 52, 67, and 82 ms were rigidly registered to the TE = 22 ms data using the “mrregister” command in 
MRtrix322 (Fig. 2c).

The relaxation-regressed diffusion signal and the relaxation rate (Fig. 2d) were then calculated using the 
REDIM5 method in MATLAB (The MathWorks, USA, version R2022a). The dMRI scalar metrics were com-
puted from the diffusion tensor imaging (DTI)27 and neurite orientation dispersion and density imaging 
(NODDI)28. DTI metrics include axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), and 
fractional anisotropy (FA) which were derived using MRtrix329. NODDI metrics include neurite density index 
(NDI) and orientation dispersion index (ODI) which were calculated with the AMICO toolbox (version 2.1.0)30 
using default parameters. Finally, for each subject, the first b0 image from the relaxation-regressed diffusion 
signal was registered to the Allen Mouse Brain Atlas (AMBA) template31 using the Symmetric Normalization 
(SyN) algorithm in Advanced Normalization Tools (ANTs)32. The resulting registration transforms were applied 
to warp all derived dMRI metric maps into the atlas space (Fig. 2e).

Fig. 1  Age distribution of scanned mice. Five groups of mice were scanned at different age points using a 9.4 T 
MRI animal scanner. Each age group included 6 different mice (total n = 30), providing cross-sectional coverage 
across the mouse lifespan for relaxation-diffusion MRI analysis.
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Data analysis.  Fiber orientation distribution (FOD)33 maps were calculated for each subject using multi-shell 
constrained spherical deconvolution with a maximum harmonic order of 6. Tractography34 was then generated 
with one million streamlines using the iFOD235 algorithm, seeding randomly within the whole-brain mask. The 
following parameters were applied: minimum streamline length of 0.5 mm, FOD cut-off of 0.05, maximum angle 
of 45°, and step size of 0.025 mm. To further quantify microstructural features, the number of crossing fibers 
(NCF)36 was derived from the FOD maps.

Data Records
The MRI dataset and exported protocols follow the Brain Imaging Data Structure (BIDS) (version 1.9.0) 
(https://bids.neuroimaging.io/) standard37 and are publicly available on figshare38 (https://doi.org/10.6084/
m9.figshare.28433102). Each subject session folder contains three subfolders: “anat” for anatomical images, 
“dwi” for raw dMRI data, and “reversed phase-encode dwi” for data acquired with reversed phase encoding 
direction. Demographic information for each subject is compiled in the “participants.tsv” file, while the acqui-
sition protocol can be found in the JSON files located within each scan folder. In addition, preprocessed outputs 
are provided in the “derivatives” folder, including both preprocessed data and relaxation-regressed dMRI data.

Technical Validation
To ensure the reliability of the preprocessed rdMRI data, we employed common methods to assess image quality, 
data consistency, and registration accuracy, as detailed below:

•	 The SNR was calculated by dividing the mean signal by the noise39. The mean signal was obtained from a 
region of interest (ROI) in the white matter at the genu of the corpus callosum in a non-diffusion image (red 
box in Fig. 3a). The noise was calculated as the standard deviation of the background signal in the same image 
(blue box in Fig. 3a). All selected ROIs were manually checked and found to be free of ghosting artifacts. The 
calculated SNR values for each TE are displayed in Fig. 3b.

Fig. 2  An illustration of the processing pipeline for multi-TE dMRI data acquisition and registration in the 
mouse brain. (a) Acquisition scheme design for relaxation-diffusion MRI. (b) Image preprocessing pipeline 
for multi-TE dMRI data. (c) Rigid alignment of multi-TE dMRI data (37 ms, 52 ms, 67 ms, and 82 ms) to the 
reference dMRI data at TE = 22 ms. (d) Relaxation regressed DWI images and transverse relaxation rate image. 
(e) Relaxation regressed dMRI data registration pipeline to atlas space.
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•	 The Neighboring DWI Correlation (NDC) was calculated in the DSI Studio software and was assessed to 
identify low-quality outliers caused by artifacts, such as eddy currents, head motion, or coil issues. Lower 
NDC values indicate reduced data quality and potential alignment issues. The NDC values for each TE are 
shown in Fig. 3c. DSI Studio automatically generates quality control reports, which include NDC values and 
bad slice counts. In our multi-TE dMRI dataset, no bad slices were identified, and all NDC values exceeded 
the threshold of 0.6. These metrics were carefully reviewed to ensure the quality and reliability of our dataset.

•	 To provide a more comprehensive assessment of data quality, we present preprocessed relaxation-regressed 
dMRI images at TE = 22 ms from three orthogonal views: coronal, axial, and sagittal (Fig. 4). The inclusion 
of both in-plane and through-plane perspectives allows for the evaluation of intra-slice image quality and the 
consistency across slices, which is critical for ensuring the continuity of anatomical structures in the dataset. 
Additionally, we provide a representative example of MD, FA, NDI, and ODI images per age group (2, 6, 12, 
18, and 24 months) in Fig. 5. This enables a direct comparison of data quality across different developmental 
stages, with all images showing approximately the same anatomical location.

•	 To evaluate the effectiveness of the rdMRI technique in complex fiber regions, we visualized FODs and per-
formed tractography (Fig. 6a, b). The relaxation-regressed FODs offered clearer and more accurate depictions 
of intricate fiber orientations compared to traditional approaches. Furthermore, the resulting tractography 
demonstrated the enhanced capability of rdMRI in revealing the connectivity and spatial organization of 
white matter pathways. Finally, we derived multiple quantitative metrics from the rdMRI data, including 
transverse relaxation rate, DTI and NODDI parameters, which offer valuable insights into the structural and 
microstructural properties of brain tissue (Fig. 6c).

Fig. 3  Quality metrics of the preprocessed dMRI data. (a) The ROIs used for measuring the SNR in the non-
diffusion image (red box is WM ROI, blue box is background ROI). (b) The calculated SNR values for each TE. 
(c) The Neighboring DWI Correlation (NDC) for each TE. Each dot represents one mouse (n = 30).

Fig. 4  Preprocessed relaxation-regressed dMRI images at TE = 22 ms from three orthogonal views: coronal, 
axial, and sagittal. The displayed image represents the full FOV.
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•	 To validate the registration accuracy, we calculated the Dice scores for five representative brain regions (cor-
tex, hippocampus, thalamus, striatum, and corpus callosum) between the registered dMRI images and the 
AMBA. All manual segmentation results were referenced from the Allen Common Coordinate Framework 
version 3. The Dice scores were computed using the following equation40:

Fig. 5  Representative images of MD, FA, NDI, and ODI across different age groups (2, 6, 12, 18, and 24 
months).

Fig. 6  Visualization of FODs, tractography, and parametric maps. (a) FODs at three different TEs (22, 37, 
and 52 ms), along with relaxation-regressed FODs. (b) Tractography results at three TEs (22, 37, and 52 ms), 
together with relaxation-regressed tractography. (c) Parametric maps, including transverse relaxation rate, 
color-FA, AD, RD, MD, FA, NDI, and ODI.
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where A and B represent the binary masks of the ROI in the subject and reference, respectively, and A ∩ B rep-
resents their intersection. The Dice score results are shown in Fig. 7. Overall, the Dice scores indicate satisfactory 
registration accuracy, with higher agreement for the cortex, hippocampus, and thalamus, and acceptable perfor-
mance for the striatum and corpus callosum.

Usage Notes
This rdMRI dataset represents a significant resource for researchers aiming to validate rdMRI analysis algo-
rithms or studying mouse brain development and degeneration41–43. To ensure the reliability of the analysis 
results, special attention must be paid to the data preprocessing.

In this study, although we did not use the reversed phase encoding b0 images for distortion correction, we 
applied nonlinear registration to align the dMRI images with anatomical images in AMBA space to reduce sus-
ceptibility distortion44 (see Methods for details). The reversed phase encoding b0 images are available on figshare 
and we encourage researchers to utilize them for exploring distortion correction strategies for mouse brains.

In addition, a signal drift was visually detectable along the phase-encoding direction over the course of the 
long scan. Accurate alignment across the multi-TE dMRI data is critical, and improper alignment may introduce 
bias in the calculation of relaxation regression diffusion signals.

Finally, the dataset was acquired using anisotropic voxels (0.1 × 0.1 × 0.5 mm3), which may introduce bias in 
the estimation of ODI in NODDI, especially in regions with complex fibers. Users should interpret ODI results 
with caution.

Code availability
All the REDIM code and processing scripts related to MRtrix3 and ANTs are available for access on figshare 
(https://doi.org/10.6084/m9.figshare.28433102), providing researchers with a transparent and reproducible 
framework for carrying out rdMRI analyses.

Data availability
The dataset is available at figshare (https://doi.org/10.6084/m9.figshare.28433102).

Received: 4 March 2025; Accepted: 2 October 2025;
Published: xx xx xxxx

References
	 1.	 Alexander, D. C., Dyrby, T. B., Nilsson, M. & Zhang, H. Imaging brain microstructure with diffusion MRI: practicality and 

applications. NMR Biomed 32, e3841, https://doi.org/10.1002/nbm.3841 (2017).
	 2.	 Leppert, I. R. et al. Efficient whole-brain tract-specific T1 mapping at 3 T with slice-shuffled inversion-recovery diffusion-weighted 

imaging. Magn. Reson. Med. 86, 738–753, https://doi.org/10.1002/mrm.28734 (2021).

Fig. 7  Dice scores for five representative brain regions between the registered dMRI images and the AMBA 
template. The brain regions include Cortex (CX), Hippocampus (HP), Thalamus (TH), Striatum (STR), and 
Corpus callosum (CC).

https://doi.org/10.1038/s41597-025-06088-0
https://doi.org/10.6084/m9.figshare.28433102
https://doi.org/10.6084/m9.figshare.28433102
https://doi.org/10.1002/nbm.3841
https://doi.org/10.1002/mrm.28734


7Scientific Data |         (2025) 12:1797  | https://doi.org/10.1038/s41597-025-06088-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

	 3.	 De Santis, S., Barazany, D., Jones, D. K. & Assaf, Y. Resolving relaxometry and diffusion properties within the same voxel in the 
presence of crossing fibres by combining inversion recovery and diffusion-weighted acquisitions. Magn. Reson. Med. 75, 372–380, 
https://doi.org/10.1002/mrm.25644 (2015).

	 4.	 Wu, Y. et al. Relaxation-Diffusion Spectrum Imaging for Probing Tissue Microarchitecture. in Medical Image Computing and 
Computer Assisted Intervention-MICCAI 2023. 14227, 152-162 (2023).

	 5.	 Ning, L., Gagoski, B., Szczepankiewicz, F., Westin, C.-F. & Rathi, Y. Joint RElaxation-Diffusion Imaging Moments to Probe Neurite 
Microstructure. IEEE Trans. Med. Imaging 39, 668–677, https://doi.org/10.1109/tmi.2019.2933982 (2020).

	 6.	 McKinnon, E. T. & Jensen, J. H. Measuring intra-axonal T2 in white matter with direction-averaged diffusion MRI. Magn. Reson. 
Med. 81, 2985–2994, https://doi.org/10.1002/mrm.27617 (2018).

	 7.	 Veraart, J., Novikov, D. S. & Fieremans, E. TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T2 
relaxation times. Neuroimage 182, 360–369, https://doi.org/10.1016/j.neuroimage.2017.09.030 (2017).

	 8.	 de Almeida Martins, J. P. & Topgaard, D. Multidimensional correlation of nuclear relaxation rates and diffusion tensors for model-
free investigations of heterogeneous anisotropic porous materials. Sci Rep 8, 2488, https://doi.org/10.1038/s41598-018-19826-9 
(2018).

	 9.	 Kim, D., Doyle, E. K., Wisnowski, J. L., Kim, J. H. & Haldar, J. P. Diffusion-relaxation correlation spectroscopic imaging: A 
multidimensional approach for probing microstructure. Magn. Reson. Med. 78, 2236–2249, https://doi.org/10.1002/mrm.26629 
(2017).

	10.	 Harrison, J. R. et al. Imaging Alzheimer’s genetic risk using diffusion MRI: A systematic review. Neuroimage Clin 27, 102359, https://
doi.org/10.1016/j.nicl.2020.102359 (2020).

	11.	 Alexander, A. L., Lee, J. E., Lazar, M. & Field, A. S. Diffusion tensor imaging of the brain. Neurotherapeutics 4(3), 316–329, https://
doi.org/10.1016/j.nurt.2007.05.011 (2007).

	12.	 Maharjan, S. et al. Age-dependent microstructure alterations in 5xFAD mice by high-resolution diffusion tensor imaging. Front. 
Neurosci 16, 964654, https://doi.org/10.3389/fnins.2022.964654 (2022).

	13.	 Seo, S. W. et al. P2-142: Pathogenesis of gray and white matter changes in cognitively impaired patients due to Alzheimer’s, 
cerebrovascular disease, and mixed pathologies: Axonal degeneration versus myelin breakdown. Alzheimer’s & Dementia 11, 
540–541, https://doi.org/10.1016/j.jalz.2015.06.680 (2015).

	14.	 Bozzali, M. White matter damage in Alzheimer’s disease assessed in vivo using diffusion tensor magnetic resonance imaging. J. 
Neurol. Neurosurg. Psychiatry 72, 742–746, https://doi.org/10.1136/jnnp.72.6.742 (2002).

	15.	 Phillips, G. A., Butchart, J., Hope, S., Taylor, G. & Strain, W. D. Salivary beta amyloid 1-42 (Aβ42) for the diagnosis of Alzheimer’s 
disease: a systematic review and meta-analysis. Alzheimer’s & Dementia 19, e080350, https://doi.org/10.1002/alz.080350 (2023).

	16.	 Anckaerts, C. et al. Early functional connectivity deficits and progressive microstructural alterations in the TgF344-AD rat model 
of Alzheimer’s Disease: A longitudinal MRI study. Neurobiol Dis 124, 93–107, https://doi.org/10.1016/j.nbd.2018.11.010 (2018).

	17.	 Jullienne, A., Trinh, M. V. & Obenaus, A. Neuroimaging of Mouse Models of Alzheimer’s Disease. Biomedicines 10, 305, https://doi.
org/10.3390/biomedicines10020305 (2022).

	18.	 Igarashi, H. et al. Longitudinal GluCEST MRI Changes and Cerebral Blood Flow in 5xFAD Mice. Contrast. Media. Mol. Imaging 
2020, 8831936, https://doi.org/10.1155/2020/8831936 (2020).

	19.	 Gong, T. et al. MTE-NODDI: Multi-TE NODDI for disentangling non-T2-weighted signal fractions from compartment-specific T2 
relaxation times. Neuroimage 217, 116906, https://doi.org/10.1016/j.neuroimage.2020.116906 (2020).

	20.	 Bartzokis, G. et al. White Matter Structural Integrity in Healthy Aging Adults and Patients With Alzheimer Disease. Arch Neurol 60, 
393–398, https://doi.org/10.1001/archneur.60.3.393 (2003).

	21.	 Salat, D. H. et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 26, 
1215–1227, https://doi.org/10.1016/j.neurobiolaging.2004.09.017 (2004).

	22.	 Tournier, J.-D. et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. 
NeuroImage 202, 116137, https://doi.org/10.1016/j.neuroimage.2019.116137 (2019).

	23.	 Veraart, J. et al. Denoising of diffusion MRI using random matrix theory. Neuroimage 142, 394–406, https://doi.org/10.1016/j.
neuroimage.2016.08.016 (2016).

	24.	 Kellner, E., Dhital, B., Kiselev, V. G. & Reisert, M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magnetic Resonance 
in Med 76, 1574–1581, https://doi.org/10.1002/mrm.26054 (2015).

	25.	 Andersson, J. L. R., Skare, S. & Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: application 
to diffusion tensor imaging. Neuroimage 20, 870–888, https://doi.org/10.1016/S1053-8119(03)00336-7 (2003).

	26.	 Tustison, N. J. et al. N4ITK: Improved N3 Bias Correction. IEEE Trans. Med. Imaging 29, 1310–1320, https://doi.org/10.1109/
TMI.2010.2046908 (2010).

	27.	 Basser, P. J., Mattiello, J. & LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J 66, 259–267, https://doi.
org/10.1016/S0006-3495(94)80775-1 (1994).

	28.	 Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C. NODDI: practical in vivo neurite orientation dispersion and 
density imaging of the human brain. Neuroimage 61, 1000–1016, https://doi.org/10.1016/j.neuroimage.2012.03.072 (2012).

	29.	 Veraart, J., Sijbers, J., Sunaert, S., Leemans, A. & Jeurissen, B. Weighted linear least squares estimation of diffusion MRI parameters: 
strengths, limitations, and pitfalls. Neuroimage 81, 335–346, https://doi.org/10.1016/j.neuroimage.2013.05.028 (2013).

	30.	 Daducci, A. et al. Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data. Neuroimage 
105, 32–44, https://doi.org/10.1016/j.neuroimage.2014.10.026 (2014).

	31.	 Wang, Q. et al. The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. Cell 181, 936–953.e20, https://doi.
org/10.1016/j.cell.2020.04.007 (2020).

	32.	 Avants, B., Tustison, N. J. & Song, G. Advanced Normalization Tools: V1.0. Insight. J. https://doi.org/10.54294/uvnhin (2009).
	33.	 Raffelt, D., Tournier, J., Crozier, S., Connelly, A. & Salvado, O. Reorientation of fiber orientation distributions using apodized point 

spread functions. Magn. Reson. Med. 67, 844–855, https://doi.org/10.1002/mrm.23058 (2011).
	34.	 Tournier, J., Calamante, F. & Connelly, A. MRtrix: Diffusion tractography in crossing fiber regions. Int J Imaging Syst Tech 22, 53–66, 

https://doi.org/10.1002/ima.22005 (2012).
	35.	 Tournier, J., Calamante, F. & Connelly, A. Improved probabilistic streamlines tractography by 2 nd order integration over fibre 

orientation distributions. in Proceedings of the International Society for Magnetic Resonance in Medicine 1670. Wiley: New Jersey, 
USA (2009).

	36.	 Raffelt, D. et al. Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. 
Neuroimage 59, 3976–3994, https://doi.org/10.1016/j.neuroimage.2011.10.045 (2011).

	37.	 Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging 
experiments. Sci Data 3, 160044, https://doi.org/10.1038/sdata.2016.44 (2016).

	38.	 Ren, B. et al. A relaxation-diffusion MRI dataset of aging mouse brains at 9.4 Tesla. figshare https://doi.org/10.6084/
m9.figshare.28433102 (2025).

	39.	 Association, N. E. M. Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. Report No. MS 
1-2008 (R2014) (National Electrical Manufacturers Association, 2008).

	40.	 Ni, H. et al. A Robust Image Registration Interface for Large Volume Brain Atlas. Sci Rep 10, 2139, https://doi.org/10.1038/s41598-
020-59042-y (2020).

https://doi.org/10.1038/s41597-025-06088-0
https://doi.org/10.1002/mrm.25644
https://doi.org/10.1109/tmi.2019.2933982
https://doi.org/10.1002/mrm.27617
https://doi.org/10.1016/j.neuroimage.2017.09.030
https://doi.org/10.1038/s41598-018-19826-9
https://doi.org/10.1002/mrm.26629
https://doi.org/10.1016/j.nicl.2020.102359
https://doi.org/10.1016/j.nicl.2020.102359
https://doi.org/10.1016/j.nurt.2007.05.011
https://doi.org/10.1016/j.nurt.2007.05.011
https://doi.org/10.3389/fnins.2022.964654
https://doi.org/10.1016/j.jalz.2015.06.680
https://doi.org/10.1136/jnnp.72.6.742
https://doi.org/10.1002/alz.080350
https://doi.org/10.1016/j.nbd.2018.11.010
https://doi.org/10.3390/biomedicines10020305
https://doi.org/10.3390/biomedicines10020305
https://doi.org/10.1155/2020/8831936
https://doi.org/10.1016/j.neuroimage.2020.116906
https://doi.org/10.1001/archneur.60.3.393
https://doi.org/10.1016/j.neurobiolaging.2004.09.017
https://doi.org/10.1016/j.neuroimage.2019.116137
https://doi.org/10.1016/j.neuroimage.2016.08.016
https://doi.org/10.1016/j.neuroimage.2016.08.016
https://doi.org/10.1002/mrm.26054
https://doi.org/10.1016/S1053-8119(03)00336-7
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1016/S0006-3495(94)80775-1
https://doi.org/10.1016/S0006-3495(94)80775-1
https://doi.org/10.1016/j.neuroimage.2012.03.072
https://doi.org/10.1016/j.neuroimage.2013.05.028
https://doi.org/10.1016/j.neuroimage.2014.10.026
https://doi.org/10.1016/j.cell.2020.04.007
https://doi.org/10.1016/j.cell.2020.04.007
https://doi.org/10.54294/uvnhin
https://doi.org/10.1002/mrm.23058
https://doi.org/10.1002/ima.22005
https://doi.org/10.1016/j.neuroimage.2011.10.045
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.6084/m9.figshare.28433102
https://doi.org/10.6084/m9.figshare.28433102
https://doi.org/10.1038/s41598-020-59042-y
https://doi.org/10.1038/s41598-020-59042-y


8Scientific Data |         (2025) 12:1797  | https://doi.org/10.1038/s41597-025-06088-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

	41.	 Denic, A. et al. MRI in rodent models of brain disorders. Neurotherapeutics 8, 3–18, https://doi.org/10.1007/s13311-010-0002-4 
(2011).

	42.	 Nie, X. et al. Diffusion MRI detects longitudinal white matter changes in the 3xTg-AD mouse model of Alzheimer’s disease. Magn 
Reson Imaging 57, 235–242, https://doi.org/10.1016/j.mri.2018.12.003 (2018).

	43.	 Han, X. et al. High-resolution diffusion magnetic resonance imaging and spatial-transcriptomic in developing mouse brain. 
Neuroimage 297, 120734, https://doi.org/10.1016/j.neuroimage.2024.120734 (2024).

	44.	 Jelescu, I. O. et al. Considerations and recommendations from the ISMRM diffusion study group for preclinical diffusion MRI: Part 
1: In vivo small-animal imaging. Magn. Reson. Med. 93(6), 2507–2534, https://doi.org/10.1002/mrm.30429 (2025).

Acknowledgements
This work was supported by funding from the National Natural Science Foundation of China (Grant Numbers: 
U21A6005, 61971214, 82372079, 62201265) and the Guangdong Basic and Applied Basic Research Foundation 
(Grant Numbers: 2023A1515012093), Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders (Grant 
Numbers: 2023B1212120004).

Author contributions
Protocol design: B.R., Q.T., X.Z.; Data collection: B.R., Q.T.; Data analysis: B.R., Y.W., Y.L., Y.B.; Preparation of 
manuscript: B.R., Q.T., Y.F, X.Z.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.F. or X.Z.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial- 
NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribu-

tion and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed mate-
rial. You do not have permission under this licence to share adapted material derived from this article or parts of 
it. The images or other third party material in this article are included in the article’s Creative Commons licence, 
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative  
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  
http://creativecommons.org/licenses/by-nc-nd/4.0/.
 
© The Author(s) 2025

https://doi.org/10.1038/s41597-025-06088-0
https://doi.org/10.1007/s13311-010-0002-4
https://doi.org/10.1016/j.mri.2018.12.003
https://doi.org/10.1016/j.neuroimage.2024.120734
https://doi.org/10.1002/mrm.30429
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/

	A relaxation-diffusion MRI dataset of aging mouse brains at 9.4 Tesla

	Background & Summary

	Methods

	Animals. 
	MRI acquisitions. 
	Data processing. 
	Data analysis. 

	Data Records

	Technical Validation

	Usage Notes

	Acknowledgements

	Fig. 1 Age distribution of scanned mice.
	Fig. 2 An illustration of the processing pipeline for multi-TE dMRI data acquisition and registration in the mouse brain.
	Fig. 3 Quality metrics of the preprocessed dMRI data.
	Fig. 4 Preprocessed relaxation-regressed dMRI images at TE = 22 ms from three orthogonal views: coronal, axial, and sagittal.
	Fig. 5 Representative images of MD, FA, NDI, and ODI across different age groups (2, 6, 12, 18, and 24 months).
	Fig. 6 Visualization of FODs, tractography, and parametric maps.
	Fig. 7 Dice scores for five representative brain regions between the registered dMRI images and the AMBA template.




